Nothing Special   »   [go: up one dir, main page]

EP0496313B1 - Non-woven reinforced with a meltbinder - Google Patents

Non-woven reinforced with a meltbinder Download PDF

Info

Publication number
EP0496313B1
EP0496313B1 EP92100815A EP92100815A EP0496313B1 EP 0496313 B1 EP0496313 B1 EP 0496313B1 EP 92100815 A EP92100815 A EP 92100815A EP 92100815 A EP92100815 A EP 92100815A EP 0496313 B1 EP0496313 B1 EP 0496313B1
Authority
EP
European Patent Office
Prior art keywords
fibers
structural units
mol
aromatic
loadbearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92100815A
Other languages
German (de)
French (fr)
Other versions
EP0496313A1 (en
Inventor
Karl Heinrich
Hans-Joachim Brüning
Elke Gebauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0496313A1 publication Critical patent/EP0496313A1/en
Application granted granted Critical
Publication of EP0496313B1 publication Critical patent/EP0496313B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/549Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249949Two or more chemically different fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric
    • Y10T442/692Containing at least two chemically different strand or fiber materials

Definitions

  • the present invention relates to a new melt-bond-strengthened nonwoven based on aramid fibers, a process for its production, and the use of this nonwoven as a filter material, as an insulating material or as a reinforcing material.
  • Nonwovens are generally known and represent a separate category of textile fabrics.
  • nonwovens are formed directly from individual fibers or filaments.
  • the cohesion of such nonwovens can be produced by the fibers' inherent adhesion and / or by mechanical and / or chemical consolidation.
  • DE-A-26 00 209 discloses a heat-resistant sheet material which is produced by pressing or heating a woven or knitted fabric or a sheet material from a mixture of aromatic polyamide fibers. Of these fibers, one type acts as a binder and the other type acts as a supporting fiber. As a result of the heat-melt treatment, the binding fiber is deformed and a porous sheet material is formed which has good paint impregnability. The necessary strength is only achieved through impregnation. Fibers which consist of more than 80 mol% of m-phenylene isophthalamide units are proposed as binding fibers.
  • a filter material which consists of glass fibers which are strengthened by means of aromatic polyamide fibers.
  • the polymer fibers are deformed by heat and cause a kind of "sintering process" to strengthen the glass fleece.
  • the strength of these nonwovens also leaves something to be desired.
  • the object of the present invention is to provide a novel nonwoven fabric made from aromatic polyamides with improved strength.
  • aromaticamide is understood to mean a polyamide which has essentially aromatic residues in the polymer chain, for example more than 80 mol% of which is composed of aromatic monomer units.
  • aramid fibers can be used to produce the nonwoven fabric according to the invention, as long as the binding fiber consists of thermoplastic aromatic polyether amide and the supporting fiber has a melting or decomposition point which is higher than the melting point of the binding fiber, so that the binding fiber can be melted practically completely without that the load-bearing fiber is changed significantly.
  • Fusible and non-fusible aramid fibers can be used as the supporting fiber. Furthermore, the strength and the modulus of the supporting aramid fibers can be selected within wide limits.
  • aramid fibers of high strength and high modulus are essentially aramids built up from p-aromatic radicals, such as poly- (p-phenylene-terephthalamide). Examples of this are the products KEVLAR® 29 and KEVLAR® 49 from Du Pont. These aramids are insoluble in organic solvents.
  • supporting fibers made from aramids which are soluble in organic solvents, in particular from those aramides which are soluble in polar aprotic solvents, such as dimethylformamide or dimethyl sulfoxide.
  • aromatic polyamides based on terephthalic acid and 3- (p-aminophenoxy) -4-aminobenzanilide as described in DE-A-21 44 126; or aromatic polyamides based on terephthalic acid, p-phenylenediamine and 3,4'-diaminodiphenyl ether, as described in DE-C-25 56 883 and DE-A-30 07 063, or aromatic polyamides based on terephthalic acid and selected Shares of selected diamines, as described in DE-A-35 10 655, -36 05 394 and in EP-A-199 090.
  • Aramides containing these structural units of the formulas (Ia) to (Ig) are known from EP-A-364 891, -364 892 and -364 893 and the content of these publications is also the content of the present description.
  • thermoplastically processable aromatic polyetheramide fibers can be used as binding fibers, as long as these fibers can be melted practically completely and the supporting aramid fibers are glued. This is usually done with the formation of so-called "tie sails". It is preferred to use thermoplastically processable aromatic polyetheramide fibers which are soluble in organic solvents.
  • thermoplastically processable aromatic polyetheramides include, for example, the aromatic copolyetheramides which are known from DE-A-38 18 208 or from DE-A-38 18 209; aromatic polyamides known from EP-A-366,316, EP-A-384,980, EP-A-384,981 and EP-A-384,984 can also be used.
  • Binding fibers based on these aramids can be processed thermoplastically and are particularly good Melting behavior and lead to nonwovens with excellent strength.
  • residues -Ar 3 -, -Ar 4 -, -Ar 5 - and -Ar 6 - are p-phenylene, m-phenylene, biphenyl-4,4'-diyl or naphthalene-1,4-diyl.
  • substituents which are optionally located on the radicals -Ar 1 - to -Ar 6 - are branched or in particular straight-chain C 1 -C 6 alkyl radicals, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n- Pentyl or n-hexyl, as well as the corresponding perfluoro derivatives with up to six carbon atoms or the corresponding alkoxy derivatives. Methyl is preferred.
  • halogen substituents are bromine or especially chlorine.
  • aromatic polyetheramides of the formula II which are preferably used in accordance with the invention are produced by a targeted molecular weight control by adding the monomer units in a non-stoichiometric manner, the sum of the mole fractions x, y and z being one, but the sum of x and z not being equal to y and x being the same Can assume zero value.
  • z is greater than x.
  • the ends of the polymer chain are completely closed by adding reagents which react in the polymer to form groups which do not react further.
  • the end groups are independent of one another and can be the same or different and are preferably selected from a group of the formulas III, IV, V and / or VI.
  • the terminal nitrogen in formula (II) is an imide nitrogen.
  • E represents a hydrogen or a halogen atom, in particular a chlorine, bromine or fluorine atom, or an organic radical, for example an aryl (oxy) group.
  • the aromatic polyether amide of the formula II can be prepared by reacting one or more dicarboxylic acid derivatives with one or more diamines by the solution, precipitation or melt condensation process, one of the components being used in a stoichiometric deficit and a chain lock agent being added after the polycondensation has ended.
  • thermoplastic aromatic polyamides of the formula II which are preferably used according to the invention are further distinguished by the fact that they have an average molecular weight in the range from 5000 to 50,000 and a low melt viscosity which does not exceed 10,000 Pas.
  • W represents a fluorine, chlorine, bromine or iodine atom, preferably a chlorine atom, or a —OH or OR 4 group, where R 4 is a branched or unbranched aliphatic or aromatic radical can.
  • Aromatic diamines which may also be used are those of the formula (IX) H 2 N - Ar 5 - O - Ar 6 - Y - Ar 6 - O - Ar 5 - NH 2 (IX) where Ar 5 , Ar 6 and Y have the meaning given above.
  • the polyetheramides used according to the invention are preferably prepared via solution condensation processes.
  • the solution condensation of the aromatic dicarboxylic acid dichloride with the aromatic diamines takes place in aprotic, polar solvents of the amide type, e.g. in N, N-dimethyl-acetamide, preferably in N-methyl-2-pyrrolidone.
  • aprotic, polar solvents of the amide type e.g. in N, N-dimethyl-acetamide, preferably in N-methyl-2-pyrrolidone.
  • halide salts of the first and / or second group of the periodic system can be added to these solvents in a known manner to increase the solvency or to stabilize the polyether amide solutions.
  • Preferred additives are calcium chloride and / or lithium chloride.
  • the condensation is carried out without the addition of salt, since the aromatic polyetheramides described above are distinguished by a high solubility in the abovementioned amide-type solvents.
  • a monofunctional aromatic acid chloride or acid anhydride is added, for example, at the end of the polymerization reaction as a chain lock Benzoyl chloride, fluorobenzoyl chloride, diphenylcarboxylic acid chloride, phenoxybenzoyl chloride or else phthalic anhydride, naphthalic anhydride, chloronaphthalic anhydride.
  • Such chain locking agents can optionally be substituted, preferably with fluorine or chlorine atoms.
  • Benzoyl chloride or phthalic anhydride is preferably used, particularly preferably benzoyl chloride.
  • a monofunctional, preferably aromatic amine for example fluoraniline, chloroaniline, 4-aminodiphenylamine, aminobiphenylamine, aminodiphenyl ether, aminobenzophenone or aminoquinoline, is used as chain closing agent after the end of the polycondensation.
  • diacid chloride is polycondensed in deficit with diamine and the remaining reactive amino groups are then deactivated with a monofunctional acid chloride or diacid anhydride.
  • the diacid chloride is used in a deficit and polycondensed with a diamine.
  • the remaining reactive amino end groups are then deactivated with a monofunctional, preferably aromatic, optionally substituted acid chloride or acid anhydride.
  • the chain locking agent ie the monofunctional amine or acid chloride or acid anhydride, is preferably used in a stoichiometric or superstoichiometric amount, based on the diacid or diamine component.
  • the molar ratio is particularly preferably in the range from 0.90 to 0.99 and 1.01 to 1.10, particularly preferably in the range from 0.93 to 0.98 and 1.02 to 1.07, in particular in the range from 0.95 to 0.97 and 1.03 to 1.05.
  • the polycondensation temperatures are usually between -20 and +120 ° C, preferably between +10 and +100 ° C. Particularly good results are achieved at reaction temperatures between +10 and + 80 ° C.
  • the polycondensation reactions are preferably carried out such that 2 to 40, preferably 5 to 30% by weight of polycondensate are present in the solution after the reaction has ended.
  • the solution can be diluted with N-methyl-2-pyrrolidone or other solvents, e.g. DMF, DMAC or butyl cellosolve, or concentrated under reduced pressure (thin-film evaporator).
  • the hydrogen chloride formed, loosely bound to the amide solvent is removed by adding acid-binding auxiliaries.
  • acid-binding auxiliaries lithium hydroxide, calcium hydroxide, but in particular calcium oxide, propylene oxide, ethylene oxide or ammonia are suitable.
  • pure water is used as the "acid-binding" agent, which dilutes the hydrochloric acid and at the same time serves to precipitate the polymer.
  • the copolyamide solutions according to the invention described above are filtered, degassed and further processed in a manner known per se to give aramid fibers or threads.
  • additives can also be added to the solutions.
  • suitable amounts of additives can also be added to the solutions.
  • a precipitant can be added to the solution and the coagulated product can be filtered off.
  • Typical precipitants are, for example, water, methanol, acetone, which may also contain pH-controlling additives such as May contain ammonia or acetic acid.
  • the isolation is preferably carried out by comminuting the polymer solution with an excess of water in a cutting mill.
  • the finely comminuted coagulated polymer particles facilitate the subsequent washing steps (removal of the secondary products formed from the hydrochloric acid) and the drying of the polymer (avoiding inclusions) after filtration. Subsequent shredding is also unnecessary, since a free-flowing product is created directly.
  • aromatic polyamides of the formula II preferably used according to the invention have surprisingly good mechanical properties and high glass transition temperatures.
  • the Staudinger index [ ⁇ ] o is in the range from 0.4 to 1.5 dl / g, preferably in the range from 0.5 to 1.3 dl / g, particularly preferably in the range from 0.6 to 1.1 dl / g G.
  • the glass transition temperatures are generally above 180 ° C., preferably above 200 ° C., the processing temperatures in the range from 320 to 380 ° C., preferably in the range from 330 to 370 ° C., particularly preferably in the range from 340 to 360 ° C.
  • polyamides can be processed using extrusion processes since the melt viscosity does not exceed 10,000 Pas.
  • the extrusion can be carried out on conventional single or twin screw extruders.
  • the nonwovens according to the invention can be produced in any of the ways known per se. Staple fibers or short fibers or also continuous filaments from the two types of aramid can be used. The formation of the fleece can take place via dry or wet processing.
  • At least one type of fiber is an aramide that is not soluble in organic solvents, the preferred choice is processing using staple or short fibers.
  • carded nonwovens In such a case, it is preferred to produce carded nonwovens.
  • the two types of fibers are preferably mixed before carding.
  • nonwovens according to the invention can, however, also be produced by other conventional nonwoven formation techniques, for example by wet nonwoven technology (in particular for producing paper-like nonwovens) or aerodynamic or hydrodynamic nonwoven formation (in particular for producing bulky nonwovens).
  • the invention relates in particular to papers based on the nonwovens according to the invention, which are characterized by a content of about 70 to 98% by weight, in particular 80 to 90% by weight, of load-bearing aramid fibers in the form of staple fibers which are fibrillated and a content from about 2 to 30% by weight, in particular 10 to 20% by weight, of binding fibers made of thermoplastic aromatic polyetheramides, which are solidified by practically completely melting the binding fibers.
  • the stack lengths of the supporting aramid fibers are generally 2 to 6 mm.
  • the fibers can be made by cutting or tearing. Fibrillation of these fibers is preferably carried out by mechanical processing, for example by treating an aqueous suspension of the aramid staple fibers in a dissolver.
  • the aramid binding fibers are preferably used in the form of staple fibers.
  • the stack length of the binding fibers preferably corresponds approximately to the stack length of the carrier fibers.
  • the binder fibers can be used as such, i.e. prior fibrillation is not absolutely necessary.
  • the two types of fibers which in turn can be in the form of mixtures, are mixed together. This is generally done in an aqueous medium.
  • the suspension produced in this way is applied to a sieve pad, the aqueous medium being separated off and the fibers which have been felted together remaining on the pad.
  • the fabric obtained in this way is stabilized and / or solidified by heat treatment. If necessary, the heat treatment is carried out under pressure.
  • Typical temperatures for the consolidation step depend on the fiber types selected in the individual case and can be determined by a person skilled in the art using simple test series.
  • the papers produced in this way have practically no binding fibers, i.e. the binding fibers have melted so completely through the consolidation step that their fiber shape has been lost.
  • the papers according to the invention can be used in particular for the production of laminates, for example as top layers in the reinforcement of "honeycomb laminates", as described in WO-A-84/04727 or in the reinforcement of network materials, as in EP-A- 158,234.
  • the nonwovens produced in a first step can optionally be pre-consolidated before the final consolidation. This can be done for example by needles.
  • the final consolidation to the nonwovens according to the invention is carried out by heating the initially obtained nonwoven to a temperature at which the binding fibers melt and / or deform thermoplastic, whereby they usually form so-called "binding sails" at the crossing points of the supporting aramid fibers while losing their fiber structure.
  • the heating can be carried out by treatment with a hot carrier medium, for example with air, or by treatment with hot rollers or calenders, which may have a surface structure, and impart an embossed structure to the nonwoven fabric.
  • the duration of the heat treatment depends, for example, on the desired end properties, on the dimensions of the Fleece and the nature of the types of fibers forming the fleece.
  • the melting point of the binding fibers is usually at least 10 ° C. below the melting or decomposition point of the supporting fibers, in particular more than 30 ° C. below the melting or decomposition point of the supporting fibers.
  • the melting point of the binding fibers below the melting or decomposition point of the supporting fibers so that they do not experience any significant changes in properties during the heat treatment.
  • the character of the nonwovens according to the invention is also influenced by the proportion of melt binders. Depending on the area of application, a voluminous nonwoven with only a few bonding points is preferred or an almost flat connection, e.g. for laminates.
  • Typical values for the proportion of melt binder are in the range of 20-80% by weight of binder fiber, based on the amounts of binder fiber and load-bearing fiber.
  • the basis weights of the nonwovens according to the invention and the individual titer and staple lengths of both types of fibers can be varied within wide limits and adapted to the requirements of the further processing processes and the area of use.
  • Typical values for the grammages are 30 to 500 g / m 2 .
  • Typical values for the individual titer of the fibers are in the range from 0.5 to 5 dtex.
  • the filaments or staple fibers making up the nonwovens according to the invention can have a practically round cross section or can also have other shapes, such as dumbbell, kidney-shaped, triangular or tri or multilobal cross sections. Hollow fibers can be used. Furthermore, the two types of fibers can be combined in the form of bicomponent or multicomponent fibers, the binding component filling at least part of the fiber surface.
  • the supporting aramid fibers are spun from solvents in a known manner, and the thermoplastic aramids can be spun from the solution or from the melt.
  • the nonwovens according to the invention consist practically exclusively of aromatic polyamides and thus have all the advantages of these polymers, such as chemical and thermal stability, extremely good flame resistance and good compatibility with one another. They also have all the advantages of melt-bonded nonwovens, i.e. good tear and tear behavior.
  • the nonwovens according to the invention can be finished in a conventional manner, for example by adding antistatic agents, dyes or biocidal additives.
  • the nonwovens according to the invention can be used in particular in areas where high stability (chemical, thermal and mechanical) is required.
  • examples include the use as filter materials, as insulating materials (thermal and electrical) and as reinforcing materials for different substrates (e.g. plastics or as geotextiles).
  • the suspension obtained is dewatered by filtration and the filter cake obtained is applied to a hot plate at about 300 ° C. and dried at this temperature; the drying process is supported by treating the side of the filter cake facing away from the heating plate with an iron of approximately 300 ° C.
  • Table 1 shows the production conditions for different aramid papers and their strengths. The strength values were determined by recording force-expansion diagrams on 1.5 cm wide test strips of the papers. The measurements were carried out with an Instron tester. The clamping length was 50 mm. The strength values are based on the basis weight of the paper. Table 1: Manufacturing conditions and area-related strengths Example No.
  • Proportion of fusible aramid fiber (% by weight) Press conditions hot press (bar, ° C) Tear resistance / comments Basis weight (cN / mg / cm 2 ) 1 5 no hot press 22 2nd 10th no hot press 13 3rd 15 no hot press 12th 4th 20th no hot press 12th 5 30th no hot press 14 6 5 50, 290 26 parchment-like 7 10th 50, 290 22 parchment-like 8th 15 50, 290 31 parchment-like 9 20th 50, 290 22 parchment-like 10th 30th 50, 290 23 parchment-like
  • Table 2 Details of the manufacture and properties of the papers are shown in Table 2 below.
  • Table 2 Manufacturing conditions and area-related strengths
  • Basis weight (cN / mg / cm 2 ) 11 5 no hot press 60 12th 10th no hot press 58 13 15 no hot press 37 14 20th no hot press 32 15 30th no hot press 34 16 5 50, 290 42 parchment-like 17th 10th 50, 290 49 parchment-like 18th 15 50, 290 57 parchment-like 19th 20th 50, 290 74 parchment-like 20th 30th 50, 290 60 parchment-like 21 5 100.350 320 22 10th 100.350 260 23 15 100.350 340 24th 30th 100.350 160 25th 5 400.350 560 26 10th 400.350 590 27 15 400.350 820 28 20th 400.350 200

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polyamides (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Materials For Medical Uses (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A nonwoven reinforced with a melt binder is described, based on load-bearing aramid fibres and binder fibres of thermoplastic aramids, the melting point of which is below the melting or decomposition point of the said load-bearing aramid fibres. The nonwoven is characterised in that the binder fibres are virtually completely melted. The nonwoven are distinguished by a high strength.

Description

Die vorliegende Erfindung betrifft einen neuen schmelzbinderverfestigten Vliesstoff auf Basis von Aramidfasern, ein Verfahren zu dessen Herstellung, sowie die Verwendung dieses Vliesstoffes als Filtermaterial, als Isoliermaterial oder als Verstärkungsmaterial.The present invention relates to a new melt-bond-strengthened nonwoven based on aramid fibers, a process for its production, and the use of this nonwoven as a filter material, as an insulating material or as a reinforcing material.

Vliesstoffe sind allgemein bekannt und stellen eine eigene Kategorie textiler Flächengebilde dar. Im Gegensatz zu herkömmlichen textilen Flächengebilden, wie Geweben, Gewirken oder Gestricken, werden Vliesstoffe unmittelbar aus Einzelfasern oder Filamenten gebildet. Der Zusammenhalt solcher Vliese kann dabei durch die den Fasern eigene Haftung und/oder durch eine Verfestigung auf mechanischem und/oder auf chemischem Wege hergestellt werden.Nonwovens are generally known and represent a separate category of textile fabrics. In contrast to conventional textile fabrics, such as fabrics, knitted fabrics or knitted fabrics, nonwovens are formed directly from individual fibers or filaments. The cohesion of such nonwovens can be produced by the fibers' inherent adhesion and / or by mechanical and / or chemical consolidation.

Aus der DE-A-26 00 209 ist ein hitzebeständiges Bahnenmaterial bekannt, das durch Pressen oder Erhitzen eines Gewebes oder Gewirkes oder eines Bahnenmaterials aus einem Gemisch aus aromatischen Polyamidfasern hergestellt wird. Von diesen Fasern wirkt die eine Sorte als Bindemittel und die andere Sorte wirkt als tragende Faser. Durch die Wärmeschmelzbehandlung wird die Bindefaser deformiert und es bildet sich ein poröses Bahnenmaterial, das eine gute Lackimprägnierbarkeit besitzt. Die notwendige Festigkeit wird nur durch die Imprägnierung erreicht. Als Bindefasern werden Fasern vorgeschlagen, die zu mehr als 80 Mol% aus m-Phenylenisophthalamid-Einheiten bestehen.DE-A-26 00 209 discloses a heat-resistant sheet material which is produced by pressing or heating a woven or knitted fabric or a sheet material from a mixture of aromatic polyamide fibers. Of these fibers, one type acts as a binder and the other type acts as a supporting fiber. As a result of the heat-melt treatment, the binding fiber is deformed and a porous sheet material is formed which has good paint impregnability. The necessary strength is only achieved through impregnation. Fibers which consist of more than 80 mol% of m-phenylene isophthalamide units are proposed as binding fibers.

Aus der US-A-3,920,428 ist ein Filtermaterial bekannt, das aus Glasfasern besteht, die mittels aromatischen Polyamidfasern verfestigt sind. Auch hier werden die Polymerfasern durch Hitze deformiert und bewirken durch eine Art "Sinterprozeß" eine Verfestigung des Glasvlieses. Die Festigkeit dieser Vliese läßt ebenfalls noch zu wünschen übrig.From US-A-3,920,428 a filter material is known which consists of glass fibers which are strengthened by means of aromatic polyamide fibers. Here, too, the polymer fibers are deformed by heat and cause a kind of "sintering process" to strengthen the glass fleece. The strength of these nonwovens also leaves something to be desired.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines neuartigen Vliesstoffes aus aromatischen Polyamiden mit verbesserter Festigkeit.The object of the present invention is to provide a novel nonwoven fabric made from aromatic polyamides with improved strength.

Gelöst wird diese Aufgabe durch den Vliesstoff gemäß Anspruch 1.This object is achieved by the nonwoven fabric according to claim 1.

Infolge des praktisch vollständigen Aufschmelzens der Bindefasern und des Zusammenlaufens der diese Fasern bildenden Materials in den Kreuzungspunkten der tragenden Aramidfasern, meist unter Ausbildung von sogenannten "BindersegeIn" wird eine erhebliche Zunahme der Festigkeit der Vliesstoffe festgestellt.As a result of the practically complete melting of the binding fibers and the convergence of the material forming these fibers at the crossing points of the supporting aramid fibers, usually with the formation of so-called "binder blessings", a considerable increase in the strength of the nonwovens is found.

Unter dem Begriff "Aramid" ist im Rahmen der vorliegenden Beschreibung ein Polyamid zu verstehen, das im wesentlichen aromatische Reste in der Polymerkette aufweist, beispielsweise zu mehr als 80 Mol-% aus aromatischen Monomereinheiten aufgebaut ist.In the context of the present description, the term “aramide” is understood to mean a polyamide which has essentially aromatic residues in the polymer chain, for example more than 80 mol% of which is composed of aromatic monomer units.

Zur Herstellung des erfindungsgemäßen Vliesstoffes sind praktisch alle Kombinationen von Aramidfasern zu verwenden, solange die Bindefaser aus thermoplastischem aromatischen Polyetheramid besteht und die tragende Faser einen gegenüber dem Schmelzpunkt der Bindefaser erhöhten Schmelz- oder Zersetzungspunkt aufweist, so das die Bindefaser praktisch vollständig aufgeschmolzen werden kann, ohne das die tragende Faser dabei wesentlich verändert wird.Practically all combinations of aramid fibers can be used to produce the nonwoven fabric according to the invention, as long as the binding fiber consists of thermoplastic aromatic polyether amide and the supporting fiber has a melting or decomposition point which is higher than the melting point of the binding fiber, so that the binding fiber can be melted practically completely without that the load-bearing fiber is changed significantly.

Als tragende Faser lassen sich schmelzbare und nicht schmelzbare Aramidfasern einsetzen. Ferner können die Festigkeit und der Modul der tragenden Aramidfasern innerhalb weiter Grenzen gewählt werden.Fusible and non-fusible aramid fibers can be used as the supporting fiber. Furthermore, the strength and the modulus of the supporting aramid fibers can be selected within wide limits.

Beispiele für Aramidfasern hoher Festigkeit und hohen Moduls sind im wesentlichen aus p-aromatischen Resten aufgebaute Aramide, wie Poly-(p-phenylen-terephthalamid). Beispiele dafür sind die Produkte KEVLAR® 29 und KEVLAR® 49 der Fa. Du Pont. Diese Aramide sind in organischen Lösungsmitteln unlöslich.Examples of aramid fibers of high strength and high modulus are essentially aramids built up from p-aromatic radicals, such as poly- (p-phenylene-terephthalamide). Examples of this are the products KEVLAR® 29 and KEVLAR® 49 from Du Pont. These aramids are insoluble in organic solvents.

Beispiele für Aramidfasern mittlerer Festigkeit und mittleren Moduls sind Aramide, die einen wesentlichen Anteil an aromatischen m-Verbindungen enthalten, wie Poly-(m-phenylen-terephthalamid),

  • Poly-(m-phenylen-isophthalamid) oder
  • Poly-(p-phenylen-isophthalamid). Beispiele für solche Aramide die Produkte NOMEX® der Fa. Du Pont. Diese Aramide sind in gängigen Lösungsmitteln unlöslich.
Examples of medium strength and medium modulus aramid fibers are aramids which contain a substantial proportion of aromatic m compounds, such as poly (m-phenylene terephthalamide),
  • Poly (m-phenylene isophthalamide) or
  • Poly (p-phenylene isophthalamide). Examples of such aramids are the products NOMEX® from Du Pont. These aramids are insoluble in common solvents.

Bevorzugt setzt man tragende Fasern aus in organischen Lösungsmitteln löslichen Aramiden ein, insbesondere aus solchen Aramiden, die in polaren aprotischen Lösungsmitteln, wie Dimethylformamid oder Dimethylsulfoxid, löslich sind.It is preferred to use supporting fibers made from aramids which are soluble in organic solvents, in particular from those aramides which are soluble in polar aprotic solvents, such as dimethylformamide or dimethyl sulfoxide.

Dazu zählen beispielsweise lösliche aromatische Polyamide auf Basis von Terephthalsäure und 3-(p-Aminophenoxy)-4-aminobenzanilid, wie in der DE-A-21 44 126 beschrieben; oder aromatischen Polyamide auf Basis von Terephthalsäure, p-Phenylendiamin und 3,4'-Diaminodiphenylether, wie in der DE-C-25 56 883 und in der DE-A-30 07 063 beschrieben, oder aromatische Polyamide auf Basis von Terephthalsäure und ausgewählten Anteilen ausgewählter Diamine, wie in der DE-A-35 10 655, -36 05 394 und in der EP-A-199 090 beschrieben.These include, for example, soluble aromatic polyamides based on terephthalic acid and 3- (p-aminophenoxy) -4-aminobenzanilide, as described in DE-A-21 44 126; or aromatic polyamides based on terephthalic acid, p-phenylenediamine and 3,4'-diaminodiphenyl ether, as described in DE-C-25 56 883 and DE-A-30 07 063, or aromatic polyamides based on terephthalic acid and selected Shares of selected diamines, as described in DE-A-35 10 655, -36 05 394 and in EP-A-199 090.

Besonders bevorzugt verwendet man tragende Aramidfasern aus in organischen Polyamid-Lösungsmitteln löslichen Copolyamide enthaltend mindestens 95 Mol-%, bezogen auf das Polyamid, an wiederkehrenden Struktureinheiten der Formeln Ia, Ib, Ic und Id

        -OC-Ar1-CO-     (Ia),

Figure imgb0001
Figure imgb0002
und
Figure imgb0003
und bis zu 5 Mol-% m-Bindungen enthaltende, von aromatischen Dicarbonsäuren und/oder von aromatischen Diaminen abgeleitete Struktureinheiten (Ie) und/oder (If), wobei die Summe der Molanteile der Struktureinheiten (Ia)+(Ie) und der Molanteile der Struktureinheiten (Ib)+(Ic)+(Id)+(If) im wesentlichen gleich groß sind, und die Anteile der Diaminkomponenten (Ib), (Ic) und (Id) im Verhältnis zur Gesamtmenge dieser Diaminkomponente innerhalb folgender Grenzen liegen: Struktureinheit (Ib): 30-50 Mol-%, Struktureinheit (Ic): 15-35 Mol-%, Struktureinheit (Id): 20-40 Mol-%; oder enthaltend mindestens 95 Mol-%, bezogen auf das Polyamid, an wiederkehrenden Struktureinheiten der Formeln Ia, Ig, Ib und Id

        - OC- Ar1- CO-     (Ia),



        - HN- Ar2- NH-     (Ig),

Figure imgb0004
und
Figure imgb0005
und bis zu 5 Mol% m-Bindungen enthaltende, von aromatischen Dicarbonsäuren und/oder von aromatischen Diaminen abgeleitete Struktureinheiten (Ie) und/oder (If), wobei die Summen der Molanteile der Struktureinheiten (Ia)+(Ie) und der Molanteile der Struktureinheiten (Ig)+(Ib)+(Id)+(If) im wesentlichen gleichgroß sind, und die Anteile der Diaminkomponenten (Ig), (Ib) und (Id) im Verhältnis zur Gesamtmenge dieser Diaminkomponenten innerhalb folgender Grenzen liegen: Struktureinheiten (Ig): 15-25 Mol-%, Struktureinheiten (Ib): 45-65 Mol-%, Struktureinheiten (Id): 15-35 Mol-%; oder enthaltend mindestens 95 Mol-%, bezogen auf das Polyamid, an wiederkehrenden Struktureinheiten der Formeln Ia, Ig, Ib und Ic

        -OC-Ar1-CO-     (Ia),



        -HN-Ar2-NH-     (Ig),

Figure imgb0006
und
Figure imgb0007
und bis zu 5 Mol-% m-Bindungen enthaltende, von aromatischen Dicarbonsäuren und/oder von aromatischen Diaminen abgeleitete Struktureinheiten (Ie) und/oder (If), wobei die Summe der Molanteile der Struktureinheiten (Ia)+(Ie) und der Molanteile der Struktureinheiten (Ig)+(Ib)+(Ic)+(If) im wesentlichen gleich groß sind, und die Anteile der Diaminkomponenten (Ig), (Ib) und (Ic) im Verhältnis zur Gesamtmenge dieser Diaminkomponenten innerhalb folgender Grenzen liegen: Struktureinheiten (Ig): 20-30 Mol-%, Struktureinheiten (Ib): 35-55 Mol-%, Struktureinheiten (Ic): 15-40 Mol-%; dabei bedeuten in diesen Formeln (Ia) bis (Ig)

  • -Ar1- und -Ar2- zweiwertige aromatische Reste, deren Valenzbindungen in para- oder vergleichbarer koaxialer oder paralleler Stellung stehen und die durch einen oder zwei inerte Reste, wie Alkyl, Alkoxy oder Halogen substituiert sein können, und
  • -R1 und -R2 sind voneinander verschiedene niedere Alkylreste oder niedere Alkoxyreste oder Halogenatome. Beispiele für -Ar1- und -Ar2- sind Naphthalin-1,4-diyl und bevorzugt p-Phenylen.
Aramid fibers made of copolyamides which are soluble in organic polyamide solvents and contain at least 95 mol%, based on the polyamide, of recurring structural units of the formulas Ia, Ib, Ic and Id are particularly preferably used

-OC-Ar 1 -CO- (Ia),

Figure imgb0001
Figure imgb0002
and
Figure imgb0003
and up to 5 mol% m bonds containing structural units derived from aromatic dicarboxylic acids and / or from aromatic diamines (Ie) and / or (If), the sum of the molar proportions of the structural units (Ia) + (Ie) and the molar proportions of the structural units (Ib) + (Ic) + (Id) + (If) are essentially the same size, and the proportions of the diamine components (Ib), (Ic) and (Id) in relation to the total amount of this diamine component are within the following limits: Structural unit (Ib): 30-50 mol%, Structural unit (Ic): 15-35 mol%, Structural unit (Id): 20-40 mole%; or containing at least 95 mol%, based on the polyamide, of recurring structural units of the formulas Ia, Ig, Ib and Id

- OC- Ar 1 - CO- (Ia),



- HN- Ar 2 - NH- (Ig),

Figure imgb0004
and
Figure imgb0005
and up to 5 mol% containing m bonds, of aromatic dicarboxylic acids and / or of aromatic diamines derived structural units (Ie) and / or (If), the sums of the molar proportions of the structural units (Ia) + (Ie) and the molar proportions of the structural units (Ig) + (Ib) + (Id) + (If) being essentially the same size , and the proportions of the diamine components (Ig), (Ib) and (Id) in relation to the total amount of these diamine components are within the following limits: Structural units (Ig): 15-25 mol%, Structural units (Ib): 45-65 mol%, Structural units (Id): 15-35 mole%; or containing at least 95 mol%, based on the polyamide, of recurring structural units of the formulas Ia, Ig, Ib and Ic

-OC-Ar 1 -CO- (Ia),



-HN-Ar 2 -NH- (Ig),

Figure imgb0006
and
Figure imgb0007
and up to 5 mol% m bonds containing structural units derived from aromatic dicarboxylic acids and / or from aromatic diamines (Ie) and / or (If), the sum of the molar proportions of the structural units (Ia) + (Ie) and the molar proportions of the structural units (Ig) + (Ib) + (Ic) + (If) are essentially the same size, and the proportions of the diamine components (Ig), (Ib) and (Ic) in relation to the total amount of these diamine components are within the following limits: Structural units (Ig): 20-30 mol%, Structural units (Ib): 35-55 mol%, Structural units (Ic): 15-40 mole%; in these formulas mean (Ia) to (Ig)
  • -Ar 1 - and -Ar 2 - divalent aromatic radicals, the valence bonds of which are in a para- or comparable coaxial or parallel position and which can be substituted by one or two inert radicals, such as alkyl, alkoxy or halogen, and
  • -R 1 and -R 2 are different lower alkyl radicals or lower alkoxy radicals or halogen atoms. Examples of -Ar 1 - and -Ar 2 - are naphthalene-1,4-diyl and preferably p-phenylene.

Aramide enthaltend diese Struktureinheiten der Formeln (Ia) bis (Ig) sind aus den EP-A-364 891, -364 892 und -364 893 bekannt und der Inhalt dieser Publikationen ist ebenfalls Inhalt der vorliegenden Beschreibung.Aramides containing these structural units of the formulas (Ia) to (Ig) are known from EP-A-364 891, -364 892 and -364 893 and the content of these publications is also the content of the present description.

Als Bindefasern können alle an sich bekannten thermoplastisch verarbeitbaren aromatischen Polyetheramidfasern werden, solange sich diese Fasern praktisch vollständig aufschmelzen lassen und die tragenden Aramidfasern verkleben. Dies erfolgt meist unter Ausbildung von sogenannten "Bindesegeln". Bevorzugt verwendet man thermoplastisch verarbeitbare aromatische Polyetheramidfasern, die in organischen Lösungsmitteln löslich sind.All known thermoplastically processable aromatic polyetheramide fibers can be used as binding fibers, as long as these fibers can be melted practically completely and the supporting aramid fibers are glued. This is usually done with the formation of so-called "tie sails". It is preferred to use thermoplastically processable aromatic polyetheramide fibers which are soluble in organic solvents.

Zu den besonders bevorzugt eingesetzten Bindefasern auf Basis von thermoplastisch verarbeitbaren aromatischen Polyetheramiden zählen beispielsweise die aromatischen Copolyetheramide, die aus der DE-A-38 18 208 oder aus der DE-A-38 18 209 bekannt sind; ferner lassen sich auch aromatische Polyamide, die aus der EP-A-366,316, EP-A-384,980, EP-A-384,981 und EP-A-384,984 bekannt sind, verwenden.The particularly preferred binder fibers based on thermoplastically processable aromatic polyetheramides include, for example, the aromatic copolyetheramides which are known from DE-A-38 18 208 or from DE-A-38 18 209; aromatic polyamides known from EP-A-366,316, EP-A-384,980, EP-A-384,981 and EP-A-384,984 can also be used.

Besonders bevorzugt setzt man Bindefasern aus thermoplastisch verarbeitbaren aromatischen Copolyetheramiden der Formel II ein

Figure imgb0008
worin

  • Ar3 einen zweiwertigen substituierten oder unsubstituierten aromatischen Rest bedeutet, dessen freie Valenzen sich in para- oder meta-Stellung oder in vergleichbarer paralleler oder gewinkelter Stellung zueinander befinden,
  • Ar4 eine der für Ar3 angegebenen Bedeutungen haben kann oder eine Gruppe -Ar7-Z-Ar7- darstellt,
  • wobei Z eine -C(CH3)2- oder -O-Ar7-O- Brücke ist und
  • Ar7 für einen zweiwertigen aromatischen Rest steht,
  • Ar5 und Ar6 gleich oder verschieden voneinander sind und für einen substituierten oder unsubstituierten para- oder meta-Arylenrest stehen,
  • Y eine -C(CH3)2-, SO2-, -S- oder -C(CF3)2-Brücke darstellt,
wobei
  • a) das Polyetheramid ein mittleres Molekulargewicht (Zahlenmittel) im Bereich von 5000 bis 50000 aufweist,
  • b) die Molekulargewichtskontrolle gezielt durch nicht-stöchiometrische Zugabe der Monomereinheiten erfolgt, wobei die Summe der Molenbrüche x, y und z eins ist, die Summe von x und z nicht gleich y ist und x den Wert null annehmen kann, und
  • c) die Enden der Polymerkette praktisch vollständig mit monofunktionellen, im Polymer nicht weiterreagierenden Resten R3 verschlossen sind, die unabhängig voneinander gleich oder verschieden sein können.
It is particularly preferred to use binder fibers made from thermoplastically processable aromatic copolyetheramides of the formula II
Figure imgb0008
wherein
  • Ar 3 denotes a divalent substituted or unsubstituted aromatic radical, the free valences of which are in the para or meta position or in a comparable parallel or angled position to one another,
  • Ar 4 can have one of the meanings given for Ar 3 or represents a group -Ar 7 -Z-Ar 7 -,
  • where Z is a -C (CH 3 ) 2 - or -O-Ar 7 -O- bridge and
  • Ar 7 represents a divalent aromatic radical,
  • Ar 5 and Ar 6 are identical or different from one another and represent a substituted or unsubstituted para or meta-arylene radical,
  • Y represents a -C (CH 3 ) 2 -, SO 2 -, -S- or -C (CF 3 ) 2 bridge,
in which
  • a) the polyether amide has an average molecular weight (number average) in the range from 5000 to 50,000,
  • b) the molecular weight control is carried out specifically by non-stoichiometric addition of the monomer units, the sum of the mole fractions x, y and z being one, the sum of x and z not being y and x being able to assume the value zero, and
  • c) the ends of the polymer chain are almost completely closed with monofunctional radicals R 3 which do not react further in the polymer and which, independently of one another, can be the same or different.

Bindefasern auf Basis dieser Aramide sind thermoplastisch verarbeitbar, zeichnen sich durch ein besonders gutes Schmelzverhalten aus und führen zu Vliesstoffen mit einer ausgezeichneten Festigkeit.Binding fibers based on these aramids can be processed thermoplastically and are particularly good Melting behavior and lead to nonwovens with excellent strength.

Bei Ar3 kann es sich um einen einkernigen oder kondensierten zweikernigen aromatischen zweiwertigen Rest handeln oder um einen Rest der Formel -Ar7-Q-Ar7-, worin Ar7 die oben definierte Bedeutung besitzt und Q eine direkte C-C-Bindung ist oder eine -O-, -CO-, -S-, -SO- oder -SO2-Brücke bedeutet.

  • Bei Ar3 kann es sich um heterocyclisch-aromatische oder bevorzugt um carbocyclisch-aromatische Reste handeln. Heterocyclisch-aromatische Reste weisen vorzugsweise ein oder zwei Sauerstoff- und/oder Schwefel- und/oder Stickstoffatome in Kern auf.
  • Bei Ar5 und Ar6 handelt es sich im allgemeinen um carbocyclisch-aromatische Arylenreste, deren freie Valenzen sich in para- oder meta-Stellung oder in vergleichbarer paralleler oder gewinkelter Stellung zueinander befinden, vorzugsweise handelt es sich um einkernige aromatische Reste.
  • Ar7 hat im allgemeinen eine der für Ar5 bzw. Ar6 definierten Bedeutungen .
Ar 3 can be a mononuclear or condensed dinuclear aromatic divalent radical or a radical of the formula -Ar 7 -Q-Ar 7 -, in which Ar 7 has the meaning defined above and Q is a direct CC bond or a -O-, -CO-, -S-, -SO- or -SO 2 bridge means.
  • Ar 3 can be heterocyclic-aromatic or preferably carbocyclic-aromatic radicals. Heterocyclic aromatic radicals preferably have one or two oxygen and / or sulfur and / or nitrogen atoms in the nucleus.
  • Ar 5 and Ar 6 are generally carbocyclic-aromatic arylene radicals whose free valences are in the para or meta position or in a comparable parallel or angled position to one another, and are preferably mononuclear aromatic radicals.
  • Ar 7 generally has one of the meanings defined for Ar 5 or Ar 6 .

Beispiele für Reste -Ar3-, -Ar4-, -Ar5- und -Ar6- sind p-Phenylen, m-Phenylen, Biphenyl-4,4'-diyl oder Naphthalin-1,4-diyl.Examples of residues -Ar 3 -, -Ar 4 -, -Ar 5 - and -Ar 6 - are p-phenylene, m-phenylene, biphenyl-4,4'-diyl or naphthalene-1,4-diyl.

Beispiele für Substituenten, die sich gegebenenfalls an den Resten -Ar1- bis -Ar6- befinden, sind verzweigte oder insbesondere geradkettige C1-C6 Alkylreste, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, n-Pentyl oder n-Hexyl, sowie die entsprechenden Perfluorderivate mit bis zu sechs C-Atomen oder die entsprechenden Alkoxyderivate. Bevorzugt wird Methyl.Examples of substituents which are optionally located on the radicals -Ar 1 - to -Ar 6 - are branched or in particular straight-chain C 1 -C 6 alkyl radicals, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n- Pentyl or n-hexyl, as well as the corresponding perfluoro derivatives with up to six carbon atoms or the corresponding alkoxy derivatives. Methyl is preferred.

Beispiele für Halogensubstituenten sind Brom oder insbesondere Chlor.Examples of halogen substituents are bromine or especially chlorine.

Die erfindungsgemäß bevorzugt verwendeten aromatischen Polyetheramide der Formel II werden durch eine gezielte Molekulargewichtskontrolle durch nicht stöchiometrische Zugabe der Monomereinheiten hergestellt, wobei die Summe der Molenbrüche x, y und z eins ist, die Summe von x und z aber nicht gleich y sein darf und x den Wert Null annehmen kann. In einer bevorzugten Ausführung ist z größer als x.The aromatic polyetheramides of the formula II which are preferably used in accordance with the invention are produced by a targeted molecular weight control by adding the monomer units in a non-stoichiometric manner, the sum of the mole fractions x, y and z being one, but the sum of x and z not being equal to y and x being the same Can assume zero value. In a preferred embodiment, z is greater than x.

Nach Abschluß der Polykondensationsreaktion werden die Enden der Polymerkette durch Zugabe von Reagenzien, die im Polymer zu nicht weiterreagierenden Gruppen reagieren, vollständig verschlossen. Die Endgruppen sind dabei unabhängig voneinander, und können gleich oder verschieden sein und werden bevorzugt aus einer Gruppe der Formeln III, IV, V und/oder VI ausgewählt.

Figure imgb0009
After the polycondensation reaction has ended, the ends of the polymer chain are completely closed by adding reagents which react in the polymer to form groups which do not react further. The end groups are independent of one another and can be the same or different and are preferably selected from a group of the formulas III, IV, V and / or VI.
Figure imgb0009

Für den Fall der Endgruppen V und/oder VI, ist der terminale Stickstoff in Formel (II) ein Imidstickstoff.In the case of end groups V and / or VI, the terminal nitrogen in formula (II) is an imide nitrogen.

E stellt in den oben angegebenen Formeln ein Wasserstoff- oder ein Halogenatom, insbesondere ein Chlor-, Brom- oder Fluoratom, oder einen organischen Rest, beispielsweise eine Aryl(oxy)gruppe dar.In the formulas given above, E represents a hydrogen or a halogen atom, in particular a chlorine, bromine or fluorine atom, or an organic radical, for example an aryl (oxy) group.

Das aromatische Polyetheramid der Formel II kann durch Umsetzung von ein oder mehreren Dicarbonsäurederivaten mit einem oder mehreren Diaminen nach dem Lösungs-, Fällungs- oder Schmelzkondensationsverfahren hergestellt werden, wobei eine der Komponenten im stöchiometrischen Unterschuß eingesetzt wird und nach Beendigung der Polykondensation ein Kettenverschlußmittel zugegeben wird.The aromatic polyether amide of the formula II can be prepared by reacting one or more dicarboxylic acid derivatives with one or more diamines by the solution, precipitation or melt condensation process, one of the components being used in a stoichiometric deficit and a chain lock agent being added after the polycondensation has ended.

Es wurde gefunden, daß sich thermoplastische aromatische Polyetheramide die sehr gute mechanischen Eigenschaften besitzen über konventionelle Techniken herstellen lassen, wenn

  • a) das Molekulargewicht durch Verwendung nicht stöchiometrischer Mengen der Monomeren gezielt kontrolliert wird,
  • b) die Enden der Polymerkette durch monofunktionelle, im Polymer nicht weiter reagierende Verbindungen vollständig verschlossen werden, und vorzugsweise
  • c) der Gehalt an anorganischen Verunreinigungen im Polymer nach der Aufarbeitung und Isolierung 500 ppm nicht übersteigt.
It has been found that thermoplastic aromatic polyetheramides which have very good mechanical properties can be produced using conventional techniques, if
  • a) the molecular weight is specifically controlled by using non-stoichiometric amounts of the monomers,
  • b) the ends of the polymer chain are completely closed by monofunctional compounds which do not react further in the polymer, and preferably
  • c) the content of inorganic impurities in the polymer after processing and isolation does not exceed 500 ppm.

Die erfindungsgemäß bevorzugt eingesetzten thermoplastischen aromatischen Polyamide der Formel II zeichnen sich ferner dadurch aus, daß diese ein mittleres Molekulargewicht im Bereich von 5000 bis 50000 und eine niedrige Schmelzviskosität, die 10 000 Pas nicht überschreitet, aufweisen.The thermoplastic aromatic polyamides of the formula II which are preferably used according to the invention are further distinguished by the fact that they have an average molecular weight in the range from 5000 to 50,000 and a low melt viscosity which does not exceed 10,000 Pas.

Zur Herstellung dieser bevorzugten Polyetheramide eignen sich folgende Verbindungen:The following compounds are suitable for the preparation of these preferred polyetheramides:

Dicarbonsäurederivate der Formel (VII)Dicarboxylic acid derivatives of the formula (VII)



        W - CO - Ar3 - CO - W     (VII)

wobei Ar3 die oben angegebene Bedeutung hat, und W ein Fluor-, Chlor-, Brom- oder Jodatom, bevorzugt ein Chloratom, oder eine -OH oder OR4 Gruppe, wobei R4 ein verzweigter oder unverzweigter aliphatischer oder aromatischer Rest ist, darstellen kann.


W - CO - Ar 3 - CO - W (VII)

where Ar 3 has the meaning given above, and W represents a fluorine, chlorine, bromine or iodine atom, preferably a chlorine atom, or a —OH or OR 4 group, where R 4 is a branched or unbranched aliphatic or aromatic radical can.

Beispiele für Verbindungen der Formel (VII) sind:

  • Terephthalsäure
  • Terephthalsäuredichlorid
  • Terephthalsäurediphenylester
  • Isophthalsäure
  • Isophthalsäurediphenylester
  • Isophthalsäurechlorid
  • Phenoxyterephthalsäure
  • Phenoxytherephthalsäuredichlorid
  • Phenoxyterephthalsäurediphenylester
  • Di(n-Hexyloxy)terephthalsäure
  • Bis-(n-Hexyloxy)terepthalsäuredichlorid
  • Bis-(n-Hexyloxy)terephthalsäurediphenylester
  • 2,5-Furandicarbonsäure
  • 2,5-Furandicarbonsäurechlorid
  • 2,5-Furandiphenylester
  • Thiophendicarbonsäure
  • Naphthalin-2,6-dicarbonsäure
  • Diphenylether-4,4'-dicarbonsäure
  • Benzophenon-4,4'-dicarbonsäure
  • Isopropyliden-4,4'-dibenzoesäure
  • Diphenylsulfon-4,4'-dicarbonsäure
  • Tetraphenylthiophen-dicarbonsäure
  • Diphenylsulfoxid-4,4'-dicarbonsäure
  • Diphenylthioether-4,4'-dicarbonsäure
  • Trimethylphenylindandicarbonsäure
Examples of compounds of the formula (VII) are:
  • Terephthalic acid
  • Terephthalic acid dichloride
  • Diphenyl terephthalate
  • Isophthalic acid
  • Diphenyl isophthalate
  • Isophthaloyl chloride
  • Phenoxy terephthalic acid
  • Phenoxytherephthalic acid dichloride
  • Phenoxyterephthalic acid diphenyl ester
  • Di (n-hexyloxy) terephthalic acid
  • Bis (n-hexyloxy) terephthalic acid dichloride
  • Bis- (n-hexyloxy) terephthalic acid diphenyl ester
  • 2,5-furandicarboxylic acid
  • 2,5-furandicarboxylic acid chloride
  • 2,5-furan diphenyl ester
  • Thiophene dicarboxylic acid
  • Naphthalene-2,6-dicarboxylic acid
  • Diphenyl ether 4,4'-dicarboxylic acid
  • Benzophenone 4,4'-dicarboxylic acid
  • Isopropylidene-4,4'-dibenzoic acid
  • Diphenylsulfone-4,4'-dicarboxylic acid
  • Tetraphenylthiophene dicarboxylic acid
  • Diphenyl sulfoxide-4,4'-dicarboxylic acid
  • Diphenylthioether-4,4'-dicarboxylic acid
  • Trimethylphenylindane dicarboxylic acid

Als aromatische Diamine der Formel (VIII)As aromatic diamines of the formula (VIII)



        H2N - Ar4 - NH2     (VIII)

in der Ar4- die oben angegebene Bedeutung hat, eigenen sich vorzugsweise folgende Verbindungen:

  • m-Phenylendiamin
  • p-Phenylendiamin
  • 2,4-Dichlor-p-phenylendiamin
  • Diaminopyridin
  • Bis(aminophenoxy)benzol
  • 2,6-Bis(aminophenoxy)pyridin
  • 3,3'-Dimethylbenzidin
  • 4,4'- und 3,4'-Diaminodiphenylether
  • Isopropyliden-4,4'-dianilin
  • p,p'- und m,m'-Bis(4-aminophenylisopropyliden)benzol
  • 4,4'- und 3,3'-Diaminobenzophenon
  • 4,4'- und 3,3'-Diaminodiphenylsulfon
  • Bis(2-amino-3-methylbenzo)thiophen-S,S-dioxid


H 2 N - Ar 4 - NH 2 (VIII)

in Ar 4 - has the meaning given above, the following compounds are preferably suitable:
  • m-phenylenediamine
  • p-phenylenediamine
  • 2,4-dichloro-p-phenylenediamine
  • Diaminopyridine
  • Bis (aminophenoxy) benzene
  • 2,6-bis (aminophenoxy) pyridine
  • 3,3'-dimethylbenzidine
  • 4,4'- and 3,4'-diaminodiphenyl ether
  • Isopropylidene-4,4'-dianiline
  • p, p'- and m, m'-bis (4-aminophenylisopropylidene) benzene
  • 4,4'- and 3,3'-diaminobenzophenone
  • 4,4'- and 3,3'-diaminodiphenyl sulfone
  • Bis (2-amino-3-methylbenzo) thiophene-S, S-dioxide

Als aromatische Diamine kommen ferner solche der Formel (IX) in Betracht

        H2N - Ar5 - O - Ar6 - Y - Ar6 - O - Ar5 - NH2     (IX)

wobei Ar5, Ar6 und Y die oben angegebene Bedeutung haben.
Aromatic diamines which may also be used are those of the formula (IX)

H 2 N - Ar 5 - O - Ar 6 - Y - Ar 6 - O - Ar 5 - NH 2 (IX)

where Ar 5 , Ar 6 and Y have the meaning given above.

Als aromatische Diamine der Formel (IX) kommen in Betracht:

  • 2,2-Bis-[4-(3-trifluormethyl-4-aminophenoxy)phenyl]propan
  • Bis-[4-(4-aminophenoxy)phenyl]sulfid
  • Bis-[4-(3-aminophenoxy)phenyl]sulfid
  • Bis-[4-(3-aminophenoxy)phenyl]sulfon
  • Bis-[4-(4-aminophenoxy)phenyl]sulfon
  • 2,2-Bis-[4-(4-aminophenoxy)phenyl]propan
  • 2,2-Bis-[4-(3-aminophenoxy)phenyl]propan
  • 2,2-Bis-[4-(2-aminophenoxy)phenyl]propan
  • 1,1,1,3,3,3-Hexafluor-2,2-bis-[4-(4-aminophenoxy)phenyl] propan,
Aromatic diamines of the formula (IX) are:
  • 2,2-bis- [4- (3-trifluoromethyl-4-aminophenoxy) phenyl] propane
  • Bis- [4- (4-aminophenoxy) phenyl] sulfide
  • Bis- [4- (3-aminophenoxy) phenyl] sulfide
  • Bis- [4- (3-aminophenoxy) phenyl] sulfone
  • Bis- [4- (4-aminophenoxy) phenyl] sulfone
  • 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • 2,2-bis [4- (3-aminophenoxy) phenyl] propane
  • 2,2-bis- [4- (2-aminophenoxy) phenyl] propane
  • 1,1,1,3,3,3-hexafluoro-2,2-bis- [4- (4-aminophenoxy) phenyl] propane,

Der Herstellung der erfindungsgemäß eingesetzten Polyetheramide erfolgt bevorzugt über Lösungskondensationsprozesse.The polyetheramides used according to the invention are preferably prepared via solution condensation processes.

Die Lösungskondensation des aromatischen Dicarbonsäuredichlorids mit den aromatischen Diaminen erfolgt in aprotischen, polaren Lösungsmitteln vom Amidtyp, wie z.B. in N,N-Dimethyl-acetamid, vorzugsweise in N-Methyl-2-pyrrolidon. Gegebenenfalls können diesen Lösungsmitteln in bekannter Weise zur Erhöhung der Lösefähigkeit, bzw. zur Stabilisierung der Polyetheramidlösungen, Halogenidsalze der ersten und/oder zweiten Gruppe des periodischen Systems zugesetzt werden. Bevorzugte Zusätze sind Calciumchlorid und/oder Lithiumchlorid. In einer bevorzugten Ausführungsform wird die Kondensation ohne Salzzusatz durchgeführt, da sich die oben beschriebenen aromatischen Polyetheramide durch eine hohe Löslichkeit in den obengenannten Lösungsmitteln des Amidtyps auszeichnen.The solution condensation of the aromatic dicarboxylic acid dichloride with the aromatic diamines takes place in aprotic, polar solvents of the amide type, e.g. in N, N-dimethyl-acetamide, preferably in N-methyl-2-pyrrolidone. Optionally, halide salts of the first and / or second group of the periodic system can be added to these solvents in a known manner to increase the solvency or to stabilize the polyether amide solutions. Preferred additives are calcium chloride and / or lithium chloride. In a preferred embodiment, the condensation is carried out without the addition of salt, since the aromatic polyetheramides described above are distinguished by a high solubility in the abovementioned amide-type solvents.

Die erfindungsgemäß bevorzugt eingesetzten Polyamide der Formel II erlauben eine thermoplastische Verarbeitung nach Standardmethoden. Sie lassen sich herstellen, wenn mindestens eine der Ausgangskomponenten im stöchiometrischen Unterschuß eingesetzt wird. Auf diese Weise ist es möglich eine Begrenzung des Molekulargewichtes entsprechend der bekannten Carothers Gleichung zu erreichen: P ¯ n = 1 + q 1 - q

Figure imgb0010
wobei
Figure imgb0011
1 und gleichzeitig q = y/x+z ist.

  • P ¯
    Figure imgb0012
    n = Polymerisationsgrad
  • q = Molverhältnis der Disäurekomponenten zu Aminkomponenten
The polyamides of the formula II which are preferably used according to the invention permit thermoplastic processing by standard methods. They can be produced if at least one of the starting components is used in the stoichiometric deficit. In this way it is possible to limit the molecular weight according to the well-known Carothers equation: P ¯ n = 1 + q 1 - q
Figure imgb0010
in which
Figure imgb0011
1 and at the same time q = y / x + z.
  • P ¯
    Figure imgb0012
    n = degree of polymerization
  • q = molar ratio of the diacid components to amine components

Beim Arbeiten mit einem Unterschuß an Säuredichlorid wird am Ende der Polymerisationsreaktion als Kettenverschlußmittel ein monofunktionelles aromatisches Säurechlorid oder Säureanhydrid zugegeben, beispielsweise Benzoylchlorid, Fluorbenzoylchlorid Diphenylcarbonsäurechlorid, Phenoxybenzoylchlorid oder aber Phthalsäureanhydrid, Naphthalsäureanhydrid, Chlornaphthalsäuranhydrid.When working with a deficit of acid dichloride, a monofunctional aromatic acid chloride or acid anhydride is added, for example, at the end of the polymerization reaction as a chain lock Benzoyl chloride, fluorobenzoyl chloride, diphenylcarboxylic acid chloride, phenoxybenzoyl chloride or else phthalic anhydride, naphthalic anhydride, chloronaphthalic anhydride.

Derartige Kettenverschlußmittel können gegebenenfalls substituiert sein, vorzugsweise mit Fluor- oder Chloratomen. Bevorzugt wird Benzoylchlorid oder Phthalsäureanhydrid, besonders bevorzugt Benzoylchlorid, eingesetzt.Such chain locking agents can optionally be substituted, preferably with fluorine or chlorine atoms. Benzoyl chloride or phthalic anhydride is preferably used, particularly preferably benzoyl chloride.

Wird mit einem Unterschuß an Diaminkomponente gearbeitet, so wird nach Ende der Polykondensation als Kettenverschlußmittel ein monofunktionelles, vorzugsweise aromatisches Amin eingesetzt, beispielsweise Fluoranilin, Chloranilin, 4-Aminodiphenylamin, Aminobiphenylamin, Aminodiphenylether, Aminobenzophenon oder Aminochinolin.If a deficit of diamine component is used, a monofunctional, preferably aromatic amine, for example fluoraniline, chloroaniline, 4-aminodiphenylamine, aminobiphenylamine, aminodiphenyl ether, aminobenzophenone or aminoquinoline, is used as chain closing agent after the end of the polycondensation.

In einer besonders bevorzugten Ausführungsform des Polykondensationsverfahrens wird Disäurechlorid im Unterschuß mit Diamin polykondensiert und anschließend werden die verbliebenen reaktiven Aminogruppen mit einem monofunktionellen Säurechlorid oder Disäureanhydrid desaktiviert.In a particularly preferred embodiment of the polycondensation process, diacid chloride is polycondensed in deficit with diamine and the remaining reactive amino groups are then deactivated with a monofunctional acid chloride or diacid anhydride.

In einer weiteren bevorzugten Ausführungsform wird das Disäurechlorid im Unterschuß eingesetzt und mit einem Diamin polykondensiert. Anschließend werden mit einem monofunktionellen, vorzugsweise aromatischen, gegebenenfalls substituierten Säurechlorid oder Säureanhydrid, die verbliebenen reaktiven Aminoendgruppen desaktiviert.In a further preferred embodiment, the diacid chloride is used in a deficit and polycondensed with a diamine. The remaining reactive amino end groups are then deactivated with a monofunctional, preferably aromatic, optionally substituted acid chloride or acid anhydride.

Das Kettenverschlußmittel, d.h. das monofunktionelle Amin bzw. Säurechlorid oder Säureanhydrid, wird dabei bevorzugt in einer stöchiometrischen oder überstöchiometrischen Menge, bezogen auf die Disäure- bzw. Diaminkomponente, eingesetzt.The chain locking agent, ie the monofunctional amine or acid chloride or acid anhydride, is preferably used in a stoichiometric or superstoichiometric amount, based on the diacid or diamine component.

Zur Herstellung der erfindungsgemäß bevorzugt eingesetzten aromatischen Polyamide kann das Mol-Verhältnis q (Säurekomponenten zu Diaminkomponenten) im Bereich von 0,90 bis 1,10 variiert werden, wobei exakte Stöchiometrie (q = 1) der bifunktionellen Komponenten ausgeschlossen ist. Besonders bevorzugt liegt das Mol-Verhältnis im Bereich von 0,90 bis 0,99 und 1,01 bis 1,10, besonders bevorzugt im Bereich von 0,93 bis 0,98 und 1,02 bis 1,07, insbesondere im Bereich von 0,95 bis 0,97 und 1,03 bis 1,05.To produce the aromatic polyamides preferably used according to the invention, the molar ratio q (acid components to diamine components) can be varied in the range from 0.90 to 1.10, exact stoichiometry (q = 1) of the bifunctional components being excluded. The molar ratio is particularly preferably in the range from 0.90 to 0.99 and 1.01 to 1.10, particularly preferably in the range from 0.93 to 0.98 and 1.02 to 1.07, in particular in the range from 0.95 to 0.97 and 1.03 to 1.05.

Die Polykondensationstemperaturen liegen üblicherweise zwischen -20 und +120 °C, bevorzugt zwischen +10 und +100 °C. Besonders gute Ergebnisse werden bei Reaktionstemperaturen zwischen +10 und + 80 °C erzielt. Die Polykondensationsreaktionen werden vorzugsweise so ausgeführt, daß nach Abschluß der Reaktion 2 bis 40, vorzugsweise 5 bis 30 Gew.-% an Polykondensat in der Lösung vorliegen. Für spezielle Anwendungen kann die Lösung bei Bedarf mit N-Methyl-2-pyrrolidon oder anderen Lösungsmitteln, beispielsweise DMF, DMAC oder Butylcellosolve, verdünnt werden oder unter vermindertem Druck konzentriert werden (Dünnschichtverdampfer).The polycondensation temperatures are usually between -20 and +120 ° C, preferably between +10 and +100 ° C. Particularly good results are achieved at reaction temperatures between +10 and + 80 ° C. The polycondensation reactions are preferably carried out such that 2 to 40, preferably 5 to 30% by weight of polycondensate are present in the solution after the reaction has ended. For special applications, the solution can be diluted with N-methyl-2-pyrrolidone or other solvents, e.g. DMF, DMAC or butyl cellosolve, or concentrated under reduced pressure (thin-film evaporator).

Nach Beendigung der Polykondensation wird der entstandene, locker an das Amidlösungsmittel gebundene Chlorwasserstoff durch Zugabe säurebindender Hilfsstoffe entfernt. Geeignet sind dafür beispielsweise Lithiumhydroxyd, Calciumhydroxyd, insbesondere aber Calciumoxid, Propylenoxid, Ethylenoxid oder Ammoniak. In einer besonderen Ausführungsform wird als "säurebindendes" Mittel reines Wasser verwendet, welches die Salzsäure verdünnt und gleichzeitig zur Ausfällung des Polymeren dient. Zur Herstellung von geformten Gebilden gemäß der vorliegenden Erfindung werden die oben beschriebenen erfindungsgemäßen Copolyamidlösungen filtriert, entgast und in an sich bekannter Weise zu Aramidfasern- oder -fäden weiterverarbeitet.After the polycondensation has ended, the hydrogen chloride formed, loosely bound to the amide solvent, is removed by adding acid-binding auxiliaries. For example, lithium hydroxide, calcium hydroxide, but in particular calcium oxide, propylene oxide, ethylene oxide or ammonia are suitable. In a particular embodiment, pure water is used as the "acid-binding" agent, which dilutes the hydrochloric acid and at the same time serves to precipitate the polymer. To produce shaped structures in accordance with the present invention, the copolyamide solutions according to the invention described above are filtered, degassed and further processed in a manner known per se to give aramid fibers or threads.

Gegebenenfalls können den Lösungen noch geeignete Mengen an Additiven zugesetzt werden. Beispiele sind Lichtstabilisatoren, Antioxidationsmittel, Flammschutzmittel, Antistatika, Farbstoffe, Farbpigmente oder Füllstoffe.If necessary, suitable amounts of additives can also be added to the solutions. Examples are light stabilizers, antioxidants, flame retardants, antistatic agents, dyes, color pigments or fillers.

Zur Isolierung des Polyetheramids kann die Lösung mit einem Fällungsmittel versetzt und das koagulierte Produkt abfiltriert werden. Typische Fällungsmittel sind beispielsweise Wasser, Methanol, Aceton, die gegebenenfalls auch pH-kontrollierende Zusätze wie z.B. Ammoniak oder Essigsäure enthalten können.To isolate the polyether amide, a precipitant can be added to the solution and the coagulated product can be filtered off. Typical precipitants are, for example, water, methanol, acetone, which may also contain pH-controlling additives such as May contain ammonia or acetic acid.

Bevorzugt erfolgt die Isolierung durch Zerkleinern der Polymerlösung mit einem Überschuß an Wasser in einer Schneidmühle. Die fein zerkleinerten koagulierten Polymerteilchen erleichtern die nachfolgenden Waschschritte (Entfernen der aus der Salzsäure gebildeten Folgeprodukte) und die Trocknung des Polymeren (Vermeiden von Einschlüssen) nach Abfiltration. Auch eine nachträgliche Zerkleinerung erübrigt sich, da direkt ein rieselfähiges Produkt entsteht.The isolation is preferably carried out by comminuting the polymer solution with an excess of water in a cutting mill. The finely comminuted coagulated polymer particles facilitate the subsequent washing steps (removal of the secondary products formed from the hydrochloric acid) and the drying of the polymer (avoiding inclusions) after filtration. Subsequent shredding is also unnecessary, since a free-flowing product is created directly.

Außer der beschriebenen Lösungskondensation, die als leicht zugängliches Verfahren gilt, können wie bereits erwähnt, auch andere übliche Verfahren zur Herstellung von Polyamiden, wie beispielsweise Schmelz-, oder Feststoffkondensation, angewendet werden. Auch diese Verfahren beinhalten neben der Kondensation unter Regelung der Molmasse, Reinigungs- oder Waschschritte sowie den Zusatz geeigneter Additive. Die Additive können darüber hinaus auch dem isolierten Polymer bei der thermoplastischen Verarbeitung zugesetzt werden.In addition to the solution condensation described, which is considered to be an easily accessible process, as already mentioned, other customary processes for producing polyamides, such as melt or solid condensation, can also be used. In addition to condensation with regulation of the molar mass, these processes also include cleaning or washing steps and the addition of suitable additives. The additives can also be added to the isolated polymer during thermoplastic processing.

Die erfindungsgemäß bevorzugt eingesetzten aromatischen Polyamide der Formel II besitzen überraschend gute mechanische Eigenschaften und hohe Glastemperaturen.The aromatic polyamides of the formula II preferably used according to the invention have surprisingly good mechanical properties and high glass transition temperatures.

Der Staudingerindex [η]o liegt im Bereich von 0,4 bis 1,5 dl/g, bevorzugt im Bereich von 0,5 bis 1,3 dl/g, besonders bevorzugt im Bereich von 0,6 bis 1,1 dl/g. Die Glastemperaturen liegen im allgemeinen über 180 °C, bevorzugt über 200 °C, die Verarbeitungstemperaturen im Bereich von 320 bis 380 °C, bevorzugt im Bereich von 330 bis 370 °C, besonders bevorzugt im Bereich von 340 bis 360 °C.The Staudinger index [η] o is in the range from 0.4 to 1.5 dl / g, preferably in the range from 0.5 to 1.3 dl / g, particularly preferably in the range from 0.6 to 1.1 dl / g G. The glass transition temperatures are generally above 180 ° C., preferably above 200 ° C., the processing temperatures in the range from 320 to 380 ° C., preferably in the range from 330 to 370 ° C., particularly preferably in the range from 340 to 360 ° C.

Die Verarbeitung dieser Polyamide kann über Extrusionsprozesse erfolgen, da die Schmelzviskositäten 10.000 Pas nicht überschreiten. Die Extrusion kann auf üblichen Ein- oder Zweischneckenextrudern erfolgen.These polyamides can be processed using extrusion processes since the melt viscosity does not exceed 10,000 Pas. The extrusion can be carried out on conventional single or twin screw extruders.

Die Herstellung der erfindungsgemäßen Vliesstoffe kann auf jede der an sich bekannten Weisen erfolgen. Zu Einsatz können Stapelfasern oder Kurzfasern oder auch Endlosfilamente aus den beiden Aramidsorten gelangen. Die Vliesbildung kann über trockene oder nasse Verarbeitung erfolgen.The nonwovens according to the invention can be produced in any of the ways known per se. Staple fibers or short fibers or also continuous filaments from the two types of aramid can be used. The formation of the fleece can take place via dry or wet processing.

Handelt es sich bei mindestens einer Fasersorte um ein nicht in organischen Lösungsmitteln lösliches Aramid, so wird man vorzugsweise die Verarbeitung über Stapel- oder Kurzfasern wählen.If at least one type of fiber is an aramide that is not soluble in organic solvents, the preferred choice is processing using staple or short fibers.

Bevorzugt stellt man in einem solchen Falle Kardenvliese her. Dabei erfolgt die Mischung der beiden Fasersorten bevorzugt vor der Kardierung.In such a case, it is preferred to produce carded nonwovens. The two types of fibers are preferably mixed before carding.

Ebenso lassen sich die erfindungsgemäßen Vliesstoffe aber auch nach anderen an sich üblichen Vliesbildungstechniken herstellen, beispielsweise durch Naßvliestechnik (insbesondere zur Herstellung papierähnlicher Vliesstoffe) oder die aerodynamische oder die hydrodynamische Vliesbildung (insbesondere zur Herstellung fülliger Vliesstoffe).Likewise, the nonwovens according to the invention can, however, also be produced by other conventional nonwoven formation techniques, for example by wet nonwoven technology (in particular for producing paper-like nonwovens) or aerodynamic or hydrodynamic nonwoven formation (in particular for producing bulky nonwovens).

Die Erfindung betrifft insbesondere Papiere auf Basis der erfindungsgemäßen Vliesstoffe, die gekennzeichnet sind durch einen Gehalt von etwa 70 bis 98 Gew.-%, insbesondere 80 bis 90 Gew.-% von tragenden Aramidfasern in Form von Stapelfasern, die fibrilliert sind, und einen Gehalt von etwa 2 bis 30 Gew.-%, insbesondere 10 bis 20 Gew.-% von Bindefasern aus thermoplastischen aromatischen Polyetheramiden, die durch ein praktisch vollständiges Aufschmelzen der Bindefasern verfestigt sind.The invention relates in particular to papers based on the nonwovens according to the invention, which are characterized by a content of about 70 to 98% by weight, in particular 80 to 90% by weight, of load-bearing aramid fibers in the form of staple fibers which are fibrillated and a content from about 2 to 30% by weight, in particular 10 to 20% by weight, of binding fibers made of thermoplastic aromatic polyetheramides, which are solidified by practically completely melting the binding fibers.

Die Stapellängen der tragenden Aramidfasern betragen im allgemeinen 2 bis 6 mm.The stack lengths of the supporting aramid fibers are generally 2 to 6 mm.

Die Fasern können durch Schneiden oder durch Reißen hergestellt werden. Vorzugsweise wird eine Fibrillierung dieser Fasern durch mechanisches Bearbeiten durchgeführt, beispielsweise durch Behandeln einer wäßrigen Suspension der Aramidstapelfasern in einem Dissolver. Die Aramidbindefasern werden bevorzugt in Form von Stapelfasern eingesetzt. Die Stapellänge der Bindefasern entspricht vorzugsweise etwa der Stapellänge der Trägerfasern. Die Bindefasern können als solche eingesetzt werden, d.h. ein vorhergehendes Fibrillieren ist nicht unbedingt erforderlich.The fibers can be made by cutting or tearing. Fibrillation of these fibers is preferably carried out by mechanical processing, for example by treating an aqueous suspension of the aramid staple fibers in a dissolver. The aramid binding fibers are preferably used in the form of staple fibers. The stack length of the binding fibers preferably corresponds approximately to the stack length of the carrier fibers. The binder fibers can be used as such, i.e. prior fibrillation is not absolutely necessary.

Zur Herstellung des Papiers werden die beiden Fasertypen, die ihrerseits in Form von Gemischen vorliegen können, miteinander vermischt. Dies erfolgt im allgemeinen in wäßrigem Medium. Die derart hergestellte Suspension wird auf eine Siebunterlage aufgebracht, wobei das wäßrige Medium abgetrennt wird und die miteinander verfilzten Fasern auf der Unterlage zurückbleiben. Das auf diese Weise erhaltene Flächengebilde wird durch Hitzebehandlung stabilisiert und/oder endverfestigt. Gegebenenfalls wird die Hitzebehandlung unter Druck durchgeführt.To produce the paper, the two types of fibers, which in turn can be in the form of mixtures, are mixed together. This is generally done in an aqueous medium. The suspension produced in this way is applied to a sieve pad, the aqueous medium being separated off and the fibers which have been felted together remaining on the pad. The fabric obtained in this way is stabilized and / or solidified by heat treatment. If necessary, the heat treatment is carried out under pressure.

Typische Temperaturen für den Verfestigungsschritt sind von den im Einzelfall ausgewählten Fasertypen abhängig und können vom Fachmann anhand von einfachen Versuchsreihen ermittelt werden. Die auf diese Weise hergestellten Papiere weisen praktisch keine Bindefasern mehr auf, d.h. die Bindefasern sind durch den Verfestigungsschritt so vollständig aufgeschmolzen, daß ihre Faserform verloren gegangen ist.Typical temperatures for the consolidation step depend on the fiber types selected in the individual case and can be determined by a person skilled in the art using simple test series. The papers produced in this way have practically no binding fibers, i.e. the binding fibers have melted so completely through the consolidation step that their fiber shape has been lost.

Die erfindungsgemäßen Papiere können insbesondere zur Herstellung von Schichtstoffen verwendet werden, beispielsweise als Deckschichten bei der Verstärkung von "Honeycomb-Schichtstoffen", wie in der WO-A-84/04727 beschrieben oder bei der Verstärkung von Netzwerkstoffen, wie in der EP-A-158,234 beschrieben.The papers according to the invention can be used in particular for the production of laminates, for example as top layers in the reinforcement of "honeycomb laminates", as described in WO-A-84/04727 or in the reinforcement of network materials, as in EP-A- 158,234.

Die in einem ersten Schritt hergestellten Vliese können gegebenenfalls vor der Endverfestigung noch vorverfestigt werden. Dies kann beispielsweise durch Nadeln erfolgen.The nonwovens produced in a first step can optionally be pre-consolidated before the final consolidation. This can be done for example by needles.

Die Endverfestigung zu den erfindungsgemäßen Vliesstoffen erfolgt durch Erhitzen des anfänglich erhaltenen Vlieses auf eine Temperatur, bei der die Bindefasern schmelzen und/oder sich thermoplastisch verformen, wobei sie unter Verlust ihrer Faserstruktur meist sogenannte "Bindesegel" an den Kreuzungspunkten der tragenden Aramidfasern ausbilden. Das Erhitzen kann durch Behandlung mit einem heißen Trägermedium, beispielsweise mit Luft erfolgen, oder durch Behandlung mit heißen Walzen oder Kalandern, die gegebenenfalls eine Oberflächenstruktur aufweisen, und dem Vliesstoff eine Prägestruktur verleihen.The final consolidation to the nonwovens according to the invention is carried out by heating the initially obtained nonwoven to a temperature at which the binding fibers melt and / or deform thermoplastic, whereby they usually form so-called "binding sails" at the crossing points of the supporting aramid fibers while losing their fiber structure. The heating can be carried out by treatment with a hot carrier medium, for example with air, or by treatment with hot rollers or calenders, which may have a surface structure, and impart an embossed structure to the nonwoven fabric.

Die Dauer der Wärmebehandlung richtet sich z.B. nach den gewünschten Endeigenschaften, nach den Dimensionen des Vlieses und der Natur der das Vlies bildenden Fasersorten. Der Schmelzpunkt der Bindefasern liegt üblicherweise mindestens 10 °C unter dem Schmelz- oder Zersetzungspunkt der tragenden Fasern, insbesondere mehr als 30 °C unter dem Schmelz- oder Zersetzungspunkt der tragenden Fasern.The duration of the heat treatment depends, for example, on the desired end properties, on the dimensions of the Fleece and the nature of the types of fibers forming the fleece. The melting point of the binding fibers is usually at least 10 ° C. below the melting or decomposition point of the supporting fibers, in particular more than 30 ° C. below the melting or decomposition point of the supporting fibers.

Bevorzugt wählt man den Schmelzpunkt der Bindefasern soweit unter dem Schmelz- oder Zersetzungspunkt der tragenden Fasern, so daß diese noch keine wesentlichen Eigenschaftsänderungen während der Wärmebehandlung erfahren.It is preferred to choose the melting point of the binding fibers below the melting or decomposition point of the supporting fibers so that they do not experience any significant changes in properties during the heat treatment.

Der Charakter der erfindungsgemäßen Vliesstoffe wird auch durch den Anteil an Schmelzbindern beeinflußt. Je nach Einsatzgebiet wird ein fülliger Vliesstoff mit nur wenigen Verklebungspunkten bevorzugt oder eine fast flächige Verbindung, z.B. für Schichtstoffe. Typische Werte für den Anteil an Schmelzbinder liegen im Bereich von 20-80 Gew.-% Bindefaser, bezogen auf die Mengen aus Bindefaser und tragender Faser.The character of the nonwovens according to the invention is also influenced by the proportion of melt binders. Depending on the area of application, a voluminous nonwoven with only a few bonding points is preferred or an almost flat connection, e.g. for laminates. Typical values for the proportion of melt binder are in the range of 20-80% by weight of binder fiber, based on the amounts of binder fiber and load-bearing fiber.

Die Flächengewichte der erfindungsgemäßen Vliesstoffe und die Einzeltiter und Stapellängen beider Fasersorten können in weiten Grenzen variiert werden und den Anforderungen der Weiterverarbeitungsprozesse und des Einsatzgebietes angepaßt werden. Typische Werte für die Flächengewichte betragen 30 bis 500 g/m2. Typische Werte für die Einzeltiter der Fasern liegen im Bereich von 0,5 bis 5 dtex.The basis weights of the nonwovens according to the invention and the individual titer and staple lengths of both types of fibers can be varied within wide limits and adapted to the requirements of the further processing processes and the area of use. Typical values for the grammages are 30 to 500 g / m 2 . Typical values for the individual titer of the fibers are in the range from 0.5 to 5 dtex.

Die die erfindungsgemäßen Vliesstoffe aufbauenden Filamente oder Stapelfasern können einem praktisch runden Querschnitt besitzen oder auch andere Formen aufweisen, wie hantel-, nierenförmige-, dreieckige- bzw. tri- oder multilobale Querschnitte. Es sind Hohlfasern einsetzbar. Ferner lassen sich die beiden Fasertypen in Form von Bi- oder Mehrkomponentenfasern kombinieren, wobei die Bindekomponente mindestens einen Teil der Faseroberfläche ausfüllt.The filaments or staple fibers making up the nonwovens according to the invention can have a practically round cross section or can also have other shapes, such as dumbbell, kidney-shaped, triangular or tri or multilobal cross sections. Hollow fibers can be used. Furthermore, the two types of fibers can be combined in the form of bicomponent or multicomponent fibers, the binding component filling at least part of the fiber surface.

Während bei den tragenden Verstärkungsfasern im allgemeinen auf hohe Werte für Festigkeit und Modul geachtet wird, können als schmelzende Matrixfasern auch weitgehend unorientierte Fasern verwendet werden.While high values for strength and modulus are generally taken into account in the load-bearing reinforcing fibers, largely unoriented fibers can also be used as the melting matrix fibers.

Zur Vliesherstellung werden die tragenden Aramid-Fasern in bekannter Weise aus Lösungmitteln ersponnen, und die thermoplastischen Aramide können aus der Lösung oder aus der Schmelze ersponnen werden.For the production of nonwovens, the supporting aramid fibers are spun from solvents in a known manner, and the thermoplastic aramids can be spun from the solution or from the melt.

Die erfindungsgemäßen Vliesstoffe bestehen praktisch ausschließlich aus aromatischen Polyamiden und weisen somit alle Vorteile dieser Polymeren auf, wie chemische und thermische Stabilität, eine extrem gute Flammfestigkeit und eine gute Verträglichkeit miteinander. Sie weisen weiterhin alle Vorteile schmelzgebundener Vliesstoffe auf, also etwa ein gutes Reiß- und Weiterreißverhalten.The nonwovens according to the invention consist practically exclusively of aromatic polyamides and thus have all the advantages of these polymers, such as chemical and thermal stability, extremely good flame resistance and good compatibility with one another. They also have all the advantages of melt-bonded nonwovens, i.e. good tear and tear behavior.

Die erfindungsgemäßen Vliesstoffe können in an sich üblicher Weise ausgerüstet sein, beispielsweise durch Zusatz von Antistatika, Farbstoffen oder bioziden Zusätzen.The nonwovens according to the invention can be finished in a conventional manner, for example by adding antistatic agents, dyes or biocidal additives.

Die erfindungsgemäßen Vliesstoffe lassen sich insbesondere auf Gebieten einsetzen, wo hohe Stabilitäten (chemisch, thermisch und mechanisch) gefragt sind. Beispiele dafür sind der Einsatz als Filtermaterialien, als Isoliermaterialien (thermisch und elektrisch) sowie als Verstärkungsmaterialien für unterschiedliche Substrate (z.B. Kunststoffe oder als Geotextilien).The nonwovens according to the invention can be used in particular in areas where high stability (chemical, thermal and mechanical) is required. Examples include the use as filter materials, as insulating materials (thermal and electrical) and as reinforcing materials for different substrates (e.g. plastics or as geotextiles).

Die nachfolgenden Beispiele beschreiben die Erfindung ohne diese zu begrenzen. Mengenangaben beziehen sich auf das Gewicht, sofern nichts anderes angegeben ist.The following examples describe the invention without limiting it. Quantities refer to the weight, unless otherwise stated.

Beispiele 1 bis 10Examples 1 to 10

Allgemeine Arbeitsvorschrift betreffend Herstellung von Aramidpapieren aus Faserpulp Stapelfasern des Einzelfasertiters von 1,8 dtex aus Aramiden auf der Basis von Terephthalsäure, p-Phenylendiamin, Dimethylbenzidin und Bis-(4-aminophenoxy)-benzol der Schnittlänge 6 mm werden zu etwa 1 % in Wasser suspendiert und etwa 1,5 bis 2 Stunden im Dissolver bei etwa 1200 Umdrehungen/min behandelt, so daß die Stapelfasern fibrillieren. Überschüssiges Wasser wird abgesaugt und der erhaltene Faserpulp wird in feuchtem Zustand in Wasser aufgeschlämmt und mit unterschiedlichen Anteilen (vergl. Tabelle 1) Stapelfasern einer Schnittlänge von 6 mm aus schmelzbarem Aramid vermischt. Bei dem schmelzbaren Aramid handelt es sich um ein Copolymeres auf der Basis von Terephthalsäure, Isophthalsäure und 2,2'-Bis-(4-aminophenoxyphenyl)-propan, dessen Endgruppen mit Benzoylchlorid verschlossen sind.General working instructions regarding the production of aramid paper from fiber pulp Staple fibers with a single fiber titer of 1.8 dtex from aramids based on terephthalic acid, p-phenylenediamine, dimethylbenzidine and bis- (4-aminophenoxy) benzene with a cutting length of 6 mm are suspended to about 1% in water and about 1.5 to 2 Treated for hours in a dissolver at about 1200 revolutions / min so that the staple fibers fibrillate. Excess water is suctioned off and the fiber pulp obtained is slurried in water in the moist state and mixed with different proportions (see Table 1) of staple fibers with a cutting length of 6 mm made of fusible aramid. The fusible aramide is a copolymer based on terephthalic acid, isophthalic acid and 2,2'-bis (4-aminophenoxyphenyl) propane, the end groups of which are sealed with benzoyl chloride.

Die erhaltene Suspension wird durch Abfiltrieren entwässert und der erhaltene Filterkuchen wird auf eine Heizplatte von etwa 300°C aufgebracht und bei dieser Temperatur getrocknet; dabei wird der Trocknungsvorgang durch Behandlung der der Heizplatte abgewandten Seite des Filterkuchens mit einem Bügeleisen von etwa 300°C unterstützt.The suspension obtained is dewatered by filtration and the filter cake obtained is applied to a hot plate at about 300 ° C. and dried at this temperature; the drying process is supported by treating the side of the filter cake facing away from the heating plate with an iron of approximately 300 ° C.

Die auf diese Weise hergestellten Papiere können anschließend noch durch Behandlung in einer Heizpresse weiter verfestigt werden. In der folgenden Tabelle 1 werden die Herstellungsbedingungen unterschiedlicher Aramidpapiere und deren Festigkeiten dargestellt. Die Festigkeitswerte wurden durch die Aufnahmen von Kraft-Dehnungsdiagrammen an 1,5 cm breiten Probestreifen der Papiere festgestellt. Die Messungen wurden mit einem Instron-Tester durchgeführt. Die Einspannlänge betrug dabei 50 mm. Die Festigkeitswerte sind auf das Flächengewicht des Papiers bezogen. Tabelle 1: Herstellungsbedingungen und flächenbezogene Festigkeiten Beispiel Nr. Anteil schmelzbarer Aramidfaser (Gew.-%) Preßbedingungen Heißpresse (bar, °C) Reißfestigkeit/Bemerkungen Flächengewicht (cN/mg/cm2) 1 5 keine Heißpresse 22 2 10 keine Heißpresse 13 3 15 keine Heißpresse 12 4 20 keine Heißpresse 12 5 30 keine Heißpresse 14 6 5 50, 290 26 pergamentähnlich 7 10 50, 290 22 pergamentähnlich 8 15 50, 290 31 pergamentähnlich 9 20 50, 290 22 pergamentähnlich 10 30 50, 290 23 pergamentähnlich The papers produced in this way can then be further consolidated by treatment in a heating press. Table 1 below shows the production conditions for different aramid papers and their strengths. The strength values were determined by recording force-expansion diagrams on 1.5 cm wide test strips of the papers. The measurements were carried out with an Instron tester. The clamping length was 50 mm. The strength values are based on the basis weight of the paper. Table 1: Manufacturing conditions and area-related strengths Example No. Proportion of fusible aramid fiber (% by weight) Press conditions hot press (bar, ° C) Tear resistance / comments Basis weight (cN / mg / cm 2 ) 1 5 no hot press 22 2nd 10th no hot press 13 3rd 15 no hot press 12th 4th 20th no hot press 12th 5 30th no hot press 14 6 5 50, 290 26 parchment-like 7 10th 50, 290 22 parchment-like 8th 15 50, 290 31 parchment-like 9 20th 50, 290 22 parchment-like 10th 30th 50, 290 23 parchment-like

Beispiele 11 bis 28Examples 11 to 28 Herstellung von Aramid-Papieren aus FaserpulpProduction of aramid papers from fiber pulp

Man arbeitet nach der allgemeinen Vorschrift wie unter Beispielen 1 bis 10 beschrieben. Abweichend dazu werden Stapelfasern aus Aramiden auf der Basis von Terephthalsäure, p-Phenylendiamin, Dimethylbenzidin und Bis-(4-aminophenoxy)-benzol der Schnittlänge 2 mm verwendet. Die Schnittlänge der Aramid-Bindefasern beträgt wie bei den obigen Beispielen jeweils 6 mm.The general procedure is as described in Examples 1 to 10. In deviation from this, staple fibers made from aramids based on terephthalic acid, p-phenylenediamine, dimethylbenzidine and bis- (4-aminophenoxy) benzene with a cutting length of 2 mm are used. The cutting length of the aramid binding fibers is 6 mm, as in the examples above.

Einzelheiten zur Herstellung und zu den Eigenschaften der Papiere sind in der folgenden Tabelle 2 dargestellt. Tabelle 2: Herstellungsbedingungen und flächenbezogene Festigkeiten Beispiel Nr. Anteil schmelzbarer Aramidfaser- (Gew.-%) Preßbedingungen Heißpresse (bar, °C) Reißfestigkeit/Bemerkungen Flächengewicht (cN/mg/cm2) 11 5 keine Heißpresse 60 12 10 keine Heißpresse 58 13 15 keine Heißpresse 37 14 20 keine Heißpresse 32 15 30 keine Heißpresse 34 16 5 50, 290 42 pergamentähnlich 17 10 50, 290 49 pergamentähnlich 18 15 50, 290 57 pergamentähnlich 19 20 50, 290 74 pergamentähnlich 20 30 50, 290 60 pergamentähnlich 21 5 100,350 320 22 10 100,350 260 23 15 100,350 340 24 30 100,350 160 25 5 400,350 560 26 10 400,350 590 27 15 400,350 820 28 20 400,350 200 Details of the manufacture and properties of the papers are shown in Table 2 below. Table 2: Manufacturing conditions and area-related strengths Example No. Proportion of fusible aramid fiber (% by weight) Press conditions hot press (bar, ° C) Tear resistance / comments Basis weight (cN / mg / cm 2 ) 11 5 no hot press 60 12th 10th no hot press 58 13 15 no hot press 37 14 20th no hot press 32 15 30th no hot press 34 16 5 50, 290 42 parchment-like 17th 10th 50, 290 49 parchment-like 18th 15 50, 290 57 parchment-like 19th 20th 50, 290 74 parchment-like 20th 30th 50, 290 60 parchment-like 21 5 100.350 320 22 10th 100.350 260 23 15 100.350 340 24th 30th 100.350 160 25th 5 400.350 560 26 10th 400.350 590 27 15 400.350 820 28 20th 400.350 200

Claims (11)

  1. A non-woven consolidated by means of a melt-fusible binder and based on loadbearing aramid fibers and on binding fibers made of thermoplastic aromatic polyether amides whose melting point is below the melting or decomposition point of said loadbearing aramid fibers, the non-woven being obtainable by the virtually complete melting of the binding fibers.
  2. A non-woven as claimed in claim 1, wherein the loabearing fibers and the binding fibers comprise aramids which are soluble in organic solvents.
  3. A non-woven as claimed in claim 2, wherein the loadbearing fibers used are aramids (copolyamides) soluble in organic solvents and containing at least 95 mol%, relative to the polyamide, of recurring structural units of the formulae Ia, Ib, Ic and Id,

            -OC-Ar1-CO-     (Ia),

    Figure imgb0021
    Figure imgb0022
    and
    Figure imgb0023
    and containing up to 5 mol% of structural units (Ie) and/or (If) containing m-bonds and derived from aromatic dicarboxylic acids and/or from aromatic diamines, the sums of the molar proportions of structural units (Ia)+(Ie) and of the molar proportions of structural units (Ib)+(Ic)+(Id)+(If) being substantially identical,
    and the proportions of diamine components (Ib), (Ic) and (Id) being within the following limits, relative to the total amount of this diamine component: structural unit (Ib): 30-55 mol%, structural unit (Ic): 15-35 mol%, structural unit (Id): 20-40 mol%,
    in which
    -Ar1- and -Ar2- are divalent aromatic radicals whose valence bonds are in the para or comparable coaxial or parallel position and which can be substituted by one or two inert radicals, such as alkyl, alkoxy or halogen, and in which
    -R1 and -R2, independently of one another, are lower alkyl radicals or lower alkoxy radicals or halogen atoms.
  4. A non-woven as claimed in claim 2, wherein the loadbearing fibers used are aramids (copolyamides) soluble in organic solvents and containing at least 95 mol%, relative to the polyamide, of recurring structural units of the formulae Ia, Ig, Ib and Id

            -OC-Ar1-CO-      (Ia),



            -HN-Ar2-NH-     (Ig),

    Figure imgb0024
    and
    Figure imgb0025
    and up to 5 mol% of structural units (Ie) and/or (If) containing m-bonds and derived from aromatic dicarboxylic acids and/or from aromatic diamines, the sums of the molar proportions of structural units (Ia)+(Ie) and of the molar proportion of structural units (Ig)+(Ib)+(Id)+(If) being substantially identical,
    and the proportions of diamine components (Ig), (Ib) and (Id) being within the following limits, relative to the total amount of these diamine components: structural units (Ig): 15-25 mol%, structural units (Ib): 45-65 mol%, structural units (Id): 15-35 mol%,
    in which -Ar1-, -Ar2- and -R1 have the meaning defined in claim 3.
  5. A non-woven as claimed in claim 2, wherein the loadbearing fibers used are aramids (copolyamides) soluble in organic solvents and containing at least 95 mol%, relative to the polyamide, of recurring structural units of the formulae Ia, Ig, Ib and Ic

            -OC-Ar1-CO-     (Ia),



            -HN-Ar2-NH-     (Ig),

    Figure imgb0026
    and
    Figure imgb0027
    and containing up to 5 mol% of structural units (Ie) and/or (If) containing m-bonds and derived from aromatic dicarboxylic acids and/or from aromatic diamines, the sums of the molar proportions of structural units (Ia)+(Ie) and of the molar proportions of structural units (Ig)+(Ib)+(Ic)+(If) being substantially identical, and the proportions of diamine components (Ig), (Ib) and (Ic) being within the following limits, relative to the total amount of these diamine components: structural units (Ig): 20-30 mol%, structural units (Ib): 35-55 mol%, structural units (Id): 15-40 mol%,
    in which -Ar1, -Ar2, -R1 and -R2 have the meaning defined in claim 3.
  6. A non-woven as claimed in claim 1, wherein the aromatic polyether amides are compounds of the formula II
    Figure imgb0028
    in which
    Ar3 is a divalent substituted or unsubstituted aromatic radical whose free valences are in the para or meta position or in a comparable parallel or angled position relative to one another,
    Ar4 can have one of the meanings given for Ar3 or is a group -Ar7-Z-Ar7-,
    in which Z is a -C(CH3)2- or -O-Ar7-O- bridge and Ar7 is a divalent aromatic radical,
    Ar5 and Ar6 are identical to or different from one another and are a substituted or unsubstituted para-or meta-arylene radical,
    Y is a -C(CH3)2-, -SO2-, -S- or -C(CF3)2- bridge, in which
    a) the polyether amide has an average molecular weight (number average) in the range from 5,000 to 50,000,
    b) molecular weight control takes place selectively by non-stoichiometric addition of the monomer units, in which the sum of the molar fractions x, y and z is one, the sum of x and z is not y and x can adopt the value zero, and
    c) the ends of the polymer chain are virtually completely capped by monofunctional radicals R3 which do not further react in the polymer and which, independently of one another, can be identical or different.
  7. A paper based on aramid fibers, which contains about 70 to 98% by weight, in particular 80 to 90% by weight, of loadbearing aramid fibers in the form of fibrillated staple fibers and contains about 2 to 30% by weight, in particular 10 to 20% by weight, of binding fibers made of thermoplastic aromatic polyether amides which have been solidified by virtually complete melting of the binding fibers.
  8. A paper as claimed in claim 7, wherein the staple lengths of the loadbearing aramid fibers are 2 to 6 mm and the staple length of the binding fibers is about the same as the staple length of the loadbearing fibers.
  9. A process for the production of the paper of claim 7, which comprises:
    i) preparing an aqueous suspension of aramid loadbearing fibers and mechanically processing this suspension, resulting in the formation of fibrillated aramid loadbearing fibers,
    ii) mixing the fibrillated aramid loadbearing fibers with about 2 to 30% by weight, relative to the total amount of fibers, of binding fibers made of thermoplastic aramids,
    iii) removing the suspension medium and forming a filter cake, and
    iv) drying and heating the filter cake to a temperature, leading to its consolidation by virtually complete melting of the binding fibers.
  10. Use of the non-woven of claim 1 as filter material, as insulating material or as reinforcing material.
  11. Use of a paper as claimed in claim 7 for the production of laminates.
EP92100815A 1991-01-22 1992-01-18 Non-woven reinforced with a meltbinder Expired - Lifetime EP0496313B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4101674 1991-01-22
DE4101674 1991-01-22

Publications (2)

Publication Number Publication Date
EP0496313A1 EP0496313A1 (en) 1992-07-29
EP0496313B1 true EP0496313B1 (en) 1996-07-17

Family

ID=6423417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92100815A Expired - Lifetime EP0496313B1 (en) 1991-01-22 1992-01-18 Non-woven reinforced with a meltbinder

Country Status (7)

Country Link
US (1) US5393601A (en)
EP (1) EP0496313B1 (en)
JP (1) JPH04352860A (en)
AT (1) ATE140493T1 (en)
DE (1) DE59206760D1 (en)
ES (1) ES2091954T3 (en)
IE (1) IE74904B1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662728A (en) * 1992-12-31 1997-09-02 Hoechst Celanese Corporation Particulate filter structure
US5667900A (en) * 1993-01-04 1997-09-16 E. I. Du Pont De Nemours And Company Aramid paper with high surface smoothness
JP3300529B2 (en) * 1994-03-31 2002-07-08 日鉄鉱業株式会社 Antistatic filtering material and method for producing the same
US5827430A (en) * 1995-10-24 1998-10-27 Perry Equipment Corporation Coreless and spirally wound non-woven filter element
US6383623B1 (en) * 1999-08-06 2002-05-07 Tex Tech Industries Inc. High performance insulations
US20050039836A1 (en) * 1999-09-03 2005-02-24 Dugan Jeffrey S. Multi-component fibers, fiber-containing materials made from multi-component fibers and methods of making the fiber-containing materials
US6241899B1 (en) * 2000-02-28 2001-06-05 Maritza L. Ramos Disposable filter bags for pool cleaners
US6363620B1 (en) * 2000-07-21 2002-04-02 Callaway Golf Company Apparatus and method for measuring the loft angle and the lie angle of a golf club
US6712939B2 (en) 2001-02-26 2004-03-30 Cuno Incorporated Process for manufacturing wet-felted and thermally bonded porous structures and porous structures formed by the process
WO2003015894A1 (en) 2001-08-09 2003-02-27 Dainippon Ink And Chemicals, Inc. Heat-resistant filter
US20030082974A1 (en) * 2001-08-30 2003-05-01 Samuels Michael R. Solid sheet material especially useful for circuit boards
US7259117B2 (en) * 2001-09-12 2007-08-21 Mater Dennis L Nonwoven highloft flame barrier
US7276166B2 (en) * 2002-11-01 2007-10-02 Kx Industries, Lp Fiber-fiber composites
WO2005047597A2 (en) * 2003-11-07 2005-05-26 Koslow Technlogies Corporation Fiber-fiber composites
JP2005307360A (en) * 2004-04-16 2005-11-04 Du Pont Teijin Advanced Paper Kk Aramid tissue material and electrical and electronic part using the same
US7771810B2 (en) * 2006-12-15 2010-08-10 E.I. Du Pont De Nemours And Company Honeycomb from paper having a high melt point thermoplastic fiber
US7815993B2 (en) * 2006-12-15 2010-10-19 E.I. Du Pont De Nemours And Company Honeycomb from paper having flame retardant thermoplastic binder
US7819936B2 (en) * 2007-08-22 2010-10-26 E.I. Du Pont De Nemours And Company Filter felts and bag filters comprising blends of fibers derived from diamino diphenyl sulfone and heat resistant fibers
US20090107922A1 (en) * 2007-10-26 2009-04-30 General Electric Company Membrane, water treatment system, and associated method
US8118975B2 (en) * 2007-12-21 2012-02-21 E. I. Du Pont De Nemours And Company Papers containing fibrids derived from diamino diphenyl sulfone
US7803247B2 (en) * 2007-12-21 2010-09-28 E.I. Du Pont De Nemours And Company Papers containing floc derived from diamino diphenyl sulfone
US8114251B2 (en) * 2007-12-21 2012-02-14 E.I. Du Pont De Nemours And Company Papers containing fibrids derived from diamino diphenyl sulfone
ES2523728T3 (en) 2010-06-15 2014-12-01 Ahlstrom Corporation Scrubbed fibrous support containing apergaminable synthetic fibers and method of manufacture
US9437348B2 (en) * 2010-12-17 2016-09-06 3M Innovative Properties Company Electrical insulation material
KR101902163B1 (en) 2011-01-04 2018-10-01 데이진 아라미드 비.브이. Paper comprising microfilaments
CN104562434B (en) * 2015-01-04 2017-02-22 上海特安纶纤维有限公司 Polysulfonamide permanent flame-retardant heat-insulation warm-keeping fabric sheet and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US448603A (en) * 1891-03-17 Electro-magnetic motor
US3756908A (en) * 1971-02-26 1973-09-04 Du Pont Synthetic paper structures of aromatic polyamides
JPS5181862A (en) * 1975-01-16 1976-07-17 Mitsubishi Rayon Co
JPS5373267A (en) * 1976-12-10 1978-06-29 Toho Beslon Co Molding of blended fiber mat and composite material
JPS58180650A (en) * 1982-04-19 1983-10-22 帝人株式会社 Aromatic polyamide nonwoven fabric
BR8402613A (en) * 1983-06-02 1985-04-30 Du Pont LOW DENSITY FALSE TISSUE SHEET STRUCTURE AND PERFECT PROCESS FOR ITS PREPARATION
US4888091A (en) * 1983-06-02 1989-12-19 E. I. Du Pont De Nemours And Company Low density nonwoven aramid sheets
US5094913A (en) * 1989-04-13 1992-03-10 E. I. Du Pont De Nemours And Company Oriented, shaped articles of pulpable para-aramid/meta-aramid blends
US4992141A (en) * 1989-05-26 1991-02-12 E. I. Du Pont De Nemours And Company Thin, resin-saturable aromatic polyamide paper and process for making same
US5124900A (en) * 1989-11-28 1992-06-23 Manifesto Corporation Light diffuser
US5094794A (en) * 1990-04-12 1992-03-10 E. I. Du Pont De Nemours And Company High performance aramid matrix composites

Also Published As

Publication number Publication date
US5393601A (en) 1995-02-28
IE74904B1 (en) 1997-08-13
JPH04352860A (en) 1992-12-07
DE59206760D1 (en) 1996-08-22
ATE140493T1 (en) 1996-08-15
EP0496313A1 (en) 1992-07-29
IE920180A1 (en) 1992-07-29
ES2091954T3 (en) 1996-11-16

Similar Documents

Publication Publication Date Title
EP0496313B1 (en) Non-woven reinforced with a meltbinder
EP0678539A2 (en) Aromatic copolyamides, process for their preparation, moulded articles and their manufacture
DE3884726T2 (en) POLYAMIDE IMID COMPOSITIONS.
EP0237722A1 (en) Process for producing thermoplastically processable aromatic polyamides
EP0424860B1 (en) Wholly aromatic polyamides, process for their preparation and products therefrom
DE3586977T2 (en) COMPOSITE MATERIALS.
DE3390220T1 (en) Liquid crystalline polymer compositions, processes and products
EP0496317B1 (en) Prepreg and fibre reinforced composites therefrom
DE3914226A1 (en) FIBER MATERIALS FROM HOMOGENEOUS ALLOYS FROM AROMATIC POLYAMIDES AND POLY-N-VINYLPYRROLIDONE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
EP0559667B1 (en) Thermoplastically processable aromatic polyether amide
DE60114847T2 (en) COPOLYAMIDES AND COMPOSITIONS BASED ON THESE
DE69206670T2 (en) Mixtures of polybenzimidazoles and aromatic polyamides, aromatic polyamide hydrazides or aromatic polyamides containing heterocyclic bonds
DE68919804T2 (en) Thermoplastic aromatic polyamides.
EP0322837B1 (en) Aromatic copolyamides forming filaments, fibres or films, process for their production and their use
DE68927235T2 (en) Fully aromatic polyamide copolymer
DE69103552T2 (en) Copolyester amides.
DE3818209A1 (en) THERMOPLASTICALLY PROCESSABLE AROMATIC POLYETHERAMIDE, METHOD FOR THE PRODUCTION THEREOF AND ITS USE FOR THE PRODUCTION OF MOLDED BODIES
EP0381172B1 (en) Homogeneous blends of aromatic polyamides and Poly-N-vinylpyrrolidone, process for preparing and their use
DE3935466A1 (en) METHOD FOR PRODUCING A THERMOPLASTICALLY PROCESSABLE, AROMATIC POLYAMIDE
DE4007142A1 (en) AROMATIC COPOLYAMIDES, METHOD FOR THE PRODUCTION THEREOF AND MOLDING MOLDED THEREOF
DE2740728A1 (en) SELF-EXTINGUISHING POLYMER MATERIALS AND METHOD FOR PRODUCING THE SAME
DE2313308A1 (en) PROCESS FOR MANUFACTURING FABRICS, FIBERS AND FILMS FROM AROMATIC POLYAMIDES
EP0442399A2 (en) Wholly aromatic polyamides, process for preparing them and moulded articles thereof
EP0316775B1 (en) Bismaleinimides and polyimides produced thereof
EP0344594B1 (en) Thermoplastic aromatic copolyetheramide, process for its preparation and its use to produce molded articles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

R17P Request for examination filed (corrected)

Effective date: 19920523

17Q First examination report despatched

Effective date: 19941216

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 140493

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REF Corresponds to:

Ref document number: 59206760

Country of ref document: DE

Date of ref document: 19960822

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960926

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2091954

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990126

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990211

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000118

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000118

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050118