Nothing Special   »   [go: up one dir, main page]

EP0495184B1 - Plattenwärmetauscher für im Gegenstrom geführte Medien - Google Patents

Plattenwärmetauscher für im Gegenstrom geführte Medien Download PDF

Info

Publication number
EP0495184B1
EP0495184B1 EP91120116A EP91120116A EP0495184B1 EP 0495184 B1 EP0495184 B1 EP 0495184B1 EP 91120116 A EP91120116 A EP 91120116A EP 91120116 A EP91120116 A EP 91120116A EP 0495184 B1 EP0495184 B1 EP 0495184B1
Authority
EP
European Patent Office
Prior art keywords
plates
plate
individual
another
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91120116A
Other languages
English (en)
French (fr)
Other versions
EP0495184A1 (de
Inventor
Werner Deibl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr AG
Original Assignee
Balcke Duerr AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6423019&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0495184(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Balcke Duerr AG filed Critical Balcke Duerr AG
Publication of EP0495184A1 publication Critical patent/EP0495184A1/de
Application granted granted Critical
Publication of EP0495184B1 publication Critical patent/EP0495184B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart

Definitions

  • the invention relates to a plate heat exchanger for countercurrent media, consisting of shaped single plates, which are connected to one another to form a flow channel for the plate pairs forming a medium, which in turn are connected to form a plate stack and each form a flow channel for the other medium, whereby the inflow and outflow cross-section of each channel is offset diagonally to one another in the longitudinal direction of the plate, and the inflow and outflow cross-sections of the channels for the two media lie next to one another, but are offset by half the height of the inflow and outflow cross-section of the channels.
  • Such plate heat exchangers which correspond in principle to the plate heat exchangers known from DE-A-37 10 823, are used for example in environmental technology and can also be designed for large volume flows of the media involved in the heat exchange, whereby these media need not only be gaseous media, since there are cases in which the heat exchange between liquids or between a gas and a liquid should take place.
  • the individual plates are therefore made of plastic or stainless steel; Furthermore, versions made of normal steel sheet are known, but this is provided with a corrosion protection layer made of plastic or enamel. While single plates made of plastic or stainless steel can be welded together with a higher technical effort, this is not possible with single plates provided with a corrosion protection layer without destroying this protective layer in the area of the weld seams. In the known plate heat exchangers, a different type of connection must be selected here, for example gluing or clamping, preferably with the interposition of seals.
  • the invention has for its object to develop a plate heat exchanger of the type described in such a way that a reliable and permanent seal both between the individual plates and between the plate pairs, taking into account the above-mentioned temperature stresses with little technical and manufacturing effort results.
  • each individual plate is formed in connection with and parallel to its edges running in the longitudinal direction of the plate, at which it is connected to the adjacent individual plate to form a pair of plates, with a contact surface which is opposite the edge is offset by half the height of a pair of plates and at which the individual plates of adjacent plate pairs are connected to one another, and that the individual plates forming a plate stack at their transverse edges lying in the region of the inflow and outflow of the two media are at a partial length with the individual plate belonging to the plate pair and are connected over the remaining part length to the single plate of the adjacent plate pair.
  • contact surfaces according to the invention By designing such contact surfaces according to the invention, it is also possible in series production in a simple manner to reliably and permanently connect both the individual plates to plate pairs and the plate pairs to form a plate stack, it also being possible to first connect in the area of the contact surfaces according to the invention and only then make the connection on the longitudinal edge of the individual panels. There are defined contact surfaces between the individual plates for both connections, so that a seal that is tailored to the respective application and to the plate material can always be selected. Furthermore, there are two rows of side-by-side inflow and outflow openings for the media guided in countercurrent to one another.
  • the configuration according to the invention is also suitable for individual plates provided with a corrosion protection layer.
  • the openings formed by the height-offset contact surfaces in the inflow and outflow region of the plate stack are closed according to a further feature of the invention, so that there is a technically simple supply and discharge of the media flowing through the plate heat exchanger on opposite sides of the plate stack.
  • the plate pairs and / or the individual plates can, according to the invention, be welded to one another and / or sealed together at their contact surfaces or edges.
  • the gas or liquid-tight connection can therefore not only be achieved by welding or gluing, i.e. done positively, but also non-positively in that the individual plates of the plate stack are pressed against each other, preferably by using tie rods and end plates.
  • Both in the form-fitting connection, i.e. by welding or gluing, as well as in the non-positive connection of the individual plates it can be advantageous to provide suitable seals in the area of the edges and / or contact surfaces.
  • the same type of connection is preferably selected in the area of the transverse edges to be connected. However, it may also be sufficient to effect the connection of the individual plates in the region of their transverse edges due to the dimensional stability of the individual plates as a result of their connection at the longitudinal edges and contact surfaces solely by inserting seals.
  • the individual plates are made of plastic or stainless steel, it is proposed according to a further feature of the invention to connect the individual plates to one another at least on their longitudinal edges and contact surfaces by roll seam welding. If coated individual plates are used to form the plate stack, according to the invention these can be uncoated at the longitudinal edges and can therefore be welded to one another here. In both cases, it is possible to insert seals between the individual plates in addition to the welding.
  • the inflow and outflow cross-section of the channels will be the same for the two media participating in the heat exchange, in particular if the volumes of the two media participating in the heat exchange approximately correspond to one another.
  • the width of these openings formed by the transverse edges of the individual plates is the same.
  • the inflow and outflow cross sections of the two different channels through which the two media flow in countercurrent can also have a different size if the volume flows of the two media participating in the heat exchange differ greatly from one another.
  • the inflow and outflow cross sections formed by the transverse edges of the individual plates have a different width at the same height.
  • FIGS. 1 and 2 shows schematically and in perspective the plate stack S of a plate heat exchanger, which is otherwise not shown, for media conducted in countercurrent.
  • This plate stack S consists of a plurality of identical, shaped individual plates 1, which are each connected to form a plate pair P.
  • Each individual plate 1 comprises a base 11 which lies in a different plane from the longitudinal edges 12.
  • each individual plate 1 is each formed with a contact surface 13 which is offset in height from the longitudinal edges 12.
  • the offset between the contact surface 13 and the associated longitudinal edge 12 is twice as large as the offset between the longitudinal edges 12 and the bottom 11; the bottom 11 is therefore located in the middle between the plane of the longitudinal edges 12 and the plane of the contact surfaces 13.
  • transverse edges 14a and 14b which in height, ie perpendicular to the surface of the base 11 are offset from one another by the same amount as the planes in which the longitudinal edges 12 on the one hand and the contact surfaces 13 on the other hand.
  • the transverse edges 14a and 14b lie diagonally opposite one another.
  • plate pairs P are formed according to the lower representation in FIG. 1 by connecting a single plate 1 to a single plate 1 rotated about its longitudinal axis at the longitudinal edges 12. 1 and 2, five complete plate pairs P1 to P5 are shown, with a single plate 1 being arranged on the uppermost plate pair P5 and another single plate 1 is located at a greater distance above this single plate 1 arranged on the plate pairs P.
  • the plate pairs P are now connected in the area of the contact surfaces 13 to form a plate stack S, there are alternately superimposed channels in which flow flows in the opposite direction for the two media participating in the heat exchange. While one medium flows in the channels which are formed by the plate pairs P, the other medium flows in the channels which result from the joining of the plate pairs P to the plate stack S.
  • the lying in the plane of the longitudinal edges 12 transverse edges 14a of the individual plates 1 here form the inlet openings E1 and the outlet openings A1 of the channels for the medium flowing between the plate pairs P.
  • the extending in the plane of the contact surfaces 13 transverse edges 14b of the individual plates 1 form the inlet openings E2 or the outlet openings A2 for the other medium which flows between the individual plates 1 of each pair of plates in the opposite direction.
  • the inlet openings E1 for the first medium next to the outlet openings A2 for the other medium each offset by half a height of a pair of plates P.
  • FIG. 2 The front view shown in Fig. 2 of the left part of the plate stack S shown in perspective in Fig. 1 shows that the plate pairs P1 to P5 can be produced in a simple manner in that the individual plates 1 are connected together at their longitudinal edges 12.
  • the connection of the plate pairs P created in this way to a plate stack S takes place in an equally simple manner in that adjacent individual plates 1 of the plate pairs P are connected to one another in the region of the abutting contact surfaces 13.
  • the transverse edges 14a and 14b of adjacent individual plates 1 are connected in accordance with FIG. 1.
  • lateral openings O result on each end face of the plate stack S, each of which is connected to the flow channel which is formed by the individual plates 1, which are connected to form a plate pair P, for the one medium.
  • these openings O are closed in a suitable manner.
  • the individual plates 1 lie flat on one another both in the region of their longitudinal edges 12 and in the region of their contact surfaces 13.
  • the connection of the individual plates 1 can be done in a simple manner by welding, preferably roller seam welding.
  • Such a roll seam welding can be carried out not only in the case of individual plates 1 made of plastic or stainless steel, but also in the case of individual plates 1 provided with a corrosion protection layer, if these individual plates 1 are uncoated in the outer region of their longitudinal edges 12, so that they are welded here without destroying the corrosion protection layer can be. In this case, however, it is necessary to connect the individual plate pairs P to a plate stack S in a different way.
  • the assembly of a plate stack S from individual plates 1 by welding can be simplified in that adjacent individual plates 1 are welded together first in the area of their contact surfaces 13 and only then in the area of their longitudinal edges 12.
  • at least one roller seam weld can be carried out in a particularly simple manner in the area of the contact surfaces 13 and longitudinal edges 12.
  • modified individual plates 1 are used. These are provided with groove-like depressions 15 both in the region of their longitudinal edges 12 and transverse edges 14a and 14b and in the region of their contact surfaces 13. These recesses 15 form cavities for receiving a sealant or seals 2.
  • Such seals 2 can be used not only in addition to welding the individual plates 1 on their contact surfaces, but also as an alternative to such welds if the individual plates 1 of a plate stack S are on others Be sealed together with their contact surfaces.
  • 7 shows, using a schematic exemplary embodiment, that the plate stack S can also be formed in that the individual plates 1 are clamped between a base plate 3 and a cover plate 4 with the aid of tie rods 5. In this case, welding of the individual plates 1 to plate pairs P or welding of adjacent plate pairs P to one another can be dispensed with.
  • openings O resulting from the additional contact surfaces 13 in the end faces of the plate stack S can be closed in a simple manner.
  • plugs 6 are shown which are inserted into these openings O.
  • the openings O can also be closed in a different way, for example by welding or pressing.
  • the transverse edges 14a and 14b of the individual plates 1 are of approximately the same size, so that there are approximately the same size inlet and outlet openings for the two media flowing in countercurrent, it is of course also possible to use a different one Volume flow of the two media participating in the heat exchange to take into account by changing the ratio of the lengths of the transverse edges 14a and 14b to each other.
  • the distances between the planes in which the contact surfaces 13, the bottoms 11 and the longitudinal edges 12 lie must also be changed in accordance with the length ratio of the transverse edges 14a and 14b. In this case, however, it is necessary to use two differently shaped individual plates 1 to build up a plate stack S.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen Plattenwärmetauscher für im Gegenstrom geführte Medien, bestehend aus formgeprägten Einzelplatten, die miteinander zu einen Strömungskanal für das eine Medium bildenden Plattenpaaren verbunden sind, die ihrerseits zu einem Plattenstapel verbunden sind und zwischen sich jeweils einen Strömungskanal für das andere Medium bilden, wobei der Zuund Abströmquerschnitt jedes Kanals in Plattenlängsrichtung diagonal zueinander versetzt ist und die Zu- und Abströmquerschnitte der Kanäle für die beiden Medien nebeneinanderliegen, jedoch um die halbe Höhe des Zu- bzw. Abströmquerschnitts der Kanäle zueinander versetzt sind.
  • Derartige Plattenwärmetauscher, die im Grundprinzip den aus der DE-A-37 10 823 bekannten Plattenwärmetauschern entsprechen, werden beispielsweise in der Umwelttechnik eingesetzt und können auch für große Volumenströme der am Wärmeaustausch beteiligten Medien ausgelegt werden, wobei es sich bei diesen Medien nicht nur um gasförmige Medien handeln muß, da es Fälle gibt, bei denen der Wärmeaustausch zwischen Flüssigkeiten oder zwischen einem Gas und einer Flüssigkeit erfolgen soll.
  • Bei den Plattenwärmetauschern der eingangs beschriebenen Art, bei denen die zu einem Plattenpaar verbundenen Einzelplatten zwischen sich einen Strömungskanal für das eine Medium und die zu einem Stapel verbundenen Plattenpaare zwischen sich jeweils einen Strömungskanal für das andere Medium bilden, ergibt sich das Problem der zuverlässigen Abdichtung sowohl der Einzelplatten miteinander zu Plattenpaaren (Abdichtungsart 1) als auch der Plattenpaare miteinander zum Plattenstapel (Abdichtungsart 2). Da beide Abdichtungsarten für die Dichtigkeit der Strömungskanäle der im Gegenstrom zueinander strömenden beiden Medien entscheidend sind, vergrößert sich das Problem der Abdichtung, wenn ein Medium oder beide Medien unter Druck stehen und/oder zwischen den beiden Medien ein Druckunterschied besteht. Das Problem der Abdichtung wird weiterhin dadurch vergrößert, daß ein derartiger Plattenwärmetauscher hohen Temperaturen und teilweise beachtlichen Temperaturdifferenzen zwischen den beiden am Wärmeaustausch teilnehmenden Medien ausgesetzt ist, wobei sich diese Temperatureinflüsse insbesondere beim Anfahren des Wärmetauschers noch verstärken.
  • Insbesondere bei einem Einsatz derartiger Plattenwärmetauscher in der Umwelttechnik kommt häufig erschwerend hinzu, daß die Einzelplatten eine mehr oder weniger große Korrosionswiderstandsfähigkeit aufweisen müssen. Die Einzelplatten werden demzufolge aus Kunststoff oder Edelstahl hergestellt; weiterhin sind Ausführungen aus normalem Stahlblech bekannt, das jedoch mit einer Korrosionsschutzschicht aus Kunststoff oder Emaille versehen ist. Während sich Einzelplatten aus Kunststoff oder Edelstahl mit einem höheren technischen Aufwand miteinander verschweißen lassen, ist dies bei mit einer Korrosionsschutzschicht versehenen Einzelplatten nicht möglich, ohne diese Schutzschicht im Bereich der Schweißnähte zu zerstören. Hier muß bei den bekannten Plattenwärmetauschern eine andere Verbindungsart gewählt werden, beispielsweise Kleben oder Klemmen, vorzugsweise unter Zwischenfügen von Dichtungen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Plattenwärmetauscher der eingangs beschriebenen Art derart weiterzubilden, daß sich auch unter Berücksichtigung der voranstehend erwähnten Temperaturbeanspruchungen mit geringem technischen und Herstellungsaufwand eine zuverlässige und dauerhafte Abdichtung sowohl zwischen den Einzelplatten als auch zwischen den Plattenpaaren ergibt.
  • Die Lösung dieser Aufgabenstellung durch die Erfindung ist dadurch gekennzeichnet, daß jede Einzelplatte im Anschluß an und parallel zu ihren in Plattenlängsrichtung verlaufenden Rändern, an denen sie mit der benachbarten Einzelplatte zu einem Plattenpaar verbunden ist, jeweils mit einer Anlagefläche ausgebildet ist, die gegenüber dem Rand um die halbe Höhe eines Plattenpaares versetzt ist und an der die Einzelplatten benachbarter Plattenpaare miteinander verbunden sind, und daß die einen Plattenstapel bildenden Einzelplatten an ihren im Bereich der Zu- bzw. Abströmung der beiden Medien liegenden Querrändern auf einer Teillänge mit der zum Plattenpaar gehörenden Einzelplatte und auf der restlichen Teillänge mit der Einzelplatte des benachbarten Plattenpaares verbunden sind.
  • Durch die erfindungsgemäße Ausbildung derartiger Anlageflächen ist es auf einfache Weise auch in der Serienfertigung möglich, sowohl die Einzelplatten zu Plattenpaaren als auch die Plattenpaare zu einem Plattenstapel zuverlässig und dauerhaft miteinander zu verbinden, wobei es auch möglich ist, zuerst die Verbindung im Bereich der erfindungsgemäßen Anlageflächen und erst danach die Verbindung am Längsrand der Einzelplatten vorzunehmen. Für beide Verbindungen ergeben sich definierte Anlageflächen zwischen den Einzelplatten, so daß stets eine auf den jeweiligen Anwendungsfall und auf das Plattenmaterial abgestellte Abdichtung gewählt werden kann. Weiterhin ergeben sich zwei Reihen nebeneinanderliegender Zu- bzw. Abströmöffnungen für die im Gegenstrom zueinander geführten Medien. Die erfindungsgemäße Ausgestaltung ist auch für mit einer Korrosionsschutzschicht versehene Einzelplatten geeignet.
  • Die durch die in der Höhe versetzten Anlageflächen im Zu- und Abströmbereich des Plattenstapels gebildeten Öffnungen sind gemäß einem weiteren Merkmal der Erfindung verschlossen, so daß sich eine technisch einfache Zu- und Abfuhr der den Plattenwärmetauscher durchströmenden Medien an gegenüberliegenden Seiten des Plattenstapels ergibt.
  • Die Plattenpaare und/oder die Einzelplatten können an ihren Anlageflächen bzw. Rändern erfindungsgemäß miteinander verschweißt und/oder miteinander abgedichtet verbunden sein. Die gas- bzw. flüssigkeitsdichte Verbindung kann somit nicht nur durch Schweißen oder Kleben, d.h. formschlüssig erfolgen, sondern auch kraftschlüssig dadurch, daß die Einzelplatten des Plattenstapels gegeneinandergedrückt werden, vorzugsweise durch Verwendung von Zugankern und Endplatten. Sowohl bei der formschlüssigen Verbindung, d.h. durch Schweißen oder Kleben, als auch bei der kraftschlüssigen Verbindung der Einzelplatten kann es vorteilhaft sein, im Bereich der Ränder und/oder Anlageflächen geeignete Dichtungen vorzusehen. Im Bereich der miteinander zu verbindenden Querränder wird vorzugsweise dieselbe Verbindungsart gewählt. Es kann aber auch ausreichend sein, die Verbindung der Einzelplatten im Bereich ihrer Querränder aufgrund der Formstabilität der Einzelplatten als Folge ihrer Verbindung an den Längsrändern und Anlageflächen ausschließlich durch Einlegen von Dichtungen zu bewirken.
  • Wenn die Einzelplatten aus Kunststoff oder Edelstahl hergestellt sind, wird gemäß einem weiteren Merkmal der Erfindung vorgeschlagen, die Einzelplatten an zumindest ihren Längsrändern und Anlageflächen durch Rollnahtschweißung miteinander zu verbinden. Werden zur Bildung des Plattenstapels beschichtete Einzelplatten verwendet, können diese erfindungsgemäß an den Längsrändern unbeschichtet sein und somit hier miteinander verschweißt werden. In beiden Fällen ist es möglich, zusätzlich zur Verschweißung Dichtungen zwischen den Einzelplatten einzulegen.
  • Mit der Erfindung wird weiterhin vorgeschlagen, die Einzelplatten bzw. Plattenpaare eines Plattenstapels an den Längs- und Querrändern sowie an den Anlageflächen kraftschlüssig miteinander zu verbinden, und zwar vorzugsweise durch zwischen Endplatten verlaufende Zuganker. Hierdurch ergibt sich eine besonders einfache Vorbereitung und Montage eines Plattenstapels für den erfindungsgemäßen Plattenwärmetauscher.
  • Schließlich wird mit der Erfindung vorgeschlagen, im Bereich der Anlageflächen und/oder der Längsränder und/oder der Querränder Vertiefungen zur Aufnahme von Dichtungen oder Abdichtmasse auszubilden. Derartige rillenartige Vertiefungen erhöhen gleichzeitig die Formstabilität der Einzelplatten.
  • Normalerweise wird der Zu- und Abströmquerschnitt der Kanäle für die beiden am Wärmeaustausch teilnehmenden Medien gleich groß sein, insbesondere wenn die Volumen der beiden am Wärmeaustausch teilnehmenden Medien einander etwa entsprechen. In diesem Fall ist - bei gleicher vorgegebener Höhe der Zu- und Abströmöffnungen - die Breite dieser durch die Querkanten der Einzelplatten gebildeten Öffnungen gleich groß. Die Zu- und Abströmquerschnitte der beiden unterschiedlichen, von den beiden Medien im Gegenstrom durchströmten Kanälen können aber auch eine abweichende Größe haben, wenn die Volumenströme der beiden am Wärmeaustausch teilnehmenden Medien sich stark voneinander unterscheiden. In diesem Fall haben die durch die Querkanten der Einzelplatten gebildeten Zu- und Abströmquerschnitte bei gleicher Höhe eine unterschiedliche Breite. Um den gesamten Strömungskanalverlauf diesen unterschiedlichen Zu- und Abströmquerschnitten anzupassen, werden unterschiedlich geprägte Einzelplatten verwendet, so daß sich im Anschluß an die Ein- und Ausströmquerschnitte unterschiedlich hohe Strömungskanäle für die beiden im Gegenstrom strömenden Medien ergeben. In diesem Fall ergibt sich zwar der Nachteil, daß der Plattenstapel nicht mehr aus Einzelplatten einer einzigen Art gebildet werden kann, die lediglich um ihre Längsachse verdreht zum Plattenstapel miteinander verbunden und mit einem einzigen Werkzeug hergestellt werden. Der höhere, zwei unterschiedliche Werkzeuge für unterschiedlich tiefe Prägungen erfordernde Herstellaufwand ergibt jedoch andererseits den Vorteil, daß der erfindungsgemäße Plattenwärmetauscher auch dann mit großem Erfolg eingesetzt werden kann, wenn zwei Medien mit unterschiedlichen Volumenströmen am Wärmeaustausch teilnehmen.
  • Auf der Zeichnung sind zwei Ausführungsbeispiele eines erfindungsgemäßen Plattenwärmetauschers dargestellt, und zwar zeigen:
  • Fig. 1
    eine perspektivische Ansicht eines Plattenstapels für ein erstes Ausführungsbeispiel des Plattenwärmetauschers,
    Fig. 2
    eine Teilansicht der Stirnseite des Plattenstapels nach Fig. 1,
    Fig. 3
    eine Draufsicht auf ein Plattenpaar eines Plattenwärmetauschers einer zweiten Ausführungsform,
    Fig. 4
    eine Ansicht der einen Stirnseite des Plattenpaares nach Fig. 3,
    Fig. 5
    eine Ansicht der anderen Stirnseite des Plattenpaares nach Fig. 3,
    Fig. 6
    einen Querschnitt durch das Plattenpaar nach Fig. 3 gemäß der Schnittlinie VI - VI in Fig. 3 und
    Fig. 7
    eine perspektivische, schematische Darstellung eines Plattenwärmetauschers aus Plattenpaaren gemäß den Fig. 3 bis 6.
  • Das in den Fig. 1 und 2 dargestellte erste Ausführungsbeispiel zeigt schematisch und perspektivisch den Plattenstapel S eines im übrigen nicht dargestellten Plattenwärmetauschers für im Gegenstrom geführte Medien. Dieser Plattenstapel S besteht aus einer Mehrzahl identischer, formgeprägter Einzelplatten 1, die jeweils miteinander zu einem Plattenpaar P verbunden sind.
  • Jede Einzelplatte 1 umfaßt einen Boden 11, der in einer anderen Ebene liegt wie die Längsränder 12. Im Anschluß und parallel zu diesen Längsrändern 12 ist jede Einzelplatte 1 jeweils mit einer Anlagefläche 13 ausgebildet, die gegenüber den Längsrändern 12 in der Höhe versetzt ist. Der Versatz zwischen der Anlagefläche 13 und dem zugehörigen Längsrand 12 ist doppelt so groß wie der Versatz zwischen den Längsrändern 12 und dem Boden 11; der Boden 11 liegt demzufolge höhenmäßig in der Mitte zwischen der Ebene der Längsränder 12 und der Ebene der Anlageflächen 13.
  • Die quer zu den Längsrändern 12 der Einzelplatte 1 verlaufenden Ränder liegen beim Ausführungsbeispiel nach den Fig. 1 und 2 etwa zur Hälfte in der Ebene der Längsränder 12 bzw. in der Ebene der Anlageflächen 13. Auf diese Weise ergeben sich Querränder 14a und 14b, die in der Höhe, d.h. senkrecht zur Fläche des Bodens 11 um denselben Betrag zueinander versetzt sind wie die Ebenen, in denen einerseits die Längsränder 12 und andererseits die Anlageflächen 13 liegen. Wie Fig. 1 deutlich erkennen läßt, liegen hierbei die Querränder 14a bzw. 14b einander diagonal gegenüber.
  • Aus den voranstehend beschriebenen, im oberen Teil der Fig. 1 dargestellten Einzelplatten 1 werden gemäß der unteren Darstellung in Fig. 1 Plattenpaare P gebildet, indem eine Einzelplatte 1 mit einer um ihre Längsachse um 180° gedrehten Einzelplatte 1 an den Längsrändern 12 verbunden wird. In den Fig. 1 und 2 sind fünf komplette Plattenpaare P₁ bis P₅ dargestellt, wobei auf dem obersten Plattenpaar P₅ noch eine Einzelplatte 1 angeordnet ist und sich eine weitere Einzelplatte 1 im größeren Abstand oberhalb dieser auf den Plattenpaaren P angeordneten Einzelplatte 1 befindet.
  • Wenn die Plattenpaare P nunmehr im Bereich der Anlageflächen 13 zu einem Plattenstapel S verbunden werden, ergeben sich abwechselnd übereinanderliegende, in Gegenrichtung durchströmte Kanäle für die beiden am Wärmeaustausch teilnehmenden Medien. Während das eine Medium in den Kanälen strömt, die durch die Plattenpaare P gebildet werden, strömt das andere Medium in den Kanälen, die sich durch das Zusammenfügen der Plattenpaare P zum Plattenstapel S ergeben. Die in der Ebene der Längsränder 12 liegenden Querränder 14a der Einzelplatten 1 bilden hierbei die Eintrittsöffnungen E₁ bzw. die Austrittsöffnungen A₁ der Kanäle für das zwischen den Plattenpaaren P strömende Medium. Die in der Ebene der Anlageflächen 13 verlaufenden Querränder 14b der Einzelplatten 1 bilden die Eintrittsöffnungen E₂ bzw. die Austrittsöffnungen A₂ für das andere Medium, das zwischen den Einzelplatten 1 jedes Plattenpaares in Gegenrichtung strömt. Wie wiederum die Fig. 1 am besten erkennen läßt, liegen aufgrund der diagonalen Anordnung der Eintritts- und Austrittsöffnungen die Eintrittsöffnungen E₁ für das erste Medium neben den Austrittsöffnungen A₂ für das andere Medium, und zwar jeweils um eine halbe Höhe eines Plattenpaares P versetzt.
  • Die in Fig. 2 wiedergegebene Stirnansicht des linken Teils des in Fig. 1 perspektivisch dargestellten Plattenstapels S läßt erkennen, daß die Plattenpaare P₁ bis P₅ auf einfache Weise dadurch hergestellt werden können, daß deren Einzelplatten 1 an ihren Längsrändern 12 miteinander verbunden werden. Die Verbindung der auf diese Weise entstandenen Plattenpaare P zu einem Plattenstapel S erfolgt auf ebenso einfache Weise dadurch, daß benachbarte Einzelplatten 1 der Plattenpaare P im Bereich der aufeinanderliegenden Anlageflächen 13 miteinander verbunden werden. In entsprechender Weise erfolgt eine Verbindung der aufeinanderliegenden Querränder 14a und 14b jeweils benachbarter Einzelplatten 1 gemäß Fig. 1.
  • Bei einem derartigen Zusammenfügen der Einzelplatten 1 zu einem Plattenstapel S ergeben sich an jeder Stirnseite des Plattenstapels S seitliche Öffnungen O, die jeweils mit dem Strömungskanal in Verbindung stehen, der durch die zu einem Plattenpaar P verbundenen Einzelplatten 1 für das eine Medium gebildet wird. Um die Zu- und Abfuhr dieses einen Mediums nicht zu komplizieren, werden diese Öffnungen O auf geeignete Weise verschlossen.
  • Beim ersten Ausführungsbeispiel nach den Fig. 1 und 2 liegen die Einzelplatten 1 sowohl im Bereich ihrer Längsränder 12 als auch im Bereich ihrer Anlageflächen 13 flächig aufeinander. Die Verbindung der Einzelplatten 1 kann hierbei auf einfache Weise durch Schweißen, vorzugsweise Rollnahtschweißen erfolgen. Eine derartige Rollnahtschweißung läßt sich nicht nur bei aus Kunststoff oder Edelstahl hergestellten Einzelplatten 1 durchführen, sondern auch bei mit einer Korrosionsschutzschicht versehenen Einzelplatten 1, wenn diese Einzelplatten 1 im äußeren Bereich ihrer Längsränder 12 unbeschichtet sind, so daß sie hier miteinander ohne Zerstörung der Korrosionsschutzschicht verschweißt werden können. In diesem Fall ist es allerdings erforderlich, die Verbindung der einzelnen Plattenpaare P zu einem Plattenstapel S auf andere Weise zu bewerkstelligen.
  • Der Zusammenbau eines Plattenstapels S aus Einzelplatten 1 durch Schweißen kann dadurch vereinfacht werden, daß benachbarte Einzelplatten 1 zuerst im Bereich ihrer Anlageflächen 13 und erst danach im Bereich ihrer Längsränder 12 miteinander verschweißt werden. In diesem Fall kann mindestens eine Rollnahtschweißung im Bereich der Anlageflächen 13 und Längsränder 12 auf besonders einfache Weise durchgeführt werden. Selbstverständlich ist es aber auch möglich, die Einzelplatten 1 zuerst zu Plattenpaaren P mittels Rollnahtschweißungen im Bereich ihrer Längsränder 12 zu verbinden und anschließend die Plattenpaare P zu einem Plattenstapel S zu verschweißen, indem Kehlnähte zwischen den aufeinanderliegenden Anlageflächen 13 angebracht werden.
  • Beim zweiten Ausführungsbeispiel nach den Fig. 3 bis 6 werden modifizierte Einzelplatten 1 verwendet. Diese sind sowohl im Bereich ihrer Längsränder 12 sowie Querränder 14a und 14b als auch im Bereich ihrer Anlageflächen 13 mit rillenartigen Vertiefungen 15 versehen. Diese Vertiefungen 15 bilden Hohlräume zur Aufnahme einer Dichtmasse bzw. von Dichtungen 2. Derartige Dichtungen 2 können nicht nur zusätzlich zu einer Verschweißung der Einzelplatten 1 an deren Anlageflächen, sondern auch alternativ zu derartigen Verschweißungen verwendet werden, wenn die Einzelplatten 1 eines Plattenstapels S auf andere Weise mit ihren Anlageflächen dichtend zusammengehalten werden. Die Fig. 7 zeigt anhand eines schematischen Ausführungsbeispiels, daß der Plattenstapel S auch dadurch gebildet werden kann, daß die Einzelplatten 1 zwischen einer Grundplatte 3 und einer Deckplatte 4 mit Hilfe von Zugankern 5 eingespannt werden. In diesem Fall kann auf eine Verschweißung der Einzelplatten 1 zu Plattenpaaren P bzw. auf eine Verschweißung benachbarter Plattenpaare P miteinander verzichtet werden.
  • Den Fig. 3 bis 6 kann weiterhin entnommen werden, daß der Strömungsquerschnitt eines Kanales, der durch ein aus zwei Einzelplatten 1 gebildetes Plattenpaar P geschaffen wird, über die Kanallänge nahezu konstant ist. Die Fig. 4 und 5, welche die Stirnansichten gemäß den Pfeilen IV und V in Fig. 3 darstellen, lassen erkennen, daß der Querschnitt der Eintrittsöffnung E₁ und der Querschnitt der Austrittsöffnung A₁, die sich diagonal gegenüberliegen, etwa gleich groß sind. Dieser Strömungsquerschnitt ergibt sich auch in dem zwischen der Eintrittsöffnung E₁ und der Austrittsöffnung A₁ liegenden Kanalverlauf, der in Fig. 6 dargestellt ist. In diesem Bereich hat der Kanal die halbe Höhe der Eintrittsöffnung E₁ bzw. Austrittsöffnung A₁, aber die volle Breite. Auf diese Weise werden unerwünschte Strömungsverluste beim Durchströmen des Plattenstapels S vermieden. Ein entsprechender Kanalaufbau ergibt sich auch für diejenigen Kanäle, die durch benachbarte Plattenpaare P gebildet werden.
  • Die Fig. 4 und 5 zeigen schließlich, daß die sich durch die zusätzlichen Anlageflächen 13 ergebenden Öffnungen O in den Stirnseiten des Plattenstapels S auf einfache Weise verschlossen werden können. Beim Ausführungsbeispiel nach den Fig. 3 bis 6 sind Stopfen 6 dargestellt, die in diese Öffnungen O eingesetzt sind. Selbstverständlich können die Öffnungen O auch auf andere Weise, beispielsweise durch Zuschweißen oder Zudrücken verschlossen werden.
  • Während bei den beiden auf der Zeichnung dargestellten Ausführungsbeispielen die Querränder 14a und 14b der Einzelplatten 1 etwa gleich groß ausgebildet sind, so daß sich etwa gleich große Eintritts- und Austrittsöffnungen für die beiden im Gegenstrom strömenden Medien ergeben, ist es selbstverständlich auch möglich, einem unterschiedlichen Volumenstrom der beiden am Wärmeaustausch teilnehmenden Medien dadurch Rechnung zu tragen, daß das Verhältnis der Längen der Querränder 14a und 14b zueinander verändert wird. Um auch in diesem Fall einen über die Kanallänge möglichst gleichmäßigen Kanalquerschnitt zu erzielen, müssen entsprechend des Längenverhältnisses der Querränder 14a und 14b auch die Abstände zwischen den Ebenen verändert werden, in denen die Anlageflächen 13, die Böden 11 und die Längsränder 12 liegen. In diesem Fall ist es allerdings erforderlich, zum Aufbau eines Plattenstapels S zwei unterschiedlich geprägte Einzelplatten 1 zu verwenden.
  • Aus den voranstehenden Darlegungen und den Zeichnungen ergibt sich, daß mit den beschriebenen Einzelplatten 1 Kompakt-Module für Plattenwärmetauscher hergestellt werden können, deren Einzelplatten aufgrund ihrer Randstabilität und Maßgenauigkeit die notwendigen Voraussetzungen schaffen, um derartige Plattenwärmetauscher für im Gegenstrom geführte Medien für hohe Betriebsdrücke sowie für aggressive Medien auszulegen.
  • Bezugszeichenliste:
  • 1
    Einzelplatte
    11
    Boden
    12
    Längsrand
    13
    Anlagefläche
    14a
    Querrand
    14b
    Querrand
    15
    Vertiefung
    2
    Dichtung
    3
    Grundplatte
    4
    Deckplatte
    5
    Zuganker
    6
    Stopfen
    S
    Plattenstapel
    P
    Plattenpaar
    E₁
    Eintrittsöffnung Medium 1
    A₁
    Austrittsöffnung Medium 1
    E₂
    Eintrittsöffnung Medium 2
    A₂
    Austrittsöffnung Medium 2
    O
    Öffnung

Claims (8)

  1. Plattenwärmetauscher für im Gegenstrom geführte Medien, bestehend aus formgeprägten Einzelplatten (1), die miteinander zu einen Strömungskanal für das eine Medium bildenden Plattenpaaren (P) verbunden sind, die ihrerseits zu einem Plattenstapel (S) verbunden sind und zwischen sich jeweils einen Strömungskanal für das andere Medium bilden, wobei der Zu- und Abströmquerschnitt jedes Kanals in Plattenlängsrichtung diagonal zueinander versetzt ist und die Zu- und Abströmquerschnitte der Kanäle für die beiden Medien nebeneinanderliegen, jedoch um die halbe Höhe des Zu- bzw. Abströmquerschnitts der Kanäle zueinander versetzt sind,
    dadurch gekennzeichnet,
    daß jede Einzelplatte (1) im Anschluß an und parallel zu ihren in Plattenlängsrichtung verlaufenden Rändern (12), an denen sie mit der benachbarten Einzelplatte (1) zu einem Plattenpaar (P) verbunden ist, jeweils mit einer Anlagefläche (13) ausgebildet ist, die gegenüber dem Rand (12) um die halbe Höhe eines Plattenpaares (P) versetzt ist und an der die Einzelplatten (1) benachbarter Plattenpaare (P) miteinander verbunden sind,
    und daß die einen Plattenstapel (S) bildenden Einzelplatten (1) an ihren im Bereich der Zu- bzw. Abströmung der beiden Medien liegenden Querrändern (14a, 14b) auf einer Teillänge mit der zum Plattenpaar (P) gehörenden Einzelplatte (1) und auf der restlichen Teillänge mit der Einzelplatte (1) des benachbarten Plattenpaares (P) verbunden sind.
  2. Plattenwärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die durch die in der Höhe versetzten Anlageflächen (13) im Zu- und Abströmbereich des Plattenstapels (S) gebildeten Öffnungen (O) verschlossen sind.
  3. Plattenwärmetauscher nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Plattenpaare (P) und/oder die Einzelplatten (1) an ihren Anlageflächen (13) bzw. Rändern (12,14a,14b) miteinander verschweißt und/oder miteinander abgedichtet verbunden sind.
  4. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Einzelplatten (1) an zumindest ihren Längsrändern (12) und Anlageflächen (13) durch Rollnahtschweißung verbunden sind.
  5. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei der Verwendung von beschichteten Einzelplatten (1) die Längsränder (12) unbeschichtet und miteinander verschweißt sind.
  6. Plattenwärmetauscher nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß zusätzlich zur Verschweißung Dichtungen (2) zwischen den Einzelplatten (1) eingelegt sind.
  7. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Einzelplatten (1) bzw. Plattenpaare (P) eines Plattenstapels (S) an den Längs- und Querrändern (12,14a,14b) sowie an den Anlageflächen (13) kraftschlüssig, vorzugsweise durch zwischen Endplatten (3,4) verlaufende Zuganker (5) miteinander verbunden sind.
  8. Plattenwärmetauscher nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß im Bereich der Anlageflächen (13) und/oder der Längsränder (12) und/oder der Querränder (14a, 14b) Vertiefungen (15) zur Aufnahme von Dichtungen (2) oder Abdichtmasse ausgebildet sind.
EP91120116A 1991-01-15 1991-11-26 Plattenwärmetauscher für im Gegenstrom geführte Medien Expired - Lifetime EP0495184B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4100940 1991-01-15
DE4100940A DE4100940C1 (de) 1991-01-15 1991-01-15

Publications (2)

Publication Number Publication Date
EP0495184A1 EP0495184A1 (de) 1992-07-22
EP0495184B1 true EP0495184B1 (de) 1994-12-14

Family

ID=6423019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91120116A Expired - Lifetime EP0495184B1 (de) 1991-01-15 1991-11-26 Plattenwärmetauscher für im Gegenstrom geführte Medien

Country Status (4)

Country Link
EP (1) EP0495184B1 (de)
AT (1) ATE115713T1 (de)
DE (2) DE4100940C1 (de)
ES (1) ES2067838T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340849C3 (de) * 1993-12-01 2000-09-14 Schilling Heinz Kg Plattenwärmeaustauscher in Modulbauweise zum rekuperativen Wärmeaustausch im Gegenstromprinzip zwischen gasförmigen Medien
US9546825B2 (en) 2012-04-23 2017-01-17 Kelvion Phe Gmbh Plate heat exchanger

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9115813U1 (de) * 1991-12-20 1992-02-20 Balcke-Dürr AG, 4030 Ratingen Plattenwärmetauscher
DE4142177C2 (de) * 1991-12-20 1994-04-28 Balcke Duerr Ag Plattenwärmetauscher
DE4239049C1 (de) * 1992-11-20 1993-10-14 Balcke Duerr Ag Plattenwärmetauscher
US5469914A (en) * 1993-06-14 1995-11-28 Tranter, Inc. All-welded plate heat exchanger
DE19510847C2 (de) * 1995-03-17 2002-11-21 Michael Rehberg Plattenwärmetauscher
AT404877B (de) * 1997-05-30 1999-03-25 Wagner Wilfried Gegenstrom-plattenwärmetauscher
EP2657635B1 (de) * 2012-04-23 2015-06-10 GEA Ecoflex GmbH Plattenwärmetauscher
EP3205969B1 (de) * 2012-08-27 2021-07-21 Kelvion PHE GmbH Plattenwärmetauscher-system aufweisend einen plattenwärmetauscher und eine plattenwärmetauschererosionsschutzleiste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027940A1 (de) * 1990-09-04 1993-03-04 Balcke Duerr Ag Plattenwaermetauscher

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB217593A (en) * 1923-06-13 1924-10-30 Georges Marie Gerouille De Bea Improvements in or relating to heat exchangers
DE1259362B (de) * 1959-06-29 1968-01-25 Joachim Beushausen Waermetauscher mit plattenartigen Waermetauschwaenden aus leicht biegsamen Kunststoff-Folien
WO1983000736A1 (en) * 1981-08-14 1983-03-03 Korobchansky, Ostap, Aleksandrovich Plate-type heat exchanger
DE3710823A1 (de) * 1987-04-01 1988-10-13 Bavaria Anlagenbau Gmbh Verfahren zur herstellung geschweisster plattenwaermetauscher, insbesondere kreuzstrom-plattenwaermetauscher
FR2638226B1 (fr) * 1988-10-24 1991-05-17 Packinox Sa Echangeur a plaques
DE3844213A1 (de) * 1988-12-29 1990-07-05 Gea Ahlborn Gmbh & Co Waermeaustauscher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027940A1 (de) * 1990-09-04 1993-03-04 Balcke Duerr Ag Plattenwaermetauscher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340849C3 (de) * 1993-12-01 2000-09-14 Schilling Heinz Kg Plattenwärmeaustauscher in Modulbauweise zum rekuperativen Wärmeaustausch im Gegenstromprinzip zwischen gasförmigen Medien
US9546825B2 (en) 2012-04-23 2017-01-17 Kelvion Phe Gmbh Plate heat exchanger

Also Published As

Publication number Publication date
EP0495184A1 (de) 1992-07-22
DE59103899D1 (de) 1995-01-26
ES2067838T3 (es) 1995-04-01
DE4100940C1 (de) 1991-11-21
ATE115713T1 (de) 1994-12-15

Similar Documents

Publication Publication Date Title
DE69315281T2 (de) Plattenwärmetauscher und Verfahren zu dessen Herstellung
EP0578933B1 (de) Geschweisster Plattenwärmetauscher
DE3622316C1 (de) Plattenwaermeaustauscher
EP0265725B1 (de) Wärmetauscher
DE19543149C2 (de) Wärmetauscher, insbesondere Kältemittelverdampfer
EP1518084A1 (de) Plattenw rme bertrager in stapelbauweise
EP0495184B1 (de) Plattenwärmetauscher für im Gegenstrom geführte Medien
DE69309921T2 (de) Wärmetauscher mit geschweissten platten
DE3239004A1 (de) Packungsnut in plattenelement fuer plattenwaermetauscher
DE19709601A1 (de) Plattenwärmeübertrager
DE4343399C2 (de) Plattenwärmetauscher
EP0274058A2 (de) Plattenwärmeaustauscher
EP3957940A1 (de) Gegenstromplattenwärmetauscher-modul und gegenstromplattenwärmetauscher
EP0844454A1 (de) Gegenstromwärmetauscher
DE10034343C2 (de) Plattenwärmetauscher
DE1809545A1 (de) Plattenwaermetauscher
DE19605340C2 (de) Wärmeübertrager und Verfahren zu seiner Herstellung
DE3152944C2 (de) Platten-Wärmeübertrager
DE4031355C2 (de) Plattenwärmetauscher
AT404877B (de) Gegenstrom-plattenwärmetauscher
DE1601151A1 (de) Plattenwaermetauscher
DE4433659C1 (de) Plattenwärmetauscher
DE2525921A1 (de) Waermeaustauscher
DE3701362C2 (de)
DE3422684C2 (de) Hohlplattenheizkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19920606

17Q First examination report despatched

Effective date: 19930408

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BDAG BALCKE-DUERR AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 115713

Country of ref document: AT

Date of ref document: 19941215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59103899

Country of ref document: DE

Date of ref document: 19950126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950111

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2067838

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALFA LAVAL THERMAL AB

Effective date: 19950914

Opponent name: THERMOWAVE GESELLSCHAFT FUER WAERMETECHNIK MBH.

Effective date: 19950914

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALFA LAVAL THERMAL AB

Opponent name: THERMOWAVE GESELLSCHAFT FUER WAERMETECHNIK MBH.

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19961226

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19981124

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991127

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991127

EUG Se: european patent has lapsed

Ref document number: 91120116.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001013

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001016

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001023

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001026

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001101

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20001116

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011126

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: BALCKE-DURR A.G. BDAG

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051126

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100921

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59103899

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59103899

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111127