EP0328452A1 - Process for manufacturing ceramic foundry cores - Google Patents
Process for manufacturing ceramic foundry cores Download PDFInfo
- Publication number
- EP0328452A1 EP0328452A1 EP89400347A EP89400347A EP0328452A1 EP 0328452 A1 EP0328452 A1 EP 0328452A1 EP 89400347 A EP89400347 A EP 89400347A EP 89400347 A EP89400347 A EP 89400347A EP 0328452 A1 EP0328452 A1 EP 0328452A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- hours
- sequence
- maximum temperature
- polyethylene glycol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000000919 ceramic Substances 0.000 title claims abstract description 9
- 230000008569 process Effects 0.000 title abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 15
- 239000011230 binding agent Substances 0.000 claims abstract description 14
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 13
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 229910052845 zircon Inorganic materials 0.000 claims abstract description 6
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000000654 additive Substances 0.000 claims abstract 2
- 229920001169 thermoplastic Polymers 0.000 claims description 12
- 239000004416 thermosoftening plastic Substances 0.000 claims description 12
- 238000010411 cooking Methods 0.000 claims description 11
- 238000007596 consolidation process Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000000945 filler Substances 0.000 claims description 4
- 239000005350 fused silica glass Substances 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 10
- 235000011837 pasties Nutrition 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000012764 mineral filler Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 3
- 239000008116 calcium stearate Substances 0.000 description 3
- 235000013539 calcium stearate Nutrition 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000013312 flour Nutrition 0.000 description 3
- 238000001033 granulometry Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/20—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
- B22C1/22—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
- B22C1/2233—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- B22C1/2286—Polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/12—Treating moulds or cores, e.g. drying, hardening
Definitions
- the present invention relates to a method for manufacturing ceramic cores for foundries from a thermoplastic paste.
- foundry cores of a so-called "ceramic” type is particularly known in certain applications which require obtaining a set of characteristics and strict quality criteria such as resistance to high temperatures, lack of reactivity , dimensional stability and good mechanical characteristics.
- these applications presenting such requirements mention will be made in particular of aeronautical applications and, for example, the obtaining in the foundry of turbine blades for turbojet engines.
- the improvement of foundry processes, evolving from equiax foundry to foundry by directed solidification or monocrystalline, has further increased these requirements concerning cores whose use and complexity are imposed by the search for high performance for the parts to be obtained, as is the case for example for hollow blades with internal cooling.
- composition intended for the preparation of such cores are given by FR-A 2 371 257 and essentially comprise molten silica, zircon flour and cristobalite which is a form of crystallized silica, a silicone resin being used as a binder and additional elements in small quantities such as lubricant and catalyst being added.
- the preparation process is also described. According to FR-A-2,569,586, the addition of catalyst is avoided by taking advantage in the process of preparation of certain properties of the resin used.
- the maximum temperature can be 1200 ° C or 1250 ° C.
- the mineral filler used in the present invention consists, as known, of a mixture with suitable particle sizes, molten silica (or vitreous), zircon and cristobalite. Good results are obtained by using a filler comprising, for 100 parts by weight, from 60% to 85% by weight of a fused silica itself composed, for 15 to 80% of the weight of the filler, of a silica fused granulometry 0 to 63 micrometers and, for 0 to 60% of the weight of the load, of fused silica granulometry from 0 to 100 micrometers, from 15 to 35% by weight of zircon with granulometry 0 to 50 micrometers and 1% to 5% by weight of cristobalite in the form of a flour which is a fine powder material having a particle size less than 50 micrometers.
- cristobalite is used in the form of fine flour with a particle size of less than 20 micrometers.
- cristobalite and preferably in very fine particle size, was retained in the compositions according to the invention. It is indeed known that materials containing amorphous (or molten) silica have a low creep resistance. Obtaining foundry cores which can be used at high temperatures consequently requires a transformation of amorphous silica into cristobalite which is the only stable phase of silica between 1470 ° C and 1710 ° C and also the phase which has the best creep resistance , property sought in the use of foundry cores. In the compositions described above in accordance with the invention, the cristobalite originally present acts as an accelerator for devitrification of the silica fused to cristobalite during a rise in temperature. Another remarkable result and important advantage obtained, is that the foundry cores after baking do not undergo any significant dimensional variation when they are brought to operating temperatures of the order of 1500 ° C.
- This mineral filler is incorporated, usually in two or three times in a mixer with a molten product constituted by the organic binder which comprises, per 100 parts by weight of mineral filler, from 15 to 20 parts by weight of a polyethylene glycol, the polymer being remarkably and in accordance with the invention, in a form with an average molar mass of between 1400 and 1600, and with a release agent in a proportion of 0.2 to 0.5 parts by weight, preferably consisting calcium stearate.
- This realization of the mixture constitutes the first step, known per se, of the process for manufacturing ceramic cores for foundries according to the invention. After mixing, a thermoplastic paste is thus obtained, which can be crushed or ground in order to continue the following stages, of principle known per se, of the preparation of foundry cores.
- thermoplastic pastes used in the process for manufacturing cores according to the invention is given below.
- Thermoplastic paste for 100 parts by weight of mineral filler composed of: - 77% of fused silica, with a particle size from 0 to 63 micrometers, - 20% zircon, grain size 0 to 50 micrometers, - 3% cristobalite, with a particle size of 2 to 5 micrometers includes a release agent consisting of: - 0.5 parts by weight of calcium stearate and an organic binder consisting of: - 18 parts by weight of polyethylene glycol with a molecular weight of 1550 - 4.5 parts by weight of ethyl alcohol.
- the paste thermoplastic contains the same amounts of calcium stearate and cethyl alcohol and 20 parts by weight of polyethylene glycol of molar mass 1550.
- thermoplastic paste differ from those of the previous example 3 only by the molten silica which in this case is provided in two forms: - 17% of grain size 0 to 50 micrometers - and 60% of grain size 0 to 100 micrometers.
- the shaping of the foundry cores calls for known methods, such as thermoplastic injection molding in the press.
- This injection of the mixture into a mold constitutes the second step in the process for manufacturing cores.
- the mixture is injected in this case between 50 ° C and 100 ° C in a mold at room temperature, where it solidifies.
- the invention also relates to the third step of the improved process for manufacturing foundry cores. Indeed, during this third step, as it is known in principle, a foundry core after shaping must be subjected, before use for casting parts, to a heat treatment.
- the core can either be placed in a preformed mold or, and it is the preferred mode applied by the present invention, placed in a bed of alumina sand which drowns the core. It may also be desirable to coat the surface of the core with a release agent such as a PTFE type product before introduction into the sand. Note that the cooking method chosen, "in sand", also saves manufacturing time by allowing the charging of a higher number of cores. In all cases, the sand used has properties of good absorbency, vis-à-vis the decomposition products of binders and PTFE.
- the baking cycle of foundry cores thus defined has a duration total significantly reduced compared to previously known solutions.
- the choice of organic binder consisting of polyethylene glycol seems to be a particularly determining factor for obtaining these results.
- the temperature rise, at step (b) of the cooking cycle, for a maximum temperature of 1200 ° C. or 1250 ° C. was thus carried out in 9 hours and the cooling, in stage (d) of the cooking cycle, was carried out in 12 hours, which leads to a total duration of the cooking cycle of 36 hours.
- the cores obtained have interesting properties which have been demonstrated following tests, in particular on test pieces and among which we can note: - an operating temperature up to 1550 ° C; - a breaking modulus of 110 kg / cm2 at 1100 ° C after 5 minutes and 95 kg / cm2 at 1500 ° C after 15 minutes; - an apparent density of 1.72 and an actual density of 2.4; - a porosity of 28%; - thermal expansion at 1000 ° C from 0.13% to 0.16%.
- thermoplastic pastes according to the invention A possible correction of the cores after injection is possible by straightening in a size thanks to the malleability of the thermoplastic pastes according to the invention.
- This advantage as well as the absence of deformation of the cores during the operations following the shaping seem to be due to the influence of the organic binder consisting of polyethylene glycol. Indeed, this component exhibits progressive solidification properties, without sudden rupture of its viscosity properties between 50 ° C and 100 ° C, unlike the number of binders used previously.
- the dimensional stability and the absence of creep thus constitute significant advantages of the foundry cores obtained from the thermoplastic pastes used in a manufacturing process according to the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
La présente invention concerne un procédé de fabrication de noyaux céramiques pour fonderie à partir d'une pâte thermoplastique.The present invention relates to a method for manufacturing ceramic cores for foundries from a thermoplastic paste.
L'utilisation de noyaux de fonderie d'un type dits "céramiques" est notamment connue dans certaines applications qui imposent l'obtention d'un ensemble de caractéristiques et de critères sévères de qualité comme la tenue aux hautes températures, l'absence de réactivité, la stabilité dimensionnelle et de bonnes caractéristiques mécaniques. Parmi ces applications présentant de telles exigences, on citera notamment les applications aéronautiques et par exemple, l'obtention en fonderie d'aubes de turbine pour turboréacteurs. Le perfectionnement des procédés de fonderie, évoluant de la fonderie équiaxe à la fonderie par solidification dirigée ou monocristalline, a encore accru ces exigences concernant les noyaux dont l'utilisation et la complexité sont imposées par la recherche des hautes performances pour les pièces à obtenir, comme c'est le cas par exemple pour les aubes creuses à refroidissement interne.The use of foundry cores of a so-called "ceramic" type is particularly known in certain applications which require obtaining a set of characteristics and strict quality criteria such as resistance to high temperatures, lack of reactivity , dimensional stability and good mechanical characteristics. Among these applications presenting such requirements, mention will be made in particular of aeronautical applications and, for example, the obtaining in the foundry of turbine blades for turbojet engines. The improvement of foundry processes, evolving from equiax foundry to foundry by directed solidification or monocrystalline, has further increased these requirements concerning cores whose use and complexity are imposed by the search for high performance for the parts to be obtained, as is the case for example for hollow blades with internal cooling.
Des exemples de composition connues destinées à la préparation de tels noyaux sont donnés par FR-A 2 371 257 et comportent essentiellement de la silice fondue, de la farine de zircon et de la cristobalite qui est une forme de silice cristallisée, une résine de silicone étant utilisée comme liant et des éléments additionnels en faibles quantités tels que lubrifiant et catalyseur étant ajoutés. Le procédé de préparation est également décrit. Selon FR-A-2 569 586, l'adjonction de catalyseur est évitée en tirant profit dans le procédé de préparation de certaines propriétés de la résine utilisée.Examples of known composition intended for the preparation of such cores are given by FR-A 2 371 257 and essentially comprise molten silica, zircon flour and cristobalite which is a form of crystallized silica, a silicone resin being used as a binder and additional elements in small quantities such as lubricant and catalyst being added. The preparation process is also described. According to FR-A-2,569,586, the addition of catalyst is avoided by taking advantage in the process of preparation of certain properties of the resin used.
Les solutions antérieures connues n'ont pas toutefois donné entière satisfaction dans certaines applications particulières de fonderie à solidification dirigée ou monocristalline à des aubes de turbine. Des améliorations ont notamment été recherchées concernant les états de surface et une diminution de la rugosité des noyaux obtenus en vue également de faciliter la mise en oeuvre, en évitant la présence d'odeurs dues à certains produits ainsi qu'en permettant une opération de calibrage des noyaux avant cuisson et enfin, en perfectionnant le procédé de préparation des noyaux, notamment par la réduction de la durée des cycles de cuisson et leur simplification. Les solutions antérieures ont laissé également subsister pour certaines applications des problèmes de fragilité des noyaux ou une stabilité dimensionnelle insuffisante. Ces problèmes sont résolus et des résultats améliorés sont obtenus au moyen d'un procédé de fabrication de noyaux céramiques pour fonderie obtenus à partir d'une pâte thermoplastique constituée d'une charge céramique et au moins d'un liant organique à base de polyéthylène-glycol caractérisé en ce que le polyéthylène-glycol utilisé a une masse molaire comprise entre 1400 et 1600 et en ce que la pâte est injectée à une température comprise entre 50 et 100°C dans un moule à température ambiante et en ce que ledit procédé comporte un cycle unique de cuisson en quatre séquences :
- (a) - montée en température jusqu'à 300°C, à une vitesse comprise entre 30°C et 50°C par heure,
- (b) - montée de la température de 300°C jusqu'à la température maximale, à une vitesse comprise entre 100°C et 200°C par heure,
- (c) - maintien en palier à ladite température maximale, pendant une durée comprise entre 4 et 5 heures,
- (d) - refroidissement rapide par air pulsé,
- (a) - temperature rise up to 300 ° C, at a speed between 30 ° C and 50 ° C per hour,
- (b) - temperature rise from 300 ° C to the maximum temperature, at a speed of between 100 ° C and 200 ° C per hour,
- (c) - leveling off at said maximum temperature, for a period of between 4 and 5 hours,
- (d) - rapid forced air cooling,
Selon les applications, la température maximale peut être de 1200°C ou 1250°C.Depending on the applications, the maximum temperature can be 1200 ° C or 1250 ° C.
D'autes caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre d'exemples de modes de réalisation de l'invention.Other characteristics and advantages of the invention will be better understood on reading the description which follows of examples of embodiments of the invention.
La charge minérale utilisée dans la présente invention est constituée, comme connu, d'un mélange à granulométries convenables, de silice fondue (ou vitreuse), de zircon et de cristobalite. De bons résultats sont obtenus en utilisant une charge comportant, pour 100 parties en poids, de 60% à 85% en poids d'une silice fondue composée elle-même, pour 15 à 80% du poids de la charge, d'une silice fondue de granulométrie 0 à 63 micromètres et, pour 0 à 60% du poids de la charge, d'une silice fondue de granulométrie de 0 à 100 micromètres, de 15 à 35% en poids de zircon de granulométrie 0 à 50 micromètres et de 1% à 5% en poids de cristobalite sous forme d'une farine qui est un matériau en poudre fine présentant une granulométrie inférieure à 50 micromètres. De préférence, la cristobalite est utilisée sous forme de farine fine de granulométrie inférieure à 20 micromètres.The mineral filler used in the present invention consists, as known, of a mixture with suitable particle sizes, molten silica (or vitreous), zircon and cristobalite. Good results are obtained by using a filler comprising, for 100 parts by weight, from 60% to 85% by weight of a fused silica itself composed, for 15 to 80% of the weight of the filler, of a silica fused granulometry 0 to 63 micrometers and, for 0 to 60% of the weight of the load, of fused silica granulometry from 0 to 100 micrometers, from 15 to 35% by weight of zircon with granulometry 0 to 50 micrometers and 1% to 5% by weight of cristobalite in the form of a flour which is a fine powder material having a particle size less than 50 micrometers. Preferably, cristobalite is used in the form of fine flour with a particle size of less than 20 micrometers.
La présence de cristobalite, et de préférence en granulométrie très fine, a été retenue dans les compositions conformes à l'invention. Il est en effet connu que les matériaux contenant de la silice amorphe (ou fondue) ont une tenue au fluage faible. L'obtention de noyaux de fonderie utilisables à hautes températures impose par conséquent une transformation de la silice amorphe en cristobalite qui est la seule phase stable de la silice entre 1470°C et 1710°C et également la phase qui présente la meilleure tenue au fluage, propriété recherchée dans l'utilisation des noyaux de fonderie. Dans les compositions décrites ci-dessus conformes à l'invention, la cristobalite présente à l'origine agit comme accélérateur de dévitrification de la silice fondue en cristobalite lors d'une montée en température. Un autre résultat remarquable et avantage important obtenu, est que les noyaux de fonderie après cuisson ne subissent aucune variation dimensionnelle notable lorsqu'ils sont portés aux températures d'utilisation de l'ordre de 1500°C.The presence of cristobalite, and preferably in very fine particle size, was retained in the compositions according to the invention. It is indeed known that materials containing amorphous (or molten) silica have a low creep resistance. Obtaining foundry cores which can be used at high temperatures consequently requires a transformation of amorphous silica into cristobalite which is the only stable phase of silica between 1470 ° C and 1710 ° C and also the phase which has the best creep resistance , property sought in the use of foundry cores. In the compositions described above in accordance with the invention, the cristobalite originally present acts as an accelerator for devitrification of the silica fused to cristobalite during a rise in temperature. Another remarkable result and important advantage obtained, is that the foundry cores after baking do not undergo any significant dimensional variation when they are brought to operating temperatures of the order of 1500 ° C.
Cette charge minérale est incorporée, habituellement en deux ou trois fois dans un mélangeur à un produit fondu constitué par le liant organique qui comporte, pour 100 parties en poids de charge minérale, de 15 à 20 parties en poids d'un polyéthylène-glycol, le polymère se présentant de manière remarquable et conforme à l'invention, sous une forme à masse molaire moyenne comprise entre 1400 et 1600, et par un agent démoulant selon une proportion de 0,2 à 0,5 partie en poids, constitué de préférence de stéarate de calcium. Cette réalisation du mélange constitue la première étape, connue en soi, du procédé de fabrication de noyaux céramiques pour fonderie conforme à l'invention.
Après mélange, on obtient ainsi une pâte thermoplastique, qui peut être concassée ou broyée en vue de poursuivre les étapes suivantes, de principe connu en soi, de la préparation des noyaux de fonderie.This mineral filler is incorporated, usually in two or three times in a mixer with a molten product constituted by the organic binder which comprises, per 100 parts by weight of mineral filler, from 15 to 20 parts by weight of a polyethylene glycol, the polymer being remarkably and in accordance with the invention, in a form with an average molar mass of between 1400 and 1600, and with a release agent in a proportion of 0.2 to 0.5 parts by weight, preferably consisting calcium stearate. This realization of the mixture constitutes the first step, known per se, of the process for manufacturing ceramic cores for foundries according to the invention.
After mixing, a thermoplastic paste is thus obtained, which can be crushed or ground in order to continue the following stages, of principle known per se, of the preparation of foundry cores.
A titre d'exemples non limitatifs, on donne ci-après la composition de pâtes thermoplastiques utilisées dans le procédé de fabrication de noyaux conforme à l'invention.By way of nonlimiting examples, the composition of thermoplastic pastes used in the process for manufacturing cores according to the invention is given below.
La pâte thermoplastique, pour 100 parties en poids de charge minérale composée de :
- 77% de silice fondue, de granulométrie 0 à 63 micromètres,
- 20% de zircon, de granulométrie 0 à 50 micromètres,
- 3% de cristobalite, de granulométrie 2 à 5 micromètres
comporte un agent démoulant constitué de :
- 0,5 parties en poids de stéarate de calcium
et un liant organique constitué de :
- 18 parties en poids de polyéthylène-glycol de masse molaire 1550
- 4,5 parties en poids d'alcool céthylique.Thermoplastic paste, for 100 parts by weight of mineral filler composed of:
- 77% of fused silica, with a particle size from 0 to 63 micrometers,
- 20% zircon, grain size 0 to 50 micrometers,
- 3% cristobalite, with a particle size of 2 to 5 micrometers
includes a release agent consisting of:
- 0.5 parts by weight of calcium stearate
and an organic binder consisting of:
- 18 parts by weight of polyethylene glycol with a molecular weight of 1550
- 4.5 parts by weight of ethyl alcohol.
Pour 100 parties en poids de charge minérale de la même composition que dans l'exemple 1 décrit ci-dessus, la pâte thermoplastique comporte les mêmes quantités de stéarate de calcium et d'alcool céthylique et 20 parties en poids de polyéthylène-glycol de masse molaire 1550.For 100 parts by weight of mineral filler of the same composition as in Example 1 described above, the paste thermoplastic contains the same amounts of calcium stearate and cethyl alcohol and 20 parts by weight of polyethylene glycol of molar mass 1550.
On conserve les mêmes constituants dans les mêmes proportions que dans les exemples précédents 1 et 2, sauf le polyéthylène-glycol de masse molaire 1550 qui est utilisé en 17 parties en poids et la granulométrie de la silice fondue utilisée est choisie de 0 à 50 micromètres.The same constituents are kept in the same proportions as in the previous examples 1 and 2, except for the polyethylene glycol of molar mass 1550 which is used in 17 parts by weight and the particle size of the molten silica used is chosen from 0 to 50 micrometers .
Les constituants de la pâte thermoplastique diffèrent de ceux de l'exemple précédent 3 uniquement par la silice fondue qui dans ce cas est apportée sous deux formes :
- 17% de granulométrie 0 à 50 micromètres
- et 60% de granulométrie 0 à 100 micromètres.The constituents of the thermoplastic paste differ from those of the previous example 3 only by the molten silica which in this case is provided in two forms:
- 17% of grain size 0 to 50 micrometers
- and 60% of grain size 0 to 100 micrometers.
A partir de ces pâtes thermoplastiques conformes à l'invention, la mise en forme des noyaux de fonderie fait appel aux procédés connus, tels que le moulage par injection thermoplastique à la presse. Cette injection du mélange dans un moule constitue la deuxième étape du procédé de fabrication de noyaux. De manière remarquable, conforme à l'invention, le mélange est injecté dans ce cas entre 50°C et 100°C dans un moule à température ambiante, où il se solidifie.
L'invention concerne également la troisième étape du procédé amélioré de fabrication des noyaux de fonderie. En effet, au cours de cette troisième étape, comme il est connu dans son principe, un noyau de fonderie après mise en forme doit être soumis, avant utilisation pour la coulée de pièces, à un traitement thermique.From these thermoplastic pastes according to the invention, the shaping of the foundry cores calls for known methods, such as thermoplastic injection molding in the press. This injection of the mixture into a mold constitutes the second step in the process for manufacturing cores. Remarkably, according to the invention, the mixture is injected in this case between 50 ° C and 100 ° C in a mold at room temperature, where it solidifies.
The invention also relates to the third step of the improved process for manufacturing foundry cores. Indeed, during this third step, as it is known in principle, a foundry core after shaping must be subjected, before use for casting parts, to a heat treatment.
Pour cette opération, le noyau peut être soit, placé dans un moule préformé, soit, et c'est le mode préférentiel appliqué par la présente invention, placé dans un lit de sable d'alumine qui noie le noyau. Il peut également être souhaitable d'enduire la surface du noyau à l'aide d'un produit antiadhérent tel qu'un produit de type PTFE avant l'introduction dans le sable. On notera que le mode de cuisson retenu, "en sable", procure également un gain de temps de fabrication en permettant l'enfournement d'un nombre plus élevé de noyaux. Dans tous les cas, le sable utilisé présente des propriétés de bon pouvoir absorbant, vis-à-vis des produits de décomposition des liants et du PTFE.For this operation, the core can either be placed in a preformed mold or, and it is the preferred mode applied by the present invention, placed in a bed of alumina sand which drowns the core. It may also be desirable to coat the surface of the core with a release agent such as a PTFE type product before introduction into the sand. Note that the cooking method chosen, "in sand", also saves manufacturing time by allowing the charging of a higher number of cores. In all cases, the sand used has properties of good absorbency, vis-à-vis the decomposition products of binders and PTFE.
Ledit traitement thermique, de manière remarquable conforme à l'invention, est constitué par un cycle unique de cuisson qui comporte quatre séquences :
- - (a) une montée en température jusqu'à 300°C, à une vitesse comprise entre 30°C à 50°C par heure ;
- - (b) une montée en température de 300°C jusqu'à la température maximale, à une vitesse comprise entre 100°C et 200°C par heure ;
- - (c) un maintien en palier à ladite température maximale, pendant une durée comprise entre 4 et 5 heures ;
- - (d) un refroidissement rapide par air pulsé.
- - (a) a temperature rise up to 300 ° C, at a speed between 30 ° C to 50 ° C per hour;
- - (b) a temperature rise from 300 ° C to the maximum temperature, at a speed of between 100 ° C and 200 ° C per hour;
- - (c) leveling off at said maximum temperature, for a period of between 4 and 5 hours;
- - (d) rapid cooling by forced air.
Ce procédé permet d'assurer une évacuation uniforme des liants et une consolidation suffisante du noyau par frittage, et d'obtenir une bonne reproductibilité dimensionnelle des noyaux.
Tout en assurant la bonne qualité des résultats, le cycle de cuisson de noyaux de fonderie ainsi défini a une durée totale notablement réduite par rapport aux solutions connues antérieurement. Le choix du liant organique constitué de polyéthylène-glycol semble être un facteur particulièrement déterminant pour l'obtention de ces résultats. Dans certaines applications particulières, mettant en oeuvre des noyaux de forme complexe et pour lesquels, compte-tenu des applications, notamment à des aubes de turbine pour turbomachines à hautes performances, des critères de qualité stricts sont imposés, la montée en température, à l'étape (b) du cycle de cuisson, pour une température maximale du 1200°C ou 1250°C, a ainsi été effectuée en 9 heures et le refroidissement, à l'étape (d) du cycle de cuisson, a été effectué en 12 heures, ce qui conduit à une durée totale du cycle de cuisson de 36 heures.This process makes it possible to ensure uniform evacuation of the binders and sufficient consolidation of the core by sintering, and to obtain good dimensional reproducibility of the cores.
While ensuring the good quality of the results, the baking cycle of foundry cores thus defined has a duration total significantly reduced compared to previously known solutions. The choice of organic binder consisting of polyethylene glycol seems to be a particularly determining factor for obtaining these results. In certain particular applications, using cores of complex shape and for which, taking into account the applications, in particular to turbine blades for high performance turbomachines, strict quality criteria are imposed, the temperature rise, at step (b) of the cooking cycle, for a maximum temperature of 1200 ° C. or 1250 ° C., was thus carried out in 9 hours and the cooling, in stage (d) of the cooking cycle, was carried out in 12 hours, which leads to a total duration of the cooking cycle of 36 hours.
Un autre résultat remarquable qui a une répercussion directe sur les coûts du procédé par réduction des durées est que le cycle de cuisson qui vient d'être décrit est l'unique cuisson appliquée auxdits noyaux. En effet, ce cycle unique assure à la fois l'élimination des liants, la consolidation du matériau des noyaux par frittage et la stabilisation de la structure, grâce à la présence de cristobalite.Another remarkable result which has a direct repercussion on the costs of the process by reduction of the times is that the cooking cycle which has just been described is the only cooking applied to said cores. Indeed, this single cycle ensures at the same time the elimination of binders, the consolidation of the material of the cores by sintering and the stabilization of the structure, thanks to the presence of cristobalite.
Les noyaux obtenus présentent des propriétés intéressantes qui ont été mises en évidence à la suite d'essais, notamment sur éprouvettes et parmi lesquelles on peut relever :
- une température d'utilisation jusqu'à 1550°C ;
- un module de rupture de 110 kg/cm² à 1100°C après 5 minutes et de 95 kg/cm² à 1500°C après 15 minutes ;
- une densité apparente de 1,72 et une densité réelle de 2,4 ;
- une porosité de 28% ;
- une expansion thermique à 1000°C de 0,13% à 0,16%.The cores obtained have interesting properties which have been demonstrated following tests, in particular on test pieces and among which we can note:
- an operating temperature up to 1550 ° C;
- a breaking modulus of 110 kg / cm² at 1100 ° C after 5 minutes and 95 kg / cm² at 1500 ° C after 15 minutes;
- an apparent density of 1.72 and an actual density of 2.4;
- a porosity of 28%;
- thermal expansion at 1000 ° C from 0.13% to 0.16%.
Une correction éventuelle des noyaux après injection est possible par redressage dans un calibre grâce à la malléabilité des pâtes thermoplastiques conformes à l'invention. Cet avantage ainsi que l'absence de déformation des noyaux lors des opérations suivant la mise en forme semblent dus à l'influence du liant organique constitué de polyéthylène-glycol. En effet, ce composant présente des propriétés de solidification progressive, sans rupture brutale de ses propriétés de viscosité entre 50°C et 100°C, au contraire de nombre de liants utilisés antérieurement. La stabilité dimensionnelle et l'absence de fluage constituent ainsi des avantages importants des noyaux de fonderie obtenus à partir des pâtes thermoplastiques utilisées dans un procédé de fabrication conforme à l'invention.A possible correction of the cores after injection is possible by straightening in a size thanks to the malleability of the thermoplastic pastes according to the invention. This advantage as well as the absence of deformation of the cores during the operations following the shaping seem to be due to the influence of the organic binder consisting of polyethylene glycol. Indeed, this component exhibits progressive solidification properties, without sudden rupture of its viscosity properties between 50 ° C and 100 ° C, unlike the number of binders used previously. The dimensional stability and the absence of creep thus constitute significant advantages of the foundry cores obtained from the thermoplastic pastes used in a manufacturing process according to the invention.
Claims (6)
(a) - une montée en température jusqu'à 300°C, à une vitesse comprise entre 30°C et 50°C par heure ;
(b) - une montée de la température de 300°C jusqu'à la température maximale à une vitesse comprise entre 100°C et 200°C par heure ;
(c) - maintien en palier à ladite température maximale, durant 4 à 5 heures ;
(d) - refroidissement rapide par air pulsé,
de manière à assurer à la fois l'élimination du liant, une consolidation par frittage du matériau des noyaux et une stabilisation de leur structure par transformation de silice amorphe en cristobalite, la durée totale du cycle de cuisson étant comprise entre 24 et 36 heures.1. Method for manufacturing ceramic cores for foundries from a thermoplastic paste consisting of a ceramic filler, composed of fused silica, zircon and cristobalite and an organic binder based on a polyethylene glycol and d '' optional additives, comprising, in a first step, producing the mixture to obtain said paste, in a second step, injecting said mixture into a mold and in a third step, heat treatment of the core which has been shaped characterized in that the polyethylene glycol used has a molar mass of between 1400 and 1600 and in that, during the second step, the paste is injected at a temperature between 50 ° C and 100 ° C in a temperature mold ambient, and during the third step, said heat treatment comprises a single cooking cycle in four sequences, namely:
(a) - a rise in temperature up to 300 ° C, at a speed between 30 ° C and 50 ° C per hour;
(b) - a rise in temperature from 300 ° C to the maximum temperature at a speed of between 100 ° C and 200 ° C per hour;
(c) - leveling off at said maximum temperature, for 4 to 5 hours;
(d) - rapid forced air cooling,
so as to ensure both the elimination of the binder, a consolidation by sintering the material of the cores and a stabilization of their structure by transformation of amorphous silica into cristobalite, the total duration of the baking cycle being between 24 and 36 hours.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8801535 | 1988-02-10 | ||
FR8801535A FR2626794B1 (en) | 1988-02-10 | 1988-02-10 | THERMOPLASTIC PASTE FOR THE PREPARATION OF FOUNDRY CORES AND PROCESS FOR THE PREPARATION OF SAID CORES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0328452A1 true EP0328452A1 (en) | 1989-08-16 |
EP0328452B1 EP0328452B1 (en) | 1993-05-05 |
Family
ID=9363106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89400347A Expired - Lifetime EP0328452B1 (en) | 1988-02-10 | 1989-02-08 | Process for manufacturing ceramic foundry cores |
Country Status (7)
Country | Link |
---|---|
US (2) | US5043014A (en) |
EP (1) | EP0328452B1 (en) |
JP (1) | JPH0673713B2 (en) |
DE (1) | DE68906284T2 (en) |
ES (1) | ES2040477T3 (en) |
FR (1) | FR2626794B1 (en) |
IL (1) | IL89196A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0475548A1 (en) * | 1990-09-04 | 1992-03-18 | Hüttenes-Albertus Chemische-Werke GmbH | Process for precoating granular mineral materials with synthetic resin |
DE4132477A1 (en) * | 1991-09-30 | 1993-04-01 | Seelmann & Co Gmbh H | CORE AFTER THE WAX MELTING PROCESS |
EP0648560A1 (en) * | 1993-10-13 | 1995-04-19 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Method for the production of ceramic cores for casting |
US6286582B1 (en) | 1998-11-12 | 2001-09-11 | Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” | Process for the manufacture of thin ceramic cores for use in precision casting |
EP1661642A1 (en) | 2004-11-26 | 2006-05-31 | Snecma | Process for manufacturing cores for turbine blades |
EP1980343A1 (en) | 2007-04-11 | 2008-10-15 | Snecma | Tool for manufacturing foundry ceramic cores for turbomachine vanes |
RU2501639C2 (en) * | 2008-04-18 | 2013-12-20 | Снекма | Method of deburring ceramic mould cores |
WO2022029388A1 (en) | 2020-08-06 | 2022-02-10 | Safran | Protection against oxidation or corrosion of a hollow part made of a superalloy |
FR3113255A1 (en) | 2020-08-06 | 2022-02-11 | Safran | Protection against oxidation or corrosion of a hollow superalloy part |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5332537A (en) * | 1992-12-17 | 1994-07-26 | Pcc Airfoils, Inc. | Method and binder for use in powder molding |
CA2702143C (en) | 2001-06-05 | 2014-02-18 | Mikro Systems, Inc. | Methods for manufacturing three-dimensional devices and devices created thereby |
EP2559534B1 (en) * | 2008-09-26 | 2023-10-25 | Raytheon Technologies Corporation | Composition and method for casting manufacturing |
CN102179477B (en) * | 2011-04-14 | 2012-10-17 | 中南大学 | Silicon-base ceramic core added with cristobalite |
EP2740550B1 (en) | 2011-08-03 | 2016-07-20 | Hitachi Metals, Ltd. | Ceramic core and method for producing same |
JP6229930B2 (en) | 2013-09-10 | 2017-11-15 | 日立金属株式会社 | Ceramic core and method for producing the same, method for producing a casting using the ceramic core, and casting |
FR3084894B1 (en) | 2018-08-07 | 2022-01-21 | Commissariat Energie Atomique | CERAMIC COATING FOR FOUNDRY CORE |
CN112222362B (en) * | 2020-09-10 | 2021-10-29 | 中国科学院金属研究所 | Silicon-based ceramic core resistant to cold and hot impact, high-temperature creep and easy to remove and preparation process thereof |
CN114656248A (en) * | 2020-12-23 | 2022-06-24 | 兴化市兴东铸钢有限公司 | Sintering preparation method of silicon-based ceramic core with high strength and mechanical properties |
FR3123365B1 (en) | 2021-06-01 | 2024-05-31 | Commissariat Energie Atomique | METHOD FOR COATING A REFRACTORY ALLOY PART AND PART THUS COATED. |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2213120A1 (en) * | 1973-01-10 | 1974-08-02 | Howmet Corp | |
FR2336998A1 (en) * | 1975-12-29 | 1977-07-29 | Sherwood Refractories | CORES FOR DIRECTIONAL SOLIDIFICATION CASTING PROCESS |
FR2371257A1 (en) * | 1976-11-17 | 1978-06-16 | Howmet Turbine Components | CERAMIC CORES FOR THE PREPARATION OF HOLLOW CASINGS |
EP0056662A2 (en) * | 1978-12-04 | 1982-07-28 | Sherwood Refractories Inc. | Extrudable compositions for making refractory cores for sandcasting of ferrous alloys |
FR2569586A1 (en) * | 1984-09-06 | 1986-03-07 | Snecma | Process for preparing foundry cores and ceramic composition which can be used for the implementation of the said process |
EP0179649A2 (en) * | 1984-10-24 | 1986-04-30 | Fairey Industrial Ceramics Limited | Ceramic materials |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1006518A (en) * | 1963-03-21 | 1965-10-06 | Doulton & Co Ltd | Improvements in or relating to moulding ceramic material |
US3957715A (en) * | 1973-01-10 | 1976-05-18 | Howmet Corporation | Casting of high melting point metals and cores therefor |
JPS578065A (en) * | 1980-06-10 | 1982-01-16 | Ichiro Sakamaki | Oscillating and rotating apparatus |
JPS58348A (en) * | 1981-06-25 | 1983-01-05 | Mitsubishi Heavy Ind Ltd | Water soluble pattern material |
JPS58119433A (en) * | 1982-01-07 | 1983-07-15 | Sumitomo Deyurezu Kk | Resin coated sand for shell mold |
JPS6065761A (en) * | 1983-09-19 | 1985-04-15 | 多木化学株式会社 | Refractory composition |
JPS6141868A (en) * | 1984-08-03 | 1986-02-28 | 清水建設株式会社 | Ice heat-accumulation type base rock inside low-temperature storage warehouse |
JPS6230858A (en) * | 1985-07-31 | 1987-02-09 | Daido Steel Co Ltd | Stainless shot |
FR2599649B1 (en) * | 1986-06-10 | 1988-09-02 | Snecma | CRISTOBALITIC SHELL MOLD FOR FOUNDRY, PRODUCTS AND PROCESS USED FOR THE PREPARATION OF SAID MOLD |
-
1988
- 1988-02-10 FR FR8801535A patent/FR2626794B1/en not_active Expired - Fee Related
-
1989
- 1989-02-07 IL IL89196A patent/IL89196A/en not_active IP Right Cessation
- 1989-02-08 DE DE89400347T patent/DE68906284T2/en not_active Expired - Fee Related
- 1989-02-08 ES ES198989400347T patent/ES2040477T3/en not_active Expired - Lifetime
- 1989-02-08 EP EP89400347A patent/EP0328452B1/en not_active Expired - Lifetime
- 1989-02-10 US US07/308,527 patent/US5043014A/en not_active Expired - Lifetime
- 1989-02-10 JP JP1032567A patent/JPH0673713B2/en not_active Expired - Lifetime
-
1991
- 1991-02-21 US US07/658,790 patent/US5120482A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2213120A1 (en) * | 1973-01-10 | 1974-08-02 | Howmet Corp | |
FR2336998A1 (en) * | 1975-12-29 | 1977-07-29 | Sherwood Refractories | CORES FOR DIRECTIONAL SOLIDIFICATION CASTING PROCESS |
FR2371257A1 (en) * | 1976-11-17 | 1978-06-16 | Howmet Turbine Components | CERAMIC CORES FOR THE PREPARATION OF HOLLOW CASINGS |
EP0056662A2 (en) * | 1978-12-04 | 1982-07-28 | Sherwood Refractories Inc. | Extrudable compositions for making refractory cores for sandcasting of ferrous alloys |
FR2569586A1 (en) * | 1984-09-06 | 1986-03-07 | Snecma | Process for preparing foundry cores and ceramic composition which can be used for the implementation of the said process |
EP0179649A2 (en) * | 1984-10-24 | 1986-04-30 | Fairey Industrial Ceramics Limited | Ceramic materials |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0475548A1 (en) * | 1990-09-04 | 1992-03-18 | Hüttenes-Albertus Chemische-Werke GmbH | Process for precoating granular mineral materials with synthetic resin |
DE4132477A1 (en) * | 1991-09-30 | 1993-04-01 | Seelmann & Co Gmbh H | CORE AFTER THE WAX MELTING PROCESS |
EP0648560A1 (en) * | 1993-10-13 | 1995-04-19 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Method for the production of ceramic cores for casting |
FR2711082A1 (en) * | 1993-10-13 | 1995-04-21 | Snecma | Process for manufacturing ceramic cores for foundry |
US5697418A (en) * | 1993-10-13 | 1997-12-16 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Method of making ceramic cores for use in casting |
US6286582B1 (en) | 1998-11-12 | 2001-09-11 | Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” | Process for the manufacture of thin ceramic cores for use in precision casting |
EP1661642A1 (en) | 2004-11-26 | 2006-05-31 | Snecma | Process for manufacturing cores for turbine blades |
EP1980343A1 (en) | 2007-04-11 | 2008-10-15 | Snecma | Tool for manufacturing foundry ceramic cores for turbomachine vanes |
RU2501639C2 (en) * | 2008-04-18 | 2013-12-20 | Снекма | Method of deburring ceramic mould cores |
WO2022029388A1 (en) | 2020-08-06 | 2022-02-10 | Safran | Protection against oxidation or corrosion of a hollow part made of a superalloy |
FR3113255A1 (en) | 2020-08-06 | 2022-02-11 | Safran | Protection against oxidation or corrosion of a hollow superalloy part |
FR3113254A1 (en) | 2020-08-06 | 2022-02-11 | Safran | Protection against oxidation or corrosion of a hollow superalloy part |
Also Published As
Publication number | Publication date |
---|---|
US5120482A (en) | 1992-06-09 |
EP0328452B1 (en) | 1993-05-05 |
FR2626794A1 (en) | 1989-08-11 |
JPH01245941A (en) | 1989-10-02 |
DE68906284D1 (en) | 1993-06-09 |
JPH0673713B2 (en) | 1994-09-21 |
FR2626794B1 (en) | 1993-07-02 |
US5043014A (en) | 1991-08-27 |
DE68906284T2 (en) | 1993-09-30 |
IL89196A (en) | 1993-01-31 |
IL89196A0 (en) | 1989-09-10 |
ES2040477T3 (en) | 1993-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0328452B1 (en) | Process for manufacturing ceramic foundry cores | |
US6345663B1 (en) | Core compositions and articles with improved performance for use in castings for gas turbine applications | |
EP1013360B1 (en) | Method for producing thin ceramic foundry cores | |
EP1371742B1 (en) | Dry and self lubricant material,mechanical pieces made of a such material and its method of fabrication | |
FR2550526A1 (en) | ||
EP0648560B1 (en) | Method for the production of ceramic cores for casting | |
US4612146A (en) | Process for the hot-isostatic compression of ceramic shaped parts | |
EP0246936B1 (en) | Moulds from foundry iron, especially for the glas industry, having a variable structure within their walls | |
EP0478413B1 (en) | Process for manufacture of a foundry mould by use of foam material and ceramique binder | |
US4301132A (en) | Silicon carbide bodies and their production | |
EP0513243B1 (en) | Improved method of making large cross section injection molded or slip cast ceramic shapes | |
US5030397A (en) | Method of making large cross section injection molded or slip cast ceramics shapes | |
WO1987007542A1 (en) | Cristobalitic mould-shell for foundry and method for preparing said mould | |
FR2625495A1 (en) | PRE-TREATMENT OF MOLTEN REFRACTORIES | |
CA2084639C (en) | Molding material containing refractory fibers, for use without the fabrication of ablatable parts, process for the fabrication thereof and applications thereof | |
JPS60118676A (en) | Manufacture of ceramic sintered body | |
SU1759632A1 (en) | Composition for manufacturing articles of silica nitride | |
JPH0210790B2 (en) | ||
FR3143022A1 (en) | Thermoplastic pre-ceramic composition for the production of non-oxide ceramic objects with a complex three-dimensional shape by deposition of molten material. | |
JP2997180B2 (en) | Manufacturing method of ceramic products | |
JPH08290975A (en) | Ceramic composition, core material and production of ceramic product | |
JPH01252566A (en) | Production of ceramic sintered product and mixture to be used therefor | |
JPS63315574A (en) | Method for removing binder from powder moldings | |
JPS6345166A (en) | Composition for ceramic injection forming | |
KR20030027142A (en) | The precious metals sintered product and manufacture method it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19890307 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19920722 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 68906284 Country of ref document: DE Date of ref document: 19930609 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930526 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2040477 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20070125 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070130 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070131 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070209 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070619 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070129 Year of fee payment: 19 |
|
BERE | Be: lapsed |
Owner name: SOC. NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEU Effective date: 20080228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080208 |