Nothing Special   »   [go: up one dir, main page]

EP0328452A1 - Process for manufacturing ceramic foundry cores - Google Patents

Process for manufacturing ceramic foundry cores Download PDF

Info

Publication number
EP0328452A1
EP0328452A1 EP89400347A EP89400347A EP0328452A1 EP 0328452 A1 EP0328452 A1 EP 0328452A1 EP 89400347 A EP89400347 A EP 89400347A EP 89400347 A EP89400347 A EP 89400347A EP 0328452 A1 EP0328452 A1 EP 0328452A1
Authority
EP
European Patent Office
Prior art keywords
temperature
hours
sequence
maximum temperature
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89400347A
Other languages
German (de)
French (fr)
Other versions
EP0328452B1 (en
Inventor
Jean-Pierre Flochel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0328452A1 publication Critical patent/EP0328452A1/en
Application granted granted Critical
Publication of EP0328452B1 publication Critical patent/EP0328452B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2286Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a method for manufacturing ceramic cores for foundries from a thermoplastic paste.
  • foundry cores of a so-called "ceramic” type is particularly known in certain applications which require obtaining a set of characteristics and strict quality criteria such as resistance to high temperatures, lack of reactivity , dimensional stability and good mechanical characteristics.
  • these applications presenting such requirements mention will be made in particular of aeronautical applications and, for example, the obtaining in the foundry of turbine blades for turbojet engines.
  • the improvement of foundry processes, evolving from equiax foundry to foundry by directed solidification or monocrystalline, has further increased these requirements concerning cores whose use and complexity are imposed by the search for high performance for the parts to be obtained, as is the case for example for hollow blades with internal cooling.
  • composition intended for the preparation of such cores are given by FR-A 2 371 257 and essentially comprise molten silica, zircon flour and cristobalite which is a form of crystallized silica, a silicone resin being used as a binder and additional elements in small quantities such as lubricant and catalyst being added.
  • the preparation process is also described. According to FR-A-2,569,586, the addition of catalyst is avoided by taking advantage in the process of preparation of certain properties of the resin used.
  • the maximum temperature can be 1200 ° C or 1250 ° C.
  • the mineral filler used in the present invention consists, as known, of a mixture with suitable particle sizes, molten silica (or vitreous), zircon and cristobalite. Good results are obtained by using a filler comprising, for 100 parts by weight, from 60% to 85% by weight of a fused silica itself composed, for 15 to 80% of the weight of the filler, of a silica fused granulometry 0 to 63 micrometers and, for 0 to 60% of the weight of the load, of fused silica granulometry from 0 to 100 micrometers, from 15 to 35% by weight of zircon with granulometry 0 to 50 micrometers and 1% to 5% by weight of cristobalite in the form of a flour which is a fine powder material having a particle size less than 50 micrometers.
  • cristobalite is used in the form of fine flour with a particle size of less than 20 micrometers.
  • cristobalite and preferably in very fine particle size, was retained in the compositions according to the invention. It is indeed known that materials containing amorphous (or molten) silica have a low creep resistance. Obtaining foundry cores which can be used at high temperatures consequently requires a transformation of amorphous silica into cristobalite which is the only stable phase of silica between 1470 ° C and 1710 ° C and also the phase which has the best creep resistance , property sought in the use of foundry cores. In the compositions described above in accordance with the invention, the cristobalite originally present acts as an accelerator for devitrification of the silica fused to cristobalite during a rise in temperature. Another remarkable result and important advantage obtained, is that the foundry cores after baking do not undergo any significant dimensional variation when they are brought to operating temperatures of the order of 1500 ° C.
  • This mineral filler is incorporated, usually in two or three times in a mixer with a molten product constituted by the organic binder which comprises, per 100 parts by weight of mineral filler, from 15 to 20 parts by weight of a polyethylene glycol, the polymer being remarkably and in accordance with the invention, in a form with an average molar mass of between 1400 and 1600, and with a release agent in a proportion of 0.2 to 0.5 parts by weight, preferably consisting calcium stearate.
  • This realization of the mixture constitutes the first step, known per se, of the process for manufacturing ceramic cores for foundries according to the invention. After mixing, a thermoplastic paste is thus obtained, which can be crushed or ground in order to continue the following stages, of principle known per se, of the preparation of foundry cores.
  • thermoplastic pastes used in the process for manufacturing cores according to the invention is given below.
  • Thermoplastic paste for 100 parts by weight of mineral filler composed of: - 77% of fused silica, with a particle size from 0 to 63 micrometers, - 20% zircon, grain size 0 to 50 micrometers, - 3% cristobalite, with a particle size of 2 to 5 micrometers includes a release agent consisting of: - 0.5 parts by weight of calcium stearate and an organic binder consisting of: - 18 parts by weight of polyethylene glycol with a molecular weight of 1550 - 4.5 parts by weight of ethyl alcohol.
  • the paste thermoplastic contains the same amounts of calcium stearate and cethyl alcohol and 20 parts by weight of polyethylene glycol of molar mass 1550.
  • thermoplastic paste differ from those of the previous example 3 only by the molten silica which in this case is provided in two forms: - 17% of grain size 0 to 50 micrometers - and 60% of grain size 0 to 100 micrometers.
  • the shaping of the foundry cores calls for known methods, such as thermoplastic injection molding in the press.
  • This injection of the mixture into a mold constitutes the second step in the process for manufacturing cores.
  • the mixture is injected in this case between 50 ° C and 100 ° C in a mold at room temperature, where it solidifies.
  • the invention also relates to the third step of the improved process for manufacturing foundry cores. Indeed, during this third step, as it is known in principle, a foundry core after shaping must be subjected, before use for casting parts, to a heat treatment.
  • the core can either be placed in a preformed mold or, and it is the preferred mode applied by the present invention, placed in a bed of alumina sand which drowns the core. It may also be desirable to coat the surface of the core with a release agent such as a PTFE type product before introduction into the sand. Note that the cooking method chosen, "in sand", also saves manufacturing time by allowing the charging of a higher number of cores. In all cases, the sand used has properties of good absorbency, vis-à-vis the decomposition products of binders and PTFE.
  • the baking cycle of foundry cores thus defined has a duration total significantly reduced compared to previously known solutions.
  • the choice of organic binder consisting of polyethylene glycol seems to be a particularly determining factor for obtaining these results.
  • the temperature rise, at step (b) of the cooking cycle, for a maximum temperature of 1200 ° C. or 1250 ° C. was thus carried out in 9 hours and the cooling, in stage (d) of the cooking cycle, was carried out in 12 hours, which leads to a total duration of the cooking cycle of 36 hours.
  • the cores obtained have interesting properties which have been demonstrated following tests, in particular on test pieces and among which we can note: - an operating temperature up to 1550 ° C; - a breaking modulus of 110 kg / cm2 at 1100 ° C after 5 minutes and 95 kg / cm2 at 1500 ° C after 15 minutes; - an apparent density of 1.72 and an actual density of 2.4; - a porosity of 28%; - thermal expansion at 1000 ° C from 0.13% to 0.16%.
  • thermoplastic pastes according to the invention A possible correction of the cores after injection is possible by straightening in a size thanks to the malleability of the thermoplastic pastes according to the invention.
  • This advantage as well as the absence of deformation of the cores during the operations following the shaping seem to be due to the influence of the organic binder consisting of polyethylene glycol. Indeed, this component exhibits progressive solidification properties, without sudden rupture of its viscosity properties between 50 ° C and 100 ° C, unlike the number of binders used previously.
  • the dimensional stability and the absence of creep thus constitute significant advantages of the foundry cores obtained from the thermoplastic pastes used in a manufacturing process according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Process for the manufacture of foundry cores, in a first stage of production of a pasty mixture employs a ceramic charge based on molten silica, zircon and cristobalite and a binder based on polyethylene glycol of average molecular weight 1500 or 1550, and optional additives, in a second stage, injects the said paste at a temperature of 50 to 100 DEG C into a mould at room temperature and, in a third stage, carries out the heat treatment of the formed core according to a single baking cycle in four stages, namely: (a) temperature rise up to 300 DEG C at a rate of between 30 DEG C and 50 DEG C per hour; (b) rise from 300 DEG C to a maximum temperature of 1200 DEG C or 1250 DEG C at a rate of between 100 DEG C and 200 DEG C per hour; (c) holding at the said maximum temperature for 4 to 5 hours; (d) fast cooling using pulsed air.

Description

La présente invention concerne un procédé de fabrication de noyaux céramiques pour fonderie à partir d'une pâte thermoplastique.The present invention relates to a method for manufacturing ceramic cores for foundries from a thermoplastic paste.

L'utilisation de noyaux de fonderie d'un type dits "céramiques" est notamment connue dans certaines appli­cations qui imposent l'obtention d'un ensemble de caractéristiques et de critères sévères de qualité comme la tenue aux hautes températures, l'absence de réactivité, la stabilité dimensionnelle et de bonnes caractéristiques mécaniques. Parmi ces applications présentant de telles exigences, on citera notamment les applications aéronautiques et par exemple, l'obtention en fonderie d'aubes de turbine pour turboréacteurs. Le perfection­nement des procédés de fonderie, évoluant de la fonderie équiaxe à la fonderie par solidification dirigée ou monocristalline, a encore accru ces exigences concernant les noyaux dont l'utilisation et la complexité sont imposées par la recherche des hautes performances pour les pièces à obtenir, comme c'est le cas par exemple pour les aubes creuses à refroidissement interne.The use of foundry cores of a so-called "ceramic" type is particularly known in certain applications which require obtaining a set of characteristics and strict quality criteria such as resistance to high temperatures, lack of reactivity , dimensional stability and good mechanical characteristics. Among these applications presenting such requirements, mention will be made in particular of aeronautical applications and, for example, the obtaining in the foundry of turbine blades for turbojet engines. The improvement of foundry processes, evolving from equiax foundry to foundry by directed solidification or monocrystalline, has further increased these requirements concerning cores whose use and complexity are imposed by the search for high performance for the parts to be obtained, as is the case for example for hollow blades with internal cooling.

Des exemples de composition connues destinées à la préparation de tels noyaux sont donnés par FR-A 2 371 257 et comportent essentiellement de la silice fondue, de la farine de zircon et de la cristobalite qui est une forme de silice cristallisée, une résine de silicone étant utilisée comme liant et des éléments additionnels en faibles quantités tels que lubrifiant et catalyseur étant ajoutés. Le procédé de préparation est également décrit. Selon FR-A-2 569 586, l'adjonction de catalyseur est évitée en tirant profit dans le procédé de préparation de certaines propriétés de la résine utilisée.Examples of known composition intended for the preparation of such cores are given by FR-A 2 371 257 and essentially comprise molten silica, zircon flour and cristobalite which is a form of crystallized silica, a silicone resin being used as a binder and additional elements in small quantities such as lubricant and catalyst being added. The preparation process is also described. According to FR-A-2,569,586, the addition of catalyst is avoided by taking advantage in the process of preparation of certain properties of the resin used.

Les solutions antérieures connues n'ont pas toutefois donné entière satisfaction dans certaines applications particulières de fonderie à solidification dirigée ou monocristalline à des aubes de turbine. Des améliorations ont notamment été recherchées concernant les états de surface et une diminution de la rugosité des noyaux obtenus en vue également de faciliter la mise en oeuvre, en évitant la présence d'odeurs dues à certains produits ainsi qu'en permettant une opération de calibrage des noyaux avant cuisson et enfin, en perfectionnant le procédé de préparation des noyaux, notamment par la réduction de la durée des cycles de cuisson et leur simplification. Les solutions antérieures ont laissé également subsister pour certaines applications des problèmes de fragilité des noyaux ou une stabilité dimensionnelle insuffisante. Ces problèmes sont résolus et des résultats améliorés sont obtenus au moyen d'un procédé de fabrication de noyaux céramiques pour fonderie obtenus à partir d'une pâte thermoplastique constituée d'une charge céramique et au moins d'un liant organique à base de polyéthylène-glycol caractérisé en ce que le polyéthylène-glycol utilisé a une masse molaire comprise entre 1400 et 1600 et en ce que la pâte est injectée à une température comprise entre 50 et 100°C dans un moule à température ambiante et en ce que ledit procédé comporte un cycle unique de cuisson en quatre séquences :

  • (a) - montée en température jusqu'à 300°C, à une vitesse comprise entre 30°C et 50°C par heure,
  • (b) - montée de la température de 300°C jusqu'à la température maximale, à une vitesse comprise entre 100°C et 200°C par heure,
  • (c) - maintien en palier à ladite température maximale, pendant une durée comprise entre 4 et 5 heures,
  • (d) - refroidissement rapide par air pulsé,
de manière à assurer, à la fois, l'élimination du liant, une consolidation par frittage du matériau des noyaux et une stabilisation de leur structure par transformation de silice amorphe en cristobalite, la durée totale du cycle de cuisson étant comprise entre 24 et 36 heures.The known prior solutions have not however been entirely satisfactory in certain particular applications of directed or monocrystalline solidification foundry to turbine blades. Improvements have been sought in particular with regard to the surface conditions and a reduction in the roughness of the cores obtained, also with a view to facilitating implementation, by avoiding the presence of odors due to certain products as well as by allowing a calibration operation. cores before cooking and finally, by improving the process for preparing the cores, in particular by reducing the duration of the cooking cycles and simplifying them. The previous solutions have also left, for certain applications, problems of core fragility or insufficient dimensional stability. These problems are solved and improved results are obtained by means of a process for the manufacture of ceramic cores for foundries obtained from a thermoplastic paste consisting of a ceramic filler and at least one organic binder based on polyethylene- glycol characterized in that the polyethylene glycol used has a molar mass of between 1400 and 1600 and in that the paste is injected at a temperature between 50 and 100 ° C in a mold at room temperature and in that said process comprises a single cooking cycle in four sequences:
  • (a) - temperature rise up to 300 ° C, at a speed between 30 ° C and 50 ° C per hour,
  • (b) - temperature rise from 300 ° C to the maximum temperature, at a speed of between 100 ° C and 200 ° C per hour,
  • (c) - leveling off at said maximum temperature, for a period of between 4 and 5 hours,
  • (d) - rapid forced air cooling,
so as to ensure, at the same time, the elimination of the binder, a consolidation by sintering of the material of the cores and a stabilization of their structure by transformation of amorphous silica into cristobalite, the total duration of the baking cycle being between 24 and 36 hours.

Selon les applications, la température maximale peut être de 1200°C ou 1250°C.Depending on the applications, the maximum temperature can be 1200 ° C or 1250 ° C.

D'autes caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre d'exemples de modes de réalisation de l'invention.Other characteristics and advantages of the invention will be better understood on reading the description which follows of examples of embodiments of the invention.

La charge minérale utilisée dans la présente invention est constituée, comme connu, d'un mélange à granulométries convenables, de silice fondue (ou vitreuse), de zircon et de cristobalite. De bons résultats sont obtenus en utili­sant une charge comportant, pour 100 parties en poids, de 60% à 85% en poids d'une silice fondue composée elle-même, pour 15 à 80% du poids de la charge, d'une silice fondue de granulométrie 0 à 63 micromètres et, pour 0 à 60% du poids de la charge, d'une silice fondue de granulométrie de 0 à 100 micromètres, de 15 à 35% en poids de zircon de granulométrie 0 à 50 micromètres et de 1% à 5% en poids de cristobalite sous forme d'une farine qui est un maté­riau en poudre fine présentant une granulométrie inférieure à 50 micromètres. De préférence, la cristoba­lite est utilisée sous forme de farine fine de granulomé­trie inférieure à 20 micromètres.The mineral filler used in the present invention consists, as known, of a mixture with suitable particle sizes, molten silica (or vitreous), zircon and cristobalite. Good results are obtained by using a filler comprising, for 100 parts by weight, from 60% to 85% by weight of a fused silica itself composed, for 15 to 80% of the weight of the filler, of a silica fused granulometry 0 to 63 micrometers and, for 0 to 60% of the weight of the load, of fused silica granulometry from 0 to 100 micrometers, from 15 to 35% by weight of zircon with granulometry 0 to 50 micrometers and 1% to 5% by weight of cristobalite in the form of a flour which is a fine powder material having a particle size less than 50 micrometers. Preferably, cristobalite is used in the form of fine flour with a particle size of less than 20 micrometers.

La présence de cristobalite, et de préférence en granulo­métrie très fine, a été retenue dans les compositions conformes à l'invention. Il est en effet connu que les matériaux contenant de la silice amorphe (ou fondue) ont une tenue au fluage faible. L'obtention de noyaux de fonderie utilisables à hautes températures impose par conséquent une transformation de la silice amorphe en cristobalite qui est la seule phase stable de la silice entre 1470°C et 1710°C et également la phase qui présente la meilleure tenue au fluage, propriété recherchée dans l'utilisation des noyaux de fonderie. Dans les compositions décrites ci-dessus conformes à l'invention, la cristobalite présente à l'origine agit comme accé­lérateur de dévitrification de la silice fondue en cristobalite lors d'une montée en température. Un autre résultat remarquable et avantage important obtenu, est que les noyaux de fonderie après cuisson ne subissent aucune variation dimensionnelle notable lorsqu'ils sont portés aux températures d'utilisation de l'ordre de 1500°C.The presence of cristobalite, and preferably in very fine particle size, was retained in the compositions according to the invention. It is indeed known that materials containing amorphous (or molten) silica have a low creep resistance. Obtaining foundry cores which can be used at high temperatures consequently requires a transformation of amorphous silica into cristobalite which is the only stable phase of silica between 1470 ° C and 1710 ° C and also the phase which has the best creep resistance , property sought in the use of foundry cores. In the compositions described above in accordance with the invention, the cristobalite originally present acts as an accelerator for devitrification of the silica fused to cristobalite during a rise in temperature. Another remarkable result and important advantage obtained, is that the foundry cores after baking do not undergo any significant dimensional variation when they are brought to operating temperatures of the order of 1500 ° C.

Cette charge minérale est incorporée, habituellement en deux ou trois fois dans un mélangeur à un produit fondu constitué par le liant organique qui comporte, pour 100 parties en poids de charge minérale, de 15 à 20 parties en poids d'un polyéthylène-glycol, le polymère se présentant de manière remarquable et conforme à l'invention, sous une forme à masse molaire moyenne comprise entre 1400 et 1600, et par un agent démoulant selon une proportion de 0,2 à 0,5 partie en poids, constitué de préférence de stéarate de calcium. Cette réalisation du mélange constitue la première étape, connue en soi, du procédé de fabrication de noyaux céramiques pour fonderie conforme à l'invention.
Après mélange, on obtient ainsi une pâte thermoplastique, qui peut être concassée ou broyée en vue de poursuivre les étapes suivantes, de principe connu en soi, de la préparation des noyaux de fonderie.
This mineral filler is incorporated, usually in two or three times in a mixer with a molten product constituted by the organic binder which comprises, per 100 parts by weight of mineral filler, from 15 to 20 parts by weight of a polyethylene glycol, the polymer being remarkably and in accordance with the invention, in a form with an average molar mass of between 1400 and 1600, and with a release agent in a proportion of 0.2 to 0.5 parts by weight, preferably consisting calcium stearate. This realization of the mixture constitutes the first step, known per se, of the process for manufacturing ceramic cores for foundries according to the invention.
After mixing, a thermoplastic paste is thus obtained, which can be crushed or ground in order to continue the following stages, of principle known per se, of the preparation of foundry cores.

A titre d'exemples non limitatifs, on donne ci-après la composition de pâtes thermoplastiques utilisées dans le procédé de fabrication de noyaux conforme à l'invention.By way of nonlimiting examples, the composition of thermoplastic pastes used in the process for manufacturing cores according to the invention is given below.

EXEMPLE 1EXAMPLE 1

La pâte thermoplastique, pour 100 parties en poids de charge minérale composée de :
- 77% de silice fondue, de granulométrie 0 à 63 micromètres,
- 20% de zircon, de granulométrie 0 à 50 micromètres,
- 3% de cristobalite, de granulométrie 2 à 5 micromètres
comporte un agent démoulant constitué de :
- 0,5 parties en poids de stéarate de calcium
et un liant organique constitué de :
- 18 parties en poids de polyéthylène-glycol de masse molaire 1550
- 4,5 parties en poids d'alcool céthylique.
Thermoplastic paste, for 100 parts by weight of mineral filler composed of:
- 77% of fused silica, with a particle size from 0 to 63 micrometers,
- 20% zircon, grain size 0 to 50 micrometers,
- 3% cristobalite, with a particle size of 2 to 5 micrometers
includes a release agent consisting of:
- 0.5 parts by weight of calcium stearate
and an organic binder consisting of:
- 18 parts by weight of polyethylene glycol with a molecular weight of 1550
- 4.5 parts by weight of ethyl alcohol.

EXEMPLE 2EXAMPLE 2

Pour 100 parties en poids de charge minérale de la même composition que dans l'exemple 1 décrit ci-dessus, la pâte thermoplastique comporte les mêmes quantités de stéarate de calcium et d'alcool céthylique et 20 parties en poids de polyéthylène-glycol de masse molaire 1550.For 100 parts by weight of mineral filler of the same composition as in Example 1 described above, the paste thermoplastic contains the same amounts of calcium stearate and cethyl alcohol and 20 parts by weight of polyethylene glycol of molar mass 1550.

EXEMPLE 3EXAMPLE 3

On conserve les mêmes constituants dans les mêmes proportions que dans les exemples précédents 1 et 2, sauf le polyéthylène-glycol de masse molaire 1550 qui est utilisé en 17 parties en poids et la granulométrie de la silice fondue utilisée est choisie de 0 à 50 micromètres.The same constituents are kept in the same proportions as in the previous examples 1 and 2, except for the polyethylene glycol of molar mass 1550 which is used in 17 parts by weight and the particle size of the molten silica used is chosen from 0 to 50 micrometers .

EXEMPLE 4EXAMPLE 4

Les constituants de la pâte thermoplastique diffèrent de ceux de l'exemple précédent 3 uniquement par la silice fondue qui dans ce cas est apportée sous deux formes :
- 17% de granulométrie 0 à 50 micromètres
- et 60% de granulométrie 0 à 100 micromètres.
The constituents of the thermoplastic paste differ from those of the previous example 3 only by the molten silica which in this case is provided in two forms:
- 17% of grain size 0 to 50 micrometers
- and 60% of grain size 0 to 100 micrometers.

A partir de ces pâtes thermoplastiques conformes à l'invention, la mise en forme des noyaux de fonderie fait appel aux procédés connus, tels que le moulage par injection thermoplastique à la presse. Cette injection du mélange dans un moule constitue la deuxième étape du procédé de fabrication de noyaux. De manière remarquable, conforme à l'invention, le mélange est injecté dans ce cas entre 50°C et 100°C dans un moule à température ambiante, où il se solidifie.
L'invention concerne également la troisième étape du procédé amélioré de fabrication des noyaux de fonderie. En effet, au cours de cette troisième étape, comme il est connu dans son principe, un noyau de fonderie après mise en forme doit être soumis, avant utilisation pour la coulée de pièces, à un traitement thermique.
From these thermoplastic pastes according to the invention, the shaping of the foundry cores calls for known methods, such as thermoplastic injection molding in the press. This injection of the mixture into a mold constitutes the second step in the process for manufacturing cores. Remarkably, according to the invention, the mixture is injected in this case between 50 ° C and 100 ° C in a mold at room temperature, where it solidifies.
The invention also relates to the third step of the improved process for manufacturing foundry cores. Indeed, during this third step, as it is known in principle, a foundry core after shaping must be subjected, before use for casting parts, to a heat treatment.

Pour cette opération, le noyau peut être soit, placé dans un moule préformé, soit, et c'est le mode préférentiel appliqué par la présente invention, placé dans un lit de sable d'alumine qui noie le noyau. Il peut également être souhaitable d'enduire la surface du noyau à l'aide d'un produit antiadhérent tel qu'un produit de type PTFE avant l'introduction dans le sable. On notera que le mode de cuisson retenu, "en sable", procure également un gain de temps de fabrication en permettant l'enfournement d'un nombre plus élevé de noyaux. Dans tous les cas, le sable utilisé présente des propriétés de bon pouvoir absorbant, vis-à-vis des produits de décomposition des liants et du PTFE.For this operation, the core can either be placed in a preformed mold or, and it is the preferred mode applied by the present invention, placed in a bed of alumina sand which drowns the core. It may also be desirable to coat the surface of the core with a release agent such as a PTFE type product before introduction into the sand. Note that the cooking method chosen, "in sand", also saves manufacturing time by allowing the charging of a higher number of cores. In all cases, the sand used has properties of good absorbency, vis-à-vis the decomposition products of binders and PTFE.

Ledit traitement thermique, de manière remarquable conforme à l'invention, est constitué par un cycle unique de cuisson qui comporte quatre séquences :

  • - (a) une montée en température jusqu'à 300°C, à une vitesse comprise entre 30°C à 50°C par heure ;
  • - (b) une montée en température de 300°C jusqu'à la température maximale, à une vitesse comprise entre 100°C et 200°C par heure ;
  • - (c) un maintien en palier à ladite température maximale, pendant une durée comprise entre 4 et 5 heures ;
  • - (d) un refroidissement rapide par air pulsé.
Said heat treatment, remarkably in accordance with the invention, consists of a single cooking cycle which comprises four sequences:
  • - (a) a temperature rise up to 300 ° C, at a speed between 30 ° C to 50 ° C per hour;
  • - (b) a temperature rise from 300 ° C to the maximum temperature, at a speed of between 100 ° C and 200 ° C per hour;
  • - (c) leveling off at said maximum temperature, for a period of between 4 and 5 hours;
  • - (d) rapid cooling by forced air.

Ce procédé permet d'assurer une évacuation uniforme des liants et une consolidation suffisante du noyau par frittage, et d'obtenir une bonne reproductibilité dimensionnelle des noyaux.
Tout en assurant la bonne qualité des résultats, le cycle de cuisson de noyaux de fonderie ainsi défini a une durée totale notablement réduite par rapport aux solutions connues antérieurement. Le choix du liant organique constitué de polyéthylène-glycol semble être un facteur particulièrement déterminant pour l'obtention de ces résultats. Dans certaines applications particulières, mettant en oeuvre des noyaux de forme complexe et pour lesquels, compte-tenu des applications, notamment à des aubes de turbine pour turbomachines à hautes performances, des critères de qualité stricts sont imposés, la montée en température, à l'étape (b) du cycle de cuisson, pour une température maximale du 1200°C ou 1250°C, a ainsi été effectuée en 9 heures et le refroidissement, à l'étape (d) du cycle de cuisson, a été effectué en 12 heures, ce qui conduit à une durée totale du cycle de cuisson de 36 heures.
This process makes it possible to ensure uniform evacuation of the binders and sufficient consolidation of the core by sintering, and to obtain good dimensional reproducibility of the cores.
While ensuring the good quality of the results, the baking cycle of foundry cores thus defined has a duration total significantly reduced compared to previously known solutions. The choice of organic binder consisting of polyethylene glycol seems to be a particularly determining factor for obtaining these results. In certain particular applications, using cores of complex shape and for which, taking into account the applications, in particular to turbine blades for high performance turbomachines, strict quality criteria are imposed, the temperature rise, at step (b) of the cooking cycle, for a maximum temperature of 1200 ° C. or 1250 ° C., was thus carried out in 9 hours and the cooling, in stage (d) of the cooking cycle, was carried out in 12 hours, which leads to a total duration of the cooking cycle of 36 hours.

Un autre résultat remarquable qui a une répercussion directe sur les coûts du procédé par réduction des durées est que le cycle de cuisson qui vient d'être décrit est l'unique cuisson appliquée auxdits noyaux. En effet, ce cycle unique assure à la fois l'élimination des liants, la consolidation du matériau des noyaux par frittage et la stabilisation de la structure, grâce à la présence de cristobalite.Another remarkable result which has a direct repercussion on the costs of the process by reduction of the times is that the cooking cycle which has just been described is the only cooking applied to said cores. Indeed, this single cycle ensures at the same time the elimination of binders, the consolidation of the material of the cores by sintering and the stabilization of the structure, thanks to the presence of cristobalite.

Les noyaux obtenus présentent des propriétés intéressantes qui ont été mises en évidence à la suite d'essais, notamment sur éprouvettes et parmi lesquelles on peut relever :
- une température d'utilisation jusqu'à 1550°C ;
- un module de rupture de 110 kg/cm² à 1100°C après 5 minutes et de 95 kg/cm² à 1500°C après 15 minutes ;
- une densité apparente de 1,72 et une densité réelle de 2,4 ;
- une porosité de 28% ;
- une expansion thermique à 1000°C de 0,13% à 0,16%.
The cores obtained have interesting properties which have been demonstrated following tests, in particular on test pieces and among which we can note:
- an operating temperature up to 1550 ° C;
- a breaking modulus of 110 kg / cm² at 1100 ° C after 5 minutes and 95 kg / cm² at 1500 ° C after 15 minutes;
- an apparent density of 1.72 and an actual density of 2.4;
- a porosity of 28%;
- thermal expansion at 1000 ° C from 0.13% to 0.16%.

Une correction éventuelle des noyaux après injection est possible par redressage dans un calibre grâce à la malléa­bilité des pâtes thermoplastiques conformes à l'invention. Cet avantage ainsi que l'absence de déformation des noyaux lors des opérations suivant la mise en forme semblent dus à l'influence du liant organique constitué de polyéthylène-glycol. En effet, ce composant présente des propriétés de solidification progressive, sans rupture brutale de ses propriétés de viscosité entre 50°C et 100°C, au contraire de nombre de liants utilisés antérieurement. La stabilité dimensionnelle et l'absence de fluage constituent ainsi des avantages importants des noyaux de fonderie obtenus à partir des pâtes thermoplas­tiques utilisées dans un procédé de fabrication conforme à l'invention.A possible correction of the cores after injection is possible by straightening in a size thanks to the malleability of the thermoplastic pastes according to the invention. This advantage as well as the absence of deformation of the cores during the operations following the shaping seem to be due to the influence of the organic binder consisting of polyethylene glycol. Indeed, this component exhibits progressive solidification properties, without sudden rupture of its viscosity properties between 50 ° C and 100 ° C, unlike the number of binders used previously. The dimensional stability and the absence of creep thus constitute significant advantages of the foundry cores obtained from the thermoplastic pastes used in a manufacturing process according to the invention.

Claims (6)

1. Procédé de fabrication de noyaux céramiques pour fonderie à partir d'une pâte thermoplastique constituée d'une charge céramique, composée de silice fondue, de zircon et de cristobalite et d'un liant organique à base d'un polyéthylène-glycol et d'additifs éventuels, comportant, dans une première étape, la réalisation du mélange pour obtenir ladite pâte, dans une deuxième étape, l'injection dudit mélange dans un moule et dans une troisième étape, le traitement thermique du noyau qui a été mis en forme caractérisé en ce que le polyéthylène-glycol utilisé a une masse molaire comprise entre 1400 et 1600 et en ce que, lors de la deuxième étape, la pâte est injectée à une température comprise entre 50°C et 100°C dans un moule à température ambiante, et lors de la troisième étape, ledit traitement thermique comporte un cycle unique de cuisson en quatre séquences, soient:
(a) - une montée en température jusqu'à 300°C, à une vitesse comprise entre 30°C et 50°C par heure ;
(b) - une montée de la température de 300°C jusqu'à la température maximale à une vitesse comprise entre 100°C et 200°C par heure ;
(c) - maintien en palier à ladite température maximale, durant 4 à 5 heures ;
(d) - refroidissement rapide par air pulsé,
de manière à assurer à la fois l'élimination du liant, une consolidation par frittage du matériau des noyaux et une stabilisation de leur structure par transformation de silice amorphe en cristobalite, la durée totale du cycle de cuisson étant comprise entre 24 et 36 heures.
1. Method for manufacturing ceramic cores for foundries from a thermoplastic paste consisting of a ceramic filler, composed of fused silica, zircon and cristobalite and an organic binder based on a polyethylene glycol and d '' optional additives, comprising, in a first step, producing the mixture to obtain said paste, in a second step, injecting said mixture into a mold and in a third step, heat treatment of the core which has been shaped characterized in that the polyethylene glycol used has a molar mass of between 1400 and 1600 and in that, during the second step, the paste is injected at a temperature between 50 ° C and 100 ° C in a temperature mold ambient, and during the third step, said heat treatment comprises a single cooking cycle in four sequences, namely:
(a) - a rise in temperature up to 300 ° C, at a speed between 30 ° C and 50 ° C per hour;
(b) - a rise in temperature from 300 ° C to the maximum temperature at a speed of between 100 ° C and 200 ° C per hour;
(c) - leveling off at said maximum temperature, for 4 to 5 hours;
(d) - rapid forced air cooling,
so as to ensure both the elimination of the binder, a consolidation by sintering the material of the cores and a stabilization of their structure by transformation of amorphous silica into cristobalite, the total duration of the baking cycle being between 24 and 36 hours.
2. Procédé de fabrication de noyaux de fonderie selon la revendication 1 dans lequel le polyéthylène-glycol utilisé a une masse molaire de 1500.2. A method of manufacturing foundry cores according to claim 1 wherein the polyethylene glycol used has a molar mass of 1500. 3. Procédé de fabrication de noyaux de fonderie selon la revendication 1 dans lequel le polyéthylène-glycol utilisé a une masse molaire de 1550.3. A method of manufacturing foundry cores according to claim 1 wherein the polyethylene glycol used has a molar mass of 1550. 4. Procédé de fabrication de noyaux de fonderie selon l'une des revendications 2 ou 3 dans lequel la durée de montée de 300°C à la température maximale, à la séquence (b), de la troisième étape, est de 9 heures et la durée du refroidissement, à la séquence (d) de la troisième étape est de 12 heures, la durée totale d'un cycle étant de 36 heures.4. Method for manufacturing foundry cores according to one of claims 2 or 3 in which the rise time from 300 ° C to the maximum temperature, in sequence (b), of the third step, is 9 hours and the duration of the cooling, in sequence (d) of the third step is 12 hours, the total duration of a cycle being 36 hours. 5. Procédé de fabrication de noyaux de fonderie selon l'une quelconque des revendications 2 à 4 dans lequel la température maximale atteinte à ladite séquence (b) et maintenue à ladite séquence (c) de la troisième étape est de 1200°C.5. A method of manufacturing foundry cores according to any one of claims 2 to 4 wherein the maximum temperature reached at said sequence (b) and maintained at said sequence (c) of the third step is 1200 ° C. 6. Procédé de fabrication de noyaux de fonderie selon l'une quelconque des revendications 2 à 4 dans lequel la température maximale atteinte à ladite séquence (b) et maintenu à ladite séquence (c) de la troisième étape est de 1250°C.6. A method of manufacturing foundry cores according to any one of claims 2 to 4 wherein the maximum temperature reached at said sequence (b) and maintained at said sequence (c) of the third step is 1250 ° C.
EP89400347A 1988-02-10 1989-02-08 Process for manufacturing ceramic foundry cores Expired - Lifetime EP0328452B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8801535 1988-02-10
FR8801535A FR2626794B1 (en) 1988-02-10 1988-02-10 THERMOPLASTIC PASTE FOR THE PREPARATION OF FOUNDRY CORES AND PROCESS FOR THE PREPARATION OF SAID CORES

Publications (2)

Publication Number Publication Date
EP0328452A1 true EP0328452A1 (en) 1989-08-16
EP0328452B1 EP0328452B1 (en) 1993-05-05

Family

ID=9363106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400347A Expired - Lifetime EP0328452B1 (en) 1988-02-10 1989-02-08 Process for manufacturing ceramic foundry cores

Country Status (7)

Country Link
US (2) US5043014A (en)
EP (1) EP0328452B1 (en)
JP (1) JPH0673713B2 (en)
DE (1) DE68906284T2 (en)
ES (1) ES2040477T3 (en)
FR (1) FR2626794B1 (en)
IL (1) IL89196A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475548A1 (en) * 1990-09-04 1992-03-18 Hüttenes-Albertus Chemische-Werke GmbH Process for precoating granular mineral materials with synthetic resin
DE4132477A1 (en) * 1991-09-30 1993-04-01 Seelmann & Co Gmbh H CORE AFTER THE WAX MELTING PROCESS
EP0648560A1 (en) * 1993-10-13 1995-04-19 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Method for the production of ceramic cores for casting
US6286582B1 (en) 1998-11-12 2001-09-11 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Process for the manufacture of thin ceramic cores for use in precision casting
EP1661642A1 (en) 2004-11-26 2006-05-31 Snecma Process for manufacturing cores for turbine blades
EP1980343A1 (en) 2007-04-11 2008-10-15 Snecma Tool for manufacturing foundry ceramic cores for turbomachine vanes
RU2501639C2 (en) * 2008-04-18 2013-12-20 Снекма Method of deburring ceramic mould cores
WO2022029388A1 (en) 2020-08-06 2022-02-10 Safran Protection against oxidation or corrosion of a hollow part made of a superalloy
FR3113255A1 (en) 2020-08-06 2022-02-11 Safran Protection against oxidation or corrosion of a hollow superalloy part

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332537A (en) * 1992-12-17 1994-07-26 Pcc Airfoils, Inc. Method and binder for use in powder molding
CA2702143C (en) 2001-06-05 2014-02-18 Mikro Systems, Inc. Methods for manufacturing three-dimensional devices and devices created thereby
EP2559534B1 (en) * 2008-09-26 2023-10-25 Raytheon Technologies Corporation Composition and method for casting manufacturing
CN102179477B (en) * 2011-04-14 2012-10-17 中南大学 Silicon-base ceramic core added with cristobalite
EP2740550B1 (en) 2011-08-03 2016-07-20 Hitachi Metals, Ltd. Ceramic core and method for producing same
JP6229930B2 (en) 2013-09-10 2017-11-15 日立金属株式会社 Ceramic core and method for producing the same, method for producing a casting using the ceramic core, and casting
FR3084894B1 (en) 2018-08-07 2022-01-21 Commissariat Energie Atomique CERAMIC COATING FOR FOUNDRY CORE
CN112222362B (en) * 2020-09-10 2021-10-29 中国科学院金属研究所 Silicon-based ceramic core resistant to cold and hot impact, high-temperature creep and easy to remove and preparation process thereof
CN114656248A (en) * 2020-12-23 2022-06-24 兴化市兴东铸钢有限公司 Sintering preparation method of silicon-based ceramic core with high strength and mechanical properties
FR3123365B1 (en) 2021-06-01 2024-05-31 Commissariat Energie Atomique METHOD FOR COATING A REFRACTORY ALLOY PART AND PART THUS COATED.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2213120A1 (en) * 1973-01-10 1974-08-02 Howmet Corp
FR2336998A1 (en) * 1975-12-29 1977-07-29 Sherwood Refractories CORES FOR DIRECTIONAL SOLIDIFICATION CASTING PROCESS
FR2371257A1 (en) * 1976-11-17 1978-06-16 Howmet Turbine Components CERAMIC CORES FOR THE PREPARATION OF HOLLOW CASINGS
EP0056662A2 (en) * 1978-12-04 1982-07-28 Sherwood Refractories Inc. Extrudable compositions for making refractory cores for sandcasting of ferrous alloys
FR2569586A1 (en) * 1984-09-06 1986-03-07 Snecma Process for preparing foundry cores and ceramic composition which can be used for the implementation of the said process
EP0179649A2 (en) * 1984-10-24 1986-04-30 Fairey Industrial Ceramics Limited Ceramic materials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1006518A (en) * 1963-03-21 1965-10-06 Doulton & Co Ltd Improvements in or relating to moulding ceramic material
US3957715A (en) * 1973-01-10 1976-05-18 Howmet Corporation Casting of high melting point metals and cores therefor
JPS578065A (en) * 1980-06-10 1982-01-16 Ichiro Sakamaki Oscillating and rotating apparatus
JPS58348A (en) * 1981-06-25 1983-01-05 Mitsubishi Heavy Ind Ltd Water soluble pattern material
JPS58119433A (en) * 1982-01-07 1983-07-15 Sumitomo Deyurezu Kk Resin coated sand for shell mold
JPS6065761A (en) * 1983-09-19 1985-04-15 多木化学株式会社 Refractory composition
JPS6141868A (en) * 1984-08-03 1986-02-28 清水建設株式会社 Ice heat-accumulation type base rock inside low-temperature storage warehouse
JPS6230858A (en) * 1985-07-31 1987-02-09 Daido Steel Co Ltd Stainless shot
FR2599649B1 (en) * 1986-06-10 1988-09-02 Snecma CRISTOBALITIC SHELL MOLD FOR FOUNDRY, PRODUCTS AND PROCESS USED FOR THE PREPARATION OF SAID MOLD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2213120A1 (en) * 1973-01-10 1974-08-02 Howmet Corp
FR2336998A1 (en) * 1975-12-29 1977-07-29 Sherwood Refractories CORES FOR DIRECTIONAL SOLIDIFICATION CASTING PROCESS
FR2371257A1 (en) * 1976-11-17 1978-06-16 Howmet Turbine Components CERAMIC CORES FOR THE PREPARATION OF HOLLOW CASINGS
EP0056662A2 (en) * 1978-12-04 1982-07-28 Sherwood Refractories Inc. Extrudable compositions for making refractory cores for sandcasting of ferrous alloys
FR2569586A1 (en) * 1984-09-06 1986-03-07 Snecma Process for preparing foundry cores and ceramic composition which can be used for the implementation of the said process
EP0179649A2 (en) * 1984-10-24 1986-04-30 Fairey Industrial Ceramics Limited Ceramic materials

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475548A1 (en) * 1990-09-04 1992-03-18 Hüttenes-Albertus Chemische-Werke GmbH Process for precoating granular mineral materials with synthetic resin
DE4132477A1 (en) * 1991-09-30 1993-04-01 Seelmann & Co Gmbh H CORE AFTER THE WAX MELTING PROCESS
EP0648560A1 (en) * 1993-10-13 1995-04-19 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Method for the production of ceramic cores for casting
FR2711082A1 (en) * 1993-10-13 1995-04-21 Snecma Process for manufacturing ceramic cores for foundry
US5697418A (en) * 1993-10-13 1997-12-16 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Method of making ceramic cores for use in casting
US6286582B1 (en) 1998-11-12 2001-09-11 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation “SNECMA” Process for the manufacture of thin ceramic cores for use in precision casting
EP1661642A1 (en) 2004-11-26 2006-05-31 Snecma Process for manufacturing cores for turbine blades
EP1980343A1 (en) 2007-04-11 2008-10-15 Snecma Tool for manufacturing foundry ceramic cores for turbomachine vanes
RU2501639C2 (en) * 2008-04-18 2013-12-20 Снекма Method of deburring ceramic mould cores
WO2022029388A1 (en) 2020-08-06 2022-02-10 Safran Protection against oxidation or corrosion of a hollow part made of a superalloy
FR3113255A1 (en) 2020-08-06 2022-02-11 Safran Protection against oxidation or corrosion of a hollow superalloy part
FR3113254A1 (en) 2020-08-06 2022-02-11 Safran Protection against oxidation or corrosion of a hollow superalloy part

Also Published As

Publication number Publication date
US5120482A (en) 1992-06-09
EP0328452B1 (en) 1993-05-05
FR2626794A1 (en) 1989-08-11
JPH01245941A (en) 1989-10-02
DE68906284D1 (en) 1993-06-09
JPH0673713B2 (en) 1994-09-21
FR2626794B1 (en) 1993-07-02
US5043014A (en) 1991-08-27
DE68906284T2 (en) 1993-09-30
IL89196A (en) 1993-01-31
IL89196A0 (en) 1989-09-10
ES2040477T3 (en) 1993-10-16

Similar Documents

Publication Publication Date Title
EP0328452B1 (en) Process for manufacturing ceramic foundry cores
US6345663B1 (en) Core compositions and articles with improved performance for use in castings for gas turbine applications
EP1013360B1 (en) Method for producing thin ceramic foundry cores
EP1371742B1 (en) Dry and self lubricant material,mechanical pieces made of a such material and its method of fabrication
FR2550526A1 (en)
EP0648560B1 (en) Method for the production of ceramic cores for casting
US4612146A (en) Process for the hot-isostatic compression of ceramic shaped parts
EP0246936B1 (en) Moulds from foundry iron, especially for the glas industry, having a variable structure within their walls
EP0478413B1 (en) Process for manufacture of a foundry mould by use of foam material and ceramique binder
US4301132A (en) Silicon carbide bodies and their production
EP0513243B1 (en) Improved method of making large cross section injection molded or slip cast ceramic shapes
US5030397A (en) Method of making large cross section injection molded or slip cast ceramics shapes
WO1987007542A1 (en) Cristobalitic mould-shell for foundry and method for preparing said mould
FR2625495A1 (en) PRE-TREATMENT OF MOLTEN REFRACTORIES
CA2084639C (en) Molding material containing refractory fibers, for use without the fabrication of ablatable parts, process for the fabrication thereof and applications thereof
JPS60118676A (en) Manufacture of ceramic sintered body
SU1759632A1 (en) Composition for manufacturing articles of silica nitride
JPH0210790B2 (en)
FR3143022A1 (en) Thermoplastic pre-ceramic composition for the production of non-oxide ceramic objects with a complex three-dimensional shape by deposition of molten material.
JP2997180B2 (en) Manufacturing method of ceramic products
JPH08290975A (en) Ceramic composition, core material and production of ceramic product
JPH01252566A (en) Production of ceramic sintered product and mixture to be used therefor
JPS63315574A (en) Method for removing binder from powder moldings
JPS6345166A (en) Composition for ceramic injection forming
KR20030027142A (en) The precious metals sintered product and manufacture method it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17Q First examination report despatched

Effective date: 19920722

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 68906284

Country of ref document: DE

Date of ref document: 19930609

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040477

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070125

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070209

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070619

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070129

Year of fee payment: 19

BERE Be: lapsed

Owner name: SOC. NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEU

Effective date: 20080228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080208