Nothing Special   »   [go: up one dir, main page]

EP0321536B1 - Procede d'anodisation passivante du cuivre en milieu de fluorures fondus. application a la protection de pieces en cuivre des electrolyseurs fluor - Google Patents

Procede d'anodisation passivante du cuivre en milieu de fluorures fondus. application a la protection de pieces en cuivre des electrolyseurs fluor Download PDF

Info

Publication number
EP0321536B1
EP0321536B1 EP88905883A EP88905883A EP0321536B1 EP 0321536 B1 EP0321536 B1 EP 0321536B1 EP 88905883 A EP88905883 A EP 88905883A EP 88905883 A EP88905883 A EP 88905883A EP 0321536 B1 EP0321536 B1 EP 0321536B1
Authority
EP
European Patent Office
Prior art keywords
copper
current
value
current density
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88905883A
Other languages
German (de)
English (en)
Other versions
EP0321536A1 (fr
Inventor
Patrick Germanaz
Sylvie Lamirault
Gérard Picard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA
Original Assignee
Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA filed Critical Comurhex pour La Conversion de lUranium en Metal et Hexafluorure SA
Publication of EP0321536A1 publication Critical patent/EP0321536A1/fr
Application granted granted Critical
Publication of EP0321536B1 publication Critical patent/EP0321536B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32

Definitions

  • the present invention relates to a method of passively anodizing copper pieces in the middle of molten fluorides forming an adherent protective layer with a high recovery rate; this process is particularly, but not exclusively, applicable to the protection of copper parts used in electrolysers for the production of fluorine.
  • a bath of molten fluorides which is generally a mixture of hydrogen fluoride and alkali metal fluorides and / or ammonium.
  • the anodes made of carbonaceous material are immersed vertically in the bath and are supplied with electric current by current leads usually made of copper.
  • the copper anode junction which represents a weak point, is usually carried out at the top of the anode, in this case the copper current supply and the Copper-anode junction are partially immersed in the bath and are subjected to the action. of the bath and the bubbles of fluorine released at the anode.
  • a passivation of the copper occurs on the one hand due to the soaking in the bath of liquid fluorides, on the other hand by anodization during the tensioning of the electrolysis cell, but the properties of the layer obtained are very insufficient for effective protection of copper.
  • a dissolution of the copper thus occurs, leading to the deterioration of the slow and regular copper-anode contact, necessitating the stopping and refurbishing of the electrolysis cell, in particular the repair of the current leads and the change of the anode. This refurbishment takes place approximately once a year.
  • the copper-anode junction can also and advantageously be carried out from below.
  • the copper current leads pass through the total thickness of the bath before being connected to the feet of the anodes. It is then necessary to isolate them to avoid their dissolution; one can for example make sheathing resistant to the bath.
  • a device of this kind is described in patent SU 193,454, which describes a cladding of the current leads effected by magnesium and the protection of the copper-anode contacts by a chemically inert insulator (fluorinated hydrocarbon). Such protections are difficult to implement and use expensive products.
  • KF-x HF will mean a mixture where the number of moles d 'HF is exclusively equal to or close to 2) for the electrolytic production of fluorine, currently limits the development and development of more efficient fluorine electrolyzer.
  • the Applicant has continued its research, the main object of which is to obtain a durable and effective passivation of copper in a liquid fluoride bath using a process that is simple to implement.
  • this passivation must durably and effectively protect the copper under the conditions encountered during the electrolytic production of fluorine; it must in particular resist the action of the KF, xHF electrolysis baths, the fluorine produced and the electrolysis current.
  • Another object is the obtaining or the controlled development of a protective layer of copper in the middle of molten fluorides which is tight and which has a strong adhesion to the copper substrate and a high recovery rate of said substrate.
  • Another object is to obtain an electrically insulating layer.
  • Another object is to obtain a layer which is thin while having, thanks to the strong cohesion of the particles which constitutes it, good mechanical characteristics, in particular resistance to abrasion, friction, impact ...
  • Another object of the invention is to use an electrochemical process which allows this passivation to be carried out in the tanks and on the production site, opening up the production of said tanks.
  • Another object is to avoid the slow dissolution of copper and the degradation of the copper-anode bonds during the electrolysis of liquid fluoride baths and particularly of the KF, xHF bath.
  • the invention is a method of passively anodizing parts in copper in KF medium, xHF (x close to 2) liquid making it possible to obtain an adherent protective layer, mechanically and electrically resistant, with a high recovery rate of the copper substrate, characterized in that said copper parts, once immersed in the KF, xHF liquid bath, are subjected to an anodic current of low surface density, calculated relative to the immersed copper surface, less than 0.1 A / dm2, this current being maintained either at a constant value depending on the time, or at a variable value. This treatment is applied for a variable duration which is always greater than a limit value dependent on the value of the anodic current density.
  • the bath consists of a liquid KF, xHF mixture, the HF content of which is preferably between 38 and 42.5%; this mixture is usually used as a bath for the electrolytic production of fluorine.
  • the bath should be liquid; it is advantageous to operate under such conditions (of temperature and of concentration) that the vapor pressure of HF does not exceed 50 mm of mercury, or that there is not more than 7% (weight) of HF driven by gases. Thus, it is advantageous to operate at a temperature between 85 and 105 ° C.
  • Battelle describes anodization intensities greater than a floor value (for example 0.4 A / dm2, itself significantly higher than the maximum intensity prescribed by the applicant.
  • the conditions of formation (in particular of nucleation, of growth, etc.) of the passivating layer, described by Battelle are very different and provide said layer with properties, for example of homogeneity of adhesion density, also very different.
  • These operating conditions cannot therefore be used to predict the conditions for the formation of a protective layer in a KF, xHF medium, meeting the requirements of the applicant, a layer which must be resistant to bathing, to the release of fluorine and to electrical conditions during electrolysis, and which is also adherent, compact and solid over time.
  • a direct voltage is applied between the copper part to be protected and a cathode of any conductive material, for example steel, also immersed in the bath.
  • This voltage as well as the shape, location, spacing, etc. of the cathode are such that the current density at all points of the surface to be protected is uniform and maintained at a low value.
  • the low current density applied to the surface to be protected can be maintained at a constant value as a function of time, and throughout the duration of the treatment, in this case the anodization treatment is said to be in constant mode; it can also have a variable value in this case the processing is said to be variable mode.
  • the duration processing increases exponentially and becomes prohibitive;
  • the quality of the protective layer formed practically does not change any more when the duration of treatment is excessively extended.
  • the current density must be less than 0.1 A / dm2, but preferably less than 0.05 A / dm2 and more particularly less than 0.025 A / dm2.
  • the duration of treatment practically but not limited to, it does not exceed 20 h and preferably 15 h, and consequently we avoid using, in constant mode, a current density less than 0.01 A / dm2.
  • the treatment time is generally greater than 0.5 h but for current densities of the order of 0.05 A / dm2, it is d use of treatment times between 2 and 4 h.
  • the curve in Figure 1 gives an illustration of what may be the relationship between the current density (plotted on the ordinate) and the processing time (plotted on the x axis) to obtain the same protective layer in the case where the current density (or intensity) is kept constant during the treatment, for a KF, xHF bath, containing 40.5% by weight of HF.
  • the current density applied is variable as a function of time, while remaining within the limits described above.
  • the values of the current densities used during each anodization sequence can be constant or variable, they can be the same or be different from one sequence to another; the durations of each anodization sequence can be the same or be different; the durations of each relaxation sequence may be the same or be different and are independent of the durations of the anodization sequences.
  • some anodizing sequences may have current densities of less than 0.01 A / dm2.
  • variable embodiment of the invention makes it possible to reduce the total duration of the treatment compared to the so-called constant mode and also makes it possible to reduce the value of the current density used with each anodization sequence.
  • the method according to the invention makes it possible to obtain a durable and efficient passivation of copper in molten fluoride baths by obtaining a protective layer formed essentially of a mixed copper fluoride, which appears to have a high level. covering the copper substrate, great compactness in the arrangement of the elementary particles, strong adhesion and high resistivity. This layer thus avoids the anodic dissolution of copper. These properties are all the more marked the lower the current density and the longer the treatment time.
  • the leakage current passing through the protective layer formed using a given voltage applied on either side of said layer.
  • it is measured, the part being immersed in a conductive bath, for example the passivation bath, by applying a DC voltage between said part and another plunging electrode.
  • a passivated copper piece according to the prior art, by simple dipping in a KF, xHF liquid bath, has a leakage current of 25 mA / dm2 at 5V.
  • a part passivated according to the method of the invention in this same type of bath has a leakage current not exceeding 5 mA / dm2 at 10 V, and usually close to or less than 3 mA / dm2 at 10 V.
  • the protective layer is also mechanically resistant, moreover it is very thin so that it does not alter significantly the dimensions of the passivated parts, nor their geometry.
  • the method according to the invention is applicable to the passivation of all kinds of copper parts to be subsequently used in the medium of fluorides, molten or in aqueous solution.
  • Copper parts passivated using the process according to the invention offer very good resistance to chemical corrosion in all media containing fluorides, in particular molten fluoride baths and more especially baths containing at least fluoride. hydrogen and an alkali or ammonium fluoride. Because the protective layer has good adhesion and significantly improved mechanical properties, it is possible to use the passivated parts in a calm or agitated, homogeneous or heterogeneous environment.
  • the process finds its particular field of application in the passivation and protection of copper parts, in particular current supply bars to the electrodes, installed in fluorine electrolysers using liquid baths KF, xHF as electrolyte, thanks to the quality improved layer that resists bathing, fluorine and current well.
  • the fact that these parts are under tension does not alter their resistance to corrosion.
  • the very good quality of the passivation obtained allows in the application to the electrolysis of fluorine to increase the lifespan of said copper parts up to at least five years, and to implement new cell technologies.
  • electrolysis in particular the supply of the anodes from the bottom knowing that copper parts passivated according to the process can be immersed and energized without problem.
  • a copper disc of type Cu a 1 with a diameter of 35 mm, with a total surface area of 0.2 dm2 is subjected to an anode voltage such that the intensity is kept constant at a value of 3 mA (0.015 A / dm2) for 12 h 30 min. , with a steel cathode identical to the anode, in a KF, xHF bath containing 40.5% by weight of HF, at 95 ° C. After treatment, the leakage current observed at a voltage of 10 V is 3.5 mA / dm2.
  • the leakage current observed at 10 V is only 2.9 mA / dm2, while the treatment time is only 10 h.
  • the leakage current observed at a voltage of 10V is 1 mA / dm2, which results in corrosion of 0.12 mm per year.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Procédé d'obtention d'une couche protectrice de pièces en cuivre, adhérente, résistante et à fort taux de recouvrement du substrat, par anodisation passivante, caractérisé en ce que lesdites pièces en cuivre sont immergées dans un bain de KF, 2HF liquide et soumises à un courant anodique de faible densité surfacique inférieure à 0,1 A/dm2, le courant pouvant être continu ou intermittent.

Description

    DOMAINE TECHNIQUE
  • La présente invention concerne un procédé d'anodisation passivante de pièces de cuivre en milieu de fluorures fondus formant une couche protectrice adhérente à fort taux de recouvrement; ce procédé est applicable particulièrement, mais non exclusivement, à la protection des pièces de cuivre utilisées dans les électrolyseurs pour production du fluor.
  • ETAT DE LA TECHNIQUE
  • Dans le procédé d'obtention du fluor par électrolyse on utilise un bain de fluorures fondus, qui est en général un mélange de fluorure d'hydrogène et de fluorures des métaux alcalins et/ou d'ammonium. Les anodes en matière carbonée sont immergées verticalement dans le bain et sont alimentées en courant électrique par des amenées de courant habituellement en cuivre. La jonction Cuivre anode, qui représente un point faible, est effectuée habituellement au sommet de l'anode, dans ce cas l'amenée de courant en Cuivre et la jonction Cuivre-anode sont partiellement immergées dans le bain et sont soumises à l'action du bain et des bulles de fluor dégagées à l'anode. Une passivation du Cuivre se produit d'une part du fait du trempage dans le bain de fluorures liquides, d'autre part par anodisation lors de la mise sous tension de la cellule d'électrolyse, mais les propriétés de la couche obtenue sont très insuffisantes pour assurer une protection efficace du cuivre. Il se produit ainsi une dissolution du cuivre entraînant la détérioration du contact cuivre-anode lente et régulière, nécessitant l'arrêt et la remise à neuf de la cellule d'électrolyse, en particulier la réfection des amenées de courant et le changement de l'anode. Cette remise à neuf intervient environ une fois par an.
  • La jonction Cuivre-anode peut également et avantageusement être effectuée par le bas. Dans ce cas, les amenées de courant en cuivre traversent l'épaisseur totale du bain avant d'être reliées aux pieds des anodes. Il est alors nécessaire de les isoler pour en éviter la dissolution; on peut par exemple réaliser des gainages résistants au bain. Un dispositif de ce genre est décrit dans le brevet SU 193 454, qui décrit un gainage des amenées de courant effectué par du magnésium et la protection des contacts cuivre-anode par un isolant chimiquement inerte (hydrocarbure fluoré). De telles protections sont délicates à mettre en oeuvre et utilisent des produits onéreux.
  • Cependant, on connaît par le document "Electrodeposition and surface treatment" 1(3)- 1973- p. 256-265 (Battelle), un traitement de passivation anodique du cuivre dans un bain liquide KF-HF. Pour former la couche passivante ce document décrit un courant de passivation anodique constant d'au moins 0,4 A/dm² dans un bain équimoléculaire KF-HF à 245°C, le temps d'application de ce courant étant d'autant plus court que ledit courant est plus élevé; pour une durée de passivation supérieure à environ 60 min, on note que la valeur du courant de passivation est toujours comprise entre 0,4 et 0,45 A/dm² (fig. 2), autrement dit que 0,4 A/dm² représente une valeur asymptotique minimum du courant de passivation.
    Ce document décrit également une passivation anodique du cuivre dans un bain de HF anhydre à 20°C et dans ce cas la valeur asymptotique minimum du courant d'anodisation est d'environ 0,15 A/dm².
  • La difficulté de réduire significativement la corrosion du Cuivre et d'éviter les détériorations des contacts cuivre-anode dans des bains liquides KF-x HF (dans toute la description, l'expression KF-x HF signifiera un mélange où le nombre de moles d'HF est exclusivement égal ou voisin de 2) en vue de la production électrolytique du fluor, limite actuellement la mise au point et le développement d'électrolyseur fluor plus performants.
  • OBJET DE L"INVENTION
  • Ainsi, la demanderesse a poursuivi ses recherches dont l'objet principal est l'obtention d'une passivation durable et efficace du cuivre dans un bain de fluorures liquide à l'aide d'un procédé simple à mettre en oeuvre. En particulier cette passivation doit protéger durablement et efficacement le cuivre dans les conditions rencontrées lors de la production électrolytique du fluor; elle doit notamment résister à l'action des bains d'électrolyse KF, xHF, du fluor produit et du courant d'électrolyse.
  • Un autre objet est l'obtention ou l'élaboration contrôlée d'une couche protectrice du cuivre en milieu de fluorures fondus qui soit étanche et qui présente une forte adhérence sur le substrat de cuivre et un taux de recouvrement élevé dudit substrat.
  • Un autre objet est d'obtenir une couche isolante électriquement.
  • Un autre objet est d'obtenir une couche qui soit mince tout en présentant, grâce à la forte cohésion des particules qui la constitue, de bonnes caractéristiques mécaniques, notamment résistance à l'abrasion, aux frottements, aux chocs...
  • Un autre objet de l'invention est d'utiliser un procédé électrochimique qui permette d'effectuer cette passivation dans les cuves et sur le site de production, ouvrant la mise en production desdites cuves.
  • Un autre objet est d'éviter la dissolution lente du cuivre et la dégradation des liaisons cuivre-anode durant l'électrolyse de bains de fluorures liquides et particulièrement du bain KF, xHF.
  • DESCRIPTION DE L'INVENTION
  • L'invention est un procédé d'anodisation passivante de pièces en cuivre en milieu KF, xHF (x voisin de 2) liquide permettant d'obtenir une couche protectrice adhérente, résistante mécaniquement et électriquement, à fort taux de recouvrement du substrat de cuivre, caractérisé en ce que lesdites pièces en cuivre, une fois immergées dans le bain KF, xHF liquide, sont soumises à un courant anodique de densité surfacique faible, calculée par rapport à la surface de cuivre immergée, inférieure à 0,1 A/dm2, ce courant étant maintenu soit à une valeur constante en fonction du temps, soit à une valeur variable. Ce traitement est appliqué pendant une durée variable qui est toujours supérieure à une valeur limite dépendante de la valeur de la densité de courant anodique.
  • Le bain est constitué d'un mélange KF, xHF liquide dont la teneur en HF est comprise de préférence entre 38 et 42,5 % ; ce mélange est utilisé habituellement comme bain pour la production électrolytique du fluor. Le bain doit être liquide ; il est avantageux d'opérer dans des conditions telles (de température et de concentration) que la tension de vapeur de HF ne dépasse pas 50 mm de mercure, ou qu'il n'y ait pas plus de 7 % (poids) d'HF entraîné par les gaz. Ainsi, il est avantageux d'opérer à une température comprise entre 85 et 105°C.
  • Pour ce type de bain, utilisé dans la production électrolytique du fluor, la demanderesse a recherché un procédé de passivation du cuivre par anodisation, procédé qui doit être tel que la couche protectrice formée résiste à la fois à l'action du bain qui est acide (présence de 2 HF) et à l'action du fluor qui se dégage au cours de l'électrolyse. Un tel bain est essentiellement différent de ceux décrits par Battelle qui sont (i) l'un très basique compte tenu de la présence d'une seule molécule HF liée à la molécule de KF, la dissociation donnant les espèces F⁻ et HF⁻, (ii) l'autre exempt de KF. Dans de tels bains, l'activité des constituants est différente de celle rencontrée dans les bains utilisés dans l'invention et les températures décrites y sont également très différentes.
  • Il s'ensuit que Battelle décrit des intensités d'anodisation supérieures à une valeur plancher (par exemple 0,4 A/dm2, elle-même largement supérieure à l'intensité maximum prescrite par la demanderesse.
  • De ce fait, les conditions de formation (notamment de nucléation, de croissance...) de la couche passivante, décrites par Battelle sont très différentes et procurent à ladite couche des propriétés, par exemple d'homogénéité de densité d'adhérence, également très différentes. Ces conditions opératoires ne sont ainsi pas utilisables pour prévoir les conditions de formation d'une couche protectrice en milieu KF, xHF, répondant aux exigences de la demanderesse, couche qui doit être résistante au bain, au dégagement du fluor et aux conditions électriques lors de l'électrolyse, et qui soit également adhérente, compacte et solide au cours du temps.
  • Selon l'invention, une tension continue est appliquée entre la pièce de cuivre à protéger et une cathode en matériau quelconque conducteur, par exemple en acier, également immergée dans le bain. Cette tension de même que la forme, l'emplacement, l'écartement, etc.. de la cathode sont tels que la densité de courant en tous points de la surface à protéger soit uniforme et maintenue à une valeur faible.
  • La faible densité de courant appliquée à la surface à protéger peut être maintenue à une valeur constante en fonction du temps, et pendant toute la durée du traitement, dans ce cas le traitement d'anodisation est dit à mode constant; elle peut aussi avoir une valeur variable dans ce cas le traitement est dit à mode variable.
  • On a intérêt à utiliser les plus faibles densités de courant possibles; en effet, pour les faibles valeurs de densité de courant, le taux de recouvrement du substrat et la compacité de la couche protectrice sont meilleurs. Par ailleurs, la qualité de la couche protectrice obtenue par le traitement anodique est d'autant meilleure que la durée du traitement est plus longue.
  • Cependant, pour des densités de courant trop faibles, la durée de traitement augmente exponentiellement et devient prohibitive; de même pour une densité de courant donnée, la qualité de la couche protectrice formée n'évolue pratiquement plus quand on prolonge exagérément la durée de traitement. Ainsi, la densité de courant doit être inférieure à 0,1 A/dm², mais de préférence inférieure à 0,05 A/dm² et plus particulièrement inférieure à 0,025 A/dm². En ce qui concerne la durée de traitement, pratiquement mais non limitativement, elle n'excède pas 20 h et de préférence 15 h, et en conséquence on évite d'utiliser, en mode constant, une densité de courant inférieure à 0,01 A/dm².
    Pour les densités de courant à la limite supérieure de 0,1 A/dm², la durée de traitement est généralement supérieure à 0,5 h mais pour des densités de courant de l'ordre de 0,05 A/dm², il est d'usage d'utiliser des durées de traitement comprises entre 2 et 4 h.
  • La courbe de la figure 1 donne une illustration de ce que peut être la relation entre la densité de courant (portée en ordonnée) et le temps de traitement (porté en abscisse) pour l'obtention d'une même couche protectrice dans le cas où on maintient la densité de courant (ou l'intensité) constante au cours du traitement, pour un bain KF, xHF, contenant 40,5 % poids de HF.
  • Dans un mode de réalisation avantageux de l'invention (mode variable) la densité de courant appliquée est variable en fonction du temps, tout en restant à l'intérieur des limites décrites ci-dessus. En particulier, on peut faire alterner des séquences de mise sous tension (densité de courant non nulle) et des séquences de relaxation (tension et courant nuls); les valeurs des densités de courant utilisées pendant chaque séquence d'anodisation peuvent être constantes ou variables, elles peuvent être les mêmes ou être différentes d'une séquence à l'autre; les durées de chaque séquence d'anodisation peuvent être les mêmes ou être différentes; les durées de chaque séquence de relaxation peuvent être les mêmes ou être différentes et sont indépendantes des durées des séquences d'anodisation. Dans ce cas, certaines séquences d'anodisation peuvent avoir des densités de courant inférieures à 0,01 A/dm².
  • Ce mode dit variable de réalisation de l'invention permet de réduire la durée totale du traitement par rapport au mode dit constant et permet également de diminuer à chaque séquence d'anodisation la valeur de la densité de courant utilisée.
  • Le procédé selon l'invention permet d'obtenir une passivation du cuivre durable et efficace dans les bains de fluorures fondus grâce à l'obtention d'une couche protectrice formée essentiellement d'un fluorure mixte de cuivre, qui se révèle avoir un fort taux de recouvrement du substrat de cuivre, une grande compacité de l'arrangement des particules élémentaires, une forte adhérence et une résistivité importante. Cette couche évite ainsi la dissolution anodique du cuivre.
    Ces propriétés sont d'autant plus marquées que la densité de courant est plus faible et que le temps de traitement est plus long.
  • Ces propriétés sont mises en évidence par la mesure du courant de fuite passant à travers la couche protectrice formée, à l'aide d'une tension donnée appliquée de part et d'autre de ladite couche. En général on le mesure, la pièce étant immergée dans un bain conducteur, par exemple le bain de passivation, en appliquant une tension continue entre ladite pièce et une autre électrode plongeante.
  • Ainsi, une pièce de cuivre passivée, selon l'art antérieur, par simple trempage dans un bain liquide KF, xHF, a un courant de fuite de 25 mA/dm² sous 5V.
    Par contre, une pièce passivée selon le procédé de l'invention dans ce même type de bain a un courant de fuite ne dépassant pas 5 mA/dm² sous 10 V, et habituellement proche de ou inférieur à 3 mA/dm² sous 10 V.
  • La couche protectrice est également mécaniquement résistante, de plus elle est très mince de sorte qu'elle n'altère pas de façon significative les cotes des pièces passivées, ni leur géométrie.
  • Le procédé selon l'invention est applicable à la passivation de toutes sortes de pièces en Cuivre devant être par la suite utilisées en milieu de fluorures, fondus ou en solution aqueuse.
  • Les pièces en cuivre passivées à l'aide du procédé selon l'invention offrent une très bonne résistance à la corrosion chimique dans tous les milieux contenant des fluorures en particulier les bains de fluorures fondus et plus spécialement les bains contenant au moins du fluorure d'hydrogène et un fluorure des métaux alcalins ou d'ammonium. Du fait que la couche protectrice présente une bonne adhérence et des propriétés mécaniques nettement améliorées, il est possible d'utiliser les pièces passivées en milieu calme ou agité, homogène ou hétérogène.
  • Mais le procédé trouve son champ particulier d'application dans la passivation et la protection des pièces en Cuivre, notamment barres d'amenée de courant aux électrodes, implantées dans les électrolyseurs fluor utilisant comme électrolyte des bains liquide KF, xHF, grâce à la qualité améliorée de la couche formée qui résiste bien au bain, au fluor et au courant. Le fait que ces pièces soient sous tension, n'altère pas leur résistance à la corrosion.
  • On peut mesurer l'usure de pièces passivées selon le procédé de l'invention en les plongeant dans le bain fondu et en les soumettant à une tension anodique pendant une semaine, comme mentionné plus haut, et en pesant la pièce avant et après le traitement. On a ainsi noté les résultats suivants sur des disques cylindriques de diamètre 35 mm, dont les arêtes ont été arrondies et dans un bain KF, xHF:
    • pour une pièce passivée par simple trempage selon l'art antérieur et soumise à une tension anodique de 5 V, le courant de fuite est de 25 mA/dm², la perte de poids correspond à une usure de 3 mm/an;
    • pour une pièce passivée selon le procédé de l'invention, soumise à une tension anodique de 10 V :
      • . si le courant de fuite est de 3 mA/dm², la perte de poids correspond à une usure de 0,35 mm/an,
      • . si le courant de fuite est de 3,5 mA/dm², l'usure correspondante est de 0,4 mm/an,
      • . si le courant de fuite est de 5 mA/dm², l'usure correspondante est inférieure à 0,6 mm/an.
  • La très bonne qualité de la passivation obtenue permet dans l'application à l'électrolyse du fluor d'augmenter la durée de vie desdites pièces en cuivre jusqu'à au moins cinq ans, et de mettre en oeuvre de nouvelles technologies de cellules d'électrolyse, en particulier l'alimentation des anodes par le bas sachant que des pièces de cuivre passivées selon le procédé peuvent être immergées et mises sous tension sans problème.
  • EXAMPLES
  • Les exemples suivants illustrent de façon non limitative différentes conditions opératoires du procédé selon l'invention.
  • . Exemple 1
  • Passivation à l'aide d'un courant d'intensité constante.
    On soumet un disque de cuivre de type Cu a 1 de diamètre 35 mm, de surface totale 0,2 dm² à une tension anodique telle que l'intensité soit maintenue constante à une valeur de 3 mA (0,015 A/dm²) pendant 12h30 min, avec une cathode en acier identique à l'anode, dans un bain KF, xHF contenant 40,5 % poids de HF, à 95°C.
    Après traitement, le courant de fuite observé sous une tension de 10 V est de 3,5 mA/dm².
  • . Exemple 2
  • Passivation par paliers de densité de courant d'anodisation décroissante, alternés avec des temps de relaxation (mode variable).
  • Le disque de cuivre et le bain sont identiques à ceux de l'Exemple 1. La procédure de traitement est la suivante :
    • tension anodique telle que l'intensité soit maintenue à une valeur de 10 mA (0,05 A/dm²) pendant 3 h,
    • tension nulle (relaxation) pendant 30 min,
    • tension anodique telle que l'intensité soit maintenue à une valeur de 2,8 mA (0,014 A/dm²) pendant 3 h,
    • relaxation pendant 30 min,
    • tension anodique telle que l'intensité soit maintenue à une valeur de 1 mA (0,005 A/dm²) pendant 3 h.
  • Après traitement, le courant de fuite observé sous 10 V n'est que de 2,9 mA/dm², alors que la durée de traitement n'est que de 10 h.
  • . Exemple 3
  • Passivation à l'aide d'un courant d'intensité constante dans un bain d'une autre composition. On utilise un disque identique à celui de l'exemple 1. Le bain est un mélange HF-KF contenant 38 % poids de HF à 85°C. La pièce en cuivre est passivée sous un courant anodique de 3 mA (soit 0,015 A/dm²) pendant 3h30 environ.
  • Après traitement, le courant de fuite observé sous une tension de 10V est de 1 mA/dm² ce qui se traduit par une corrosion de 0,12 mm par an.
  • . Exemple 4
  • Passivation à l'aide d'un courant d'intensité constante appliqué pendant une durée insuffisante.
    On utilise un disque de cuivre, un bain et une température identiques à ceux de l'Exemple 1. L'intensité est maintenue à une valeur de 0,08 A/dm² pendant 0,5 h.
  • Après traitement, le courant de fuite observé est de 13 mA/dm² ce qui correspond à une usure moyenne de 1,5 mm/an. Cette valeur médiocre est à comparer à 3 mm/an pour une pièce passivée par simple trempage. Elle conduit cependant à une diminution de corrosion du cuivre qui reste insuffisante pour l'homme de l'art.

Claims (7)

  1. Procédé d'anodisation passivante de pièces en cuivre en milieu KF, xHF (x voisin de 2) liquide permettant d'obtenir une couche protectrice adhérente, résistante mécaniquement et électriquement, à fort taux de recouvrement du substrat de cuivre, caractérisé en ce que lesdites pièces, une fois immergées dans le bain KF, xHF (x voisin de 2) liquide, sont soumises à un courant anodique de densité surfacique, calculée par rapport à la surface de cuivre immergée à traiter, inférieure à 0,1 A/dm², ce courant étant maintenu soit à une valeur constante en fonction du temps, soit à une valeur variable, et étant appliqué pendant une durée variable toujours supérieure à une valeur limite dépendante de la valeur dudit courant anodique, et telle que l'on obtienne une couche protectrice présentant un courant de fuite ne dépassant pas 5 mA/dm² sous 10 V.
  2. Procédé selon la revendication 1, caractérisé en ce que la densité de courant surfacique est de préférence inférieure à 0,05 A/dm².
  3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que quand le courant anodique est maintenu à une valeur constante limite de 0,1 A/dm², la durée d'application dudit courant est d'au moins 0,5 h.
  4. Procédé selon l'une quelconque des revendications 1 et 3, caractérisé en ce que la densité de courant anodique est maintenue à une valeur constante pendant la durée de traitement.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la densité de courant anodique a une valeur variable au cours du traitement.
  6. Procédé selon la revendication 5, caractérisé en ce que l'on fait alterner des séquences d'anodisation de densité de courant non nulle et des séquences de relaxation de densité de courant nulle, la valeur de la densité de courant des séquences d'anodisation décroissant de préférence d'une séquence à la suivante.
  7. Couche protectrice de pièces en cuivre obtenue selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le courant de fuite mesuré à travers ladite couche est inférieur à 3 mA/dm² sous 10 V.
EP88905883A 1987-06-26 1988-06-23 Procede d'anodisation passivante du cuivre en milieu de fluorures fondus. application a la protection de pieces en cuivre des electrolyseurs fluor Expired - Lifetime EP0321536B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8709574 1987-06-26
FR8709574A FR2617200B1 (fr) 1987-06-26 1987-06-26 Procede d'anodisation passivante du cuivre en milieu de fluorures fondus. application a la protection de pieces en cuivre des electrolyseurs fluor

Publications (2)

Publication Number Publication Date
EP0321536A1 EP0321536A1 (fr) 1989-06-28
EP0321536B1 true EP0321536B1 (fr) 1993-08-04

Family

ID=9352918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88905883A Expired - Lifetime EP0321536B1 (fr) 1987-06-26 1988-06-23 Procede d'anodisation passivante du cuivre en milieu de fluorures fondus. application a la protection de pieces en cuivre des electrolyseurs fluor

Country Status (8)

Country Link
US (1) US4892630A (fr)
EP (1) EP0321536B1 (fr)
JP (1) JP2680393B2 (fr)
CA (1) CA1323596C (fr)
DE (1) DE3882948T2 (fr)
FR (1) FR2617200B1 (fr)
WO (1) WO1988010328A1 (fr)
ZA (1) ZA884547B (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU658187A1 (ru) * 1975-09-23 1979-04-25 Предприятие П/Я А-7186 Способ электрохимического оксидировани меди
JPS5927398A (ja) * 1982-08-04 1984-02-13 株式会社東芝 警報告知装置
JPS60211093A (ja) * 1984-04-06 1985-10-23 Fuji Photo Film Co Ltd 導電材料の電解処理方法及び装置
JPS60221591A (ja) * 1984-04-17 1985-11-06 Central Glass Co Ltd フツ素の製造方法

Also Published As

Publication number Publication date
US4892630A (en) 1990-01-09
ZA884547B (en) 1989-03-29
DE3882948D1 (de) 1993-09-09
CA1323596C (fr) 1993-10-26
FR2617200A1 (fr) 1988-12-30
JP2680393B2 (ja) 1997-11-19
FR2617200B1 (fr) 1991-07-12
EP0321536A1 (fr) 1989-06-28
WO1988010328A1 (fr) 1988-12-29
JPH01503631A (ja) 1989-12-07
DE3882948T2 (de) 1993-12-16

Similar Documents

Publication Publication Date Title
FR2649125A1 (fr) Procede pour produire une couche abrasive sur le bout d'une ailette d'un turbomoteur realisee en alliage de titane
FR2532331A1 (fr) Electrode d'electrolyse ayant une grande durabilite et procede pour sa production
EP0093681B1 (fr) Procédé et dispositif pour revêtir une grande longueur de métal d'une couche métallique
FR2686624A1 (fr) Structure d'electrode insoluble comportant des elements d'electrode amovibles et une plaque de base.
EP0321536B1 (fr) Procede d'anodisation passivante du cuivre en milieu de fluorures fondus. application a la protection de pieces en cuivre des electrolyseurs fluor
EP1106293B1 (fr) Electrode pour l'usinage d'une pièce par électroérosion et son procédé de fabrication
FR3044329A1 (fr) Procede de depot electrolytique d'une couche de conversion sous courant alternatif
FR2559178A1 (fr) Procede pour orienter et accelerer la formation de concretions en milieu marin et dispositif pour sa mise en oeuvre
EP3137656B1 (fr) Dispositif destine a la mise en oeuvre d'un traitement d'anodisation et traitement d'anodisation
EP1386985B1 (fr) Procédé de polissage électrolytique pour des instruments dentaires en alliage de nickel-titane
FR2468662A1 (fr) Procede de depot par voie electrique d'alliages d'argent et de metaux du platine et produit obtenu par ce procede
US4055472A (en) Method of preparing nickel alloy parts for plating
FR3011853A1 (fr)
EP3452637B1 (fr) Alliage à base de magnésium et son utilisation dans la fabrication d'électrodes et la synthèse electrochimique de la struvite
FR2546186A1 (fr) Dispositif pour le traitement electrolytique de rubans metalliques
EP4050129A1 (fr) Câble électrique protégé contre la corrosion
FR2471426A1 (fr) Procede d'electrodeposition de palladium et bain electrolytique pour la mise en oeuvre de ce procede
FR3043095A1 (fr) Procede et reacteur d'electro-reduction du gaz sf6
JP2551274B2 (ja) アルミ系材料の表面処理方法
EP0006046A1 (fr) Utilisation d'une solution pour la formation par électrolyse de revêtements protecteurs de pyrophosphates sur des surfaces de zinc
FR2821627A1 (fr) Procede et dispositif d'elaboration par voie electrolytique d'un depot selectif epais de nickel sur une piece
US4379723A (en) Method of removing electrocatalytically active protective coatings from electrodes with metal cores, and the use of the method
CH633905A5 (fr) Procede de fabrication de fils electriques isoles.
FR3087208A1 (fr) Procede de traitement de surface de pieces en aluminium
EP0531223A1 (fr) Procédé de régénération de bains de nickelage contenant du sulfamate de nickel et permettant une vérification de l'aptitude du bain au nickelage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910404

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930809

REF Corresponds to:

Ref document number: 3882948

Country of ref document: DE

Date of ref document: 19930909

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960627

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050623