EP0399330B1 - Modifiziertes Phosphoramidit-Verfahren zur Herstellung von modifizierten Nukleinsäuren - Google Patents
Modifiziertes Phosphoramidit-Verfahren zur Herstellung von modifizierten Nukleinsäuren Download PDFInfo
- Publication number
- EP0399330B1 EP0399330B1 EP90109092A EP90109092A EP0399330B1 EP 0399330 B1 EP0399330 B1 EP 0399330B1 EP 90109092 A EP90109092 A EP 90109092A EP 90109092 A EP90109092 A EP 90109092A EP 0399330 B1 EP0399330 B1 EP 0399330B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygen
- nucleotide
- formula
- nucleotide sequence
- sulphur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims description 45
- 108020004707 nucleic acids Proteins 0.000 title claims description 44
- 102000039446 nucleic acids Human genes 0.000 title claims description 44
- 150000008300 phosphoramidites Chemical class 0.000 title abstract description 17
- 238000004519 manufacturing process Methods 0.000 title description 7
- 238000000034 method Methods 0.000 claims abstract description 51
- 239000002777 nucleoside Substances 0.000 claims abstract description 37
- -1 nucleoside phosphoramidite Chemical class 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 28
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 21
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims abstract description 15
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 14
- 125000003729 nucleotide group Chemical group 0.000 claims description 106
- 239000002773 nucleotide Substances 0.000 claims description 98
- 239000001301 oxygen Substances 0.000 claims description 43
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 36
- 125000006239 protecting group Chemical group 0.000 claims description 34
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims description 33
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 31
- 108091034117 Oligonucleotide Proteins 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 239000001257 hydrogen Substances 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 125000004437 phosphorous atom Chemical group 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 19
- 229910052698 phosphorus Inorganic materials 0.000 claims description 19
- 150000003833 nucleoside derivatives Chemical class 0.000 claims description 18
- 125000003545 alkoxy group Chemical group 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 150000002431 hydrogen Chemical class 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 11
- 150000001540 azides Chemical class 0.000 claims description 10
- 239000003153 chemical reaction reagent Substances 0.000 claims description 10
- 230000000295 complement effect Effects 0.000 claims description 9
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 8
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 7
- 108020004414 DNA Proteins 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 230000002255 enzymatic effect Effects 0.000 claims description 2
- 239000005864 Sulphur Substances 0.000 claims 20
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 3
- 229910000064 phosphane Inorganic materials 0.000 claims 3
- 239000005922 Phosphane Substances 0.000 claims 2
- 150000003002 phosphanes Chemical class 0.000 claims 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 23
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical group O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 238000012986 modification Methods 0.000 description 14
- 239000002585 base Substances 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 230000004048 modification Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 239000011593 sulfur Substances 0.000 description 9
- 229940035893 uracil Drugs 0.000 description 9
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 0 C**(C[U])OC1[C@](COC)OC(*)C1*=C Chemical compound C**(C[U])OC1[C@](COC)OC(*)C1*=C 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 6
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 6
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 6
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 6
- 239000003480 eluent Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- 150000003335 secondary amines Chemical group 0.000 description 6
- XLIFWDZVNRWYKV-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl n-(2-hydroxyethyl)carbamate Chemical compound C1=CC=C2C(COC(=O)NCCO)C3=CC=CC=C3C2=C1 XLIFWDZVNRWYKV-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000005289 controlled pore glass Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 150000003536 tetrazoles Chemical class 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VKIGAWAEXPTIOL-UHFFFAOYSA-N 2-hydroxyhexanenitrile Chemical compound CCCCC(O)C#N VKIGAWAEXPTIOL-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N Azide Chemical compound [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical group NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 229960005215 dichloroacetic acid Drugs 0.000 description 2
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 2
- 229940043279 diisopropylamine Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical group O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003003 phosphines Chemical class 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical class OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 2
- 125000006853 reporter group Chemical group 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical group CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 2
- WMSUFWLPZLCIHP-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 9h-fluoren-9-ylmethyl carbonate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)ON1C(=O)CCC1=O WMSUFWLPZLCIHP-UHFFFAOYSA-N 0.000 description 1
- AFINAILKDBCXMX-PBHICJAKSA-N (2s,3r)-2-amino-3-hydroxy-n-(4-octylphenyl)butanamide Chemical compound CCCCCCCCC1=CC=C(NC(=O)[C@@H](N)[C@@H](C)O)C=C1 AFINAILKDBCXMX-PBHICJAKSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 238000004679 31P NMR spectroscopy Methods 0.000 description 1
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 description 1
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical compound O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 description 1
- WAQKEWAEFDODPY-UHFFFAOYSA-N 8-n-(6-aminohexyl)-7h-purine-6,8-diamine Chemical compound C1=NC(N)=C2NC(NCCCCCCN)=NC2=N1 WAQKEWAEFDODPY-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- SPUDXBMLQHHHQQ-UHFFFAOYSA-N P.ClCC(C)(NC(C)C)Cl Chemical compound P.ClCC(C)(NC(C)C)Cl SPUDXBMLQHHHQQ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- WEVYAHXRMPXWCK-FIBGUPNXSA-N acetonitrile-d3 Chemical compound [2H]C([2H])([2H])C#N WEVYAHXRMPXWCK-FIBGUPNXSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000007825 activation reagent Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N adenyl group Chemical group N1=CN=C2N=CNC2=C1N GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 125000004005 formimidoyl group Chemical group [H]\N=C(/[H])* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Inorganic materials [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- FEHUTHGOLLQBNW-UHFFFAOYSA-N n-[chloro-[di(propan-2-yl)amino]phosphanyl]-n-propan-2-ylpropan-2-amine Chemical compound CC(C)N(C(C)C)P(Cl)N(C(C)C)C(C)C FEHUTHGOLLQBNW-UHFFFAOYSA-N 0.000 description 1
- UPPVRFOGRCBSJP-UHFFFAOYSA-N n-dichlorophosphanyl-n-propan-2-ylpropan-2-amine Chemical compound CC(C)N(C(C)C)P(Cl)Cl UPPVRFOGRCBSJP-UHFFFAOYSA-N 0.000 description 1
- RRTXKQSFZYOTNW-UHFFFAOYSA-N n-phosphanyl-n-propan-2-ylpropan-2-amine Chemical compound CC(C)N(P)C(C)C RRTXKQSFZYOTNW-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical group [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/04—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/22—Amides of acids of phosphorus
- C07F9/24—Esteramides
- C07F9/2454—Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic
- C07F9/2458—Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic of aliphatic amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/06—Phosphorus compounds without P—C bonds
- C07F9/22—Amides of acids of phosphorus
- C07F9/26—Amides of acids of phosphorus containing P-halide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6558—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
- C07F9/65586—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6561—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
- C07F9/65616—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
Definitions
- the present invention relates to a modified phosphoramidite process for the production of modified nucleic acids and new compounds which are used in this process.
- Nucleic acids are one of the group of compounds that are fundamental to life in the world and are therefore present in every living being. The genetic information is stored in them. They are also a criterion for distinguishing and detecting different types of living beings, since the nucleic acid sequences are characteristic of each living being. There has been no shortage of attempts to both synthesize and detect nucleic acids.
- Nucleic acids can be synthesized chemically or enzymatically. The chemical synthesis of the naturally occurring ⁇ -configured nucleic acids has recently become increasingly important, since large amounts of nucleic acids with a defined nucleotide sequence can be produced in this way. Chemical synthesis has established itself particularly for the synthesis of ⁇ -configured oligonucleotides.
- nucleoside monophosphate in which all reactive groups with the exception of the phosphate residue are protected, is reacted with a coupling agent, for example a trialkylarylsulfonic acid chloride, with a further nucleoside in which all the reactive residues apart from the hydroxyl group on which the reaction is to take place are protected.
- a coupling agent for example a trialkylarylsulfonic acid chloride
- the yields in this process are low, mainly because the condensation steps to build up the oligonucleotide chain lead to undesired side reactions on the non-esterified OH functions of the internucleotide (phosphate) bridge and lead to complex reaction mixtures. It also has the major disadvantage that the phosphoric diesters formed are only soluble in a few protic solvents in which the esterification must be carried out. Such solvents such as pyridine, dimethylformamide or dimethyl sulfoxide have known disadvantages, such as high boiling points.
- the isolation and purification must be carried out using ion exchangers and cannot be carried out in a simple manner, for example over silica gel using low-boiling solvents (such as dichloromethane).
- the phosphotriester method avoids the disadvantage of the insolubility of the products in numerous organic solvents.
- the phosphotriester method works with a phosphoric acid derivative that has only 1 reactive group but 2 hydroxyl groups protected by different protective groups directly on the phosphorus atom. After the reaction with the first nucleoside, one of the protective groups is split off and the resulting hydroxyl group can then be activated for the reaction with the second nucleoside. This procedure means that it is necessary to carry out two additional reaction steps on the nucleoside phosphate, which leads to a reduction in the yield of activated nucleoside phosphate.
- the derivative of phosphorous acid is reacted with a first nucleoside; the nucleoside replaces the reactive group.
- the secondary amino group is selectively replaced by a second nucleoside.
- a tetrazole is usually used as the activation reagent in the second step.
- the nucleotide sequence is oxidized, for example with iodine, and the protective group is split off.
- the phosphoramidite process is described in a variant as a solid phase process. The growing nucleotide sequence is bound to a solid phase. The separation of excess synthesis reagents and building blocks and the purification of the oligonucleotide sequence has been greatly simplified. Commercially available nucleic acid synthesizers operate using this method. In their construction, for example, they are tailored to the specific steps of the phosphoramidite process.
- Nucleic acids with a known nucleotide sequence are particularly used for the specific detection of DNA in biological sample material.
- the property is exploited that the individual strands of nucleic acids can react with other single-stranded nucleic acids to form a double strand if the single strands have complementary nucleotide sequences and both have the same configuration at C-1 of the ribose ( ⁇ or ⁇ ). Since the naturally occurring nucleic acids are ⁇ -configured with regard to the linking of bases and sugars, the ⁇ -nucleic acids in particular can be considered as complementary nucleic acids. The process of double strand formation is called hybridization.
- the formation of a double strand can be demonstrated if a modified single-stranded complementary nucleic acid is used for hybridization with the single-stranded nucleic acid.
- the amount of hybridized nucleic acids is then determined via the modification, which can be a radioactive label, for example.
- nucleic acids either an existing natural nucleic acid can be modified chemically or enzymatically, or the nucleotide sequence can be synthesized with the aid of already modified nucleotide building blocks.
- nucleic acids by modifying already synthesized nucleic acids at the ends, as is proposed, for example, for the 5'-end in WO 86/07363, only nucleic acids can be produced which contain a single modified nucleotide per single strand. Methods for determining the amount of nucleic acids with such modified nucleic acids as probes are therefore not very sensitive.
- US Pat. No. 4,816,569 describes a process for the production of nucleotide sequences according to the principle of the phosphortriester method, in which further mononucleotide units are attached to a mononucleotide modified at the 3'-phosphate residue, the last of which may be modified at the 5 'end.
- a multiple label obtainable in this way is relatively cumbersome since at least two differently modified mononucleotide units are required.
- EP-A-0 285 058 describes a process for incorporating base-modified mononucleotides into nucleic acids and claims mono- and polynucleotides to which a reporter group is attached via a phosphorus atom.
- Preferred radical A of formula I is an oxygen protecting group.
- Protecting groups which are suitable for protecting the 5'-hydroxy group in nucleotide syntheses are known.
- Protecting groups which can be removed with acid, such as the triphenylmethyl group or the dimethoxytriphenylmethyl group, are used particularly often.
- the radical A denotes a nucleotide or oligonucleotide, it can be a natural or a modified nucleotide or oligonucleotide.
- the nucleotides are preferred over the oligonucleotides, since the synthesis effort with oligonucleotides is increased.
- the nucleotides or oligonucleotides of residue A can also be residues produced according to the invention.
- Reactive groups of the nucleotides or oligonucleotides of residue A are preferably protected by suitable protective groups.
- the terminal 5'-hydroxy group of the nucleotide or oligonucleotide of the radical A is protected by an oxygen protecting group. This oxygen protecting group has in particular the meaning given under A above.
- the natural nucleobase of residue B is preferably adenine, thymine, cytosine, uracil or guanine.
- the modified bases can be, for example, bases modified in the ring or in the substituents in the structure. Examples are 7-deazaguanine or 5-aminoalkyluracil or 8-aminohexylamino-adenine.
- Preferred bases are those in which the Watson-Crick base pairing with a complementary nucleic acid is not influenced or is influenced very little.
- the remainder T can have the ribo or arabino configuration.
- the ribo configuration is preferred.
- Basic, acidic or nucleophilically cleavable groups preferably the t-butyldimethylsilyl or triisopropylsilyl group, are particularly suitable as the protective group of the hydroxyl radical.
- the protective group V is preferably a selectively removable protective group.
- a protective group is preferred which is split off simultaneously under the conditions under which the finished nucleotide sequence is split off from the solid support.
- Protecting groups which can be split off with acid, for example the meaning in A, are therefore not preferred.
- Alkaline or ammoniacal separable groups are particularly preferred Protecting groups; the fluorenylmethoxycarbonyl group or the trifluoroacetyl group has proven to be particularly favorable.
- Alkyl groups and alkoxy groups are understood to mean residues with 1 to 6, preferably 1 to 4, carbon atoms.
- Compounds of the formula VII are in particular secondary amines of the formula H-NR1R2 which are known to the person skilled in the art, wherein R1 and R2 are identical or different and are primary, secondary or tertiary alkyl radicals having 1-10 carbon atoms, or together an optionally alkyl-branched cycloalkyl radical having 5-7 carbon atoms, which contain one or two nitrogen, oxygen and / or sulfur atoms as heteroatoms can represent, or N R1 R2 represents an imidazolyl, triazolyl, tetrazolyl, 3-nitro-1,2,4-triazolyl, thiazolyl, pyrrolyl, benztriazolyl or benzhydroxytriazolyl radical. Diisopropylamine and morpholine have proven to be particularly preferred amines.
- Linear or branched, saturated or unsaturated hydrocarbons having 1 to 10, preferably 2 to 6, carbon atoms are to be mentioned in particular as bridge members.
- the hydrocarbon chain can be interrupted by heteroatoms, for example oxygen or sulfur.
- the bridge member can also contain aliphatic or aromatic ring systems.
- the pontic can also carry further heteroatoms. With regard to the reactions which are to be carried out with compounds which contain this bridge member in the process according to the invention, however, those bridge members which have free unsubstituted or primary amino groups or hydroxyl groups as substituents must be excluded.
- the bridge member is connected to n groups U via n-covalent bonds. The preferred number of n is 1 to 200.
- the compounds of the formula III have the advantage that they can be used both for the synthesis of nucleoside phosphoramidites for the phosphoramidite synthesis of nucleic acids and also have a reactive group in protected form; this can serve as a linking point for detectable residues.
- the nucleotide sequence of the formula IX thus produced preferably has 2 to 200, particularly preferably 20 to 60 nucleotide building blocks. Of these, 10 to 80%, particularly preferably 20 to 50%, of the nucleotide building blocks made from nucleoside monophosphates of the formula I are nucleotide building blocks modified at the P atom, with more than one nucleotide building block being modified per nucleotide sequence. These modified nucleotide building blocks are preferably 2-5 nucleotides apart in the sequence.
- the compounds of formula IX can be used in a variety of ways.
- nucleotide sequences of the formula IX prepared according to the invention can be used to produce nucleotide sequences in a simple manner which have a plurality of detectable residues or residues which can be converted into a detectable residue. It has been shown that the detection of nucleic acids becomes more sensitive.
- a reactive group Y is, for example, an easily nucleophilically substitutable group or an electrophilic group.
- Compounds of the formula IV are, for example, carboxylic acid halides.
- Electrophilic groups are, for example, the groups in activated esters or anhydrides.
- a preferred ester is, for example, the N-hydroxysuccinimide ester of haptens if they have a carboxyl group.
- the further nucleotide with the meaning of the residues K or J can be a natural or a modified nucleotide.
- the nucleotide sequence with the meaning of the residues K or J can contain both natural and modified nucleotide building blocks.
- the nucleotide sequence of the formula V preferably has 2 to 200, particularly preferably 20 to 60 nucleotide building blocks. Of these, 10 to 80%, particularly preferably 20 to 50%, of the nucleotide building blocks are preferably nucleotide building blocks formed from nucleoside monophosphates of the formula I, more than one nucleotide building block being modified per nucleotide sequence.
- the rest W can be of low as well as high molecular structure.
- Preferred low molecular weight reporter molecules are dyes and haptens; preferred high molecular weight groups are e.g. Enzymes or immunologically active substances such as antigens or antibodies.
- Haptens are particularly preferred. Of these, those are particularly preferred that do not occur in body fluids under normal conditions, such as digoxigenin. Haptens and in particular digoxigenin have proven to be particularly advantageous as an immunologically active substance since the nucleotide sequences containing them are not changed very much in their molecular weight by the modification and can therefore be used as length standards, for example in gel chromatography.
- the nucleotide sequences of the formula V can advantageously be used in methods for the detection of nucleic acids in a sample by contacting the sample with a nucleic acid which is essentially complementary thereto, treatment of the mixture under conditions which lead to hybridization of complementary nucleic acids and detection of the detectable residue as for the samples DNA complementary nucleotide sequence can be used.
- the detectable residue can be detected by known methods. If the detectable residue is an immunologically active substance, the rest can be implemented with a labeled immunological partner. The marking is then measured.
- haptens in particular digoxigenin, are preferred as radical W.
- the resulting double-stranded nucleic acid then contains the nucleotide sequence in at least one of the two strands.
- the synthesis of the oligonucleotide was carried out on a 1 ⁇ mole scale according to the standard protocol in a fully automatic 8600 DNA synthesizer from Biosearch.
- the synthesis device is in principle equipped with a reaction column loaded with 1 ⁇ mol thymidine carrier and in a first reaction step the 5′-OH protective group (dimethoxytrityl) is cleaved by treatment with a 2% dichloroacetic acid solution in dichloromethane.
- the subsequent capping step with acetic anhydride / dimethylaminopyridine blocks 5'-OH nucleoside which is not coupled by acetylation. This will suppresses the formation of incorrect sequences.
- the 5′-O-dimethoxytrityl protective group cleaves the synthesis cycle over again. In this way, 6 thymidine building blocks with an unmodified phosphoamidite part are introduced into the reaction sequence before another coupling with the aminoethylated thymidine phosphoamidite (Tp AE ) takes place in the last cycle.
- sample DNA is either spotted directly on filters in dilution series of 1 ⁇ l volume or, after separation in an agaraose gel, transferred to the filters by Southern blot under 20XSSC buffer. The fixation is carried out by 3 minutes of UV radiation.
- the filters are prehybridized under the following conditions: 1 h at 40 ° C in 5xSSC, 0.5% blocking reagent.
- the subsequent hybridization with digmarked oligonucleotides takes place under the following conditions: overnight at 4 ° C. in 5 ⁇ SSC, 0.5% blocking reagent, 200 ng oligonucleotides per ml hybridization solution.
- the filters are then washed 4x10 min in 2xSSC, 0.1% SDS at 40 ° C.
- the detection is carried out analogously to the non-radioactive labeling and detection kit (Boehringer Mannheim GmbH) using a POD-labeled antibody against digoxigenin.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Saccharide Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Luminescent Compositions (AREA)
Description
- Gegenstand der vorliegenden Erfindung sind ein modifiziertes Phosphoramidit-Verfahren zur Herstellung von modifizierten Nukleinsäuren und neue Verbindungen, die in diesem Verfahren eingesetzt werden.
- Nukleinsäuren sind eine der Gruppe von Verbindungen, die für das Leben auf der Welt von grundlegender Bedeutung und daher in jedem Lebewesen vorhanden sind. In ihnen ist die genetische Information gespeichert. Sie stellen außerdem ein Kriterium zur Unterscheidung und zum Nachweis verschiedener Arten von Lebewesen dar, da die Nukleinsäuresequenzen für jedes Lebewesen charakteristisch sind. Es hat daher nicht an Versuchen gefehlt, Nukleinsäuren sowohl zu synthetisieren als auch nachzuweisen.
- Nukleinsäuren können chemisch oder enzymatisch synthetisiert werden. Die chemische Synthese der natürlich vorkommenden β-konfiguierten Nukleinsäuren hat in jüngster Zeit immer größere Bedeutung erlangt, da so große Mengen von Nukleinsäuren mit einer definierten Nukleotidsequenz hergestellt werden können. Die chemische Synthese hat sich insbesondere für die Synthese von β-konfigurierten Oligonukleotiden etablieren können. Je nach Art der eingesetzten Nukleotidbausteine und der Reaktionsschritte zur Ankrüpfung an das in der Sequenz benachbarte Nukleotid unterscheidet man verschiedene Verfahren:
Im Phosphodiesterverfahren wird ein Nukleosidmonophosphat, in dem alle reaktiven Gruppen mit Ausnahme des Phosphatrests geschützt sind, zusammen mit einem Kopplungsmittel, beispielsweise einem Trialkylarylsulfonsäurechlorid, mit einem weiteren Nukleosid umgesetzt, in dem alle reaktiven Reste bis auf die Hydroxygruppe, an der die Reaktion stattfinden soll, geschützt sind. Die Ausbeuten in diesem Verfahren sind gering, vor allem deswegen, weil bei den Kondensationsschritten zum Aufbau der Oligonucleotidkette unerwünschte Nebenreaktionen an den nichtveresterten OH-Funktionen der Internucleotid(phosphat)brücke ablaufen und zu komplexen Reaktionsgemischen führen. Es weist ferner den großen Nachteil auf, daß die entstandenen Phosphorsäurediester nur in wenigen protischen Lösungsmitteln, in denen die Veresterung durchgeführt werden muß, löslich sind. Solche Lösungsmittel wie Pyridin, Dimethylformamid oder Dimethylsulfoxid haben bekannte Nachteile, wie z.B. hohe Siedepunkte. Aufgrund des polaren Charakters der Phosphodiester-Derivate muß die Isolierung und Aufreinigung über Ionenaustauscher erfolgen und kann nicht in einfacher Weise z.B. über Kieselgel unter Verwendung niedrig siedender Lösemittel (wie z.B. Dichlormethan) erfolgen. - Den Nachteil der Unlöslichkeit der Produkte in zahlreichen organischen Lösungsmitteln umgeht die Phosphotriestermethode.
- Die Phosphotriestermethode arbeitet mit einem Phosphorsäurederivat, das nur 1 reaktive Gruppe, aber 2 durch unterschiedliche Schutzgruppen geschützte Hydroxygruppen direkt am Phosphoratom aufweist. Nach der Umsetzung mit dem ersten Nukleosid wird eine der Schutzgruppen abgespalten und die entstandene Hydroxygruppe kann dann für die Reaktion mit dem zweiten Nukleosid aktiviert werden. Diese Vorgehensweise bedeutet, daß es erforderlich ist, zwei zusätzliche Reaktionsschritte an dem Nukleosidphosphat auszuführen, was zu einer Ausbeuteverringerung an aktiviertem Nukleosidphosphat führt.
- Eine besonders vorteilhafte Methode, die mit weniger Reaktionsschritten an den relativ teuren Synthesebausteinen auskommt, ist als Phosphoramiditverfahren bekannt geworden. (Gait, M.J. et al., Oligonucleotide Synthesis: A Practical Approach, IRL Press Oxford). Hier werden keine Phosphorsäurederivate, sondern Derivate der phosphorigen Säure, sogenannte Phosphoramidite eingesetzt. Folgende Reste sind an dem trivalenten Phosphoratom angebracht:
- eine reaktive Gruppe, beispielsweise ein Halogenatom, das die Verknüpfung mit dem ersten Nukleosid ermöglicht,
- eine sekundäre Aminogruppe, mit der nach Aktivierung die Verknüpfung mit dem zweiten Nukleosid bewirkt werden kann, und
- eine durch eine Schutzgruppe maskierte Hydroxygruppe.
- Im ersten Schritt des Phosphoramiditverfahrens wird das Derivat der phosphorigen Säure mit einem ersten Nukleosid umgesetzt; dabei ersetzt das Nukleosid die reaktive Gruppe. Im zweiten Schritt wird selektiv der Ersatz der sekundären Aminogruppe durch ein zweites Nukleosid bewerkstelligt. Als Aktivierungs-Reagens findet im zweiten Schritt meist ein Tetrazol Verwendung. In einem folgenden Schritt wird die Nukleotidsequenz oxidiert, beispielsweise mit Jod, und die Schutzgruppe abgespalten. Das Phosphoramiditverfahren ist in einer Variante als Festphasenverfahren beschrieben. Dabei ist die wachsende Nukleotidsequenz an eine Festphase gebunden. Die Abtrennung von überschüssigen Synthesereagentien und -bausteinen sowie die Reinigung der Oligonukleotidsequenz ist dadurch stark vereinfacht worden. Kommerziell erhältliche Nukleinsäuresyntheseautomaten arbeiten nach diesem Verfahren. Sie sind in ihrer Konstruktion z.B. auf die spezifischen Schritte des Phosphoramiditverfahrens abgestimmt.
- Nukleinsäuren mit bekannter Nukleotidsequenz finden besonders Anwendung zum spezifischen Nachweis von DNA in biologischem Probenmaterial.
- In solchen Nachweisverfahren wird die Eigenschaft ausgenutzt, daß die einzelnen Stränge von Nukleinsäuren mit anderen einzelsträngigen Nukleinsäuren unter Bildung eines Doppelstranges reagieren können, wenn die Einzelstränge zueinander komplementäre Nukleotidsequenzen aufweisen und beide dieselbe Konfiguration an C-1 der Ribose (α bzw. β) haben. Da die natürlich vorkommenen Nukleinsäuren hinsichtlich der Verknüpfung von Basen und Zuckern β-konfiguriert sind, kommen als komplementäre Nukleinsäuren insbesondere die β-Nukleinsäuren in Frage. Der Vorgang der Doppelstrangbildung wird Hybridisierung genannt.
- Die Bildung eines Doppelstrangs kann nachgewiesen werden, wenn zur Hybridisierung mit der einzelsträngigen Nukleinsäure eine modifizierte einzelsträngige komplementäre Nukleinsäure eingesetzt wird. Anschließend wird die Menge der hybridisierten Nukleinsäuren über die Modifizierung, die beispielsweise eine radioaktive Markierung sein kann, bestimmt.
- Zur Synthese von modifizierten Nukleinsäuren kann entweder eine schon vorhandene natürliche Nukleinsäure chemisch oder enzymatisch modifiziert werden, oder die Nukleotidsequenz kann unter Zuhilfenahme bereits modifizierter Nukleotid-Bausteine synthetisiert werden.
- Durch Modifikation bereits fertig synthetisierter Nukleinsäuren an den Enden, wie sie beispielsweise für das 5′-Ende in der WO 86/07363 vorgeschlagen wird, können jedoch nur Nukleinsäuren hergestellt werden, die ein einziges modifiziertes Nukleotid pro Einzelstrang beinhalten. Methoden zur Bestimmung der Menge an Nukleinsäuren mit dieserart modifizierten Nukleinsäuren als Sonden sind daher wenig empfindlich.
- Daher wurde beispielsweise in der EP-A-0 173 251 vorgeschlagen, die Basen Von kompletten Nukleinsäuren durch chemische Reaktionen zu modifizieren. Dazu sind jedoch mehrere Reaktionsschritte an der Nukleinsäure erforderlich und die Modifikationsrate ist davon abhängig, ob die Nukleinsäure Basen mit freien Aminogruppen enthält, deren Modifizierung die Fähigkeit der Hybridisierung mit komplementären Nukleinsäure nicht beeinträchtigt.
- In Jäger et al. (Biochemistry Vol. 27, S. 7237 (1988)) wird die Herstellung eines Dinukleotids beschrieben, welches eine Modifikation am Phosphoratom trägt. Die Modifikation besteht in einer über einen Linker gebundenen primären Aminogruppe und wird in einem dem herkömmlichen Phosphoramiditverfahren ähnlichen Verfahren eingeführt.
- Dieses Verfahren kann jedoch nicht auf den herkömmlichen Syntheseautomaten der Phosphoramiditmethode ausgeführt werden. Ein weiterer Nachteil ist, daß keine zusätzlichen Nükleotide mehr angefügt werden können, da die freie Aminogruppe mit den dazu benutzten elektrophilen Reagenzien selbst reagiert.
- In US-A-4,816,569 ist ein Verfahren zur Herstellung von Nükleotidsequenzen nach dem Prinzip der Phosphortriestermethode beschrieben, bei dem an ein am 3'-Phosphatrest modifiziertes Mononucleotid weitere Mononucleotideinheiten angehängt werden, von denen die letzte am 5'-Ende modifiziert sein kann. Eine auf diesem Wege erhältliche Mehrfachmarkierung ist relativ umständlich, da mindestens zwei verschieden modifizierten Mononukleotideinheiten benötigt werden.
- In EP-A-0 285 058 ist ein Verfahren zum Einbau von basenmodifizierten Mononucleotiden in Nükleinsäuren beschrieben und sind Mono- und Polynucleotide beansprucht, an die eine Reporter-Gruppe über ein Phosphoratom gebunden ist.
- Jedes der im Stand der Technik vorhandene Verfahren weist daher beträchtliche Nachteile auf.
- Aufgabe der vorliegenden Erfindung war es, die Nachteile der bekannten Verfahren zu vermeiden und insbesondere ein mit einfachen Ausgangsstoffen in wenigen Reaktionsschritten unter hohen Ausbeuten ausführbares Verfahren zur Synthese am Phosphatrest modifizierter β-konfigurierter Nukleinsäuren an Festphasen zur Verfügung zu stellen.
-
- K
- Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz
- J
- eine Hydroxygruppe oder ein 5′-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz
- B
- eine natürliche oder modifizierte Nukleobase
- T
- Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine Hydroxygruppe bedeuten,
- X
- Sauerstoff oder Schwefel,
- L
- ein (n + 1)-valentes Brückenglied,
- U
- Sauerstoff, Schwefel, Stickstoff oder N-H und
- n
- eine natürliche Zahl von 1 bis 200 bedeuten,
- A
- eine Sauerstoffschutzgruppe, ein Nukleotid oder ein Oligonukleotid,
- B
- eine natürliche oder modifizierte Nukleobase,
- X
- Sauerstoff oder Schwefel,
- L
- ein (n + 1)-valentes Brückenglied,
- T
- Wasserstoff, Niederalkyl, N₃, Niederalkoxy oder eine gegebenenfalls geschützte Hydroxygruppe,
- U
- Sauerstoff, Schwefel, Stickstoff oder N-H,
- V
- eine abspaltbare Schutzgruppe
- n
- eine natürliche Zahl von 1 bis 200 und
- D
- ein sekundärer Aminrest bedeuten.
- Verfahren zur Herstellung von Nukleinsäuren über das sogenannte Phosphoramiditverfahren sind prinzipiell bekannt, beispielsweise aus Biochimie 1985, 67, 673-684. Das Verfahren der vorliegenden Erfindung unterscheidet sich insbesondere dadurch von den Verfahren des Standes der Technik, daß ein anderes Nukleosidphosphoramidit, nämlich das der Formel I, als Ausgangsstoff eingesetzt wird.
- Bevorzugter Rest A der Formel I ist eine Sauerstoffschutzgruppe. Schutzgruppen, die für den Schutz der 5′-Hydroxygruppe in Nukleotidsynthesen geeignet sind, sind bekannt. Besonders oft verwendet werden sauer abspaltbare Schutzgruppen, wie die Triphenylmethylgruppe oder die Dimethoxytriphenylmethylgruppe.
- Wenn der Rest A ein Nukleotid oder Oligonukleotid bedeutet, so kann es sich um ein natürliches oder ein modifiziertes Nukleotid bzw. Oligonukleotid handeln. Die Nukleotide sind gegenüber den Oligonukleotiden bevorzugt, da der Syntheseaufwand bei Oligonukleotiden erhöht ist. Bei den Nukleotiden bzw. Oligonukleotiden des Rests A kann es sich auch um erfindungsgemäß hergestellte Reste halten. Reaktive Gruppen der Nukleotide bzw. Oligonukleotide des Rests A sind bevorzugt durch geeignete Schutzgruppen geschützt. Insbesondere ist die endständige 5′-Hydroxygruppe des Nukleotids bzw. Oligonukleotids des Restes A durch eine Sauerstoffschutzgruppe geschützt. Diese Sauerstoffschutzgruppe hat insbesondere die oben unter Rest A genannte Bedeutung.
- Die natürliche Nukleobase des Rests B ist bevorzugt Adenin, Thymin, Cytosin, Uracil oder Guanin. Bei den modifizierten Basen kann es sich beispielsweise um im Ring oder in den Substituenten in der Struktur veränderte Basen handeln. Beispiele sind 7-Deazaguanin oder 5-Aminoalkyluracil oder 8-Aminohexyl-amino-adenin. Bevorzugt sind solche Basen, bei denen die Watson-Crick Basenpaarung mit einer komplementären Nukleinsäure nicht oder sehr wenig beeinflußt wird.
- Der Rest T kann die Ribo- oder Arabino-Konfiguration aufweisen. Bevorzugt ist die Ribo-Konfiguration. Als Schutzgruppe des Hydroxyrests kommen insbesondere basisch, sauer oder nucleophil abspaltbare Gruppen, bevorzugt die t-Butyldimethylsilyl oder Triisopropylsilyl-Gruppe in Frage.
- Die Schutzgruppe V ist bevorzugt eine selektiv abspaltbare Schutzgruppe. Bevorzugt ist eine Schutzgruppe, die gleichzeitig unter den Bedingungen abgespalten wird, unter denen die fertige Nukleotidsequenz vom festen Träger abgespalten wird. Nicht bevorzugt sind daher sauer abspaltbare Schutzgruppen, etwa der Bedeutung in A. Besonders bevorzugt sind alkalisch oder ammoniakalisch abspaltbare Schutzgruppen; als besonders günstig hat sich die Fluorenylmethoxycarbonylgruppe oder die Trifluoracetylgruppe erwiesen.
- Unter Alkylgruppen und Alkoxygruppen werden Reste mit 1 bis 6, bevorzugt 1 bis 4 Kohlenstoffatomen verstanden.
-
- A
- eine Sauerstoffschutzgruppe, ein Nukleotid oder ein Oligonukleotid,
- B
- eine natürliche oder modifizierte Nukleobase und
- T
- Wasserstoff, eine (gegebenenfalls geschützte) Hydroxygruppe, Niederalkyl, N₃ oder Niederalkyloxy
- Z
- Halogen,
- X
- Sauerstoff oder Schwefel,
- L
- ein mindestens bivalentes Brückenglied,
- U
- Sauerstoff, Schwefel, Stickstoff oder N-H
- V
- eine abspaltbare Schutzgruppe,
- n
- eine natürliche Zahl von 1 bis 200 und
- D
- ein sekundärer Aminrest
- Das Phosphan der Formel III kann in einfacher Weise aus kommerziell erhältlichen Ausgangsstoffen synthetisiert werden. Die bevorzugte Reihenfolge der Herstellungsreaktionen sieht zunächst die Reaktion mit einem sekundären Amin vor, da dieses ein billiger Rohstoff ist. Bei diesem Reaktionsschritt können daher notfalls auch Ausbeuteverluste durch unspezifische Reaktion in Kauf genommen werden. Das Phosphan der Formel III wird bevorzugt dadurch hergestellt, daß eine Verbindung der Formel (VI)
P(-Z)₃ (VI)
in der Z eine gut austretende Gruppe bedeutet, mit einem sekundären Amin der Formel (VII)
H-D (VII)
in der - D
- ein sekundärer Aminrest
- X
- Sauerstoff oder Schwefel,
- L
- ein (n + 1)-valentes Brückenglied,
- U
- Sauerstoff, Schwefel, Stickstoff oder N-H,
- V
- eine abspaltbare Schutzgruppe,
- n
- eine natürliche Zahl von 1 bis 200
- Verbindungen der Formel VII sind insbesondere dem Fachmann bekannte sekundäre Amine der Formel H-NR¹R² wobei R¹ und R² gleich oder verschieden sind und primäre, sekundäre oder tertiäre Alkylreste mit 1-10 Kohlenstoffatomen sind, oder zusammen einen gegebenenfalls alkylverzweigten Cycloalkylrest mit 5-7 Kohlenstoffatomen, der ein oder zwei Stickstoff-, Sauerstoff- und/oder Schwefelatome als Heteroatome enthalten kann, darstellen, oder N R¹ R² einen Imidazolyl-, Triazolyl-, Tetrazolyl-, 3-Nitro-1,2,4-triazolyl-,Thiazolyl-, Pyrrolyl-, Benztriazolyl- oder Benzhydroxytriazolylrest bedeutet. Als besonders bevorzugte Amine haben sich Diisopropylamin und Morpholin erwiesen.
- Als Brückenglied sind insbesondere lineare oder verzweigte, gesättigte oder ungesättigte Kohlenwasserstoffe mit 1 bis 10, bevorzugt 2 bis 6 Kohlenstoffatomen zu nennen. Die Kohlenwasserstoffkette kann durch Heteroatome, beispielsweise Sauerstoff oder Schwefel unterbrochen sein. Das Brückenglied kann auch aliphatische oder aromatische Ringsysteme beinhalten. Das Brückenglied kann auch weitere Heteroatome tragen. Im Hinblick auf die Reaktionen, die mit Verbindungen, die dieses Brückenglied beinhalten, im erfindungsgemäßen Verfahren ausgeführt werden sollen, sind jedoch solche Brückenglieder auszuschließen, die freie unsubstituierte oder primäre Aminogruppen oder Hydroxygruppen als Substituenten aufweisen. Das Brückenglied ist über n-kovalente Bindungen mit n Gruppen U verbunden. Die bevorzugte Anzahl von n beträgt 1 bis 200.
- Die Verbindungen der Formel III haben gegenüber den Phosphanen des Standes der Technik den Vorteil, sowohl zur Synthese von Nukleosidphosphoramiditen für die Phosphoramiditsynthese von Nukleinsäuren einsetzbar zu sein, als auch in geschützter Form eine reaktive Gruppe aufzuweisen; diese kann als Verknüpfungsstelle für detektierbare Reste dienen.
- Das erfindungsgemaße Verfahren zur Herstellung von Nukleotidsequenzen umfaßt insbesondere folgende Schritte:
- Kopplungsreaktion eines Nukleosidphosphoramidits der Formel I mit einem Nukleosid, das eine freie Hydroxygruppe aufweist. Das Nukleosid mit der freien Hydroxygruppe ist bevorzugt kovalent an einen festen Träger gebunden. Die übrigen reaktiven Gruppen des Nukleosids, wie Aminogruppen, Carbonylgruppen oder weitere Hydroxygruppen sind bevorzugt durch Schutzgruppen geschützt, die unter den Bedingungen der Kopplungsreaktion stabil sind. Bevorzugt ist eine eventuell vorhandene 2′-Hydroxygruppe am Zuckerrest durch eine t-Butyldimethylsilyl-gruppe geschützt. Die freie Hydroxygruppe ist bevorzugt die 5′-Hydroxygruppe des Zuckerrests.
Das Nukleosid kann ein Mononukleosid, ein Oligo- oder Polynucleotid sein. Bevorzugt ist es jedoch ein Mononucleosid, Oligo- oder Polynukleotid aus 2 bis 200, bevorzugt 20 bis 60 Nukleotidbausteinen. Die Nukleotidbausteine können natürliche oder modifizierte Nukleotide sein.
Bei dem Nukleosid kann es sich auch um ein in erfindungsgemäßer Weise modifiziertes Nukleosid handeln. - Anschließend wird die an die Festphase gebundene Nukleotidsequenz oxidiert. Als bevorzugtes Oxidationsmittel hat sich Jod erwiesen.
- Daraufhin wird bevorzugt ein "capping"-Schritt durchgeführt. Dies geschieht nach bekannten Methoden.
- Selektive Abspaltung der Schutzgruppe A bzw. der Sauerstoffschutzgruppe der endständigen 5′-Hydroxygruppe des Nukleotids oder Oligonukleotids des Rests A. Im bevorzugten Fall, wenn die Sauerstoffschutzgruppe des Rests A eine sauer abspaltbare Schutzgruppe wie eine Dimethoxytriphenylmethylgruppe ist, kann sie beispielsweise durch Dichloressigsäure abgespalten werden.
- Diese ersten Schritte können nun, falls gewünscht, wiederholt werden. Als Mononukleosidphosphoramidit kann dabei ein herkömmliches Mononukleosidphosphoramidit oder eines der Formel I eingesetzt werden.
- Sobald die gewunschte Lange der Nukleotidsequenz erreicht ist, werden die Schutzgruppen V abgespalten. Im Falle der Aminoschutzgruppe hat sich der Trifluoracetyl- oder der Fluorenylmethoxycarbonylrest (Fmoc) als besonders vorteilhaft erwiesen.
- Anschließend wird die Nukleotidsequenz in bekannter Weise vom festen Träger abgespalten. Die Bedingungen richten sich nach der Art der kovalenten Bindung und werden nicht durch die erfindungsgemäße Modifizierung beeinflußt.
Besonders bevorzugt sind jedoch solche Bedingungen, unter denen die Abspaltung der Schutzgruppe V und die Abspaltung der Nukleotidsequenz vom Träger gleichzeitig ablaufen. Dies kann beispielsweise bei Verwendung eines über 3′-0-Succinyl an CPG (controlled pore glass) gebundenen Trägers und der Fmoc-Schutzgruppe als Rest V bewerkstelligt werden, indem Alkali, vorzugsweise konzentrierte wässrige Ammoniaklösung oder Aminlösung als Abspaltungsreagens verwendet wird. - Meist wird ein Reinigungsschritt, beispielsweise eine Reinigung mittels HPLC chromatographisch oder/und eine Dialyse angeschlössen. Hier gelten die bei der Oligonucleotidsynthese gebräuchlichen Bedingungen.
- All diesen Schritten ist gemeinsam, daß außer der Tatsache, daß ein anderes Nukleosidphosphoramidit eingesetzt wird und daß anstelle der Reagenzien zur Abspaltung der Sauerstoffschutzgruppen am Phosphatrest des Standes der Technik Reagenzien zur Abspaltung der Schutzgruppe V eingesetzt werden, keine Änderungen im herkömmlichen Verfahrensablauf vorgenommen werden müssen. Insbesondere ist die Anzahl der Schritte die gleiche oder kleiner wie bei dem herkömmlichen Phosphoramiditverfahren. Daher ist das erfindungsgemäße Verfahren in den erhältlichen Nukleinsäuresynthesizern für die Phosphoramiditsynthese ohne apparative Änderungen durchführbar.
- Die so hergestellte Nukleotidsequenz der Formel IX weist bevorzugt 2 bis 200, besonders bevorzugt 20 bis 60 Nukleotidbausteine auf. Davon sind bevorzugt 10 bis 80%, besonders bevorzugt 20 bis 50% der Nukleotidbausteine aus Nukleosidmonophosphaten der Formel I entstandene am P-Atom modifizierte Nukleotidbausteine, wobei pro Nukleotidsequenz mehr als ein Nukleotidbaustein modifiziert ist. Diese modifizierten Nukleotidbausteine weisen in der Sequenz bevorzugt einen Abstand von 2-5 Nukleotiden zueinander auf.
Die Verbindungen der Formel IX sind vielseitig einsetzbar. - Aus den erfindungsgemäß hergestellten Nukleotidsequenzen der Formel IX können auf einfache Weise Nukleotidsequenzen hergestellt werden, die mehrere detektierbare Reste oder Reste aufweisen, die in einen detektierbaren Rest überführt werden können. Es hat sich erwiesen, daß der Nachweis von Nukleinsäuren damit empfindlicher wird.
-
- K
- Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz
- J
- eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz
- B
- eine natürliche oder modifizierte Nukleobase
- T
- Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine Hydroxylgruppe bedeuten
- W
- ein detektierbarer Rest oder ein Rest ist, der in einen detektierbaren Rest überführt werden kann und X, L, U die oben angegebene Bedeutung haben, und
- n
- eine natürliche Zahl von 1 bis 200 ist, wobei mehr als ein Nukleotidbaustein gemäß Formel V am Phosphoratom modifiziert ist;
- Y
- eine reaktive Gruppe und
- W
- ein detektierbarer Rest oder ein Rest ist, der in einen detektierbaren Rest überführt werden kann.
- Als reaktive Gruppe Y kommt beispielsweise eine leicht nukleophil substituierbare Gruppe oder eine elektrophile Gruppe in Frage. Verbindungen der Formel IV sind beispielsweise Carbonsäurehalogenide.
- Elektrophile Gruppen sind beispielsweise die Gruppen in aktivierten Estern oder Anhydriden. Ein bevorzugter Ester ist beispielsweise der N-Hydroxysuccinimidester von Haptenen, wenn diese eine Carboxylgruppe aufweisen.
- Das weitere Nukleotid in der Bedeutung der Reste K bzw. J kann ein natürliches oder ein modifiziertes Nukleotid sein. Die Nukleotidsequenz in der Bedeutung der Reste K bzw. J kann sowohl natürliche, als auch modifizierte Nukleotidbausteine enthalten. Die Nukleotidsequenz der Formel V weist bevorzugt 2 bis 200, besonders bevorzugt 20 bis 60 Nukleotidbausteine auf. Davon sind bevorzugt 10 bis 80%, besonders bevorzugt 20 bis 50% der Nukleotidbausteine aus Nukleosidmonophosphaten der Formel I entstandene Nukleotidbausteine, wobei pro Nukleotidsequenz mehr als ein Nukleotidbaustein modifiziert ist.
- Der Rest W kann nieder-, wie auch hochmolekularer Struktur sein. Bevorzugte niedermolekulare Reportermoleküle sind Farbstoffe und Haptene; bevorzugte hochmolekulare Gruppen sind z.B. Enzyme oder immunologisch aktive Substanzen wie Antigene oder Antikörper. Besonders bevorzugt sind Haptene. Von diesen sind insbesondere solche bevorzugt, die unter normalen Bedingungen in Körperflüssigkeiten nicht vorkommen, wie beispielsweise Digoxigenin. Als besonders vorteilhaft haben sich Haptene und insbesondere Digoxigenin als immunologisch aktive Substanz erwiesen, da die sie aufweisenden Nukleotidsequenzen durch die Modifizierung nicht sehr in ihrem Molekulargewicht verändert werden und so als Längenstandards beispielsweise in der Gelchromatographie eingesetzt werden können.
- Es hat sich herausgestellt, daß das erfindungsgemäße Verfahren zur Herstellung von Nukleotidsequenzen weiterhin folgende Vorteile gegenüber dem Stand der Technik aufweist:
- Dadurch, daß die Modifizierung am Phosphoratom angebracht ist, wird die Basenpaarung der gebildeten Nukleotidsequenz mit einer komplementären Nukleotidsequenz nicht beeinträchtigt.
- Die gebildeten Nukleotidsequenzen werden von Polymerasen als Primer akzeptiert.
- Die Modifizierung kann zusätzlich zu anderen Modifizierungen, beispielsweise des Zuckerrests oder der Base, oder zu 3′- oder 5′-Endmarkierungen eingeführt werden.
- Es handelt sich um ein Verfahren, das eine konvergente Synthese der benötigten Bausteine beinhaltet. Solche Verfahren sind besonders vorteilhaft, da die Ausbeuten insbesondere an den teuren Nukleotidbausteinen hoch gehalten werden können.
- Es können zur Synthese der Nukleosidphosphoramidite die leicht erhältlichen, natürlich vorkommenden β-Nukleoside eingesetzt werden.
- Bei gleichbleibender oder sogar verringerter Anzahl von Reaktionsschritten wurde es möglich, die bekannten Vorteile des Festphasen-Phosphoramiditverfahrens zur Synthese von Nukleotidsequenzen zur Synthese von am Phosphatrest modifizierten Nukleotidsequenzen zu nutzen.
- Durch das erfindungsgemaße Verfahren ist es möglich, eine ganz spezielle Zahl von Modifikationen an ganz bestimmten Stellen der Sequenz einzuführen.
- Die gebildete modifizierte Nukleotidsequenz ist universell einsetzbar. Beispielsweise können verschiedene detektierbare Reste gewählt werden.
- Dadurch, daß die detektierbaren Reste nicht von Anfang an in den Nukleosidphosphoramiditen vorhanden sind, werden Komplikationen, während der chemischen Synthese des Nucleotides wie sie beispielsweise bei Enzymmarkierungen oder anderen empfindlichen Reportergruppen zu erwarten sind, vermieden.
- Die sterische Hinderung durch Reportermoleküle kann die Ausbeute und Effizienz von Oligonucleotid-Synthesen verringern. Dieser Nachteil wird im erfindungsgemäßen Verfahren vermieden.
- Die Nukleotidsequenzen der Formel V können vorteilhaft in Verfahren zum Nachweis von Nukleinsäuren in einer Probe durch Inkontaktbringen der Probe mit einer dazu im wesentlichen komplementären Nukleinsäure, Behandlung des Gemischs unter Bedingungen, die zur Hybridisierung zueinander komplementärer Nukleinsäuren führt, und Nachweis des detektierbaren Restes als zur Proben-DNA komplementäre Nukleotidsequenz eingesetzt werden. Der Nachweis des detektierbaren Restes kann nach bekannten Methoden erfolgen. Wenn der detektierbare Rest eine immunologisch aktive Substanz ist, so kann der Rest mit einem markierten immunologischen Partner umgesetzt werden. Anschließend wird dann die Markierung gemessen. Als Rest W sind im Falle dieser Verwendung der erfindungsgemäßen Nukleinsäuren Haptene, insbesondere Digoxigenin, bevorzugt.
- Ebenso sind sie als Primer in der enzymatischen Synthese von doppelsträngigen Nukleinsäuren aus einzelsträngigen Nukleinsäuren geeignet. Die entstehende doppelsträngige Nukleinsäure enthält dann die Nukleotidsequenz in mindestens einem der beiden Stränge.
- Die Erfindung wird durch die folgenden Beispiele erläutert:
- In einem 1 l-Rundkolben werden 68,0 g (ca. 200 mMol) 9-Fluorenylmethoxycarbonyl-N-hydroxy-succinimidester (Fmoc-O-Su) unter Rühren in 300 ml Dioxan gelöst. Zu der klaren Lösung werden nacheinander 40 g in 200 ml Wasser gelöstes Na₂CO₃, sowie 14,4 ml (238 mMol) Ethanolamin gegeben. Das sich alsbald bildende breiartige Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt und anderntags abgesaugt. Der Filterrückstand, der unumgesetztes Fmoc-O-Su, N-Hydroxysuccinimid sowie das gewünschte Produkt enthält, wird aus Essigester umkristallisiert. Man erhalt nach Trocknen im Vakuum 47,4 g = 76% der Theorie an reinem Produkt.
¹H-NMR (ppm) (DMSO):3.4 (m, CH₂O, 2 H); 3,6 (t, CH₂N, 2H); 4,2-4,5 (m, CH₂OCO + H [C9], 3 H); 5,2 (s [b], NH, 1 H); 7,2-7,9 (m, aromatisch, 8 H); - In einem 2 l-Dreihalsrundkolben mit 500ml Tropftrichter, KPG-Rührer, Thermometer und Aceton/Trockeneisbad werden 300 ml Äther, abs., 81 ml wasserfreies Pyridin und 87,5 ml PCl₃ (1 Mol) unter Rühren auf -70°C vorgekühlt. Man tropft dazu innerhalb von 2 Stunden 142 ml Diiospropylamin (1 Mol) in 250 ml abs. Äther und hält die Temperatur bei ca. -60 bis -65°C. Nach beendeter Zugabe läßt man das breiartig verdickte Reaktionsgemisch auf Raumtemperatur kommen und verdünnt zwecks besserer Rührbarkeit mit etwa 600 ml abs. Äther. Nach weiteren 3 Stunden Rühren bei Raumtemperatur wird der entstandene Niederschlag über eine Glasfritte abgesaugt, und mit Äther mehrfach gewaschen. Nach Abziehen des Äthers bei Normaldruck wird erst im Wasserstrahlvakuum von nicht umgesetztem PCl₃, Diisopropylamin und Pyridin befreit, sodann das verbleibende Öl im Ölpumpenvakuum fraktioniert destilliert. (Kp 46°C/0,35 Torr). Man erhält 73,4 g entsprechend 36% der Theorie des Phosphans.
31P-NMR (ppm) (CHCl₃):167,5 - In einem 100 ml-Rundkolben werden 0,9 ml Dichlor-N, N-diisopropylamin-phosphan (5 mmol) in 30 ml abs. Tetrahydrofuran gelöst und dazu 0,4 ml wasserfreies Pyridin gegeben. Unter magnetischem Rühren tropft man zu diesem Gemisch bei Raumtemperatur eine Lösung von 1,4g 2-(9-Fluorenyl-methoxycarbonyl) aminoethanol (5 mmol) in 20 ml abs. Tetrahydrofuran langsam während ca. 5 Stunden zu. Nach Absaugen des abgeschiedenen Pyridinhydrochlorides und Abziehen des Tetrahydrofurans wird das verbleibende Öl (2,2g = 98% der Theorie) direkt zur Herstellung des Nucleosidphosphamidites eingesetzt (siehe Beispiel 4).
-
- a) In einem 100 ml-Rundkolben werden 2,5 g 5′-O-Dimethoxytrityl-2′-desoxythymidin (4,6 mMol) in 50 ml Dichlormethan (über Na₂CO₃ destilliert) sowie 2,5 ml N-Ethyl-N, N-diisopropyl-amin gelöst. Dazu werden mit einer Einwegspritze 2 ml 2-(9-Fluorenylmethoxycarbonyl-) aminoethyl-N, N-diisopropylamino-phosphochloridit (ca. 5 mmol) gegeben. Man rührt 48 Stunden bei Raumtemperatur und dampft dann im Vakuum bis zum dickflüssigen Rückstand ein.
Zu Aufreinigung des Rohproduktes wird an Kieselgel 60 chromatographiert (Säule 30 x 2 cm, Laufmittel Petroläther 50 - 75°C/Essigsäureethylester/Dichlormethan/Pyridin = 4 : 8 : 8 : 2. Die produktenthaltenden Fraktionen werden gesammelt, das Lösungsmittel restlos im Vakuum abgezogen.
Man erhält 0,9 g entsprechend 20% der Theorie eines weißen, schaumigen Rückstandes. - b) In einem Alternativverfahren werden 5,45 g 5′-0-Dimethoxytrityl-2′-desoxythymidin (10 mmol) unter Rühren in 100 ml absolutem Dioxan gelöst. Dazu tropft man innerhalb von 30 Minuten eine Lösung von 2,7 g Bis (diisopropylamino)chlorphosphan (10 mmol), das nach S. Hammoto, H. Takaku, Chemistry Lett. 1986, 1401-1404 dargestellt wurde, und 2,1 ml Triethylamin (15 mmol) in 100 ml Dioxan. Die Umsetzung wird dünnschichtchromatographisch in Methylenchlorid/Essigsäureethylester = 1:1 als Laufmittel verfolgt. Nach 2 Stunden wird der Niederschlag aus Triethylammoniumchlorid unter Argonschutzgas abfiltriert und das Filtrat eingeengt (farbloser Schaum). Das gebildete 5′-0-Dimethoxytrityl-2′-desoxythymidin-3′-0-bis-(N,N-diisopropylamino)phosphan wird ohne weitere Isolierung zum gewünschten Produkt umgesetzt. Dazu wird der farblose Schaum in 100 ml absolutem Acetonitril aufgenommen und 3 g 2-(9-Fluorenylmethoxycarbonyl)-amino-ethanol (Beispiel 1) sowie 35 mg (5 mmol) Tetrazol (sublimiert) zugegeben. Man läßt über Nacht bei Raumtemperatur rühren und bricht dann die Reaktion durch Zugabe von 100 ml Essigsäureethylester ab. Nach dreimaliger Extraktion mit gesättigter Natriumchloridlösung werden die vereinigten organischen Phasen über Natriumsulfat getrocknet. Nach Abfiltrieren des Natriumsulfats wird das Filtrat eingeengt. Zur Reinigung des Rohprodukts wird über Kieselgel 60 H chromatographiert: (1 = 24 cm, d = 4 cm; Laufmittel: Methylenchlorid/Essigsäureethylester = 5:1). Nach Entfernen des Lösungsmittels im Vakuum erhält man wiederum einen farblosen Schaum. Dieser wird in 10 ml Methylenchlorid aufgenommen und mit 400 ml eiskaltem n-Hexan ausgefällt. Man erhalt 1.8 g entsprechend 20% der Theorie des gewünschten Produktes als farbloses Pulver.
Die beiden Diastereomeren können sowohl im DC als auch im 31P-NMR unterschieden werden:
Rf-Wert (CH₂Cl₂/EE = 1:1): 0,04, 0,15
31P-NMR (ppm) (CD₃CN): 146,7, 145,8 - Die Synthese des Oligonucleotids wurde im 1 uMol-Maßstab nach Standardprotokoll in einem vollautomatischen DNA-Synthesizer 8600 der Firma Biosearch durchgeführt. Hierzu wird prinzipiell das Synthese-Gerät mit einer mit 1 µmol Thymidin-Träger beschickten Reaktions-Säule bestückt und in einem ersten Reaktionsschritt die 5′-OH-Schutzgruppe (Dimethoxytrityl-) durch Behandlung mit einer 2%igen Dichloressigsäure-Lösung in Dichlormethan abgespalten. Nach Waschen der Säule mit Acetonitril erfolgt die Kupplung des im erfindungsgemäßen Sinne P-modifizierten 5′-O-dimethoxytriphenylmethyl-2′-desoxythymidin-3′-O-[2-(9-fluorenylmethoxy-carbonyl)aminoethyl]-N,N-diisopropylamino-phosphans aus Beispiel 4 unter gleichzeitiger Aktivierung mit Tetrazol in Acetonitril an die freie 5′-OH-Funktion des Start-Nucleosids. Das noch trivalent vorliegende P-Atom wird nach erneutem Waschen durch Oxidation mit einer Lösung von Jod in THF/Lutidin/H₂O in das natürliche pentavalente Phosphat überführt. Der nachfolgende Capping-Schritt mit Acetanhydrid/Dimethylaminopyridin blockiert durch Acetylierung nicht gekuppeltes 5′-OH-Nucleosid. Dadurch wird die Bildung von Fehlsequenzen unterdrückt. Nach Waschen beginnt mit erneuter Abspaltung der 5′-O-Dimethoxytrityl-Schutzgruppe der Synthesezyklus von vorne. In dieser Weise werden nun 6 Thymidin-Bausteine mit nicht-modifiziertem Phosphoamidit-Teil in die Reaktionsfolge eingebracht, bevor im letzten Zyklus eine weitere Kupplung mit dem aminoethylierten Thymidin-Phosphoamidit (TpAE) erfolgt. Nach beendeter Synthese wird durch Behandlung mit konzentrierter wässriger Ammoniaklösung das am Träger gebundene Oligonucleotid freigesetzt und gleichzeitig dabei auch die Fmoc-Schutzgruppe des aminoethylierten Phosphats entfernt. Es resultieren 86 ODE/A₂₆₀. Dieses Roh-Gemisch wurde unter folgenden Bedingungen mittels HPLC aufgearbeitet.
Säule: Mono Q HR 10/10 (Pharmacia)
Eluent A (Wasser), Eluent B (0,5 n-LiCl)
Gradient: von A in 60 Minuten auf 50% B.
Das Eluat wird über Nacht gegen H₂O dialysiert (Spektrapor, MWCO 1000)
Ausbeute: 55 ODE - 55 ODE/A₂₆₀ des Oligomers aus Beispiel 5 werden in 1 ml 0,1 m-Na-boratpuffer pH 8,5 gelöst und mit einer Lösung von 10 mg Digoxigenin-O-succinyl-amidocapronsäure-N-hydroxysuccinimidester in 1 ml Dimethylformamid versetzt. Man rührt das Gemisch 18 Stunden bei Raumtemperatur, engt bis zur Trockene im Vakuum ein, löst in H₂O und trennt das Produktgemisch per HPLC:
Säule: Shandon Hypersil ODS, 25 cm x 0,4 cm
Eluent A: 0,1 m Triethylammoniumacetat-Lösung
Eluent B: 0,1 m Triethylammoniumacetat-Lösung/Isopropanol
Gradient: von A in 30 Minuten auf 50% B
Die Produktfraktion wird im Vakuum eingedampft, in Wasser aufgenommen und über Nacht gegen destilliertes Wasser dialysiert (Sprectrapor, MWCO 1000)
Ausbeute: 11 ODE/A₂₆₀ - Drei identische Oligonukleotide (38 mere) mit HIV spezifischer Sequenz wurden in ihren Hybridisierungseigenschaften gegen ein kloniertes HIV-DNA-Fragment (954bp PvuII/BglII-Fragment aus der gag-Region des HIV-Wfl.13-Isolats) getestet. An folgenden Stellen sind die Oligonukleotide mit Digoxigenin markiert:
- 1. Je an einem 5′-terminalen und einem in der Mitte lokalisierten Uracil (d.h. zwei Dig-Markierungen, Basenmarkierung an C-5 des Uracil).
- 2. Je an einem 5′-terminalen, 3′-terminalen und in der Mitte lokalisierten Uracil (3fache Dig-Markierung, Basenmarkierung an C-5 des Uracil).
- 3. Je an einer 5′-terminalen und in der Mitte lokalisierten Phosphatgruppe (2 Dig-Markierungen/Molekül, erfindungsgemäße Markierung).
- Die Sample DNA wird entweder direkt auf Filter in Verdünnungsreihen von jeweils 1µl Volumen gespottet oder nach Auftrennung im Agaraose-Gel durch Southern Blot unter 20XSSC-Puffer auf die Filter transferiert. Die Fixierung erfolgt durch 3-minütige UV-Bestrahlung.
- Die Filter werden unter folgenden Bedingungen prähybridisiert: 1 h bei 40°C in 5xSSC, 0,5% Blocking Reagens. Die anschließende Hybridisierung mit Digmarkierten Oligonucleotiden erfolgt unter folgenden Bedingungen: Über Nach bei 4°C in 5xSSC, 0,5% Blocking Reagens, 200 ng Oligonucleotide pro ml Hybridisierungslösung.
- Die Filter werden danach 4x10 min in 2xSSC, 0,1% SDS bei 40°C gewaschen.
- Die Detektion wird analog zu dem nicht-radioaktiven Markierungs- und Detektionskit (Boehringer Mannheim GmbH) mittels POD-markierten Antikörpers gegen Digoxigenin durchgeführt.
-
Nachweisgrenze der gespotteten/geblotteten Sample DNA mit zweifach basenmarkiertem Oligonukleotid (1): 10 ng mit dreifach basenmarkiertem Oligonukleotid (2): 10 ng mit zweifach über Phosphat markiertem Oligonukleotid (3): 1-10 ng
eingesetzt wird, wobei
durch Reaktion mit Phosphanen der Formel III
in der
hergestellt werden. Die Reaktionsbedingungen können vom Fachmann analog zu denen gewählt werden, wie sie für die Nukleosidphosphoramidite des Standes der Technik bereits beschrieben sind. Jedoch muß darauf geachtet werden, daß dabei keine Reagenzien verwendet werden, bei deren Verwendung die Schutzgruppe V abgespalten werden kann. Diese Reaktionsbedingungen sind dem Fachmann für die einzelnen Schutzgruppen bekannt.
umsetzt, und das Produkt mit einer Verbindung der Formel VIII
H-X-L(-U-V)n (VIII)
in der
Der Rest Z ist Halogen, bevorzugt Chlor.
Y-W (IV),
umgesetzt wird, wobei
Claims (12)
- Verfahren zur Herstellung einer Nukleotidsequenz der Formel VK Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz,J eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz,B eine natürliche oder modifizierte Nukleinbase,T Wasserstoff, Niederalkyl, Azid, Niederalkoxy oder eine Hydroxylgruppe,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H,W ein detektierbarer Rest oder ein Rest ist, der in einen detektierbaren Rest überführt werden kann undn eine natürliche Zahl von 1 bis 200 ist, wobei mehr als ein Nukleotidbaustein gemäß Formel V am Phosphoratom modifiziert ist,durch Umsetzung einer Nukleotidsequenz der Formel IX,K Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz,J eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz,B eine natürliche oder modifizierte Nukleobase,T Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine Hydroxygruppe,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H undn eine natürliche Zahl von 1 bis 200 bedeuten, wobei mehr als ein Nukleotidbaustein gemäß Formel IX am Phosphoratom modifiziert ist,mit einer Verbindung der Formel IV
Y-W (IV),
wobeiY eine reaktive Gruppe undW ein detektierbarer Rest oder ein Rest ist, der in einen detektierbaren Rest überführt werden kann. - Nukleotidsequenz der Formel VK Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz,J eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz,B eine natürliche oder modifizierte Nukleinbase,T Wasserstoff, Niederalkyl, Azid, Niederalkoxy oder eine Hydroxylgruppe,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H,W ein detektierbarer Rest oder ein Rest ist, der in einen detektierbaren Rest überführt werden kann undn eine natürliche Zahl von 1 bis 200 ist, wobei mehr als ein Nukleotidbaustein gemäß Formel V am Phosphoratom modifiziert ist.
- Verfahren zu Herstellung von Nukleotidsequenzen der Formel IXK Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz,J eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz,B eine natürliche oder modifizierte Nukleobase,T Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine Hydroxygruppe,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H undn eine natürliche Zahl von 1 bis 200 bedeuten,durch Reaktion einer Verbindung der Formel IA eine Sauerstoffschutzgruppe, ein Nukleotid oder ein Oligonukleotid,B eine natürliche oder modifizierte Nukleinbase,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,T Wasserstoff oder eine gegebenenfalls geschützte Hydroxygruppe,U Sauerstoff, Schwefel, Stickstoff oder N-H,V eine abspaltbare Schutzgruppe,n eine natürliche Zahl von 1 bis 200 undD ein sekundärer Aminrest bedeuten,mit einem weiteren Nukleosid, das eine freie 5'-Hydroxylgruppe aufweist und Oxidation der entstandenen Nukleotidsequenz.
- Nukleotidsequenz der Formel IXK Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz,J eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukleotidsequenz,B eine natürliche oder modifizierte Nukleobase,T Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine Hydroxygruppe,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H undn eine natürliche Zahl von 1 bis 200 bedeuten, wobei mehr als ein Nukleotidbaustein gemäß Formel IX am Phosphoratom modifiziert ist.
- Nukleosidphosphoramidit der Formel IA eine Sauerstoffschutzgruppe, ein Nukleotid oder ein Oligonukleotid,B eine natürliche oder modifizierte Nukleobase,X Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,T Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine gegebenenfalls geschützte Hydroxygruppe,U Sauerstoff, Schwefel, Stickstoff oder N-H,V eine abspaltbare Schutzgruppe,n eine natürliche Zahl von 1 bis 200 undD ein sekundärer Aminrest bedeuten.
- Verwendung von Nukleosidphosphoramiditen der Formel I zur Herstellung von Verbindungen der Formel V.
- Verfahren zur Herstellung eines Nukleosidphosphoramidits der Formel I, durch Umsetzung einer Verbindung der Formel IIA eine Sauerstoffschutzgruppe, ein Nukleotid oder ein Oligonukleotid,B eine natürliche oder modifizierte Nukleinbase undT Wasserstoff, Niederalkyl, Azid, Niederalkyloxy oder eine gegebenenfalls geschützte Hydroxygruppe,bedeuten, mit einem Phosphan der Formel IIIZ eine gut austretende Gruppe,X Sauerstoff oder Schwefel,L ein mindestens bivalentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H,V eine abspaltbare Schutzgruppe,n eine natürliche Zahl von 1 bis 200 undD sekundärer Aminrest bedeuten.
- Verfahren zur Herstellung von Phosphanen, dadurch gekennzeichnet, daß eine Verbindung der Formel (VI)
P(-Z)₃ (VI)
in der Z eine gut austretende Gruppe bedeutet, mit einem sekundären Amin der Formel (VII)
H-D (VII)
in derD ein sekundärer Aminrest bedeuten,umsetzt, und das Produkt mit einer Verbindung der Formel VIII
H-X-L(-U-V)n (VIII)
in derX Sauerstoff oder Schwefel,L ein (n + 1)-valentes Brückenglied,U Sauerstoff, Schwefel, Stickstoff oder N-H,V eine abspaltbare Schutzgruppe,n eine natürliche Zahl von 1 bis 200bedeuten, reagieren läßt und das entstandene Produkt abtrennt. - Verwendung einer Nukleotidsequenz der Formel (V)K Wasserstoff oder das Phosphoratom des Phosphatrests eines weiteren Nukleotids oder einer Nukleotidsequenz,J eine Hydroxygruppe oder ein 5'-Sauerstoffatom eines weiteren Nukleotids oder einer Nukletoidsequenz,B eine natürliche oder modifizierte Nukleinbase,T Wasserstoff, Niederalkyl, Azid, Niederalkoxy oder eine Hydroxylgruppe bedeuten undX, L, U, W und n die im Anspruch 2 angegebene Bedeutung haben, wobei mehr als ein Nukleotidbaustein gemäß Formel V am Phosphoratom modifiziert ist,zum Nachweis einer zu dieser Nukleotidsequenz im wesentlichen komplementären Nukleotidsequenz.
- Reagenz zum Nachweis einer Nukleinsäure in einer Probe durch Inkontaktbringen der Probe mit einer dazu im wesentlichen komplementären Nukleinsäure, dadurch gekennzeichnet, daß es als zur Proben-DNA komplementäre Nukleinsäure eine Nukleotidsequenz gemäß Anspruch 2 enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3916871A DE3916871A1 (de) | 1989-05-24 | 1989-05-24 | Modifiziertes phosphoramidit-verfahren zur herstellung von modifizierten nukleinsaeuren |
DE3916871 | 1989-05-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0399330A1 EP0399330A1 (de) | 1990-11-28 |
EP0399330B1 true EP0399330B1 (de) | 1994-12-28 |
Family
ID=6381283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90109092A Expired - Lifetime EP0399330B1 (de) | 1989-05-24 | 1990-05-15 | Modifiziertes Phosphoramidit-Verfahren zur Herstellung von modifizierten Nukleinsäuren |
Country Status (11)
Country | Link |
---|---|
US (2) | US5700919A (de) |
EP (1) | EP0399330B1 (de) |
JP (2) | JPH0730108B2 (de) |
KR (2) | KR920007274B1 (de) |
AT (1) | ATE116327T1 (de) |
CA (1) | CA2017369C (de) |
DE (2) | DE3916871A1 (de) |
DK (1) | DK0399330T3 (de) |
ES (1) | ES2068279T3 (de) |
GR (1) | GR3015223T3 (de) |
ZA (1) | ZA903975B (de) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3916871A1 (de) * | 1989-05-24 | 1990-11-29 | Boehringer Mannheim Gmbh | Modifiziertes phosphoramidit-verfahren zur herstellung von modifizierten nukleinsaeuren |
US5914396A (en) * | 1990-01-11 | 1999-06-22 | Isis Pharmaceuticals, Inc. | 2'-O-modified nucleosides and phosphoramidites |
US5859221A (en) * | 1990-01-11 | 1999-01-12 | Isis Pharmaceuticals, Inc. | 2'-modified oligonucleotides |
US5955589A (en) * | 1991-12-24 | 1999-09-21 | Isis Pharmaceuticals Inc. | Gapped 2' modified oligonucleotides |
US5872232A (en) * | 1990-01-11 | 1999-02-16 | Isis Pharmaceuticals Inc. | 2'-O-modified oligonucleotides |
US7101993B1 (en) | 1990-01-11 | 2006-09-05 | Isis Pharmaceuticals, Inc. | Oligonucleotides containing 2′-O-modified purines |
US5670633A (en) * | 1990-01-11 | 1997-09-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
US5623065A (en) * | 1990-08-13 | 1997-04-22 | Isis Pharmaceuticals, Inc. | Gapped 2' modified oligonucleotides |
US6399754B1 (en) | 1991-12-24 | 2002-06-04 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides |
US6005087A (en) * | 1995-06-06 | 1999-12-21 | Isis Pharmaceuticals, Inc. | 2'-modified oligonucleotides |
US5391785A (en) * | 1990-01-16 | 1995-02-21 | La Jolla Pharmaceutial Company | Intermediates for providing functional groups on the 5' end of oligonucleotides |
US7015315B1 (en) | 1991-12-24 | 2006-03-21 | Isis Pharmaceuticals, Inc. | Gapped oligonucleotides |
US5965722A (en) * | 1991-05-21 | 1999-10-12 | Isis Pharmaceuticals, Inc. | Antisense inhibition of ras gene with chimeric and alternating oligonucleotides |
WO1993002093A1 (en) * | 1991-07-15 | 1993-02-04 | La Jolla Pharmaceutical Company | Modified phosphorous intermediates for providing functional groups on the 5' end of oligonucleotides |
US6307040B1 (en) | 1992-03-05 | 2001-10-23 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides that detect and modulate gene expression |
US7119184B2 (en) | 1991-08-12 | 2006-10-10 | Isis Pharmaceuticals, Inc. | Oligonucleotides having A-DNA form and B-DNA form conformational geometry |
IT1249732B (it) * | 1991-11-26 | 1995-03-09 | Angeletti P Ist Richerche Bio | Oligonucleotidi antisenso. |
KR940703846A (ko) * | 1991-12-24 | 1994-12-12 | 비. 린네 파샬 | 갭(gap)이 형성된 2′ 변성된 올리고뉴클레오티드(gapped 2′ modifed oligonucleotides) |
US5856455A (en) * | 1991-12-24 | 1999-01-05 | Isis Pharmaceuticals, Inc. | Gapped 2'-modified oligonucleotides |
US5700922A (en) * | 1991-12-24 | 1997-12-23 | Isis Pharmaceuticals, Inc. | PNA-DNA-PNA chimeric macromolecules |
US6277603B1 (en) | 1991-12-24 | 2001-08-21 | Isis Pharmaceuticals, Inc. | PNA-DNA-PNA chimeric macromolecules |
US5652355A (en) * | 1992-07-23 | 1997-07-29 | Worcester Foundation For Experimental Biology | Hybrid oligonucleotide phosphorothioates |
TW244371B (de) * | 1992-07-23 | 1995-04-01 | Tri Clover Inc | |
US6346614B1 (en) | 1992-07-23 | 2002-02-12 | Hybridon, Inc. | Hybrid oligonucleotide phosphorothioates |
DE59306170D1 (de) * | 1992-09-24 | 1997-05-22 | Hoechst Ag | Oligoribonucleotid- und Ribozym-Analoga mit terminalen 3'-3'-bzw.5'-5'-Verknüpfungen |
DE4239531A1 (de) * | 1992-11-25 | 1994-05-26 | Gabor Dr Igloi | Reagenz zur Kupplung verschiedener Substanzen an Nukleinsäuren sowie Verfahren zu dessen Herstellung |
KR100361933B1 (ko) | 1993-09-08 | 2003-02-14 | 라 졸라 파마슈티칼 컴파니 | 화학적으로정의된비중합성결합가플랫폼분자및그것의콘주게이트 |
DE4418691A1 (de) * | 1994-05-28 | 1996-02-22 | Boehringer Mannheim Gmbh | 3'-(4'-) nicht-radioaktiv markierte Nukleoside und Nukleotide mit Aminocarbonsäure-, Peptid- oder Carbonsäure-Spacer |
SE9500342D0 (sv) * | 1995-01-31 | 1995-01-31 | Marek Kwiatkowski | Novel chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation |
US6017700A (en) * | 1995-08-04 | 2000-01-25 | Bayer Corporation | Cationic oligonucleotides, and related methods of synthesis and use |
US5856099A (en) * | 1996-05-21 | 1999-01-05 | Isis Pharmaceuticals, Inc. | Antisense compositions and methods for modulating type I interleukin-1 receptor expression |
US7812149B2 (en) | 1996-06-06 | 2010-10-12 | Isis Pharmaceuticals, Inc. | 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations |
US9096636B2 (en) | 1996-06-06 | 2015-08-04 | Isis Pharmaceuticals, Inc. | Chimeric oligomeric compounds and their use in gene modulation |
US5898031A (en) | 1996-06-06 | 1999-04-27 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides for cleaving RNA |
DE19637042A1 (de) * | 1996-09-12 | 1998-03-19 | Boehringer Mannheim Gmbh | Heterocyclische Verbindungen und deren Verwendung in der Detektion von Nucleinsäuren |
US6172209B1 (en) | 1997-02-14 | 2001-01-09 | Isis Pharmaceuticals Inc. | Aminooxy-modified oligonucleotides and methods for making same |
US6576752B1 (en) | 1997-02-14 | 2003-06-10 | Isis Pharmaceuticals, Inc. | Aminooxy functionalized oligomers |
US6127533A (en) * | 1997-02-14 | 2000-10-03 | Isis Pharmaceuticals, Inc. | 2'-O-aminooxy-modified oligonucleotides |
US6184347B1 (en) | 1998-11-19 | 2001-02-06 | Agilent Technologies Inc. | Minimization of blooming in high-density arrays by using reactive wash reagents |
CA2370478A1 (en) | 1999-03-24 | 2000-09-28 | Serge L. Beaucage | N-acylphosphoramidites and their use in oligonucleotide synthesis |
US6306599B1 (en) | 1999-07-16 | 2001-10-23 | Agilent Technologies Inc. | Biopolymer arrays and their fabrication |
CA2414076A1 (en) * | 2000-06-08 | 2001-12-13 | La Jolla Pharmaceutical Company | Multivalent platform molecules comprising high molecular weight polyethylene oxide |
US7135565B2 (en) | 2000-07-28 | 2006-11-14 | Agilent Technologies, Inc. | Synthesis of polynucleotides using combined oxidation/deprotection chemistry |
US6693187B1 (en) * | 2000-10-17 | 2004-02-17 | Lievre Cornu Llc | Phosphinoamidite carboxlates and analogs thereof in the synthesis of oligonucleotides having reduced internucleotide charge |
US6932943B1 (en) | 2001-01-26 | 2005-08-23 | Third Wave Technologies | Nucleic acid synthesizers |
US7435390B2 (en) * | 2001-01-26 | 2008-10-14 | Third Wave Technologies, Inc. | Nucleic acid synthesizers |
DE10133779A1 (de) * | 2001-07-16 | 2003-02-06 | Chemogenix Gmbh | Multimerpolynukleotidsynthese |
AU2002353001A1 (en) * | 2001-12-03 | 2003-06-17 | The Government Of The United States Of America, Represented By The Secretary Of The Department Of He | Thermolabile hydroxyl protecting groups and methods of use |
AU2003295387A1 (en) | 2002-11-05 | 2004-06-03 | Isis Parmaceuticals, Inc. | Modified oligonucleotides for use in rna interference |
US8569474B2 (en) | 2004-03-09 | 2013-10-29 | Isis Pharmaceuticals, Inc. | Double stranded constructs comprising one or more short strands hybridized to a longer strand |
US8394947B2 (en) | 2004-06-03 | 2013-03-12 | Isis Pharmaceuticals, Inc. | Positionally modified siRNA constructs |
US7884086B2 (en) | 2004-09-08 | 2011-02-08 | Isis Pharmaceuticals, Inc. | Conjugates for use in hepatocyte free uptake assays |
US9809824B2 (en) * | 2004-12-13 | 2017-11-07 | The United States Of America, Represented By The Secretary, Department Of Health And Human Services | CpG oligonucleotide prodrugs, compositions thereof and associated therapeutic methods |
US8084589B2 (en) * | 2007-08-31 | 2011-12-27 | University Of Massachusetts | Phosphoramidite nucleoside analogs |
DK2794627T3 (en) | 2011-12-22 | 2019-01-14 | Alios Biopharma Inc | SUBSTITUTED NUCLEOSIDES, NUCLEOTIDES AND ANALOGUES THEREOF |
USRE48171E1 (en) | 2012-03-21 | 2020-08-25 | Janssen Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
US9441007B2 (en) | 2012-03-21 | 2016-09-13 | Alios Biopharma, Inc. | Substituted nucleosides, nucleotides and analogs thereof |
WO2014197714A1 (en) * | 2013-06-05 | 2014-12-11 | Am Chemicals Llc | Phosphoramidite building blocks for sugar-conjugated oligonucleotides |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0251283A2 (de) * | 1986-06-30 | 1988-01-07 | Wakunaga Seiyaku Kabushiki Kaisha | Polymarkierte Oligonukleotid-Derivate |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4415732A (en) * | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
US4668777A (en) * | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
CA1223831A (en) * | 1982-06-23 | 1987-07-07 | Dean Engelhardt | Modified nucleotides, methods of preparing and utilizing and compositions containing the same |
US4547569A (en) * | 1982-11-24 | 1985-10-15 | The United States Of America As Represented By The Department Of Health And Human Services | Intercalating agents specifying nucleotides |
FR2540122B1 (fr) * | 1983-01-27 | 1985-11-29 | Centre Nat Rech Scient | Nouveaux composes comportant une sequence d'oligonucleotide liee a un agent d'intercalation, leur procede de synthese et leur application |
AU596068B2 (en) * | 1983-02-22 | 1990-04-26 | Syngene, Inc. | Defined sequence single strand oligonucleotides incorporating reporter groups, process for the chemical synthesis thereof, and nucleosides useful in such synthesis |
JPS59165362A (ja) * | 1983-03-10 | 1984-09-18 | Mitsubishi Electric Corp | 高圧放電灯 |
DE3329892A1 (de) * | 1983-08-18 | 1985-03-07 | Köster, Hubert, Prof. Dr., 2000 Hamburg | Verfahren zur herstellung von oligonucleotiden |
DE3332068A1 (de) * | 1983-09-06 | 1985-03-21 | Hoechst Ag, 6230 Frankfurt | Verfahren zur herstellung von nukleosidalkyl-, aralkyl- und arylphosphoniten und -phosphonaten |
FR2568254B1 (fr) * | 1984-07-25 | 1988-04-29 | Centre Nat Rech Scient | Application d'oligonucleotides lies a un agent intercalant, notamment a titre de medicament |
JPH064670B2 (ja) * | 1984-08-28 | 1994-01-19 | 有機合成薬品工業株式会社 | 酵素標識化されたポリヌクレオチドおよびその製法 |
DE3431536A1 (de) * | 1984-08-28 | 1986-03-13 | Boehringer Mannheim Gmbh, 6800 Mannheim | Derivatisierte nucleinsaeure-sequenz, verfahren zu deren herstellung sowie deren verwendung zum nachweis von nucleinsaeuren |
JPS61112093A (ja) * | 1984-11-05 | 1986-05-30 | Wakunaga Seiyaku Kk | ヌクレオチド誘導体 |
US5252760A (en) * | 1985-03-28 | 1993-10-12 | Chiron Corporation | Method of using colored phosphorylating reagents |
US4762779A (en) * | 1985-06-13 | 1988-08-09 | Amgen Inc. | Compositions and methods for functionalizing nucleic acids |
EP0216357A3 (de) * | 1985-09-25 | 1988-08-31 | Nippon Zeon Co., Ltd. | Phosphoramidit-Verbindungen und Verfahren zu deren Herstellung |
DE3642939A1 (de) * | 1986-06-03 | 1987-12-10 | Europ Lab Molekularbiolog | Verfahren zur dna-markierung |
DE3785343T2 (de) * | 1986-12-02 | 1993-07-22 | Centre Nat Rech Scient | Alpha-oligonukleotide. |
AU619170B2 (en) * | 1987-01-09 | 1992-01-23 | Abbott Laboratories | Diagnostic assays using nucleic acid probes |
DD273445A1 (de) * | 1988-06-29 | 1989-11-15 | Akad Wissenschaften Ddr | Verfahren zur herstellung von kovalenten konjugaten aus oligodesoxynukleotiden und polyaminosaeuren oder proteinen |
SE8802574D0 (sv) * | 1988-07-08 | 1988-07-08 | Wallac Oy | Oligonucleotide hybridization probes and means for the synthesis of the most preferred probes |
DE3916871A1 (de) * | 1989-05-24 | 1990-11-29 | Boehringer Mannheim Gmbh | Modifiziertes phosphoramidit-verfahren zur herstellung von modifizierten nukleinsaeuren |
-
1989
- 1989-05-24 DE DE3916871A patent/DE3916871A1/de not_active Withdrawn
-
1990
- 1990-05-15 AT AT90109092T patent/ATE116327T1/de not_active IP Right Cessation
- 1990-05-15 DK DK90109092.8T patent/DK0399330T3/da active
- 1990-05-15 ES ES90109092T patent/ES2068279T3/es not_active Expired - Lifetime
- 1990-05-15 EP EP90109092A patent/EP0399330B1/de not_active Expired - Lifetime
- 1990-05-15 DE DE59008105T patent/DE59008105D1/de not_active Expired - Lifetime
- 1990-05-21 KR KR1019900007260A patent/KR920007274B1/ko not_active IP Right Cessation
- 1990-05-22 JP JP2132429A patent/JPH0730108B2/ja not_active Expired - Lifetime
- 1990-05-23 CA CA002017369A patent/CA2017369C/en not_active Expired - Lifetime
- 1990-05-23 ZA ZA903975A patent/ZA903975B/xx unknown
-
1992
- 1992-07-13 KR KR1019920012473A patent/KR920007558B1/ko not_active IP Right Cessation
-
1994
- 1994-09-19 JP JP6223299A patent/JP2710756B2/ja not_active Expired - Lifetime
-
1995
- 1995-01-10 US US08/370,836 patent/US5700919A/en not_active Expired - Lifetime
- 1995-02-28 GR GR950400427T patent/GR3015223T3/el unknown
-
1997
- 1997-09-19 US US08/934,018 patent/US5902878A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0251283A2 (de) * | 1986-06-30 | 1988-01-07 | Wakunaga Seiyaku Kabushiki Kaisha | Polymarkierte Oligonukleotid-Derivate |
Non-Patent Citations (2)
Title |
---|
N.D.SINHA et al. Nucl.Acid Res. 16/6, 2659 (1988) * |
WO89/12110 * |
Also Published As
Publication number | Publication date |
---|---|
DE3916871A1 (de) | 1990-11-29 |
JP2710756B2 (ja) | 1998-02-10 |
KR920007274B1 (ko) | 1992-08-29 |
ATE116327T1 (de) | 1995-01-15 |
CA2017369C (en) | 2001-01-23 |
CA2017369A1 (en) | 1990-11-24 |
JPH035495A (ja) | 1991-01-11 |
US5902878A (en) | 1999-05-11 |
ZA903975B (en) | 1991-03-27 |
US5700919A (en) | 1997-12-23 |
KR920007558B1 (ko) | 1992-09-07 |
GR3015223T3 (en) | 1995-05-31 |
JPH0730108B2 (ja) | 1995-04-05 |
ES2068279T3 (es) | 1995-04-16 |
DE59008105D1 (de) | 1995-02-09 |
KR900018133A (ko) | 1990-12-20 |
JPH07233188A (ja) | 1995-09-05 |
DK0399330T3 (da) | 1995-05-15 |
EP0399330A1 (de) | 1990-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0399330B1 (de) | Modifiziertes Phosphoramidit-Verfahren zur Herstellung von modifizierten Nukleinsäuren | |
EP0152459B1 (de) | Verfahren zur herstellung von oligonucleotiden | |
DE69227793T2 (de) | Verfahren und Verbindungen für die Festphase-Synthese von Oligonukleotiden und Analogen | |
DE3855275T4 (de) | Nichtnukleotides Bindungsreagenz für nukleotide Proben | |
DE69106376T2 (de) | Verfahren zum verbinden von nukleosiden mit einer siloxanbrücke. | |
DE3750080T2 (de) | Deoxyribonucleosid-phosphoramidite und deren verwendung zur hertellung von oligonukleotiden. | |
DE69632456T2 (de) | Nukleinsäuresynthese unter verwendung von mittels licht abspaltbaren schutzgruppen | |
DE3689715T2 (de) | Verfahren und Reagenzien für die In-vitro-Synthese von Oligonukleotiden. | |
DE69125380T2 (de) | Durch reduktion orthogonal entfernbare hydroxylschutzgruppen und ihre verwendung in der chemischen synthese von oligonukleotiden | |
DE69030745T2 (de) | Verfahren und Reagens zur Sulfurierung von Organophosphiten | |
DE69937108T2 (de) | Verbindungen und Methoden zum Nachweis von Biomolekülen | |
DE69725866T2 (de) | Festphasen-synthese | |
DE69724218T2 (de) | Universale feste träger und verfahren zu ihrer verwendung | |
EP0818460B1 (de) | Festphasensynthese von Oligonucleotiden | |
DE69405396T2 (de) | Verfahren zur synthese von nukleinsäuren auf einem festträger und verbindungen verwendbar als festträger in diesem verfahren | |
DE4213703A1 (de) | Fluoreszenzmarkierte Verbindungen, ihre Herstellung und Verwendung | |
DE69824843T2 (de) | Verfahren zur herstellung von modifizierten p-chiralen nucleotid-analoga | |
DD141836A5 (de) | Verfahren zur herstellung von polynucleotiden mit bestimmter sequenz | |
DE69402177T2 (de) | Synthese von dimer-blöcken und ihre verwendung bei der zusammensetzung von oligonukleotiden | |
EP0124561B1 (de) | Verfahren zur herstellung von oligonucleosidphosphonaten | |
DE3881691T2 (de) | Polydeoxyribonukleotide, pharmazeutische zusammensetzungen, verwendung und herstellung von polydeoxyribonukleotiden. | |
EP0644196B1 (de) | TTTr als Schutzgruppe in der Nukleotidsynthese | |
DE60006680T2 (de) | Synthese von stabilem chinon- und photoreaktivem keton-phosphoramidit-reagenz für festphasensynthese von photoreaktiven oligomer-konjugaten | |
EP0649855A1 (de) | Verwendung von mit enzymatisch abspaltbaren Schutzgruppen versehenen Nukleosiden und Nukleosid-Derivaten in der Synthese von Oligonukleotiden | |
DE3932471A1 (de) | Neue phosphite und nucleosid-3'-phosphite fuer die synthese von oligonucleotiden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900515 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19930513 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 116327 Country of ref document: AT Date of ref document: 19950115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59008105 Country of ref document: DE Date of ref document: 19950209 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950309 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2068279 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3015223 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20010514 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010531 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20021201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: BOEHRINGER MANNHEIM GMBH Free format text: BOEHRINGER MANNHEIM GMBH#SANDHOFERSTRASSE 112-132 POSTFACH 31 01 20#D-68298 MANNHEIM (DE) -TRANSFER TO- BOEHRINGER MANNHEIM GMBH#SANDHOFERSTRASSE 112-132 POSTFACH 31 01 20#D-68298 MANNHEIM (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090518 Year of fee payment: 20 Ref country code: DK Payment date: 20090408 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20090420 Year of fee payment: 20 Ref country code: SE Payment date: 20090507 Year of fee payment: 20 Ref country code: IT Payment date: 20090515 Year of fee payment: 20 Ref country code: FR Payment date: 20090507 Year of fee payment: 20 Ref country code: DE Payment date: 20090529 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090619 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20090430 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090407 Year of fee payment: 20 Ref country code: GR Payment date: 20090415 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Owner name: *BOEHRINGER MANNHEIM G.M.B.H. Effective date: 20100515 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20100517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100515 |