EP0377373B1 - Controlled directional drilling assembly with a variable-angle elbow element, and its use - Google Patents
Controlled directional drilling assembly with a variable-angle elbow element, and its use Download PDFInfo
- Publication number
- EP0377373B1 EP0377373B1 EP89403565A EP89403565A EP0377373B1 EP 0377373 B1 EP0377373 B1 EP 0377373B1 EP 89403565 A EP89403565 A EP 89403565A EP 89403565 A EP89403565 A EP 89403565A EP 0377373 B1 EP0377373 B1 EP 0377373B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stabilizer
- angle
- variable
- drilling
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005553 drilling Methods 0.000 title claims description 50
- 239000003381 stabilizer Substances 0.000 claims description 64
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 description 12
- 238000012937 correction Methods 0.000 description 10
- 239000012530 fluid Substances 0.000 description 7
- 239000004459 forage Substances 0.000 description 7
- 238000012856 packing Methods 0.000 description 6
- 208000031968 Cadaver Diseases 0.000 description 5
- 241000287127 Passeridae Species 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- 241001644893 Entandrophragma utile Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- OANVFVBYPNXRLD-UHFFFAOYSA-M propyromazine bromide Chemical compound [Br-].C12=CC=CC=C2SC2=CC=CC=C2N1C(=O)C(C)[N+]1(C)CCCC1 OANVFVBYPNXRLD-UHFFFAOYSA-M 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/068—Deflecting the direction of boreholes drilled by a down-hole drilling motor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/10—Wear protectors; Centralising devices, e.g. stabilisers
- E21B17/1014—Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/067—Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub
Definitions
- the present invention relates to a drill string with controlled trajectory.
- the gasket according to the present invention is intended to be placed at the end of a drill string.
- This lining makes it possible to control variations in direction and inclination of the borehole in real time. In addition, it makes it possible to control the azimuth, the radius of curvature in a precise manner and to reduce the phenomena of friction and to limit the risks of jamming and this without requiring to raise said lining on the surface.
- Document DE-C-3403239 discloses a deflection lining comprising stabilizers and bent elements. But these are at a fixed angle.
- Document FR-A-1 247 454 relates to a device for guiding a drilling tool comprising a guide sheath with radial deformation and articulated connections. There is no question in this elbow connection document.
- the document FR-A-2432 079 describes an elbow connector with variable geometry remote controlled, but this connector cannot be fixed between a motor element and the drilling tool.
- the gasket according to the present invention comprises a drilling tool placed at the lower end of said gasket, a motor for rotating said tool as well as at least one stabilizer and a bent element with variable geometry, remotely controlled, that is to say ie whose angle is variable.
- Said bent element is located between a motor element and the drilling tool and comprises a shaft for transmitting the rotation of said motor element to the drilling tool.
- the lining according to the invention may include another stabilizer.
- the stabilizer may be of fixed geometry or of variable geometry.
- the bent element and / or the stabilizer may be integrated into said motor.
- variable geometry stabilizer may include means adapted to vary the distance between the axis of said lining and the bearing surface of at least one blade of the stabilizer and / or means adapted to vary at least axially the position of the bearing surface of at least one blade of said stabilizer.
- the packing according to the present invention may comprise at least one stabilizer which is integral in rotation with said tool.
- the lining according to the present invention may comprise at least one stabilizer integral in rotation with the body of the engine.
- the bent element with variable geometry can be optionally remote-controlled from the surface.
- the packing according to the present invention may comprise, in addition to the bent element with variable geometry, a stabilizer possibly with variable geometry, as well as two other stabilizers placed on either side of said stabilizer.
- the bent element can be integrated into said motor.
- the present invention relates to the use of one of the fittings described above at the end of a train of rods which can be driven in rotation by drive means located on the surface.
- the gasket according to the invention will be able to control the azimuth (of the direction of drilling), which may be facilitated by a bent element integrated in the downhole motor, no rotation being applied to the drill string from the surface.
- the control of the radius of curvature is facilitated by the association of an elbow and a stabilizer.
- a bent element is meant a member introducing or being able to introduce locally, if not punctually a discontinuity in the direction of the axis of the drill string. That is to say that the axis of the drill string is a broken line at the bent element.
- the reference 1 designates the ground surface from which a well 2 is drilled.
- the reference 3 designates the surface installation as a whole.
- the drilling equipment 4 comprises a drill string 5 at the end of which a drilling string 6 is fixed.
- the drill string 6 corresponds to the lower end of the drilling equipment and can be considered as part of the drill string.
- a drill string generally has a length of a few tens of meters, of which the thirty meters closest to the drilling tool is generally considered to be active as regards the control of the trajectory.
- the drill string comprises a drilling tool 7, a downhole motor 8, a variable angle bent element 58 and a stabilizer 9.
- the drilling tool 7 can be driven in rotation by the bottom motor 8, or by the drill string 5 which can be driven on the surface by motor means 10, such as a rotary table.
- the stabilizer 9 may be of fixed geometry or of variable geometry, it is understood by this, according to the present invention, that one can act on it to vary the geometric configuration of the support points of the blades on the walls of the drilled well, this variation having to be considered for the same position of the lining in the drilled well.
- Figures 2 to 4 show different types of stabilizers with variable geometry.
- the reference 11 designates the portion of rod which carries the stabilizer 12.
- the stabilizer comprises several blades, two of which are shown: blades 13 and 14.
- the blades can move so as to vary the distance d which separates the axis 15 from the rod portion 11, from the friction surface 16 of the blade 14 or 13.
- Figure 3 shows a variable geometry stabilizer in which the blades 18 move axially, as shown by the arrows.
- the dotted lines represent possible positions of the blades 18.
- Figure 4 shows the case where there is a single blade 17 which moves.
- This type of stabilizer is often called "off-set".
- the same effect of off-center of the axis 15 is obtained by having several movable blades placed on the same side of an axial plane containing the axis 15, or by making the blades being moved more widely the same side of an axial plane containing the axis 15 as the blades located on the other side of this same plane.
- the blades may have a helical shape, as shown in Figure 5, especially for the central stabilizer.
- FIG. 5 represents an embodiment different from that of FIG. 1.
- the reference 19 designates the drilling tool which is fixed to a shaft 20 driven by the motor 21.
- the reference 22 designates a stabilizer with fixed geometry comprising blades 23 rectilinear and parallel to the axis of the lining 24.
- Reference 73 designates a variable angle bent element.
- the reference 25 designates a stabilizer with fixed geometry comprising blades 26 having friction or cutting surfaces 27.
- the blades have a helical shape.
- the reference 28 designates a stabilizer with a fixed geometry with a helical blade 29.
- the motor 21 can be a "sparrow" type lobe motor, or a turbine supplied with drilling fluid from a passage 30 arranged in the lining, this passage itself being supplied with drilling fluid from the train. of stems which is hollow. After passing through the motor 21 the drilling fluid is directed towards the tool 19 to evacuate the debris.
- the motor 21 may also be an electric motor supplied for example from the surface via a cable.
- the stabilizer that is to say the one which is closest to the tool 19, this can be placed either on the external body 32 of the motor 33, as is the case in FIG. 6 , or on the shaft 34 for driving the tool 19 in rotation. This is the case in FIG. 7.
- the stabilizer bears the reference 31.
- the elbow element with variable angle can be fixed above the motor, this is the case of the elbow element 80 shown in FIG. 6 or integrated into the motor, this is the case of the elbow element 81 shown in Figure 7.
- variable geometry stabilizer or of a variable angle bent element.
- FIGS. 9A, 9B and 10 show a particularly advantageous embodiment of a bent element with variable angle.
- a tubular element has in its upper part a thread 59 allowing the mechanical connection to the drill string and in its lower part a thread 60 on the output shaft 46, in order to screw the tool. drilling 47.
- the remote control mechanism consists of a shaft 48 which can slide in its upper part in the bore 65 of the body 43 and which can slide in its lower part in the bore 66 of the body 44.
- This shaft has male grooves 49 meshing in female splines of the body 43, grooves 50 alternately straight (parallel to the axis of the tubular body 43) and oblique (inclined with respect to the axis of the tubular body 43) in which fingers 67 slide sliding along a axis perpendicular to that of the displacement of the shaft 48 and kept in contact with the shaft by springs 68, male splines 51 meshing with female splines of the body 44 only when the shaft 48 is in the high position.
- the shaft 48 is equipped in its lower part with a metering 52 opposite which is a needle 53 coaxial with the movement of the shaft 48.
- a return spring 54 maintains the shaft in the high position, the splines 51 meshing in the equivalent female splines of the body 44.
- the bodies 43 and 44 are free to rotate at the level of the rotating surface 69 coaxial with the axes of the bodies 43 and 44 and composed of rows of cylindrical rollers 70 inserted in their raceways 72 and extractable at through the orifices 74 by dismantling the door 71.
- a reserve of oil 76 is maintained at the pressure of the drilling fluid by means of an annular free piston 77.
- the oil lubricates the sliding surfaces of the shaft 48 by way of the passage 78.
- the shaft 48 is machined so that an axial bore 79 allows the passage of the drilling fluid according to the arrow f.
- the angle variation mechanism itself comprises a tubular body 45 which is rotationally integral with the tubular body 44 by means of a coupling 56.
- the tubular body 45 can rotate relative to the tubular body 43 at the level of the rotary bearing 63 comprising rollers 75 and having an axis oblique to the axes of the tubular bodies 43 and 45.
- FIG. 13 One possible embodiment for coupling 56 is shown in FIG. 13.
- This type of remote control is based on a threshold value of the flow through the mechanism according to the arrow f.
- the nozzle 52 will surround the needle 53 which will cause a large decrease in the drilling fluid passage section and therefore a large increase in the pressure difference ⁇ P and therefore a significant increase in the force F ensuring the complete descent of the shaft 48, despite the increase in the return force of the spring 54 due to its compression.
- the fingers 67 will follow the oblique part of the grooves 50 during the downward stroke of the shaft 48 and will therefore cause the body to rotate tubular 44 relative to the tubular body 43, which is made possible by the fact that the male splines 51 will disengage from the corresponding female splines of the body 44 at the start of the downward travel of the shaft 48.
- FIG. 13 shows in a developed way parts 97 and 98 which make it possible to transmit the rotation of the tubular body 44 to the tubular body 45 while allowing relative angular movement of these two tubular bodies.
- the part 97 has housings 99 in which rods 100 cooperate comprising spheres 101.
- the tubular body integral with the part 97 flexes relative to the tubular body integral with the part 98.
- variable geometry stabilizer An embodiment of a variable geometry stabilizer is now described.
- the remote control mechanism of this stabilizer is the same as that described above.
- FIG. 11 describes the mechanism for varying the position of one or more blades of an integrated stabilizer.
- Figure 11 can be considered as the lower part of Figure 9A.
- grooves 92 At the lower end of the body 44 are grooves 92 whose depth differs depending on the angular sector concerned. Apply to the bottom of these grooves pushers 93 on which lean blades 94 straight or helical in shape under the action of leaf return springs 95 positioned under protective covers 96.
- the pushers 93 will be on a sector of the groove 92 whose depth will be different. This will cause a translation of the blades, either by moving away, or by approaching the axis of the body.
- FIG. 11 shows on the right side a blade in the "retracted” position and on the left side a blade in the "extended” position.
- FIG. 12 shows the developed curve of the profile of the bottom of the groove 92. This profile can correspond, for example, to the case of three blades controlled from the same groove.
- the abscissa represents the radius of the groove bottom as a function of the angle at the center from a reference angular position. Since the three blades are controlled from the same groove and on a lathe, the profile is reproduced identically every 120 degrees. This is why it was only represented on 120 degrees.
- the finger 93 of a stabilizer blade cooperates with the portion of the groove bottom profile corresponding to the bearing 1A, this blade is in the entered position.
- a rotation of 40 degrees of the groove causes a modification of the radius of the groove bottom from the position corresponding to the bearing 1A to that corresponding to the bearing 2A and therefore to an intermediate exit position in the blade.
- Another rotation of 40 degrees leads to an increase in the bottom groove radius corresponding to the bearing 3A and to a maximum output of the blade. Between each landing a ramp X allows a gradual exit of the blade.
- the ramp Y is a descending ramp which returns the device to the retracted position corresponding to the bearing 4A of the same value as the bearing 1A.
- the present invention also relates to a method of implementing such a lining, in particular by using the means for driving the entire set of rods in rotation.
- the radius of curvature of the trajectory of the drilling tool may be modified by variation of the geometry (for example the diameter) of the stabilizer, in addition to the methods currently available (variation of the weight per l tool, variation of the rotation speed etc ).
- FIG. 14 represents the projection of the trajectory on the vertical plane and FIG. 15 represents the projection of the trajectory on the horizontal plane.
- Reference 102 designates the substantially vertical phase of drilling. This phase is carried out by turning the entire packing from the drill string. In this case the angle of the bent element does not matter. However, it is preferable that the two articulated parts of this element are aligned so as to reduce the lateral wear of the components of the lining. It is obvious that this position of the bent element is imperative if this phase is carried out only by the use of the downhole motor.
- the diameter of the variable geometry stabilizer 39 is preferably equal to the diameter of the upper fixed geometry stabilizer 41.
- the reference 103 designates the initiation of the deviation from 0 to 10 degrees approximately which is obtained by a remote control of the bent element so as to obtain a certain angle between the articulated parts of this element thus causing a lateral force on the tool and by an orientation of the elbow 37 in the desired azimuth of the drilling followed by a rotary drive of the tool 35 from the bottom motor 36, without there being any drive of the entire gasket drilling from the drill string.
- the radius of curvature of the well can be adjusted by varying the angle of the bent element and / or by varying the diameter of the stabilizer with variable geometry 39.
- Reference 104 designates the phase of angle rise of about 10 degrees to the desired inclination, without intervention on the direction of the well. This phase is achieved by rotating the packing as a whole from the drill string. In this case it is preferable that the articulated parts of the bent element are aligned and that the radius of curvature is adjusted by the diameter of the variable geometry stabilizer 39.
- Reference 105 designates an azimuth correction phase which can be carried out with or without angle correction. In the case of Figures 14 and 15, there is no angle correction. This azimuth correction is effected by the orientation of the bent element 37 having a non-zero angle, in the appropriate direction to achieve the desired orientation correction and the drive of the tool by the downhole motor. , without the entire packing being driven by the drill string.
- variable geometry stabilizer 39 makes it possible to control the radius of curvature of the path.
- the reference 106 designates a drilling phase at constant inclination without controlling the azimuth. This drilling phase can be carried out by rotating the entire drilling string from the drill string.
- the phase referenced 107 is an azimuth correction phase of the same type as that described above and which bears the reference 105.
- the phases referenced 108 and 110 are drilling phases at constant inclination without azimuth control. They are of the same type as the phase which bears the reference 106.
- the phases referenced 109 and 111 are phases for decreasing the angle of inclination.
- Reference 112 designates the target to be reached by drilling.
- FIGS. 16 to 18 illustrate the control of the direction of drilling using a lining comprising three stabilizers, a stabilizer with variable geometry 113, two stabilizers with fixed geometry situated on either side of the stabilizer with variable geometry and a variable angle elbow element 121 remotely controllable.
- the inclination of the borehole is assumed to be 30 degrees from the vertical.
- the reference 114 designates the stabilizer with upper fixed geometry and the reference 115 the stabilizer with lower fixed geometry located near the drilling tool 116.
- the fixed stabilizer 115 is integral with the body of the engine 117 as well as the element angled 121.
- the intermediate position of the stabilizer blades 113 shown in FIG. 16 corresponds to drilling at a constant angle of inclination, the remote-controlled bent element 121 having a zero angle.
- the elbow 121 is assumed to have a deflection angle close to 1 degree.
- the elbow 121 is positioned so as to orient the borehole towards the bottom of the figure in the direction of the arrow 119.
- This position represented in phantom 122 is qualified by the terms "Low side" by the driller.
- the angular position of the bent element 121 is generally verified using conventional measurement means positioned in the drill string. The adjustment of this position is obtained by rotation of the drill string by an appropriate angle from the surface.
- the tool 116 is driven in rotation by the motor 117.
- variable geometry centering device 113 amplifies the reduction in the angle of inclination.
- FIG. 18 represents a bend oriented upwards, generally qualified as "high side” by the driller, as represented by the dashed line 123.
- the angle of inclination is considered with respect to the vertical direction.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Stored Programmes (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
La présente invention concerne une garniture de forage à trajectoire contrôlée. La garniture selon la présente invention est destinée à être placée à l'extrêmité d'un train de tiges de forage. Cette garniture permet de maîtriser en temps réel les variations de direction et d'inclinaison du forage. En outre, elle permet de maîtriser l'azimut, le rayon de courbure de façon précise et de réduire les phénomènes de frottement et de limiter les risques de coincement et ceci sans nécessiter de remonter ladite garniture en surface.The present invention relates to a drill string with controlled trajectory. The gasket according to the present invention is intended to be placed at the end of a drill string. This lining makes it possible to control variations in direction and inclination of the borehole in real time. In addition, it makes it possible to control the azimuth, the radius of curvature in a precise manner and to reduce the phenomena of friction and to limit the risks of jamming and this without requiring to raise said lining on the surface.
On connaît par le document DE-C-3403239 une garniture de déviation comportant des stabilisateurs et des éléments coudés. Mais ceux-ci sont à angle fixe. Le document FR-A-1 247 454 concerne un dispositif de guidage d'un outil de forage comportant une gaine de guidage à déformation radiale et des raccords articulés. Il n'est nullement question dans ce document de raccord coudé. Le document FR-A-2432 079 décrit un raccord coudé à géométrie variable télécommandé, mais ce raccord ne peut pas être fixé entre un élément moteur et l'outil de forage.Document DE-C-3403239 discloses a deflection lining comprising stabilizers and bent elements. But these are at a fixed angle. Document FR-A-1 247 454 relates to a device for guiding a drilling tool comprising a guide sheath with radial deformation and articulated connections. There is no question in this elbow connection document. The document FR-A-2432 079 describes an elbow connector with variable geometry remote controlled, but this connector cannot be fixed between a motor element and the drilling tool.
La garniture selon la présente invention comprend un outil de forage placé à l'extrémité inférieure de ladite garniture, un moteur d'entraînement en rotation dudit outil ainsi qu'au moins un stabilisateur et un élément coudé à géométrie variable télécommandé, c'est-à-dire dont l'angle est variable. Ledit élément coudé est situé entre un élément moteur et l'outil de forage et comporte un arbre de transmission de la rotation dudit élément moteur à l'outil de forage.The gasket according to the present invention comprises a drilling tool placed at the lower end of said gasket, a motor for rotating said tool as well as at least one stabilizer and a bent element with variable geometry, remotely controlled, that is to say ie whose angle is variable. Said bent element is located between a motor element and the drilling tool and comprises a shaft for transmitting the rotation of said motor element to the drilling tool.
La garniture selon l'invention pourra comporter un autre stabilisateur.The lining according to the invention may include another stabilizer.
Le stabilisateur pourra être à géométrie fixe ou à géométrie variable. L'élément coudé et/ou le stabilisateur pourra être intégré audit moteur.The stabilizer may be of fixed geometry or of variable geometry. The bent element and / or the stabilizer may be integrated into said motor.
Le stabilisateur à géométrie variable pourra comporter des moyens adaptés à faire varier la distance entre l'axe de ladite garniture et la surface d'appui d'au moins une lame du stabilisateur et/ou des moyens adaptés à faire varier au moins axialement la position de la surface d'appui d'au moins une lame dudit stabilisateur.The variable geometry stabilizer may include means adapted to vary the distance between the axis of said lining and the bearing surface of at least one blade of the stabilizer and / or means adapted to vary at least axially the position of the bearing surface of at least one blade of said stabilizer.
La garniture selon la présente invention pourra comporter au moins un stabilisateur qui est solidaire en rotation dudit outil.The packing according to the present invention may comprise at least one stabilizer which is integral in rotation with said tool.
La garniture selon la présente invention pourra comporter au moins un stabilisateur solidaire en rotation du corps du moteur.The lining according to the present invention may comprise at least one stabilizer integral in rotation with the body of the engine.
L'élément coudé à géométrie variable pourra être télécommandé éventuellement depuis la surface.The bent element with variable geometry can be optionally remote-controlled from the surface.
La garniture selon la présente invention pourra comporter en plus de l'élément coudé à géométrie variable un stabilisateur éventuellement à géométrie variable, ainsi que deux autres stabilisateurs placés de part et d'autre dudit stabilisateur. L'élément coudé pourra être intégré audit moteur.The packing according to the present invention may comprise, in addition to the bent element with variable geometry, a stabilizer possibly with variable geometry, as well as two other stabilizers placed on either side of said stabilizer. The bent element can be integrated into said motor.
La présente invention concerne l'utilisation de l'une des garnitures décrites précédemment à l'extrêmité d'un train de tiges pouvant être entraîné en rotation par des moyens d'entraînement situés en surface.The present invention relates to the use of one of the fittings described above at the end of a train of rods which can be driven in rotation by drive means located on the surface.
Bien entendu la garniture selon l'invention pourra assurer le contrôle de l'azimut (de la direction du forage), ce qui pourra être facilité grâce à un élément coudé intégré dans le moteur de fond aucune rotation n'étant appliquée au train de tiges depuis la surface.Of course, the gasket according to the invention will be able to control the azimuth (of the direction of drilling), which may be facilitated by a bent element integrated in the downhole motor, no rotation being applied to the drill string from the surface.
La maîtrise du rayon de courbure est facilitée par l'association d'un coude et d'un stabilisateur.The control of the radius of curvature is facilitated by the association of an elbow and a stabilizer.
Par un élément coudé, on entend un organe introduisant ou pouvant introduire localement, si ce n'est ponctuellement une discontinuité de la direction de l'axe du train de tiges. C'est-à-dire que l'axe de la garniture de forage est une ligne brisée au niveau de l'élément coudé.By a bent element is meant a member introducing or being able to introduce locally, if not punctually a discontinuity in the direction of the axis of the drill string. That is to say that the axis of the drill string is a broken line at the bent element.
La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la description qui suit d'exemples particuliers nullement limitatifs illustrés par les figures ci-annexées, parmi lesquelles :
- la figure 1 représente un mode de réalisation d'une garniture selon la présente invention,
- les figures 2 à 4 montrent différents types de stabilisateurs à géométrie variable,
- la figure 5 illustre une garniture comportant trois stabilisateurs à géométrie fixe et un élément coudé à angle variable,
- les figures 6 et 7 montrent deux variantes de disposition d'un stabilisateur et de l'élément coudé,
- la figure 8 illustre un mode de réalisation particulier comportant trois stabilisateurs dont un est à géométrie variable et un élément coudé à angle variable,
- les figures 9A et 9B représentent un mode de réalisation de la présente invention dans lequel on peut faire varier l'angle d'un coude se situant au niveau du joint universel d'un moteur de fond,
- la figure 10 représente le dispositif de la figure 9B dans une configuration différente,
- la figure 11 représente la partie inférieure d'un deuxième mode de réalisation de la présente invention venant en lieu et place de la figure 9B, dans lequel on peut faire varier la position d'une ou plusieurs lames d'un stabilisateur par rapport à l'axe principal du corps tubulaire extérieur. Cette figure comporte deux demi-coupes représentant deux positions différentes des lames du stabilisateur,
- la figure 12 montre une vue développée d'un profil de fond de gorge utilisé dans le dispositif représenté à la figure 11,
- la figure 13 illustre un détail d'organe de transmission de couple entre deux éléments tubulaire tout en permettant une flexion entre ces deux éléments, cette figure représente ce détail sous la forme développée,
- les figures 14 et 15 représentent la trajectoire d'un forage, et
- les figures 16 à 18 montrent la manière de contrôler la trajectoire d'un forage dans le cas d'utilisation d'une garniture comportant trois stabilisateurs dont l'un est à géométrie variable et un élément coudé à angle variable.
- FIG. 1 represents an embodiment of a lining according to the present invention,
- FIGS. 2 to 4 show different types of stabilizers with variable geometry,
- FIG. 5 illustrates a packing comprising three stabilizers with fixed geometry and a bent element with variable angle,
- FIGS. 6 and 7 show two alternative arrangements of a stabilizer and the bent element,
- FIG. 8 illustrates a particular embodiment comprising three stabilizers, one of which has a variable geometry and a bent element with a variable angle,
- FIGS. 9A and 9B show an embodiment of the present invention in which the angle of an elbow which is situated at the level of the universal joint of a downhole motor can be varied,
- FIG. 10 represents the device of FIG. 9B in a different configuration,
- Figure 11 shows the lower part of a second embodiment of the present invention in place of Figure 9B, in which the position of one or more blades of a stabilizer can be varied relative to the main axis of the outer tubular body. This figure includes two half-sections representing two different positions of the stabilizer blades,
- FIG. 12 shows a developed view of a groove bottom profile used in the device represented in FIG. 11,
- FIG. 13 illustrates a detail of a torque transmission member between two tubular elements while allowing bending between these two elements, this figure represents this detail in the developed form,
- FIGS. 14 and 15 represent the trajectory of a borehole, and
- Figures 16 to 18 show the way of controlling the trajectory of a borehole in the case of the use of a lining comprising three stabilizers, one of which is of variable geometry and a bent element with variable angle.
Dans le mode de réalisation de la figure 1, la référence 1 désigne la surface du sol à partir de laquelle on réalise le forage d'un puits 2. La référence 3 désigne l'installation de surface dans son ensemble.In the embodiment of FIG. 1, the reference 1 designates the ground surface from which a
L'équipement de forage 4 comporte un train de tiges de forage 5 à l'extrêmité duquel est fixée une garniture de forage 6.The
La garniture de forage 6 correspond à l'extrêmité inférieure de l'équipement de forage et peut être considérée comme faisant partie du train de tiges de forage.The drill string 6 corresponds to the lower end of the drilling equipment and can be considered as part of the drill string.
Une garniture de forage présente généralement une longueur de quelques dizaines de mètres, dont la trentaine de mètres la plus proche de l'outil de forage est généralement considérée comme active en ce qui concerne le contrôle de la trajectoire.A drill string generally has a length of a few tens of meters, of which the thirty meters closest to the drilling tool is generally considered to be active as regards the control of the trajectory.
Dans le mode de réalisation de la figure 1, la garniture de forage comporte un outil de forage 7, un moteur de fond 8, un élément coudé à angle variable 58 et un stabilisateur 9.In the embodiment of FIG. 1, the drill string comprises a drilling tool 7, a downhole motor 8, a variable
Dans ce mode de réalisation l'outil de forage 7 peut être entraîné en rotation par le moteur de fond 8, ou par le train de tiges 5 qui peut être entraîné en surface par des moyens moteurs 10, tels qu'une table tournante.In this embodiment, the drilling tool 7 can be driven in rotation by the bottom motor 8, or by the
Le stabilisateur 9 peut être à géométrie fixe ou à géométrie variable, on entend par là, selon la présente invention, que l'on peut agir sur celui-ci pour faire varier la configuration géométrique des points d'appuis des lames sur les parois du puits foré, cette variation devant être considérée pour une même position de la garniture dans le puits foré.The stabilizer 9 may be of fixed geometry or of variable geometry, it is understood by this, according to the present invention, that one can act on it to vary the geometric configuration of the support points of the blades on the walls of the drilled well, this variation having to be considered for the same position of the lining in the drilled well.
Sur les figures 2 à 4 on a représenté différents types de stabilisateurs à géométrie variable.Figures 2 to 4 show different types of stabilizers with variable geometry.
La référence 11 désigne la portion de tige qui porte le stabilisateur 12.The
Sur la figure 2 le stabilisateur comporte plusieurs lames dont deux sont représentées : les lames 13 et 14.In FIG. 2, the stabilizer comprises several blades, two of which are shown:
Dans ce mode de réalisation les lames peuvent se déplacer de manière à faire varier la distance d qui sépare l'axe 15 de la portion de tige 11, de la surface de frottement 16 de la lame 14 ou 13.In this embodiment, the blades can move so as to vary the distance d which separates the
Sur la figure 2 les flèches représentent le mouvement des lames. Des positions possibles des lames ont été représentées en pointillés.In Figure 2 the arrows represent the movement of the blades. Possible positions of the blades have been shown in dotted lines.
La figure 3 représente un stabilisateur à géométrie variable dans lequel les lames 18 se déplacent axialement, comme représenté par les flèches. Les pointillés représentent des positions possibles des lames 18.Figure 3 shows a variable geometry stabilizer in which the
La figure 4 représente le cas où il y a une seule lame 17 qui se déplace. Ce type de stabilisateur est souvent qualifié de "off-set". Bien entendu on obtient le même effet de décentrement de l'axe 15 en ayant plusieurs lames mobiles placées d'un même côté d'un plan axial contenant l'axe 15, ou bien en faisant se mouvoir plus amplement les lames se trouvant d'un même côté d'un plan axial contenant l'axe 15 que les lames se trouvant de l'autre côté de ce même plan.Figure 4 shows the case where there is a
On ne sortira pas du cadre de la présente invention en utilisant des stabilisateurs à géométrie variable d'autres types que ceux décrits précédemment, notamment en utilisant des lames qui combinent les différents mouvements mentionnés précédemment.It will not depart from the scope of the present invention by using stabilizers with variable geometry of other types than those described above, in particular by using blades which combine the different movements mentioned above.
Bien entendu, les lames pourront avoir une forme hélicoïdale, comme représenté à la figure 5, notamment pour le stabilisateur central.Of course, the blades may have a helical shape, as shown in Figure 5, especially for the central stabilizer.
La figure 5 représente un mode de réalisation différent de celui de la figure 1.FIG. 5 represents an embodiment different from that of FIG. 1.
Dans ce nouveau mode de réalisation la référence 19 désigne l'outil de forage qui est fixé à un arbre 20 entraîné par le moteur 21.In this new embodiment, the
La référence 22 désigne un stabilisateur à géométrie fixe comportant des lames 23 rectilignes et parallèles à l'axe de la garniture 24.The
La référence 73 désigne un élément coudé à angle variable.
La référence 25 désigne un stabilisateur à géométrie fixe comportant des lames 26 ayant des surfaces de frottement ou de coupe 27.The
Dans ce mode de réalisation les lames ont une forme hélicoïdale.In this embodiment the blades have a helical shape.
La référence 28 désigne un stabilisateur à géométrie fixe à lame hélicoïdale 29.The
Le moteur 21 peut être un moteur à lobes du type "Moineau", ou une turbine alimentée en fluide de forage à partir d'un passage 30 aménagé dans la garniture, ce passage étant lui-même alimenté en fluide de forage à partir du train de tiges qui est creux. Après avoir traversé le moteur 21 le fluide de forage est dirigé vers l'outil 19 pour évacuer les débris.The motor 21 can be a "sparrow" type lobe motor, or a turbine supplied with drilling fluid from a
Le moteur 21 pourra également être un moteur électrique alimenté par exemple depuis la surface par l'intermédiaire d'un câble.The motor 21 may also be an electric motor supplied for example from the surface via a cable.
Concernant le stabilisateur inférieur, c'est-à-dire celui qui est le plus près de l'outil 19, celui-là pourra être placé soit sur le corps 32 extérieur du moteur 33, comme c'est le cas de la figure 6, soit sur l'arbre 34 d'entraînement en rotation de l'outil 19. C'est le cas de la figure 7. Sur ces deux figures le stabilisateur porte la référence 31.Regarding the lower stabilizer, that is to say the one which is closest to the
L'élément coudé à angle variable pourra être fixé au-dessus du moteur, c'est le cas de l'élément coudé 80 représenté à la figure 6 ou intégré au moteur, c'est le cas de l'élément coudé 81 représenté à la figure 7.The elbow element with variable angle can be fixed above the motor, this is the case of the
La figure 8 représente une garniture qui est particulièrement performante et qui comporte, en ce qui concerne sa partie inférieure (environ 30 premiers mètres) :
- un outil de
forage 35 adapté aux terrains à forer, tel un outil à molettes, à élément de coupe en diamant polycristallin ou tout autre matériau synthétique et pouvant supporter une vitesse de rotation cohérente avec l'utilisation d'un moteur de fond. Il est nécessaire de choisir un outil de forage dont la durée de vie sera importante. - un moteur de fond (ici volumétrique) 36 dont le corps forme un élément coudé ou coude à angle variable 37 dans sa moitié inférieure et équipé d'un stabilisateur 38 positionné sur la partie coudée du moteur 36, le coude 37 aura un angle de préférence inférieur à 3 degrés.
- un stabilisateur à diamètre variable 39 qui pourra être télécommandé depuis la surface.
- une masse tige 40 comportant des moyens de mesure en cours de forage (MwD) mesurant les principaux paramètres directionnels (Inclinaison, Azimut, Face outil) et les transmettant vers la surface.
un stabilisateur 41 à diamètre constant- la garniture comprendra ensuite des masses-
tiges 42, éventuellement un ou plusieurs autres stabilisateurs, des tiges lourdes, une coulisse de battage, l'ensemble étant relié à la surface par des tiges de forage.
- a
drilling tool 35 adapted to the ground to be drilled, such as a rotary cutter tool, with a polycrystalline diamond cutting element or any other synthetic material and capable of withstanding a rotation speed consistent with the use of a downhole motor. It is necessary to choose a drilling tool with a long service life. - a downhole motor (here volumetric) 36 the body of which forms a bent element or
variable angle elbow 37 in its lower half and equipped with astabilizer 38 positioned on the bent part of themotor 36, theelbow 37 will preferably have an angle less than 3 degrees. - a
variable diameter stabilizer 39 which can be remotely controlled from the surface. - a
rod mass 40 comprising measurement means during drilling (MwD) measuring the main directional parameters (Inclination, Azimuth, Tool face) and transmitting them to the surface. - a
constant diameter stabilizer 41 - the lining will then comprise
drill collars 42, possibly one or more other stabilizers, heavy rods, a threshing slide, the assembly being connected to the surface by drill rods.
Les figures suivantes montrent des exemples de réalisation d'un stabilisateur à géométrie variable, ou d'un élément coudé à angle variable.The following figures show exemplary embodiments of a variable geometry stabilizer, or of a variable angle bent element.
Les figures 9A, 9B et 10 montrent un mode de réalisation particulièrement avantageux d'un élément coudé à angle variable. Selon ce mode de réalisation un élément de forme tubulaire comporte dans sa partie supérieure un filetage 59 permettant la liaison mécanique à la garniture de forage et dans sa partie inférieure un filetage 60 sur l'arbre de sortie 46, afin de visser l'outil de forage 47.FIGS. 9A, 9B and 10 show a particularly advantageous embodiment of a bent element with variable angle. According to this embodiment, a tubular element has in its upper part a
Les principales fonctions sont assurées :
- A. par le moteur de fond 55 représenté sur la figure 9A sous forme d'un moteur volumétrique multilobes de type Moineau, mais pouvant être tout type de moteur de fond (volumétrique ou turbine) couramment utilisé pour la foration terrestre et qui ne feront donc pas l'objet d'une description détaillée.
- B. par un mécanisme de télécommande 62 ayant pour fonction de capter l'information de changement de position et de provoquer la rotation différentielle du corps tubulaire 44 relativement au corps tubulaire 43.
- C.
par un mécanisme 64 d'entraînement et d'encaissement des efforts axiaux et latéraux reliant le moteur de fond 55 à l'arbre de sortie 46 qui ne sera pas décrit ici car il est connu de l'homme de métier. - D. par un mécanisme de variation de la géométrie 63 basé sur la rotation du corps tubulaire 44.
La référence 57 désigne un joint universel. Celui-ci est utile lorsque le moteur est de type Moineau ou/et lorsqu'il est utiliséun élément coudé 63.
- A. by the
downhole motor 55 shown in FIG. 9A in the form of a multi-lobe volumetric motor of the Sparrow type, but which can be any type of downhole motor (volumetric or turbine) commonly used for land drilling and which therefore will not not the subject of a detailed description. - B. by a
remote control mechanism 62 having the function of picking up the information of change of position and of causing the differential rotation of thetubular body 44 relative to thetubular body 43. - C. by a
mechanism 64 for driving and collecting the axial and lateral forces connecting thedownhole motor 55 to theoutput shaft 46 which will not be described here since it is known to those skilled in the art. - D. by a mechanism for varying the
geometry 63 based on the rotation of thetubular body 44. Thereference 57 designates a universal joint. This is useful when the motor is of the sparrow type and / or when anelbow element 63 is used.
Le mécanisme de télécommande se compose d'un arbre 48 pouvant coulisser dans sa partie supérieure dans l'alésage 65 du corps 43 et pouvant coulisser dans sa partie inférieure dans l'alésage 66 du corps 44. Cet arbre comporte des cannelures mâles 49 engrenant dans des cannelures femelles du corps 43, des rainures 50 alternativement droites (parallèles à l'axe du corps tubulaire 43) et obliques (inclinées par rapport à l'axe du corps tubulaire 43) dans lesquelles viennent s'engager des doigts 67 coulissant suivant un axe perpendiculaire à celui du déplacement de l'arbre 48 et maintenu en contact avec l'arbre par des ressorts 68, des cannelures mâles 51 engrenant avec des cannelures femelles du corps 44 uniquement lorsque l'arbre 48 est en position haute.The remote control mechanism consists of a
L'arbre 48 est équipé dans sa partie basse d'un dosage 52 en face duquel se trouve une aiguille 53 coaxiale au déplacement de l'arbre 48. Un ressort de rappel 54 maintient l'arbre en position haute, les cannelures 51 engrenant dans les cannelures femelles équivalentes du corps 44. Les corps 43 et 44 sont libres en rotation au niveau de la portée tournante 69 coaxiale aux axes des corps 43 et 44 et composée de rangées de galets cylindriques 70 insérés dans leurs chemins de roulement 72 et extractibles à travers les orifices 74 par démontage de la porte 71.The
Une réserve d'huile 76 est maintenue à la pression du fluide de forage par l'intermédiaire d'un piston libre annulaire 77. L'huile vient lubrifier les surfaces coulissantes de l'arbre 48 par l'intermédiaire du passage 78.A reserve of
L'arbre 48 est usiné de telle sorte qu'un alésage 79 axial autorise le passage du fluide de forage selon la flêche f.The
Le mécanisme de variation d'angle à proprement parler comporte un corps tubulaire 45 qui est solidaire en rotation du corps tubulaire 44 par l'intermédiaire d'un accouplement 56. Le corps tubulaire 45 peut tourner par rapport au corps tubulaire 43 au niveau de la portée tournante 63 comprenant des galets 75 et ayant un axe oblique par rapport aux axes des corps tubulaires 43 et 45.The angle variation mechanism itself comprises a
Un mode de réalisation envisageable pour l'accouplement 56 est représenté sur la figure 13.One possible embodiment for
Le fonctionnement du mécanisme de télécommande est décrit ci-après. Ce type de télécommande se fonde sur une valeur-seuil du débit traversant le mécanisme suivant la flêche f.The operation of the remote control mechanism is described below. This type of remote control is based on a threshold value of the flow through the mechanism according to the arrow f.
Quand un débit Q traverse l'arbre 48 il se produit une différence de pression Δ P entre la partie amont 82 et la partie aval 83 de l'arbre 6. Cette différence de pression augmente quand le débit Q augmente, en suivant une loi de variation du type Δ P = kQn, k étant une constante et n compris entre 1,5 et 2,0 en fonction des caractéristiques du fluide de forage. Cette différence de pression Δ P s'applique sur la section S de l'arbre 48 et crée une force F tendant à déplacer par translation l'arbre 48 vers le bas en comprimant le ressort de rappel 54. Pour une valeur-seuil du débit cette force F deviendra suffisamment importante pour vaincre la force de rappel du ressort et provoquera une légère translation de l'arbre. Du fait de cette translation la duse 52 viendra entourer l'aiguille 53 qui provoquera une forte diminution de la section de passage du fluide de forage et donc une forte augmentation de la différence de pression Δ P et donc une augmentation importante de la force F assurant la descente complète de l'arbre 48, malgré l'augmentation de la force de rappel du ressort 54 dûe à sa compression.When a flow Q crosses the
De par la forme de l'usinage des gorges 50 décrite dans le brevet FR-2.432.079, les doigts 67 vont suivre la partie oblique des gorges 50 lors de la course descendante de l'arbre 48 et vont donc provoquer la rotation du corps tubulaire 44 par rapport au corps tubulaire 43, ce qui est rendu possible par le fait que les cannelures mâles 51 vont se désengager des cannelures femelles correspondantes du corps 44 au début de la course descendante de l'arbre 48.Due to the shape of the machining of the
L'arbre étant arrivé en butée basse, le fait de couper le débit va permettre au ressort de rappel 54 de pousser l'arbre 48 vers le haut. Les doigts 67 suivront pendant cette course ascendante les parties rectilignes des gorges 50. En fin de course les cannelures 51 vont s'enclencher de nouveau afin de solidariser en rotation les corps tubulaires 43 et 44.The shaft having arrived at the bottom stop, the fact of cutting the flow will allow the
La figure 13 représente de manière développée des pièces 97 et 98 qui permettent de transmettre la rotation du corps tubulaire 44 au corps tubulaire 45 tout en permettant un mouvement angulaire relatif de ces deux corps tubulaires.FIG. 13 shows in a
La pièce 97 comporte des logements 99 dans lesquels viennent coopérer des tiges 100 comportant des sphères 101. Ainsi bien que corps tubulaire solidaire de la pièce 97 fléchisse relativement au corps tubulaire solidaire de la pièce 98. Il y a entraînement en rotation d'un corps tubulaire par l'autre. Ainsi ces deux pièces ont le même rôle qu'un joint de cardan creux.The
La variation de l'angle est obtenue par la rotation du corps tubulaire 44 relativement au corps tubulaire 43 qui provoque par l'intermédiaire du mécanisme d'entraînement 56 la rotation du corps tubulaire 45 par rapport à ce même corps tubulaire 43. Cette rotation se faisant autour d'un axe oblique par rapport aux deux axes des corps 43 et 45 va provoquer une modification de l'angle que forment les axes des corps 43 et 45. Cette variation d'angle est détaillée dans le brevet FR-2.432.079. La figure 10 montre la même partie du dispositif que celle représentée à la figure 9B, mais dans une position géométriquement différente.The variation of the angle is obtained by the rotation of the
Il est décrit maintenant un mode de réalisation d'un stabilisateur à géométrie variable. Le mécanisme de télécommande de ce stabilisateur est le même que celui décrit précédemment.An embodiment of a variable geometry stabilizer is now described. The remote control mechanism of this stabilizer is the same as that described above.
La figure 11 décrit le mécanisme de variation de position d'une ou plusieurs lames d'un stabilisateur intégré. La figure 11 peut être considérée comme étant la partie inférieure de la figure 9A.FIG. 11 describes the mechanism for varying the position of one or more blades of an integrated stabilizer. Figure 11 can be considered as the lower part of Figure 9A.
A l'extrêmité inférieure du corps 44 sont usinées des gorges 92 dont la profondeur diffère en fonction du secteur angulaire concerné. Viennent s'appliquer au fond de ces gorges des poussoirs 93 sur lesquels s'appuient des lames 94 droites ou de forme hélicoïdale sous l'effet de ressorts de rappel à lames 95 positionnés sous des capots de protection 96.At the lower end of the
Le fonctionnement du mécanisme de variation de position d'une ou de plusieurs lames est indiqué ci-dessous.The operation of the position variation mechanism of one or more blades is shown below.
Lors de la rotation du corps tubulaire 44 par rapport au corps tubulaire 43 provoquée par le déplacement de l'arbre 48, les poussoirs 93 vont se trouver sur un secteur de la gorge 92 dont la profondeur sera différente. Cela provoquera une translation des lames, soit en s'éloignant, soit en se rapprochant de l'axe du corps.During the rotation of the
La figure 11 montre du côté droit une lame en position "rentrée" et du côté gauche une lame en position "sortie". Plusieurs positions intermédiaires sont envisageables, selon le pas de rotation angulaire du mécanisme télécommandé de rotation.FIG. 11 shows on the right side a blade in the "retracted" position and on the left side a blade in the "extended" position. Several intermediate positions are possible, depending on the angular rotation pitch of the remote-controlled rotation mechanism.
La figure 12 montre la courbe développée du profil du fond de la gorge 92. Ce profil peut correspondre, par exemple, au cas de trois lames commandées à partir d'une même gorge.FIG. 12 shows the developed curve of the profile of the bottom of the
L'abscisse représente le rayon du fond de gorge en fonction de l'angle au centre à partir d'une position angulaire de référence. Etant donné que l'on commande les trois lames à partir d'une même gorge et sur un tour, le profil se reproduit à l'identique tous les 120 degrés. C'est pour cela qu'il n'a été représenté que sur 120 degrés. Lorsque le doigt 93 d'une lame du stabilisateur coopère avec la portion du profil de fond de gorge correspondant au palier 1A, cette lame est en position entrée. Une rotation de 40 degrés de la gorge entraîne une modification du rayon de fond de gorge de la position correspondant au palier 1A à celle correspondant au palier 2A et donc à une position intermédiaire de sortie dans la lame. Une autre rotation de 40 degrés entraîne une augmentation du rayon de fond de gorge correspondant au palier 3A et à une sortie maximum de la lame. Entre chaque palier une rampe X permet une sortie progressive de la lame.The abscissa represents the radius of the groove bottom as a function of the angle at the center from a reference angular position. Since the three blades are controlled from the same groove and on a lathe, the profile is reproduced identically every 120 degrees. This is why it was only represented on 120 degrees. When the
La rampe Y est une rampe descendante qui ramène le dispositif à la position rentrée correspondant au palier 4A de même valeur que le palier 1A.The ramp Y is a descending ramp which returns the device to the retracted position corresponding to the
La présente invention concerne également une méthode de mise en oeuvre d'une telle garniture notamment en utilisant les moyens d'entraînement en rotation de l'ensemble du train de tiges.The present invention also relates to a method of implementing such a lining, in particular by using the means for driving the entire set of rods in rotation.
Une application de cette méthode est décrite ci-après, elle fait référence à la garniture de la figure 8.An application of this method is described below, it refers to the trim of Figure 8.
Cette garniture est particulièrement bien adaptée pour forer une section d'un puits, cette section forée comprenant :
- 1. une phase verticale ;
- 2. une amorce de déviation dans un azimut donné de 0 degré à 10 degrés, par exemple, en suivant une trajectoire précise ;
- 3. une phase de montée en angle en suivant une trajectoire (rayon de courbure) donnée,
par exemple 10 à 30 degrés, 40 degrés, voire 50 degrés etc.. - 4. une correction éventuelle d'azimut, pendant ou après la troisième phase.
- 5. forage d'une partie à angle constant
- 6. correction d'angle et/un azimut.
- 1. a vertical phase;
- 2. a start of deviation in a given azimuth from 0 degrees to 10 degrees, for example, following a precise trajectory;
- 3. an angle-up phase following a given trajectory (radius of curvature), for example 10 to 30 degrees, 40 degrees, even 50 degrees, etc.
- 4. a possible azimuth correction, during or after the third phase.
- 5. drilling a part at constant angle
- 6. angle correction and / an azimuth.
Cela est rendu possible par la combinaison du moteur de fond coudé et du stabilisateur à diamètre variable.This is made possible by the combination of the angled bottom motor and the variable diameter stabilizer.
Cette combinaison est parfaitement exploitée en alternant les périodes de forage avec rotation de la garniture de forage depuis la surface avec les périodes de forage directionnel où la garniture est maintenue dans une position (tool face) donnée. Lors de ces deux types de période, le rayon de courbure de la trajectoire de l'outil de forage pourra être modifié par variation de la géométrie (par exemple le diamètre) du stabilisateur, en plus des méthodes actuellement disponibles (variation du poids à l'outil, variation de la vitesse de rotation etc....).This combination is perfectly exploited by alternating the drilling periods with rotation of the drill string from the surface with the directional drilling periods where the string is held in a given position (tool face). During these two types of period, the radius of curvature of the trajectory of the drilling tool may be modified by variation of the geometry (for example the diameter) of the stabilizer, in addition to the methods currently available (variation of the weight per l tool, variation of the rotation speed etc ...).
La figure 14 représente la projection de la trajectoire sur le plan vertical et la figure 15 représente la projection de la trajectoire sur le plan horizontal.FIG. 14 represents the projection of the trajectory on the vertical plane and FIG. 15 represents the projection of the trajectory on the horizontal plane.
La référence 102 désigne la phase sensiblement verticale du forage. Cette phase est effectuée en tournant l'ensemble de la garniture à partir du train de tiges. Dans ce cas l'angle de l'élément coudé importe peu. Toutefois il est préférable que les deux parties articulées de cet élément soient alignées de manière à réduire l'usure latérale des composants de la garniture. Il est bien évident que cette position de l'élément coudé est impérative si cette phase s'effectue uniquement par l'utilisation du moteur de fond. Le diamètre du stabilisateur à géométrie variable 39 est de préférence égal au diamètre du stabilisateur à géométrie fixe supérieur 41.
La référence 103 désigne l'amorce de la déviation de 0 à 10 degrés environ qui s'obtient par une télécommande de l'élément coudé de manière à obtenir un certain angle entre les parties articulées de cet élément provoquant ainsi une force latérale sur l'outil et par une orientation du coude 37 dans l'azimut souhaité du forage suivie d'un entraînement en rotation de l'outil 35 à partir du moteur de fond 36, sans qu'il y ait entraînement de l'ensemble de la garniture de forage à partir du train de tiges. Le rayon de courbure du puits peut être règlé par la variation de l'angle de l'élément coudé et/ou par la variation du diamètre du stabilisateur à géométrie variable 39.The
La référence 104 désigne la phase de montée en angle de 10 degrés environ jusqu'à l'inclinaison souhaitée, sans intervention sur la direction du puits. Cette phase s'obtient en faisant tourner la garniture dans son ensemble à partir du train de tiges. Dans ce cas il est préférable que les parties articulées de l'élément coudé soient alignées et que le rayon de courbure soit ajusté par le diamètre du stabilisateur à géométrie variable 39.
La référence 105 désigne une phase de correction de l'azimut qui peut s'effectuer avec ou sans correction d'angle. Dans le cas des figures 14 et 15, il n'y a pas de correction d'angle. Cette correction d'azimut s'effectue par l'orientation de l'élément coudé 37 présentant un angle non nul, dans la direction appropriée pour aboutir à la correction d'orientation souhaitée et l'entraînement de l'outil par le moteur de fond, sans qu'il y ait un entraînement de l'ensemble de la garniture par le train de tiges.
Le choix du diamètre du stabilisateur à géométrie variable 39 ainsi que la valeur de l'angle de l'élément coudé permettent de contrôler le rayon de courbure de la trajectoire.The choice of the diameter of the
la référence 106 désigne une phase de forage à inclinaison constante sans contrôle de l'azimut. Cette phase de forage peut être réalisée par un entraînement en rotation de l'ensemble de la garniture de forage à partir du train de tiges.the
La phase référencée 107 est une phase de correction d'azimut du même type que celle décrite précédemment et qui porte la référence 105.The phase referenced 107 is an azimuth correction phase of the same type as that described above and which bears the
Les phases référencées 108 et 110 sont des phases de forage à inclinaison constante sans contrôle de l'azimut. Elles sont du même type que la phase qui porte la référence 106.The phases referenced 108 and 110 are drilling phases at constant inclination without azimuth control. They are of the same type as the phase which bears the
Les phases référencées 109 et 111 sont des phases de diminution de l'angle d'inclinaison.The phases referenced 109 and 111 are phases for decreasing the angle of inclination.
Les phases décrites précédemment se suivent dans le temps dans l'ordre des numéros des références qui leur sont affectés, allant de 102 à 111.The phases described above are followed in time in the order of the reference numbers assigned to them, ranging from 102 to 111.
La référence 112 désigne la cible à atteindre par le forage.
Bien entendu, pour d'autres applications la succession des différentes phases et leur type pourront varier en fonction de conditions rencontrées en cours de forage et des objectifs à atteindre.Of course, for other applications the succession of the different phases and their type may vary depending on conditions encountered during drilling and the objectives to be achieved.
Les figures 16 à 18 illustrent le contrôle de la direction du forage à l'aide d'une garniture comportant trois stabilisateurs, un stabilisateur à géométrie variable 113, deux stabilisateurs a géométrie fixe situés de part et d'autre du stabilisateur à géométrie variable et un élément coudé à angle variable 121 télécommandable.FIGS. 16 to 18 illustrate the control of the direction of drilling using a lining comprising three stabilizers, a stabilizer with
L'inclinaison du forage est supposée être à 30 degrés par rapport à la verticale. La référence 114 désigne le stabilisateur à géométrie fixe supérieur et la référence 115 le stabilisateur à géométrie fixe inférieur situé près de l'outil de forage 116. Dans cet exemple le stabilisateur fixe 115 est solidaire du corps du moteur 117 de même que l'élément coudé 121.The inclination of the borehole is assumed to be 30 degrees from the vertical. The
La position intermédiaire des lames du stabilisateur 113 représentée à la figure 16 correspond à un forage à angle d'inclinaison constant, l'élément coudé télécommandable 121 présentant un angle nul.The intermediate position of the
Sur les figures 17 et 18 le coude 121 est supposé présenter un angle de déviation voisin de 1 degré.In FIGS. 17 and 18, the
Sur la figure 17 le coude 121 est positionné de manière à orienter le forage vers le bas de la figure dans le sens de la flèche 119. Cette position représentée en trait mixte 122 est qualifiée par les termes de "Low side" par le foreur.In FIG. 17, the
La vérification de la position angulaire de l'élément coudé 121 se fait généralement à l'aide de moyens de mesure classiques positionnés dans la garniture de forage. Le règlage de cette position est obtenu par rotation du train de tiges d'un angle approprié depuis la surface.The angular position of the
Dans ce mode de fonctionnement l'entraînement en rotation de l'outil 116 se fait par le moteur 117.In this operating mode, the
Sur la figure 17 le centreur à géométrie variable 113 amplifie la diminution de l'angle d'inclinaison.In FIG. 17, the variable
La figure 18 représente un coude orienté vers le haut position généralement qualifiée de "high side" par le foreur, comme représenté par le trait mixte 123.FIG. 18 represents a bend oriented upwards, generally qualified as "high side" by the driller, as represented by the dashed
Dans ce mode de réglage l'angle d'inclinaison du forage augmente.In this setting mode the angle of inclination of the drilling increases.
Le contrôle et le maintien de la position du coude 121 se fait de la même manière qu'expliqué précédemment.The control and maintenance of the position of the
Dans la présente demande l'angle d'inclinaison est considéré par rapport à la direction verticale.In the present application the angle of inclination is considered with respect to the vertical direction.
Claims (9)
- A fitting for controlled trajectory drilling comprising a drilling tool placed at the end of the fitting, a motor driving the tool in rotation, at least one stabiliser (9; 27; 31; 39; 38; 115) and an elbow element, characterised in that the elbow element is at a remotely controlled variable angle (37; 58; 64; 73; 80; 81; 121), located between a motor element (55) and the drilling tool, and in that it comprises a transmission shaft for rotating the motor element on the drilling tool.
- A fitting in accordance with claim 1, characterised in that it comprises at least one variable geometry stabiliser (12; 39; 113).
- A fitting in accordance with one of claims 1 or 2, characterised in that the elbow element (64) is interlocked with the motor (55).
- A fitting in accordance with one of the previous claims, characterised in that it comprises a stabiliser which is interlocked with the tool when in rotation (fig. 7).
- A fitting in accordance with one of the previous claims, characterised in that it has at least one stabiliser interlocked in rotation with the body of the motor (fig. 6).
- A fitting in accordance with one of the previous claims, characterised in that the elbow element is remotely controlled from the surface (fig. 9A, 9B and 10).
- A fitting in accordance with one of the previous claims, characterised in that the elbow element is located in the vicinity of the drilling tool.
- A fitting in accordance with one of the previous claims, characterised in that it has a fixed geometry stabiliser in the vicinity of the drilling tool.
- Use of the fitting, in accordance with one of the previous claims, at the end of a drill string that may be driven in rotation by drive means at the surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8817598A FR2641316B1 (en) | 1988-12-30 | 1988-12-30 | LINING FOR BOREHOLE WITH CONTROLLED TRAJECTORY COMPRISING A BENDED ELEMENT WITH VARIABLE ANGLE AND USE OF THIS LINING |
FR8817598 | 1988-12-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0377373A1 EP0377373A1 (en) | 1990-07-11 |
EP0377373B1 true EP0377373B1 (en) | 1993-08-04 |
Family
ID=9373721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89403565A Expired - Lifetime EP0377373B1 (en) | 1988-12-30 | 1989-12-19 | Controlled directional drilling assembly with a variable-angle elbow element, and its use |
Country Status (5)
Country | Link |
---|---|
US (1) | US5273123A (en) |
EP (1) | EP0377373B1 (en) |
CA (1) | CA2006927C (en) |
FR (1) | FR2641316B1 (en) |
NO (1) | NO301783B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6942044B2 (en) | 1999-04-14 | 2005-09-13 | Western Well Tools, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139094A (en) * | 1991-02-01 | 1992-08-18 | Anadrill, Inc. | Directional drilling methods and apparatus |
GB9117810D0 (en) * | 1991-08-17 | 1991-10-09 | Barold Technology Inc | Drill bit steering |
GB9202163D0 (en) * | 1992-01-31 | 1992-03-18 | Neyrfor Weir Ltd | Stabilisation devices for drill motors |
FR2699222B1 (en) * | 1992-12-14 | 1995-02-24 | Inst Francais Du Petrole | Device and method for remote actuation of equipment comprising timing means - Application to a drilling rig. |
US5669457A (en) * | 1996-01-02 | 1997-09-23 | Dailey Petroleum Services Corp. | Drill string orienting tool |
US20010011591A1 (en) * | 1998-05-13 | 2001-08-09 | Hector F. A. Van-Drentham Susman | Guide device |
DE69905364D1 (en) * | 1998-06-10 | 2003-03-20 | Shell Int Research | MILLING DEVICE IN THE HOLE |
US6467557B1 (en) | 1998-12-18 | 2002-10-22 | Western Well Tool, Inc. | Long reach rotary drilling assembly |
US7798253B2 (en) * | 2007-06-29 | 2010-09-21 | Validus | Method and apparatus for controlling precession in a drilling assembly |
CN106609657A (en) * | 2015-10-22 | 2017-05-03 | 中国石油化工股份有限公司 | Drilling tool assembly and method for well drilling with same |
CN108278082B (en) * | 2017-01-05 | 2019-09-13 | 通用电气公司 | Rotary steerable drilling system with active type stabilizer |
CN108930515B (en) * | 2018-07-23 | 2021-06-08 | 徐芝香 | Crooked head rotary guiding tool |
CN108979534A (en) * | 2018-07-24 | 2018-12-11 | 徐芝香 | Torticollis camcylinder pushing type rotary steerable tool |
CN108952575A (en) * | 2018-07-24 | 2018-12-07 | 徐芝香 | Torticollis static state directional type rotary steerable tool |
CN108952576A (en) * | 2018-07-24 | 2018-12-07 | 徐芝香 | Torticollis static state pushing type rotary steerable tool |
CN111322011A (en) * | 2020-04-17 | 2020-06-23 | 长江大学 | Underground azimuth orientation method and orientation tool thereof |
CN116753243A (en) * | 2023-08-18 | 2023-09-15 | 凌远科技股份有限公司 | Dynamic directional rotary guiding force transmission bearing system |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2500267A (en) * | 1945-03-26 | 1950-03-14 | John A Zublin | Apparatus for drilling deflecting well bores |
US2890859A (en) * | 1957-02-25 | 1959-06-16 | Eastware Oil Well Survey Compa | Turbine well drilling apparatus |
FR1247454A (en) * | 1959-10-22 | 1960-12-02 | Device for guiding a drilling tool | |
US3888319A (en) * | 1973-11-26 | 1975-06-10 | Continental Oil Co | Control system for a drilling apparatus |
US4040495A (en) * | 1975-12-22 | 1977-08-09 | Smith International, Inc. | Drilling apparatus |
US4077657A (en) * | 1976-03-22 | 1978-03-07 | Smith, International, Inc. | Adjustable bent sub |
US4185704A (en) * | 1978-05-03 | 1980-01-29 | Maurer Engineering Inc. | Directional drilling apparatus |
FR2432079A1 (en) * | 1978-07-24 | 1980-02-22 | Inst Francais Du Petrole | Crank connector for adjustment of drilling path - comprises interconnected tubes having variable relative angular positioning |
FR2445431A1 (en) * | 1978-12-29 | 1980-07-25 | Inst Francais Du Petrole | Boring column extension with stabiliser stages - having remotely-controlled projectable blades for guiding cutter in preselected direction |
DE3403239C1 (en) * | 1984-01-31 | 1985-06-27 | Christensen, Inc., Salt Lake City, Utah | Devices for optional straight or directional drilling in underground rock formations |
US4739842A (en) * | 1984-05-12 | 1988-04-26 | Eastman Christensen Company | Apparatus for optional straight or directional drilling underground formations |
DE3423465C1 (en) * | 1984-06-26 | 1985-05-02 | Norton Christensen, Inc., Salt Lake City, Utah | Devices for alternative straight or directional drilling in underground rock formations |
FR2617533B1 (en) * | 1987-06-30 | 1994-02-11 | Smf International | DEVICE FOR REMOTELY ADJUSTING THE RELATIVE ORIENTATION OF TWO SECTIONS OF A DRILLING COLUMN |
US4817740A (en) * | 1987-08-07 | 1989-04-04 | Baker Hughes Incorporated | Apparatus for directional drilling of subterranean wells |
US4877092A (en) * | 1988-04-15 | 1989-10-31 | Teleco Oilfield Services Inc. | Near bit offset stabilizer |
-
1988
- 1988-12-30 FR FR8817598A patent/FR2641316B1/en not_active Expired - Fee Related
-
1989
- 1989-12-19 EP EP89403565A patent/EP0377373B1/en not_active Expired - Lifetime
- 1989-12-28 NO NO895303A patent/NO301783B1/en not_active IP Right Cessation
- 1989-12-29 CA CA002006927A patent/CA2006927C/en not_active Expired - Fee Related
- 1989-12-29 US US07/459,285 patent/US5273123A/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6942044B2 (en) | 1999-04-14 | 2005-09-13 | Western Well Tools, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
Also Published As
Publication number | Publication date |
---|---|
NO301783B1 (en) | 1997-12-08 |
US5273123A (en) | 1993-12-28 |
FR2641316A1 (en) | 1990-07-06 |
NO895303L (en) | 1990-07-02 |
EP0377373A1 (en) | 1990-07-11 |
CA2006927C (en) | 1999-10-05 |
FR2641316B1 (en) | 1995-09-08 |
NO895303D0 (en) | 1989-12-28 |
CA2006927A1 (en) | 1990-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0376805B1 (en) | Controlled directional drilling assembly with a variable geometry stabiliser, and its use | |
EP0380893B1 (en) | Drilling assembly with an actuator, a motor and control means | |
EP0377373B1 (en) | Controlled directional drilling assembly with a variable-angle elbow element, and its use | |
EP0376811B1 (en) | Remote actuator with a nozzle-needle system | |
CA2647397C (en) | Device for steering drilling tools | |
EP1870600B1 (en) | Bearing for the trunnion of a turbomachine stator vane with variable setting, corresponding stator vane and turbomachine | |
EP0190529B1 (en) | Remotely controlled flow-responsive actuating device, in particular for actuating a stabilizer in a drill string | |
CA1128925A (en) | Variable angle bent sub for directional drilling | |
EP0201398A1 (en) | Composition for oriented drilling | |
EP0517874B1 (en) | Device comprising two elements hinged in a plane, used in drilling equipment | |
CA2276851C (en) | Device and method to control the path of a drill hole | |
FR2843418A1 (en) | DEVICE FOR STABILIZING A ROTARY DRILL ROD TRAIN WITH REDUCED FRICTION | |
EP0286500A1 (en) | Apparatus for controlled directional drilling, and process for controlling the apparatus | |
EP0212316A1 (en) | Drill string for deflection drilling, method of using such a string and deflecting device used in this string | |
EP1746213A1 (en) | Device for making a trenchwall by soil mixing | |
FR2580720A1 (en) | System for drilling a well by vibration | |
CA2384281C (en) | Method and device for rotary well drilling | |
FR2579662A1 (en) | Drilling device with controlled trajectory | |
FR2744762A1 (en) | DEVICE FOR CONTROLLING VALVES OF AN INTERNAL COMBUSTION ENGINE | |
FR2997439A1 (en) | STABILIZER DEVICE FOR WELL BOTTOM LINING | |
EP4382722A1 (en) | Device for guiding the rotation of a drilling tool and associated method | |
FR2556419A1 (en) | Driving machine with a helix for drilling wells | |
FR2612983A2 (en) | Drilling device with monitored path and corresponding path-adjusting method | |
WO2012175572A1 (en) | Uncoupling device for connecting a drilling tool to the end of a drilling column and a drilling system comprising such an uncoupling device | |
BE399709A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19920311 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): GB IT NL |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930823 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031124 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20031223 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041219 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051219 |