EP0376838B1 - Apparatus for cutting solid structures from a distance by the directed projection of splinters - Google Patents
Apparatus for cutting solid structures from a distance by the directed projection of splinters Download PDFInfo
- Publication number
- EP0376838B1 EP0376838B1 EP19890403654 EP89403654A EP0376838B1 EP 0376838 B1 EP0376838 B1 EP 0376838B1 EP 19890403654 EP19890403654 EP 19890403654 EP 89403654 A EP89403654 A EP 89403654A EP 0376838 B1 EP0376838 B1 EP 0376838B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- perimeter
- explosive charge
- centre
- splinters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007787 solid Substances 0.000 title claims description 6
- 239000002360 explosive Substances 0.000 claims description 11
- 230000035939 shock Effects 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 2
- 230000003467 diminishing effect Effects 0.000 claims 1
- 238000004880 explosion Methods 0.000 description 5
- 238000005474 detonation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- UPSVYNDQEVZTMB-UHFFFAOYSA-N 2-methyl-1,3,5-trinitrobenzene;1,3,5,7-tetranitro-1,3,5,7-tetrazocane Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O.[O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UPSVYNDQEVZTMB-UHFFFAOYSA-N 0.000 description 1
- 241001415961 Gaviidae Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B1/00—Explosive charges characterised by form or shape but not dependent on shape of container
- F42B1/02—Shaped or hollow charges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D3/00—Particular applications of blasting techniques
Definitions
- the invention relates to a device for the remote cutting of solid structures, in particular thick metal plates by oriented splinters.
- hollow charges are also known, where an explosive charge is hollowed out according to a conical imprint and furnished with a projectile in the form of a conical envelope with the same opening.
- the implosion of this cone by detonation of the explosive creates a threadlike metallic jet on the axis of the charge.
- This metallic jet has the property of perforating thick solid targets over great depths.
- These shaped charges are mainly used to perforate shields. We note during the trajectory that the energy of the explosion makes the projectile plastic and that its matter is animated by a centripetal component, so that it ends up accumulating in the form of a thin jet on the axis of the trajectory and that the cone is almost abolished.
- the invention rather aims to perforate the target along a closed contour such as circular, which causes greater damage and, in the case of plates, allows cuts to diameters decided by the user.
- the device according to the invention comprises a projectile and an explosive charge located behind the projectile relative to the solid and separated from it by a damping layer.
- the projectile is in the form of a disc having a circular perimeter or not analogous to the closed contour, a pierced center and a thickness decreasing from the perimeter towards the center; the explosive charge is itself capable of producing a substantially planar shock wave towards the plate.
- the projectile thus possibly has a conical concave face. It can be fitted with lines of least radial or circumferential resistance.
- the explosive charge is advantageously provided with a substantially planar face directed towards the projectile and separated from the latter by a layer of air.
- FIG. 1 We distinguish in Figure 1 an explosive charge 1 of cylindro-conical shape having a cylindrical part 2 at the front and a frustoconical part 3 limited by a rear face 6 at the rear, constituting the plane detonation wave generator.
- a detonator 5 is located on the rear face 6.
- the cylindrical part 2 is terminated by a flat front face 7; a spacer ring 8 separates it from a disc-shaped projectile 10 which exactly covers the front face 7.
- the gaseous layer 9 between the charge 1 and the projectile 10 makes it possible to avoid the almost immediate disintegration of the latter at moment of the explosion and therefore constitutes a shock absorber.
- the projectile 10 has an outer perimeter 11 and a bore 12 established on its central part.
- the thickness of the projectile 10 gradually decreases from the perimeter 11 to the bore 12; it is noted there Ep and Ec respectively. This can be achieved by building it with a flat rear face 13 and a concave front face 14 of conical shape.
- FIG. 2 shows that following the explosion the projectile 10, initially in the form of a disc 10a as we have just seen, deforms plastically by opening as it approaches of the target, here a plate 20 to be cut along a circular contour 21, to take the form first of a cone 10b then finally of a crown 10c.
- the plane shock wave created by the explosive charge 1 projects the material of the projectile 10 at an increasing speed with the proximity of the bore 12, so that the material which was at the beginning in the center comes to the front and is is moreover animated by a centrifugal speed which makes it progressively approach the trajectory followed by the points of the perimeter 11.
- a centrifugal speed which makes it progressively approach the trajectory followed by the points of the perimeter 11.
- This optimal distance d corresponds to the flight distance of the flakes from which they are almost aligned in a crown.
- the opening of the projectile 10 can be favored by having lines of least resistance therein (FIG. 3). These lines can be radial 22 and extend from the perimeter 11 to the central bore 12, or circumferential 23 and extend over a closed curve between the perimeter 11 and the central bore 12. They can be made by mechanical grooving, electronic bombardment or by laser.
- FIGS. 4 to 6 the projectile can be in the form of a non-circular disc: FIG. 4 shows an equilateral triangular projectile 104, FIG. 5 a square 105 projectile and FIG. 6 a hexagonal projectile 106. Any irregular or non-irregular polygonal shape is admissible. All of the above description applies to these projectiles. Their interest is to allow cuts to be made according to closed contours similar to their respective perimeters 114, 115 and 116.
- the front face of the load 2 may not be perfectly conical and have a slight curvature in one direction or the other.
- the method can be used, in addition to cutting plates, in particular from composite materials, for destroying elements of concrete structures (dismantling of installations) or shielding or for perforating the casing of a well as well as for disintegrating. around this well the rocks impregnated with petroleum.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Description
L'invention se rapporte à un dispositif de découpage à distance de structures solides, notamment de plaques métalliques épaisses par projections orientées d'éclats.The invention relates to a device for the remote cutting of solid structures, in particular thick metal plates by oriented splinters.
Un certain nombre de documents décrivent divers procédés d'usinage, de formage ou de plaquage où l'on exploite l'énergie produite par une explosion. On sait par exemple mettre un poinçon en mouvement ou projeter une plaque de revêtement sur une surface pour la recouvrir par un brasage dû à l'échauffement.A number of documents describe various machining, forming or plating processes in which the energy produced by an explosion is exploited. It is known, for example, to put a punch in motion or to project a coating plate onto a surface to cover it with a brazing due to heating.
On connaît également l'utilisation de charges creuses, où une charge explosive est évidée suivant une empreinte conique et garnie d'un projectile en forme d'enveloppe conique de même ouverture. L'implosion de ce cône par détonation de l'explosif crée un jet métallique filiforme sur l'axe de la charge. Ce jet métallique a la propriété de perforer sur de grandes profondeurs des cibles solides épaisses. Ces charges creuses sont surtout utilisées pour perforer des blindages. On constate au cours de la trajectoire que l'énergie de l'explosion rend le projectile plastique et que sa matière est animée d'une composante centripète, si bien qu'elle finit par s'accumuler sous forme de jet mince sur l'axe de la trajectoire et que le cône est à peu près aboli. Une telle charge creuse est le sujet du brevet américain 4 702 171. Une autre est décrite dans le brevet français 2 041 498. On peut encore signaler le brevet américain 4 649 828 où une calotte sphérique est formée de lamelles contiguës qui sont déformées en pointes de flèche à l'explosion.The use of hollow charges is also known, where an explosive charge is hollowed out according to a conical imprint and furnished with a projectile in the form of a conical envelope with the same opening. The implosion of this cone by detonation of the explosive creates a threadlike metallic jet on the axis of the charge. This metallic jet has the property of perforating thick solid targets over great depths. These shaped charges are mainly used to perforate shields. We note during the trajectory that the energy of the explosion makes the projectile plastic and that its matter is animated by a centripetal component, so that it ends up accumulating in the form of a thin jet on the axis of the trajectory and that the cone is almost abolished. Such a hollow charge is the subject of American patent 4,702,171. Another is described in French patent 2,041,498. It is also possible to note American patent 4,649,828 where a spherical cap is formed from contiguous lamellae which are deformed into points of explosion arrow.
L'invention vise plutôt à perforer la cible le long d'un contour fermé tel que circulaire, ce qui provoque des dégâts plus importants et, dans le cas des plaques, autorise des découpes à des diamètres décidés par l'utilisateur.The invention rather aims to perforate the target along a closed contour such as circular, which causes greater damage and, in the case of plates, allows cuts to diameters decided by the user.
Le dispositif suivant l'invention comprend un projectile et une charge explosive située derrière le projectile par rapport au solide et séparée de lui par une couche amortissante. Le projectile est en forme de disque ayant un périmètre circulaire ou non analogue au contour fermé, un centre percé et une épaisseur s'amenuisant du périmètre vers le centre ; la charge explosive est quant à elle apte à produire une onde de choc sensiblement plane vers la plaque.The device according to the invention comprises a projectile and an explosive charge located behind the projectile relative to the solid and separated from it by a damping layer. The projectile is in the form of a disc having a circular perimeter or not analogous to the closed contour, a pierced center and a thickness decreasing from the perimeter towards the center; the explosive charge is itself capable of producing a substantially planar shock wave towards the plate.
Le projectile présente ainsi éventuellement une face concave conique. Il peut être muni de lignes de moindre résistance radiales ou circonférentielles.The projectile thus possibly has a conical concave face. It can be fitted with lines of least radial or circumferential resistance.
La charge explosive est avantageusement munie d'une face sensiblement plane dirigée vers le projectile et séparée de celui-ci par une couche d'air.The explosive charge is advantageously provided with a substantially planar face directed towards the projectile and separated from the latter by a layer of air.
On va maintenant décrire l'invention plus en détail à l'aide des figures annexées à titre illustratif et non limitatif :
- La figure 1 est une coupe diamétrale d'une réalisation du dispositif présentant une symétrie de révolution ;
- La figure 2 explique le fonctionnement du dispositif ; et
- Les figures 3 à 6 représentent de face diverses formes pour le projectile.
- Figure 1 is a diametrical section of an embodiment of the device having a symmetry of revolution;
- Figure 2 explains the operation of the device; and
- Figures 3 to 6 show various shapes of the projectile from the front.
On distingue sur la figure 1 une charge explosive 1 de forme cylindro-conique présentant une partie cylindrique 2 à l'avant et une partie tronconique 3 limitée par une face arrière 6 à l'arrière, constituant le générateur d'onde de détonation plane. Un détonateur 5 est situé sur la face arrière 6. La partie cylindrique 2 est terminée par une face avant 7 plane ; une couronne d'espacement 8 la sépare d'un projectile 10 en forme de disque qui vient recouvrir exactement la face avant 7. La couche gazeuse 9 entre la charge 1 et le projectile 10 permet d'éviter la désintégration quasi immédiate de ce dernier au moment de l'explosion et constitue donc un amortisseur.We distinguish in Figure 1 an explosive charge 1 of cylindro-conical shape having a
Le projectile 10 présente un périmètre 11 extérieur et un perçage 12 établi sur sa partie centrale. L'épaisseur du projectile 10 s'amenuise progressivement du périmètre 11 au perçage 12 ; elle y est notée Ep et Ec respectivement. Ceci peut être réalisé en le construisant avec une face arrière 13 plane et une face avant 14 concave et de forme conique.The
La figure 2 montre qu'à la suite de l'explosion le projectile 10, au départ en forme d'un disque 10a comme on vient de le voir, se déforme plastiquement en s'ouvrant au fur et à mesure qu'il se rapproche de la cible, ici une plaque 20 à découper suivant un contour circulaire 21, pour prendre la forme tout d'abord d'un cône 10b puis finalement d'une couronne 10c. Plus précisément, l'onde de choc plane créée par la charge explosive 1 projette la matière du projectile 10 à une vitesse croissant avec la proximité du perçage 12, si bien que la matière qui était au début au centre vient à l'avant et se trouve de plus animée d'une vitesse centrifuge qui la fait se rapprocher progressivement de la trajectoire suivie par les points du périmètre 11. On assiste approximativement, pour chaque section radiale du projectile 10, à une rotation dans le plan de la section autour de la partie adjacente au périmètre 11 ; aucun bourrelet de matière n'apparaît. La vitesse centrifuge des points situés près du périmètre 11 est faible ou nulle.Figure 2 shows that following the explosion the
Dans un exemple concret, on a cherché à percer une cible 20 en acier de blindage de 40 mm d'épaisseur. La charge 1 et le projectile 10 ont été placés à 1 m de la cible 20. La charge était approximativement cylindrique, de 150 mm de diamètre et composée de 2,5 kg d'Octolite. Le projectile 10 avait également 150 mm de diamètre, son épaisseur Ep était de 5 mm et son épaisseur Ec de 2,5 mm. L'angle C était de 2° et le diamètre du perçage de 10 mm. On a observé une découpe 21 de près de 150 mm de diamètre sur la cible 20. Bien d'autres solutions acceptables sont bien sûr possibles.In a concrete example, we sought to drill a
On pourra utiliser pour d'autres applications numériques les résultats obtenus de simulations à partir de codes de calculs hydrodynamiques bidimensionnels ou en appliquant par exemple la formule utilisable pour la projection d'un projectile plan par une détonation frontale :
où Z est égal à la racine carrée de 1+(32r/27), r désignant le rapport de la masse surfacique locale de la charge sur celle du projectile, perpendiculairement au front d'onde, Uc la vitesse de détonation de la charge et Up la vitesse locale du projectile.We will be able to use for other digital applications the results obtained from simulations from two-dimensional hydrodynamic calculation codes or by applying for example the formula usable for the projection of a planile projectile by a frontal detonation:
where Z is equal to the square root of 1+ (32r / 27), r denoting the ratio of the local surface mass of the charge to that of the projectile, perpendicular to the wavefront, U c the detonation speed of the charge and U p the local velocity of the projectile.
En augmentant ou au contraire en diminuant l'angle C, on peut réduire ou au contraire fortement accroître, de plusieurs mètres par exemple, la distance optimale d de perforation indiquée sur la figure 2.By increasing or on the contrary by decreasing the angle C, one can reduce or on the contrary strongly increase, by several meters for example, the optimal distance d of perforation indicated on figure 2.
Cette distance optimale d correspond à la distance de vol des éclats à partir de laquelle ces derniers sont quasiment alignés en couronne.This optimal distance d corresponds to the flight distance of the flakes from which they are almost aligned in a crown.
L'ouverture du projectile 10 peut être favorisée en y disposant des lignes de moindre résistance (figure 3). Ces lignes peuvent être radiales 22 et s'étendre du périmètre 11 au perçage central 12, ou circonférentielles 23 et s'étendre sur une courbe fermée entre le périmètre 11 et le perçage central 12. Elles peuvent être réalisées par rainurage mécanique, bombardement électronique ou par laser.The opening of the
On a jusqu'à présent parlé de projectiles en forme de disques circulaires. Comme le montrent les figures 4 à 6, le projectile peut être en forme de disque non circulaire : la figure 4 montre un projectile 104 triangulaire équilatéral, la figure 5 un projectile 105 carré et la figure 6 un projectile 106 hexagonal. Toute forme polygonale irrégulière ou non est admissible. Toute la description précédente s'applique à ces projectiles. Leur intérêt est de permettre de réaliser des découpes suivant des contours fermés analogues à leurs périmètres respectifs 114, 115 et 116.We have so far spoken of projectiles in the form of circular discs. As shown in FIGS. 4 to 6, the projectile can be in the form of a non-circular disc: FIG. 4 shows an equilateral
La face avant de la charge 2 peut ne pas être parfaitement conique et présenter une légère courbure dans un sens ou dans l'autre.The front face of the
Le procédé peut être utilisé, outre pour le découpage de plaques notamment en matériaux composites, pour la destruction d'éléments de structures en béton (démantèlement d'installations) ou de blindages ou pour la perforation du tubage d'un puits ainsi que pour désintégrer autour de ce puits les roches imprégnées de pétrole.The method can be used, in addition to cutting plates, in particular from composite materials, for destroying elements of concrete structures (dismantling of installations) or shielding or for perforating the casing of a well as well as for disintegrating. around this well the rocks impregnated with petroleum.
Claims (5)
- Device for long-range cutting of solid structures and in particular for cutting a plate (20) along a closed contour (21) comprising a projectile (10) and an explosive charge (1) situated behind the projectile (10) with respect to the solid (20) characterised in that the explosive charge (1) is separated from the projectile (10) by a damping layer (9), and in that the projectile (10) is shaped like a disc having a circular or other perimeter (11) similar to the closed contour (21), a perforated centre (12) and a thickness diminishing from the perimeter towards the centre, and in that the explosive charge (1) is able to produce a substantially plane shock wave heading for the plate.
- Device according to Claim 1, characterised in that the explosive charge (1) has a substantially plane face (7) turned towards the projectile (10) and separated from the projectile (10) by a layer of gas (9).
- Device according to either one of Claims 1 or 2, characterised in that the projectile has a concave face (14).
- Device according to any one of Claims 1 to 3, characterised in that the projectile (10) is endowed with lines of least resistance (22) joining the perimeter (11) to the centre (12).
- Device according to any one of Claims 1 to 4, characterised in that the projectile (10) is endowed with closed-contour lines of least resistance (23) between the perimeter (11) and the centre (12).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8817402A FR2641371B1 (en) | 1988-12-29 | 1988-12-29 | DEVICE FOR REMOTELY CUTTING SOLID STRUCTURES BY ORIENTED SPRAY PROJECTION |
FR8817402 | 1988-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0376838A1 EP0376838A1 (en) | 1990-07-04 |
EP0376838B1 true EP0376838B1 (en) | 1993-06-09 |
Family
ID=9373575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890403654 Expired - Lifetime EP0376838B1 (en) | 1988-12-29 | 1989-12-27 | Apparatus for cutting solid structures from a distance by the directed projection of splinters |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0376838B1 (en) |
DE (1) | DE68907038T2 (en) |
FR (1) | FR2641371B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104457464A (en) * | 2014-12-03 | 2015-03-25 | 中国人民解放军理工大学 | Linear cutter with baffle |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3211094A (en) * | 1960-05-18 | 1965-10-12 | Jr Thomas P Liddiard | Explosive wave shaper |
US3722414A (en) * | 1966-01-13 | 1973-03-27 | Us Navy | High velocity flight stabilized fragmentation device |
FR2041498A5 (en) * | 1969-04-28 | 1971-01-29 | France Etat | Hollow charge loading |
GB2134630B (en) * | 1983-01-10 | 1986-10-15 | Wang Su Jen | Apparatus and method of blasting rocks |
NO862508L (en) * | 1985-12-12 | 1987-06-15 | Israel Defence | BOMB WITH SHAPED OR HOLE LOAD. |
US4649828A (en) * | 1986-02-06 | 1987-03-17 | Avco Corporation | Explosively forged penetrator warhead |
DE3625966A1 (en) * | 1986-07-31 | 1988-02-11 | Diehl Gmbh & Co | PROJECT-FORMING LOAD |
-
1988
- 1988-12-29 FR FR8817402A patent/FR2641371B1/en not_active Expired - Lifetime
-
1989
- 1989-12-27 EP EP19890403654 patent/EP0376838B1/en not_active Expired - Lifetime
- 1989-12-27 DE DE1989607038 patent/DE68907038T2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0376838A1 (en) | 1990-07-04 |
FR2641371B1 (en) | 1991-02-22 |
FR2641371A1 (en) | 1990-07-06 |
DE68907038D1 (en) | 1993-07-15 |
DE68907038T2 (en) | 1993-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2730049A1 (en) | DEVICE FOR PRODUCING EXPLOSION-FORMED PROJECTILES | |
EP0437992B1 (en) | Explosive charge creating a plurality of plugs and/or jets | |
FR2632394A1 (en) | EXPLOSIVE CHARGE GENERATING CORE | |
EP3403047B1 (en) | Warhead | |
EP0561085B1 (en) | Method using a hollow charge for perforating an armour which is protected by a reactive pre-armour | |
EP0376838B1 (en) | Apparatus for cutting solid structures from a distance by the directed projection of splinters | |
FR2859780A1 (en) | REPORTING SHIELD PANEL FOR MOTOR VEHICLE | |
EP0084007B1 (en) | Dual stage penetrator bomb | |
FR2549949A1 (en) | METHOD AND DEVICE FOR CONFORMING A DETONATION WAVE | |
FR2561376A1 (en) | Explosive device with fragmentation | |
EP0138640B1 (en) | Explosive charge for military use | |
EP1582837B1 (en) | Fragmentation envelope for high explosive projectile | |
AU2004209894A1 (en) | Double explosively-formed ring (defr) warhead | |
EP0752572B1 (en) | Warhead with hollow charge and munition having such a warhead | |
EP0091860A1 (en) | Armour-piercing hollow charge | |
EP1358395B1 (en) | Oil well perforator | |
FR2573194A1 (en) | FRAGMENTATION ENVELOPE FOR ANTI-INDIVIDUAL WEAPONS, SUCH AS GRENADES | |
US20090114111A1 (en) | Explosive charge | |
BE892195A (en) | IMPROVEMENTS ON DETONATION DEVICES. | |
WO2014095989A1 (en) | Warhead with shrapnel and method for producing same | |
FR2648222A1 (en) | PROJECTILE-FLECHE WITH KINETIC ENERGY | |
EP3136043B1 (en) | Warhead rocket with striker | |
FR2826441A1 (en) | Fragmentation shell for attacking technical targets has inner casing with grooves at an acute angle to the separating surface between casings | |
FR2756374A1 (en) | KINETIC PROJECTILE WITH INCREASED LATERAL EFFECT | |
EP0545823A1 (en) | Fragmentation body, method of its manufacture and its use for ammunition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE GB IT |
|
17P | Request for examination filed |
Effective date: 19901208 |
|
17Q | First examination report despatched |
Effective date: 19920224 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE GB IT |
|
REF | Corresponds to: |
Ref document number: 68907038 Country of ref document: DE Date of ref document: 19930715 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931001 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19941205 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19941209 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19941213 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19951227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19951231 |
|
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Effective date: 19951231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19951227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051227 |