Nothing Special   »   [go: up one dir, main page]

EP0232336A1 - Construction elements produced by powder metallurgy - Google Patents

Construction elements produced by powder metallurgy

Info

Publication number
EP0232336A1
EP0232336A1 EP86904764A EP86904764A EP0232336A1 EP 0232336 A1 EP0232336 A1 EP 0232336A1 EP 86904764 A EP86904764 A EP 86904764A EP 86904764 A EP86904764 A EP 86904764A EP 0232336 A1 EP0232336 A1 EP 0232336A1
Authority
EP
European Patent Office
Prior art keywords
preform
furnace
sintering
green body
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86904764A
Other languages
German (de)
French (fr)
Inventor
Gerhard Andrees
Josef Kranzeder
Wilhelm Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0232336A1 publication Critical patent/EP0232336A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to components produced by powder metallurgy, in particular by injection molding or injection molding.
  • components in particular high-temperature-resistant components that are injection-molded or dry-pressed and sintered, or at least capable of being sintered, these are shaped e.g. on plates, laid on or in powder or similar embedded.
  • the sintering usually follows after the binder has been burned out or evaporated and mixed with the metallic alloy as the starting powder.
  • the components have only an extremely low strength during the expulsion of the binder and are very sensitive to any kind of contact, so they must be worn or covered or otherwise protected by the pads / underlays / intermediate layers or embedding material. As a result, the sintering process is hindered, and friction occurs at the contact points, the forces of which counteract the shrinkage forces. Also the risk of chemical reactions on the Contact points or contact areas is at the high
  • the object of the invention is to contribute to the creation of components which are temperature-resistant, true to shape or true to shape, i.e. are true to size and have a smooth surface without cracks.
  • the main advantage of the invention is i.a. to be seen in the fact that even when the binder is expelled after the shaping, a high dimensional stability of the components is already guaranteed. They are easy to handle and have the desired properties, see above.
  • FIG. 1 shows an injection-molded metal sample in its treatment chamber, here: container of an oven
  • Fig. 2 shows an injection molded metal scoop in its treatment chamber, here: container of an oven
  • Fig. 3b sample sintered according to Fig. 2o
  • Fig. 4 sample partially surrounded by current-carrying coil
  • Fig. 10 sample in powder. Sintering in the temperature time program.
  • Fig. 2o sample freely accessible. Sintering in the temperature program.
  • the powder metallurgical starting material in particular a globular powder of a nickel-based alloy, is mixed with a binder such as wax or thermoplastics, in a volume ratio of 40% to 80% metal powder and 20% to 60% binder.
  • a binder such as wax or thermoplastics
  • the material or the mass is brought into the desired shape of the component in an injection molding machine or in a dry press.
  • the components are then sintered without pressure.
  • This sintering process is multi-stage, in particular two-stage, it can be followed by subsequent compression of the molded body. Hot isostatic pressing is preferred for post-compaction.
  • the components are manufactured in such a way that following the known steps: shaping * and burnout, in a first sintering step to approx.
  • the components 1 are attached to a furnace frame 2 or other container made of metal or ceramic, e.g., on rods (3).
  • the attachment is best applied to the sprue, since this area of the molded part is no longer required later.
  • the second sintering that is to say the component is heated in a vacuum or in a protective gas to the necessary temperature, which, depending on the metal alloy used, is in the range between approximately 1150 ° C. and 1300 ° C.
  • the heating rate must be selected so that any cracks in the surface that are still present close during the second heat treatment, e.g. For example, in the case of nickel-based alloys, heating between 20 and 100 K / min for up to about 2 hours and a maximum temperature of 60% to 98% of the solidus temperature of the alloy is selected.
  • the components produced in this way have no contour errors, have shrunk linearly and are therefore hardly smaller, ie practically true to size.
  • the parts can have almost any shape and have a smooth, dense and crack-free surface.
  • the density of the component was 95% to 98% of the theoretical density without post-compression and about 100% by post-compression using hot isostatic pressing.
  • the parts to be sintered can also float (e.g. on a gas cushion made up of a large number of nozzles (6) or in the magnetic field of the coil (5) or with a suction cup (7) in their position in the container ( 2)
  • the container consists of a material which does not react with these parts, such as Al_0- or ZrO «.
  • the geometric shape of the precision parts to be manufactured is practically arbitrary.
  • the injection or pressing process and the necessary injection molding or pressing mold are selected in at least near-net shape.
  • An example of a suitable device is described in DE-OS 30 42 052.
  • the invention is mainly used for ** blades or wheels in turbo mechanical engineering.
  • FIG. 3 A shows a sample with sintering according to the prior art (in powder filling).
  • 3B (right) shows a sample treated according to the invention.
  • FIGS. 3A and 3B show that, according to the prior art, the surface of the sample is contaminated and the sample has deformed.
  • DA * against the sample surface and of sound Geo ⁇ geometry (dimensions and shape retention) is.
  • the invention thus achieves a result with simple means that is impressive.
  • the success of the combination of agents according to the invention was by no means foreseeable and it creates the possibility of further applications of objects which are produced from powdered starting material.
  • Fig. ⁇ o shows the sintering in powder filling according to the prior art, using a temperature-time program.
  • 2o shows the sintering according to the invention with objects freely suspended or floating in the treatment chamber, likewise on the basis of a temperature-time program with the same units as in FIG. 1.
  • the temperature treatment is carried out continuously in such a way that after a ⁇ ° (2nd) increase phase with a new holding phase, at least one temperature decrease with a holding phase follows.
  • the manipulation of the preforms or green compacts is controlled from outside the container 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

Des éléments de construction en matériaux issus de la métallurgie des poudres, notamment des alliages résistant aux températures élevées, des alliages à base de nickel, sont fabriqués par coulage par injection ou par emboutissage. Le frittage est réparti en plusieurs passes séparées de manière à obtenir des pièces non déformées, compactes et lisses.Construction elements made of materials from powder metallurgy, in particular high temperature resistant alloys, nickel base alloys, are manufactured by injection casting or by stamping. The sintering is distributed in several separate passes so as to obtain undeformed, compact and smooth parts.

Description

Auf pulvermetallurgischem Wege hergestellte Made by powder metallurgy
BauteileComponents
Die Erfindung betrifft pulvermetallurgisch hergestellte Bauteile, insbesondere durch Spritzgießen oder Spritz¬ pressen. Bei der Herstellung von Bauteilen, insbe¬ sondere hochtemperaturbeständigen Bauteilen, die spritz— gegossen oder trockengepreßt sind und gesintert, bzw.. zumindest Sinte fähig sind, werden diese nach der Formgebung z.B. auf Platten, aufgelegt oder in Pulver o.a. eingebettet.The invention relates to components produced by powder metallurgy, in particular by injection molding or injection molding. In the production of components, in particular high-temperature-resistant components that are injection-molded or dry-pressed and sintered, or at least capable of being sintered, these are shaped e.g. on plates, laid on or in powder or similar embedded.
Das Sintern folgt in der Regel nach dem Ausbrennen oder Abdampfen des Bindemittels das mit der metallischen Legierung als Ausgangspulver gemischt war. Die Bauteile haben während dem Austreiben des Bindemittels nur eine äußerst geringe Festigkeit und sind sehr empfindlich gegen jede Art von Berührung, siffmüssen deshalb durch die Auflagen/Unterlagen/Zwischeniagen oder Einbett- material getragen oder abgedeckt oder sonstwie geschützt werden. Dadurch wird der Sintervorgang behindert, außerdem entsteht an den Kontaktstellen Reibung deren Kräfte den Schrumpfungskräften entgegen¬ wirken. Auch die Gefahr chemischer Reaktionen an den Kontaktstellen bzw. Kontaktflächen ist bei den hohenThe sintering usually follows after the binder has been burned out or evaporated and mixed with the metallic alloy as the starting powder. The components have only an extremely low strength during the expulsion of the binder and are very sensitive to any kind of contact, so they must be worn or covered or otherwise protected by the pads / underlays / intermediate layers or embedding material. As a result, the sintering process is hindered, and friction occurs at the contact points, the forces of which counteract the shrinkage forces. Also the risk of chemical reactions on the Contact points or contact areas is at the high
Sintertemperaturen bis zu etwa 1300°C nicht auszuschließen.Sintering temperatures up to about 1300 ° C cannot be excluded.
Hierdurch wiederum können Oberflächenrisse, Poren oder Kerben entstehen bzw. vergrößert werden. Wegen ungleich¬ mäßiger Schrumpfungen kann Verzug entstehen.This in turn can cause or enlarge surface cracks, pores or notches. Due to uneven shrinkage, distortion can occur.
Die Erfindung hat die Aufgabe zur Schaffung solcher Bau¬ teile beizutragen, die temperaturfest, konturen- bzw. form- treu d.h. maßhaltig sind und eine glatte Oberfläche ohne Risse aufweisen.The object of the invention is to contribute to the creation of components which are temperature-resistant, true to shape or true to shape, i.e. are true to size and have a smooth surface without cracks.
Gelöst wird diese Aufgabe durch die im Hauptanspruch ange¬ gebenen Merkmale. Weitere Merkmale sind den anderen An- Sprüchen sowie der Beschreibung und Zeichnung eines Aus¬ führungsbeispiels zu entnehmen.This object is achieved by the features specified in the main claim. Further features can be found in the other claims as well as in the description and drawing of an exemplary embodiment.
Der wesentliche Vorteil der Erfindung ist u.a. darin zu sehen, daß auch beim Austreiben des Bindemittels nach der Formgebeung bereits eine hohe Formstabilität der Bauteile gewährleistet ist. Sie sind gut handhabbar und weisen die erwünschten Eigenschaften, s.o., auf.The main advantage of the invention is i.a. to be seen in the fact that even when the binder is expelled after the shaping, a high dimensional stability of the components is already guaranteed. They are easy to handle and have the desired properties, see above.
Ein Ausführungsbeispiel der Erfindung ist in der beige- fügten Zeichnung rein schematisch dargestellt.An embodiment of the invention is shown purely schematically in the attached drawing.
Es zeigen die Zeichnungen in:The drawings show in:
Fig. 1 eine spritzgegosseneMetallprobe in ihrer Be- handlungskammer, hier: Behälter eines Ofens1 shows an injection-molded metal sample in its treatment chamber, here: container of an oven
Fig. 2 eine spritzgegossene Metallschaufel in ihrer Behandlungskammer, hier: Behälter eines Ofens Fig. 3a Probe fertiggesintert nach Fig 1oFig. 2 shows an injection molded metal scoop in its treatment chamber, here: container of an oven Fig. 3a sample sintered according to Fig 1o
Fig. 3b Probe fertiggesintert nach Fig. 2oFig. 3b sample sintered according to Fig. 2o
Fig. 4 Probe teilweise von stromdurchflossener Spule umgebenFig. 4 sample partially surrounded by current-carrying coil
Fig. 5 Probe von Luftkissen getragen in SinterpositionFig. 5 sample of air cushions carried in the sintered position
Fig. 6 Probe von Saugglocke gehalten in SinterpositiαnFig. 6 sample of suction cup held in Sinterpositiαn
Fig. 1o Probe in Pulverschüttung. Sintern im Temperaturzeit- programm.Fig. 10 sample in powder. Sintering in the temperature time program.
Fig. 2o Probe frei zugänglich. Sintern im Temperatur¬ zeitprogramm.Fig. 2o sample freely accessible. Sintering in the temperature program.
Das pulvermetallurgische Ausgangsmaterial, insbesondere ein globulares Pulver einer Nickel-Basislegierung wird gemischt mit einem Bindemittel wie Wachs oder Thermoplaste,' im Volumenverhältnis 40% bis 80% Metallpulver und 20% bis 60% Bindemittel. Nach dem innigen Vermischen wird das Material bzw. die Masse in einer Spritzgußmaschine oder in einer Trockenpresse in die gewünschte Form des 3auteils gebracht. Nach dem Ausheizen des 3indemittels werden die Bauteile dann drucklos gesintert. Dieser Sintervorgang ist mehrstufig, insbesondere zweistufig, an ihn kann sich ein Nachverdichten des Formkörpers an¬ schließen. Für das Nachverdichten wird das heißiso- statische Pressen bevorzugt. Die Bauteile werden so hergestellt, daß nach den an sich bekannten Schritten: Formgebung*und Ausbrennen, in einem ersten Sinterschritt auf ca. 900°C bis 1100°C (bei Ni-Basis-Legierungen) bzw. bei 50% bis 70% der absoluten Solidustemperatur je nach verwendeter Metallegierung im Vakuum (10 bis 10 mbar) oder im Schutzgas mit einer Aufheizgeschwindigkeit von 150°C bis 600°C pro Stunde vorgesintert wird, bei einer Dauer von 0,1 Stunden bis 10 Stunden.The powder metallurgical starting material, in particular a globular powder of a nickel-based alloy, is mixed with a binder such as wax or thermoplastics, in a volume ratio of 40% to 80% metal powder and 20% to 60% binder. After the intimate mixing, the material or the mass is brought into the desired shape of the component in an injection molding machine or in a dry press. After the solvent has been heated, the components are then sintered without pressure. This sintering process is multi-stage, in particular two-stage, it can be followed by subsequent compression of the molded body. Hot isostatic pressing is preferred for post-compaction. The components are manufactured in such a way that following the known steps: shaping * and burnout, in a first sintering step to approx. 900 ° C to 1100 ° C (for Ni-based alloys) or 50% to 70% of the absolute solidus temperature depending on the metal alloy used in a vacuum (10 to 10 mbar) or in a protective gas with a heating rate of 150 ° C to 600 ° C per hour, with a duration of 0.1 hours to 10 hours.
Nach dieser Wärmebehandlung sind die Bauteile noch nicht von den Unterlagen oder Ξinbett aterialien geschädigt undzeigen daher keine Reaktion an* der Oberfläche. Die Bauteile sind jetzt gut handhabbar und die Schrumpfung ist gering (zwischen etwa 0% und 3%) .After this heat treatment, the components are not from the documents or Ξinbett are aterials damaged undzeigen therefore no reaction on the surface *. The components are now easy to handle and the shrinkage is low (between about 0% and 3%).
Danaciα werden die Bauteile 1 an einem Ofengestell 2 oder sonstigen Behälter aus Metall oder Keramik freihängend z.B, an Stangen (3) befestigt. Am besten wird die Be¬ festigung am Anguß angebracht, da dieser Bereich des Spritzteiles später nicht mehr benötigt wird.Danaciα, the components 1 are attached to a furnace frame 2 or other container made of metal or ceramic, e.g., on rods (3). The attachment is best applied to the sprue, since this area of the molded part is no longer required later.
Danach erfolgt die zweite Sinterung, d. h. ein Aufheizen des Bauteils im Vakuum oder im Schutzgas auf die not¬ wendige Temperatur, die je nach verwendeter Metallegierung im Bereich zwischen etwa 1150 C und 1300 C liegt. Die Aufheizgeschwindigkeit muß so gewählt werden, daß bei der zweiten Wärmebehandlung etwa noch vorhandene Risse in der Oberfläche sich schließen, z. B. wird bei Nickel- Basis-Legierungen eine Aufheizung zwischen 20 und 100 K/min bis zu etwa 2 Stunden und einer maximalen Tem¬ peratur von 60 % bis 98 % der Solidustemperatur der Legierung gewählt. Die auf diese Weise hergestellten Bauteile haben keine Konturfehler, sind linear geschrumpft und dadurch kaum kleiner, d. h. praktisch maßhaltig. Die Teile können fast beliebige Formen aufweisen und haben eine glatte, dichte und rissfreie Oberfläche. Die erreichte Dichte des Bauteils lag bei 95 % bis 98 % der theoretischen Dichte ohne Nachverdichten und bei etwa 100 % mittels Nachverdichten durch heißisostatisches Pressen.This is followed by the second sintering, that is to say the component is heated in a vacuum or in a protective gas to the necessary temperature, which, depending on the metal alloy used, is in the range between approximately 1150 ° C. and 1300 ° C. The heating rate must be selected so that any cracks in the surface that are still present close during the second heat treatment, e.g. For example, in the case of nickel-based alloys, heating between 20 and 100 K / min for up to about 2 hours and a maximum temperature of 60% to 98% of the solidus temperature of the alloy is selected. The components produced in this way have no contour errors, have shrunk linearly and are therefore hardly smaller, ie practically true to size. The parts can have almost any shape and have a smooth, dense and crack-free surface. The density of the component was 95% to 98% of the theoretical density without post-compression and about 100% by post-compression using hot isostatic pressing.
Abwandlungen der vorbeschriebenen und dargestellten Aus¬ führungsbeispiele können vorgenommen werden, ohne hier¬ durch den Rahmen der Erfindung zu verlassen.Modifications to the above-described and illustrated exemplary embodiments can be carried out without departing from the scope of the invention.
Statt mittels der Ansätze (4) können die zu sinternden Teile auch schwebend (z. B. auf einem Gaskissen aus einer Vielzahl von Düsen (6) oder im Magnetfeld der Spule (5) oder mit Saugglocke (7) in ihrer Position im Behälter (2) gehalten werden. Der Behälter besteht aus mit diesen Teilen nicht reagierendem Werkstoff wie Al_0-. oder ZrO«.Instead of using the lugs (4), the parts to be sintered can also float (e.g. on a gas cushion made up of a large number of nozzles (6) or in the magnetic field of the coil (5) or with a suction cup (7) in their position in the container ( 2) The container consists of a material which does not react with these parts, such as Al_0- or ZrO «.
Die geometrische Form der herzustellenden Präzisionsteile ist praktisch beliebig. Je nach gewünschter Endform und Maßhaltigkeit wird das Spritz- oder Pressverfahren und die dazu nötige Spritzgieß- oder Pressform in mindestens Bei- nahe-Endform (near-net-shape) ausgewählt. Ein Beispiel einer geeigneten Vorrichtung ist in der DE-OS 30 42 052 beschrieben.The geometric shape of the precision parts to be manufactured is practically arbitrary. Depending on the desired final shape and dimensional accuracy, the injection or pressing process and the necessary injection molding or pressing mold are selected in at least near-net shape. An example of a suitable device is described in DE-OS 30 42 052.
Verfahrensmöglichkeiten zum Aufbereiten der Masse und dem Spritzgießen sind in der DE-OS 31 20 501 beschrieben. Das Vakuum-Dichtsintern und die Wärmebehandlung pulvermetall¬ urgisch verarbeitbarer Werkstoffe sind "Metals Handbook", Ninth Editon, Vol. 7, pp. 373-375 zu entnehmen. Die Erfindung ist jedoch weder auf diese Stoffe noch auf solche Behandlung beschränkt. Insbesondere können auch andere oder zusätzliche an sich bekannte Behandlungen vor¬ genommen werden, wie Nachverdichten (HIP) , Härten oder Ver¬ güten, Legieren oder Dotieren, überziehen (PVD, CVD) einer Oberfläche, z. B. mit einem bekannten Diffusionsüberzug.Process options for preparing the mass and injection molding are described in DE-OS 31 20 501. The vacuum sealing sintering and the heat treatment of powder metallurgically processable materials are "Metals Handbook", Ninth Editon, Vol. 7, pp. 373-375. However, the invention is not limited to these substances or to such treatment. In particular, other or additional treatments known per se, such as recompaction (HIP), hardening or tempering, alloying or doping, coating (PVD, CVD) of a surface, eg. B. with a known diffusion coating.
Die Anwendung der Erfindung erfolgt hauptsächlich bei ** Schaufeln oder Rädern des Turbo-Maschinenbaus.The invention is mainly used for ** blades or wheels in turbo mechanical engineering.
Aus Fig. 3 A (links) ist eine Probe sichtbar mit Sinterung nach dem Stand der Technik (in Pulverschüttung) .3 A (left) shows a sample with sintering according to the prior art (in powder filling).
In Fig. 3 B (rechts) ist eine gemäß der Erfindung behandelte Probe ersichtlich.3B (right) shows a sample treated according to the invention.
Der Vergleich der Fig. 3 A und 3 B zeigt, daß nach dem Stand der Technik die Oberfläche der Probe verunreinigt ist und sich die Probe verformt hat. In dem rechten Bild (3b ) da- * gegen ist die Probe von einwandfreier Oberfläche und Geo¬ metrie (Maß- und Formhaltigkeit) .The comparison of FIGS. 3A and 3B shows that, according to the prior art, the surface of the sample is contaminated and the sample has deformed. In the right image (3b) DA * against the sample surface and of sound Geo¬ geometry (dimensions and shape retention) is.
Die Erfindung trifft also mit einfachen Mitteln ein Er¬ gebnis , daß sich sehen lassen kann. Der Erfolg, der er¬ findungsgemäßen Mittelkombination, war keineswegs voraus¬ zusehen und es schafft die Möglichkeiten weiterer Anwen¬ dungen von Gegenständen, die aus pulverförmigem Ausgangs- material hergestellt werden.The invention thus achieves a result with simple means that is impressive. The success of the combination of agents according to the invention was by no means foreseeable and it creates the possibility of further applications of objects which are produced from powdered starting material.
Nachstehend werden, durch Vergleich mit dem Stand der Technik, die Vorteile der Erfindung und die damit er¬ zielten Erfolge verdeutlicht:The advantages of the invention and the successes achieved thereby are made clear by comparison with the prior art:
In Fig. Λ o ist die Sinterung in Pulverschüttung nach dem Stand der Technik dargestellt, anhand eines Temperatur- zeitprogrammes. In Fig. 2o ist die Sinterung nach der Erfindung mit in der Behandlungskammer freihängenden oder freischwebenden Gegen¬ ständen dargestellt, ebenfalls anhand eines Temperaturzeit- prσgrammes mit gleichen Einheiten, wie in Fig. 1.Fig. Λ o shows the sintering in powder filling according to the prior art, using a temperature-time program. 2o shows the sintering according to the invention with objects freely suspended or floating in the treatment chamber, likewise on the basis of a temperature-time program with the same units as in FIG. 1.
Durch Vergleich beider Figuren läßt sich mühelos erkennen, daß im Stand der Technik eine Temperaturbehandlung insbe¬ sondere Hochtemperaturbehandlung auf die Art und Weise durchgeführt wurde, daß diese bis zu einem Höchstwert sichBy comparing the two figures it can easily be seen that in the prior art a temperature treatment, in particular high-temperature treatment, was carried out in such a way that it reached a maximum value
10 immer mehr steigerte und erst gegen Schluß der Behandlung stetig abnahm.10 increased more and more and only gradually decreased towards the end of treatment.
Bei der Erfindung dagegen, wird die Temperaturbehandlung kontinuierlich in der Weise durchgeführt, daß nach einer ^ ° (2.) Steigerungsphase mit erneuter Haltephase danach wenigstens eine Temperaturabsenkung mit Haltephase folgt.In the case of the invention, on the other hand, the temperature treatment is carried out continuously in such a way that after a ^ ° (2nd) increase phase with a new holding phase, at least one temperature decrease with a holding phase follows.
Als mitentscheidend für den Erfolg der Erfindung wird an¬ gesehen, daß in den Haltephasen Maßnahmen vorgenommen werden,It is considered to be decisive for the success of the invention that measures are taken in the holding phases,
20 wie sie im vorausgegangenen Text bereits beschrieben sind, insbesondere' bei ununterbrochenem Vakuum, das in der Be¬ handlungskammer aufrechterhalten wird über die gesamte Zeit¬ dauer bis zum Ende der Behandlung.20 as already described in the preceding text, particularly 'with continuous vacuum is maintained in the processing chamber over the entire Be¬ Zeit¬ duration until the end of treatment.
2525
Die Manipulation der Vorform- oder Grünlinge wird dabei von außerhalb des Behälters 2 gesteuert.The manipulation of the preforms or green compacts is controlled from outside the container 2.
3030
35 35

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zur Herstellung von kompliziert geformten Bau¬ teilen, die eine hohe Formtreue und Maßhaltigkeit sowie eine hohe Oberflächengüte aufweisen, aus pulvermetall- urgisch verarbeitbaren Werkstoffen, durch Spritzgießen oder -pressen und anschließendem Sintern,1. Process for the production of intricately shaped components which have a high degree of dimensional accuracy and dimensional stability as well as a high surface quality, from materials that can be processed by powder metallurgy, by injection molding or pressing and subsequent sintering,
dadurch gekennzeichnet, daß die zubereitete, pulver¬ metallurgisch verarbeitbare Werkstoffe und Bindemittel enthaltende Masse, in einer Spritzgießeinrichtung oder Presse, wie Trockenpresse, verformt wird, der Vorform- ling oder Grünling nach dem Ausheizen des Bindemittels in einer Form, in einen gasdichten, heizbaren Behälter, insbesondere eines Vakuumofens oder Ofens mit Schutz- gasatmosphäre eingebracht und darin gesintert wird, indem der Vorformling oder Grünling frei der Ofen¬ atmosphäre ausgesetzt, aufgehängt bzw. frei schwebend gehalten ist, so daß wenigstens die Bereiche seiner Oberfläche freiliegen und einer Behandlung zugänglich sind, in denen Rissfreiheit erwünscht ist. characterized in that the prepared, metallurgically processable materials and binder containing mass is deformed in an injection molding device or press, such as a dry press, the preform or green body after the binder has been heated in a mold in a gas-tight, heatable container , in particular a vacuum furnace or furnace with a protective gas atmosphere and sintered therein by exposing the preform or green body freely to the furnace atmosphere, suspending it or keeping it floating so that at least the areas of its surface are exposed and accessible for treatment, in which freedom from cracks is desired.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Vorformling oder Grünling (1) vor dem Sintern zu seiner Halterung im gasdichten Behälter (Behandlungskam¬ mer) eines Ofens mit wieder entfernbaren Ansätzen (4) versehen wird.2. The method according to claim 1, characterized in that the preform or green body (1) before sintering for holding it in the gas-tight container (treatment chamber) of an oven is provided with removable attachments (4).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet-, daß die Ansätze Kontaktstellen zu Aufhängern, Lagern oder Haltern (3) aufweisen, mit denen der Vorformling oder Grünling im Behälter (2) eines Ofens in Sinterposition gehalten wird.3. The method according to claim 2, characterized in that the approaches have contact points to hangers, bearings or holders (3) with which the preform or green body in the container (2) of a furnace is held in the sintered position.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Vorformling oder Grünling von einem fluiden Medium ge¬ tragen im Behälter eines Ofens in Sinterpo.sition gehalten wird.4. The method according to claim 1, characterized in that the preform or green body carried by a fluid medium is held in the container of a furnace in a sintering position.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das fluide Medium ein Schutzgas oder ein Inertgas ist".5. The method according to claim 4, characterized in that the fluid medium is a protective gas or an inert gas ".
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Vorformling oder Grünling durch ein Magnetfeld im Behälter eines Ofens in Sinterposition frei schwebend gehalten wird.6. The method according to claim 1, characterized in that the preform or green body is kept floating in the sintering position by a magnetic field in the container of a furnace.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Halter mit dem der Vorformling oder Grünling frei schwebend gehalten wird, ein Saugkopf ist, der gesondert an die Vakuumpumpe des Ofens anschließbar ist.7. The method according to claim 3, characterized in that the holder with which the preform or green body is kept floating, is a suction head which can be connected separately to the vacuum pump of the furnace.
8. Anwendung eines Verfahrens nach einem der vorhergehenden Ansprüche zur Herstellung von kompliziert geformten Bau¬ teilen, die eine hohe Formtreue und Maßhaltigkeit sowie eine hohe Oberflächengüte aufweisen, aus pulvermetall¬ urgisch verarbeitbaren Werkstoffen, durch Spritzgießen oder -pressen und anschließendem Sintern,8. Application of a method according to any one of the preceding claims for the production of complicated shaped Bau¬ parts that have high dimensional accuracy and dimensional accuracy as well have a high surface quality, from powder metallurgically processable materials, by injection molding or pressing and subsequent sintering,
dadurch gekennzeichnet, daß ein den pulvermetall¬ urgischen Werkstoffen zur Erzielung ausreichender Flie߬ fähigkeit zugegebenes Bindemittel nach der Formgebung zunächst bei einer dem Bindemittel angepaßten Ausbrenn¬ temperatur ausgetrieben wird und danach die Bauteile in einem ersten Sinterschritt zwischen 50 % und 70 % _der Solidustemperatur des pulvermetallurgischen Werkstoffs im Vakuum oder unter Schutzgasatmosphäre für eine Dauer von 0,1 bis 10 Stunden, bevorzugt 0,1 bis 2 Stunden, aufgeheizt werden und dann in einem zweiten Sinterschritt in gleicher Atmosphäre auf eine bis zu 400 C höhere Temperatur für eine Zeitdauer aufgeheizt werden, die aus¬ reicht, um alle an der Außenoberfläche vorhandenen Risse zu schließen.characterized in that a binder added to the powder-metallurgic materials to achieve sufficient flowability is first expelled after shaping at a burn-out temperature adapted to the binder and then the components in a first sintering step between 50% and 70% of the solidus temperature of the powder-metallurgical one Material in a vacuum or under a protective gas atmosphere for a period of 0.1 to 10 hours, preferably 0.1 to 2 hours, and then heated in a second sintering step in the same atmosphere to a temperature up to 400 C higher for a period of time, which is sufficient to close all cracks present on the outer surface.
9. Anwendung eines Verfahrens nach Anspruch 8, wobei während des gesamten Ablaufs de? Verfahrens (Temperatur- Zeit-Programm) , wenigstens jedoch während aller Sinter- schritte das Verfahren oder die Sehutzgasatmosphäre im Ofen nicht unterbrochen wird.9. Use of a method according to claim 8, wherein de? Process (temperature-time program), but at least during all sintering steps the process or the protective gas atmosphere in the furnace is not interrupted.
10. Anwendung eines Verfahrens nach Anspruch 9, wobei der10. Application of a method according to claim 9, wherein the
Vorformling oder Grünling von außerhalb des gasdichten Be- hälters (Behandlungskammer) manipuliert wird (nach einem der Ansprüche 3-8) . Preform or green body is manipulated from outside the gas-tight container (treatment chamber) (according to one of claims 3-8).
EP86904764A 1985-07-31 1986-07-29 Construction elements produced by powder metallurgy Withdrawn EP0232336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853527367 DE3527367A1 (en) 1985-07-31 1985-07-31 COMPONENTS PRODUCED ON A POWDER METALLURGICAL WAY
DE3527367 1985-07-31

Publications (1)

Publication Number Publication Date
EP0232336A1 true EP0232336A1 (en) 1987-08-19

Family

ID=6277232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86904764A Withdrawn EP0232336A1 (en) 1985-07-31 1986-07-29 Construction elements produced by powder metallurgy

Country Status (4)

Country Link
US (1) US4886639A (en)
EP (1) EP0232336A1 (en)
DE (1) DE3527367A1 (en)
WO (1) WO1987000781A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964907A (en) * 1988-08-20 1990-10-23 Kawasaki Steel Corp. Sintered bodies and production process thereof
CH681516A5 (en) * 1989-09-13 1993-04-15 Asea Brown Boveri
US5451244A (en) * 1994-04-06 1995-09-19 Special Metals Corporation High strain rate deformation of nickel-base superalloy compact
DE4412131A1 (en) * 1994-04-08 1995-10-12 Schaeffler Waelzlager Kg roller bearing
US5977230A (en) * 1998-01-13 1999-11-02 Planet Polymer Technologies, Inc. Powder and binder systems for use in metal and ceramic powder injection molding
JP3052240B2 (en) * 1998-02-27 2000-06-12 東京タングステン株式会社 Rotating anode for X-ray tube and method for producing the same
US6838046B2 (en) * 2001-05-14 2005-01-04 Honeywell International Inc. Sintering process and tools for use in metal injection molding of large parts
CA2447688A1 (en) * 2001-05-14 2003-02-13 Polymer Technologies, Inc. Sintering process and tools for use in metal injection molding of large parts
DE10331599A1 (en) * 2003-07-11 2005-02-03 Mtu Aero Engines Gmbh Component for a gas turbine and method for producing the same
DE10332882A1 (en) * 2003-07-19 2005-02-03 Mtu Aero Engines Gmbh Process for the production of components of a gas turbine
DE10343781B4 (en) * 2003-09-22 2009-02-12 Mtu Aero Engines Gmbh Process for the production of components
DE10343780A1 (en) * 2003-09-22 2005-04-14 Mtu Aero Engines Gmbh Method for producing components and holding device
US20060251536A1 (en) * 2005-05-05 2006-11-09 General Electric Company Microwave processing of mim preforms
US20070107216A1 (en) * 2005-10-31 2007-05-17 General Electric Company Mim method for coating turbine shroud
DE102006057912A1 (en) * 2006-12-08 2008-06-12 Mtu Aero Engines Gmbh Vane ring and method for producing the same
US20080237403A1 (en) * 2007-03-26 2008-10-02 General Electric Company Metal injection molding process for bimetallic applications and airfoil
US20090311124A1 (en) * 2008-06-13 2009-12-17 Baker Hughes Incorporated Methods for sintering bodies of earth-boring tools and structures formed during the same
US20100178194A1 (en) * 2009-01-12 2010-07-15 Accellent, Inc. Powder extrusion of shaped sections
US9903275B2 (en) 2014-02-27 2018-02-27 Pratt & Whitney Canada Corp. Aircraft components with porous portion and methods of making
US9517507B2 (en) 2014-07-17 2016-12-13 Pratt & Whitney Canada Corp. Method of shaping green part and manufacturing method using same
US20160263656A1 (en) 2015-03-12 2016-09-15 Pratt & Whitney Canada Corp. Method of forming a component from a green part
DE102015210770A1 (en) * 2015-06-12 2016-12-15 Rolls-Royce Deutschland Ltd & Co Kg Component construction, component for a gas turbine and method for producing a component of a gas turbine by metal powder injection molding

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU432371B2 (en) * 1967-07-13 1973-02-06 Commonwealth Scientific And Industrial Research Organization Plasma sintering
ZA70736B (en) * 1969-03-14 1971-09-29 Nat Standard Co Apparatus for and method of handling shrinkable extruded material
US4002473A (en) * 1971-11-08 1977-01-11 P. R. Mallory & Co., Inc. Method of making an anode
US4063940A (en) * 1975-05-19 1977-12-20 Richard James Dain Making of articles from metallic powder
GB1562788A (en) * 1976-10-21 1980-03-19 Powdrex Ltd Production of metal articles from tool steel or alloy steel powder
GB2007719B (en) * 1977-11-15 1982-03-31 British Steel Corp Production of metal compacts
FR2464929A1 (en) * 1979-09-11 1981-03-20 Comp Generale Electricite PROCESS FOR SINGING CERAMIC TUBULAR PIECES
DE3042052C2 (en) * 1980-11-07 1984-08-09 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Device for injection molding of precision parts
DE3120501C2 (en) * 1981-05-22 1983-02-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München "Process and device for the production of molded parts"

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8700781A1 *

Also Published As

Publication number Publication date
DE3527367A1 (en) 1987-02-12
US4886639A (en) 1989-12-12
WO1987000781A1 (en) 1987-02-12
DE3527367C2 (en) 1991-03-14

Similar Documents

Publication Publication Date Title
EP0232336A1 (en) Construction elements produced by powder metallurgy
DE2628582C3 (en) Composite turbine wheel and process for its manufacture
DE4338457C2 (en) Component made of metal or ceramic with a dense outer shell and porous core and manufacturing process
EP1764062B1 (en) Shaped body made of dental alloy for making a dental restoration
WO2003101647A2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
EP1119429A2 (en) Method for producing components by metallic powder injection moulding
DE112009000504T5 (en) Tools with work surfaces of compacted powder metal and process
EP2123377A1 (en) Method for manufacturing a workpiece, in particular a forming tool or a forming tool component
EP0633440A1 (en) Process for preparing a setter
EP0421084B1 (en) Method for making components by powder metallurgy
DE2258485A1 (en) METHOD AND DEVICE FOR MANUFACTURING CASTING AND PRESSING FORMS
EP0525325A1 (en) Process for preparing dense sintered articles
DE19612143B4 (en) Method for producing a spiral contact piece for a vacuum chamber and device for carrying out the method
DE4322085A1 (en) Method for the production of a moulding from a powder material
DE102014209085B4 (en) Production of a molded body from a dental alloy
DE2258305A1 (en) Prodn. of sintered powder compacts - improved by encapsulating powder in a canister before pressing/sintering
DE19921934B4 (en) Process for producing a high density and high surface density powder metallurgy sintered compact
DE3517494C2 (en)
DE1801280A1 (en) Method of making a workpiece from particulate matter
DE69303313T2 (en) Manufacturing process for an anisotropic rare earth magnet
DE4322083A1 (en) Method for the production of a moulding from a powder material
DE2436927C2 (en) Method and device for the powder-metallurgical production of molded parts for electrical contact pieces
EP0446673A1 (en) Process for preparing a sintered article having a compact outer layer and a smooth surface
DE10336701B4 (en) Process for the production of components
DE19703175A1 (en) Ceramic or powder metallurgical component with helical external contour

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19890421

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19891123

R18W Application withdrawn (corrected)

Effective date: 19891123

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOGEL, WILHELM

Inventor name: ANDREES, GERHARD

Inventor name: KRANZEDER, JOSEF