Nothing Special   »   [go: up one dir, main page]

EP0218864A2 - Vorrichtung und Verfahren zur kontinuierlichen Bereitstellung von hydraulisch abbindender Masse - Google Patents

Vorrichtung und Verfahren zur kontinuierlichen Bereitstellung von hydraulisch abbindender Masse Download PDF

Info

Publication number
EP0218864A2
EP0218864A2 EP86111814A EP86111814A EP0218864A2 EP 0218864 A2 EP0218864 A2 EP 0218864A2 EP 86111814 A EP86111814 A EP 86111814A EP 86111814 A EP86111814 A EP 86111814A EP 0218864 A2 EP0218864 A2 EP 0218864A2
Authority
EP
European Patent Office
Prior art keywords
shaft
fiber
housing
mixing
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86111814A
Other languages
English (en)
French (fr)
Other versions
EP0218864B1 (de
EP0218864A3 (en
Inventor
Adolf Prof. Dr.-Ing. Meyer
Helmut Dipl.-Geol. Dr. Rer. Nat. Steinegger
Wolfgang Dipl.-Ing. Schröder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberg Materials AG
Original Assignee
Heidelberger Zement AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Zement AG filed Critical Heidelberger Zement AG
Priority to AT86111814T priority Critical patent/ATE54597T1/de
Publication of EP0218864A2 publication Critical patent/EP0218864A2/de
Publication of EP0218864A3 publication Critical patent/EP0218864A3/de
Application granted granted Critical
Publication of EP0218864B1 publication Critical patent/EP0218864B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2123Shafts with both stirring means and feeding or discharging means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/62Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis comprising liquid feeding, e.g. spraying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/707Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms the paddles co-operating, e.g. intermeshing, with elements on the receptacle wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71775Feed mechanisms characterised by the means for feeding the components to the mixer using helical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • B28C5/1238Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers for materials flowing continuously through the mixing device and with incorporated feeding or discharging devices
    • B28C5/1292Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers for materials flowing continuously through the mixing device and with incorporated feeding or discharging devices with rotating stirring and feeding or discharging means fixed on the same axis, e.g. in an inclined container fed at its lower part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/40Mixing specially adapted for preparing mixtures containing fibres
    • B28C5/404Pre-treatment of fibres
    • B28C5/406Pre-treatment of fibres and mixing with binding material

Definitions

  • the invention relates to an apparatus and a method for the continuous provision of hydraulically setting compound, in particular wet mortar or dry mortar, preferably with a proportion of fibers.
  • a preferred field of application is the production of fiber concrete, in particular glass fiber concrete, but also concrete containing steel fibers, plastic fibers, etc.
  • the object of the invention is to provide a structurally inexpensive, compact and user-friendly device and a method with which a hydraulically setting compound, in particular wet mortar or dry mortar, can be continuously provided in a consistency which is excellently suitable for the incorporation of fibers, and in particular a continuous one Allow the production of fiber concrete with good material utilization and consistently reproducible, constant composition and consistency.
  • a hydraulically setting compound in particular wet mortar or dry mortar
  • the invention enables the production of fiber concrete in a continuous mixing process.
  • fiber concrete of constant, but widely variable composition is provided in a constant flow of material without the material losses associated with a spraying process occurring.
  • the type, length and amount of fiber can be varied within wide limits.
  • the fibers are carefully incorporated into the mortar by the mixing process, and due to the provision in a continuous stream of material, which preferably only passes through the device according to the invention, there is no risk of damaging or destroying the fibers by mixing for too long.
  • the device has a housing which has a loading point and a discharge opening.
  • a driven rotating shaft is accommodated in the housing, which causes a conveying flow through the housing.
  • the shaft is arranged one behind the other in the conveying direction arranged tools for dosing, mixing, crushing and, if necessary, for installing fibers.
  • the construction of the device is simple and compact, and the settings to be made are simple, so that they can also be made by unskilled personnel.
  • the output of the device can be regulated by changing the speed of the shaft.
  • the device can also be operated at a constant speed. A change in the output can then possibly be brought about by exchanging the metering shaft.
  • the housing is substantially cylindrical and possibly conical in places, and the shaft is accommodated in the center and axially in the housing and is preferably mounted twice.
  • the housing can be divided into sections, which can preferably be connected with a quick-release fastener. The device can thus be disassembled into handy and easily transportable segments and quickly assembled and disassembled, which in particular makes cleaning easier.
  • a storage container can be provided at the loading point of the device, for example in the form of a top box or silo connection. This means that both sack loading and silo loading of the device can take place, with minimal conversion work.
  • a dosing screw which sits on a section of the shaft inside the storage container, is preferably used to discharge the material from the storage container. In this way, a precisely predeterminable dry substance dosage is obtained in a structurally uncomplicated manner.
  • the housing can have a preferably central cross-sectional constriction in the outlet area of the storage container, through which the shaft with the metering screw protrudes.
  • This narrowing of the cross section results in a material jam on the outlet side of the storage container, which facilitates keeping the metering rate constant.
  • the narrowing of the cross section flawlessly separates a drying zone of the device, to which the storage container belongs, from a wet zone which may follow downstream.
  • water does not penetrate into the reservoir. This is extremely important because in practice there is always the need to interrupt the production of the fiber concrete at short notice.
  • Shutdowns of a certain duration e.g. B. 10 to 15 minutes are possible with the device according to the invention without special measures; it then starts up again promptly and without any problems.
  • a mixing zone Downstream of the metering zone of the device according to the invention is a mixing zone in which the shaft carries mixing blades projecting radially therefrom, at least some of which can be set at an angle to the conveying direction. Together with the mixing, these mixing blades cause the mass to be transported forward.
  • They can be equipped with wipers bearing against the inner tube wall and / or the end face of the cross-sectional constriction, which in a preferred embodiment extend in the axial direction and are attached to the tips of a pair of mixing blades. These scrapers intensify the mixing and ensure that the mixing zone extends right up to the inner wall of the pipe. The latter is constantly scraped free, which is accompanied by a bearing of the shaft.
  • Working wipers on the cross Narrowed section of the housing keeps this area free of wet mass, so that the period is extended over which the device can be left switched off without problems.
  • the housing can have a peripheral water connection, preferably with at least a slightly current-repellent spray direction.
  • mortar can be mixed with the device according to the invention, as is necessary for the production of fiber concrete.
  • the water is kept away from the metering zone and storage container, so that the possible switch-off time of the device is in turn extended.
  • the device according to the invention does not necessarily have to work with the addition of water; it can also be used to prepare a hydraulically setting dry mass, preferably with a fiber component.
  • the shaft Downstream of the mixing zone there is a fine grinding zone, which, however, can also be omitted if necessary.
  • the shaft carries at least one comb which engages with at least one further comb which is arranged in a housing-fixed manner according to the key-lock principle.
  • the combs can extend in the axial direction and have essentially radially directed pins. It is recommended to use a plurality of combs which are preferably offset in the circumferential direction at the same angular distance. With the latter one achieves a homogenization and pasty adjustment of the mass, which as a result is very fluid and practically free of lumps and is excellently suited for the installation of fibers. It is not absolutely necessary to add relatively complex additives required, but it can of course be done if necessary, for example by feeding in together with the mixing water.
  • a fiber input point with a chute opening into the housing can be located downstream of the fine comminution zone.
  • the shaft carries a spiral axial screw and optionally further fiber installation tools, for example in the form of pins which protrude radially from the shaft, preferably in the circumferential direction counter to the direction of rotation of the shaft. The latter result in an even, gentle installation of the fibers.
  • Sensitive fibers can also be used in this way, which would be destroyed by the previous intensive work-up of the hydraulically setting mass. Working in a continuous flow of material limits the dwell time of the fibers in the area of the conveyor line and fiber installation pins in a well-defined manner, so that damage or destruction of fibers by the mixing in is effectively prevented.
  • the fibers can come from a cutting unit, which is arranged upstream of the chute and should be adjustable with regard to the quantity and length of fibers fed.
  • the composition of the mass obtained can be easily regulated on the basis of the operating parameters of such a cutting unit.
  • the housing of the device can taper conically downstream from the chute towards the discharge opening and can contain a correspondingly conically tapering screw section on the shaft. In this conical end part of the housing, the fiber concrete is gently mixed.
  • the device according to the invention has a control unit that starts the shaft with a lead in terms of fiber addition when it is started and stops with a lag in terms of fiber addition when it is switched off.
  • Two selectable pre-air periods of the shaft can be provided, one of which is intended for start-up after the device has been dismantled and the shorter one for starting up after a short break in work. In the latter case there is still mass in the housing and it is only necessary to prevent excess fibers in the mixture for a short time when starting up. After an extended interruption, disassembly and cleaning of the device, on the other hand, the housing is empty when starting, and the running time of the mass from the storage container to the fiber addition point is taken into account.
  • composition of the mass remains the same even after it has been switched off, and fiber material is saved, which is normally the most expensive component.
  • the device according to the invention can be provided with a safety circuit which monitors the water pressure and / or suitable operating parameters of a fiber cutting unit and switches off in the event of a malfunction.
  • the device shown in FIG. 1 has a housing with a substantially circular cylindrical tube 10 coming horizontally. At one end of the tube is the storage container 12 for dry substance, downstream of which there is a radial water connection 14, further downstream a fiber installation station with a fiber cutting device 16, and finally at the other end of the tube 10, a conically tapering end part 18, which has a discharge opening 20 towards the bottom.
  • the device provides 10 fiber concrete in a continuous flow through the tube when using desiccant, water and fibers.
  • the device is mounted on rollers 22 in the region of the storage container 12 and is supported with a foot 24 against the ground.
  • the fiber cutting mechanism 16 has a separate frame 28, which also runs on rollers 26. This structure enables a change of location to be carried out quickly and easily.
  • the storage container 12 is designed as an attachment box, which can in particular be provided with a sack ripper.
  • a silo connection part can also be used, via which dry matter is fed directly from a silo to the device according to the invention. The conversion between the two variants is easy.
  • a motor 30 is attached to the reservoir 12 in the axial extension of the tube 10. This drives a shaft 32, which runs through the full length of both the reservoir 12 and, in a central, axial arrangement, the tube 10.
  • the shaft 32 carries a number of tools, which are used for dosing dry material from the storage container 12, mixing, grinding, for fiber installation and last but not least for transporting the mass through the pipe 10.
  • FIG. 2 shows schematically how dry substance is discharged from the storage container 12.
  • a section of the shaft 32 running inside the storage container 12 carries a metering screw 34 and individual, radially projecting loosening vanes 35.
  • the shaft 32 is guided through a front-side outlet opening 36 of the storage container 12, which represents the transition to the tube 10.
  • the outlet opening 36 has a circular cross section and has a smaller diameter than the tube 10, with respect to which it is arranged in the center.
  • the cross-sectional constriction is formed by a cylinder sleeve 38, which is arranged coaxially to the tube 10 and protrudes radially inwards and has a length.
  • the dosing screw 34 protrudes into the cylinder sleeve 38 in which it ends.
  • the dosing screw 34 transports dry material from the storage container 12 into the pipe 10 at a well-defined rate.
  • the dosing rate depends on the structural geometry, in particular the size of the outlet opening 36 and the gradient of the dosing screw 34, the chamber volume and the speed of the shaft 32 from which it can be regulated within wide limits.
  • the shaft 22 carries mixing blades 40 projecting radially therefrom, which mix the material located in the tube 10 and, at the same time, transport it through its shape, a suitable angle of attack, etc.
  • a part of the mixing blades is equipped with scrapers 42, 44 made of hard rubber or the like. exist and lie on the inner wall of the tube 10.
  • wipers 42 can be seen, which are attached to the radially outer end of a pair of mixing blades 40 and which extend essentially in the axial direction.
  • the mixing blades carry a flat part 41 serving as a holder, to which the wipers 42 are fastened with screws or rivets 43.
  • a number of such mixing vane groups 40 with wipers 4 are provided, which follow the shaft 32 at a distance from one another in the axial direction (FIG. 1).
  • the mixing blades 40 of the individual groups are angularly offset by 120 ° in the circumferential direction.
  • At the level of each group there are also individual mixing blades 46 without wipers, and also at an angular offset of, for example, 120 °. This geometry is shown schematically in FIG. 3.
  • one of the wipers 44 is located at the axial end of the cylinder bush 38, at which the passage cross section for the material widens to the inside dimension of the tube 10.
  • the scraper 44 lies against both the end face 48 of the cylinder liner 38 and the inner wall of the tube 10. It thus ensures that the step-like transition to the outlet of the storage container 12 is always scraped free of material, which among other things promotes a well-defined separation of the wet zone and dry zone of the device according to the invention.
  • water port 14 of the device in the mixing zone, in its upstream part.
  • the water connection 14 is at some distance from the diameter step at the end of the cylinder liner 38. It is also inclined against the pipe axis, so that a water jet fed in has a spray direction downstream in the conveying direction of the material. All of these measures, in particular the grading of the diameter of the housing of the device and the stripper 44 working there, prevent water from getting into the reservoir 12. This lock is particularly effective when the drive of the shaft is switched off and the flow of the material is interrupted. It is thus possible to interrupt the continuous production of mortar at short notice, for example for 10 to 15 minutes, and then to restart the device without having to take any special measures.
  • the wipers 42, 44 intensify the mixing process and ensure that the mixing zone extends over the full cross section of the tube 10. Furthermore, they also serve to support the shaft 32. As FIG. 1 shows, the shaft 32 is supported twice; a roller bearing 50 is provided as a second bearing on the end face of the conical tube end part 18.
  • a fine comminution zone of the device adjoins the mixing zone downstream.
  • the shaft 32 carries comb-like tools 52 which adjoin the shaft 32 with their comb back, extend essentially in the radial direction and have radially projecting pins.
  • a plurality of combs 52 offset at an angle can be attached at the same axial height, for example three combs 52 at an angular distance of 120 °.
  • the combs 52 rotating with the shaft 32 stand with combs fixed to the housing 54 engaged. The latter come to rest with their comb back on the inner wall of the tube 10, extend essentially in the axial direction, and have radially inwardly directed tines.
  • the engagement of the combs 52, 54 according to the key-lock principle is illustrated in FIG. 6.
  • the mass conveyed through the tube 10 is finely comminuted and homogenized between the combs 52, 54. It is lump-free, pasty and very free-flowing, making it ideally prepared for the installation of fibers.
  • the combs 52, 54 are preferably made of steel wire. However, other materials, in particular plastic and hard rubber, can also be used.
  • the fiber addition point with the fiber cutting unit 16 follows downstream of the fine comminution zone. This is supplied with fiber strands 58, for example glass fiber rovings, which are cut to a predetermined length.
  • the amount of fiber provided per unit of time can be regulated via the retraction speed of the fiber cutting unit 16. After being cut, the fibers enter a chute 56 which is oriented essentially vertically and opens into the tube 10 of the device.
  • the invention is not restricted to the use of glass fibers, in particular alkali-resistant glass fibers.
  • glass fibers in particular alkali-resistant glass fibers.
  • other mineral fibers, plastic fibers, steel fibers, etc. are processed.
  • the material conveyed by the device is taken up downstream of the combs 52, 54 by a spiral axial screw 60 which extends under the chute 56 and through the conical end part 18 up to the dispensing opening 20.
  • the worm 60 sits on the shaft 32 and mix the material and the fibers.
  • the shaft 32 is additionally equipped with pin-shaped fiber installation tools 62. As can be seen in FIG. 1, these pins 62 follow one another axially at a distance. They are further distributed over the circumference of the shaft 32, wherein, for example, three angularly offset pins 62 can be arranged at the same axial height. This is illustrated in Figure 7; the screw 60 is not shown for the sake of clarity.
  • the pins 62 protrude essentially radially from the shaft 32, and they are curved in the circumferential direction, namely counter to the direction of rotation of the shaft 32. With these pins 62, the fibers are carefully and uniformly installed in the material.
  • the conical pipe end part 18 tapers towards the discharge opening 20.
  • the section of the screw 60 contained in this end part 18 tapers accordingly. This shape enables gentle, particularly intensive installation of the fibers.
  • the device according to the invention is segmented.
  • the conical end part 18 is a removable part which is connected to the tube 10 via a quick-release fastener 64.
  • the tube 10 is in turn attached to the reservoir 12 with a corresponding quick-release fastener, not shown. You can easily dismantle the housing of the device for cleaning purposes.
  • the shaft 32 is in one piece at least from the mixing zone to the discharge opening 20.
  • the shaft section in the interior of the storage container 12 can be a separate part on which the shaft 32 can be detachably fixed in a rotationally fixed connection.
  • the device according to the invention can be used with or without the addition of mixing water both for the production of fiber-reinforced hydraulically setting compositions and for other purposes.
  • a first construction variant of the device includes the part that extends from the storage container 12 to just behind the fine comminution tools 52, 54. This unit alone is used for continuous dosing, mixing and fine grinding, alternatively for dry matter or a matrix made with water.
  • the fiber installation part is also connected. The combined unit can also be used as an alternative to mixing dry material with fibers and incorporating fibers into a matrix made with water.
  • a preferred area of application is the production of fiber concrete in a continuous mixing process.
  • Water is preferably added by means of a water pump 66 via a metering unit 68. From this the water reaches the water connection 14 via a line 70, in which a tap 72 and a pressure gauge 74 are located.
  • the device according to the invention has a control unit 76 with a time delay circuit which takes effect when the device is started up and switched off.
  • the metering and mixing shaft 32 starts up with a lead relative to the fiber cutting unit 16.
  • lead times There are two different lead times that can be selected at the push of a button.
  • a longer lead-up period of, for example, approximately 8 seconds is used when the device is started up for the first time, after dismantling and cleaning, etc., ie in an operating state with an empty pipe 10. This takes into account the fact that the dosage of the goods a certain runtime is required from the storage container 12 until the fiber addition point is reached.
  • the shorter lead-in period of the metering and mixing shaft 32 relative to the fiber cutting unit 16 is selected, which can be, for example, approximately one second.
  • the fiber cutting mechanism is always stopped first, while the shaft 32 continues to run for a short time, for example also about a second.
  • the water supply is started at the same time as the metering and mixing shaft 32 starts.
  • a safety circuit is provided which monitors the water pressure and prevents the device from operating when the water pressure is insufficient. Furthermore, the proper functioning of the cutting unit 16 is monitored so that there are no operational disturbances due to the drawing in of uncut fibers.
  • the cutting unit 16 contains a roller, which presses the fiber strands pneumatically controlled against rotating cutting knives. If the pneumatic working pressure is insufficient, the system is switched off.
  • the device according to the invention permits the continuous production of fiber concrete with an adjustable fiber content and predeterminable fiber length in a mixing process which delivers a steady stream of material with a constant and excellently reproducible composition.
  • the material can be placed directly in molds, formwork, etc., for example to produce thin-walled moldings with high stability. Further areas of application are the production of cement-bound pipe coatings, fiber plasters, floor coverings, etc. Finally, building renovation offers a variety of possible uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

Die Vorrichtung hat ein rohrförmiges Gehäuse (10), das eine Beschickungsstelle (12) und eine Ausgabeöffnung (20) aufweist. In dem Gehäuse ist eine angetrieben rotierende Welle (32) gelagert, die einen Förderstrom durch das Gehäuse bewirkt. Die Welle (32) trägt in Förderrichtung hintereinander Werkzeuge zum Dosieren (34), Mischen (40, 46), Feinzerkleinern (52, 54) und gegebenenfalls zum Einbau von Fasern (60, 62). Wasser kann über einen Anschluß (14) zugegeben werden. Die Vorrichtung liefert kontinuierlich Faserbeton von gleichbleibender Konsistenz mit regelbarem Faseranteil und einstellbarer Faserlänge.

Description

  • Die Erfindung bezieht sich auf eine Vorrichtung und ein Verfahren zur kontinuierlichen Bereitstellung von hydrau­lisch abbindender Masse, insbesondere Naßmörtel oder Trok­kenmörtel vorzugsweise mit einem Anteil Fasern. Ein bevor­zugtes Anwendungsgebiet ist die Herstellung von Faserbe­ton, insbesondere Glasfaserbeton, aber auch Stahlfasern, Kunststoffasern usw. enthaltendem Beton.
  • Eine kontinuierliche Herstellung von Faserbeton erfolgt nach dem Stand der TEchnik allein in einem Spritzverfah­ren. Damit gehen aber erhebliche Materialverluste einher, insbesondere an den materialaufwendigen und entsprechend kostenintensiven Fasern. Bekannte Mischverfahren zur Her­stellung von Faserbeton laufen dagegen diskontinuierlich ab. Die hydraulisch abbindende Matrix wird zunächst vorbe­reitet, wobei sie unter Einsatz von Zusatzmitteln auf eine extrem weiche Konsistenz eingestellt werden muß. Sowohl die Vorbereitung der Matrix, als auch der Einbau der Fasern erfordert den Einsatz von geschultem Fachperso­nal. Auch ist es kaum möglich, in aufeinanderfolgenden Chargen eine gleichbleibende Konsistenz des Faserbetons und einen gleichen Faseranteil zu erzielen.
  • Aufgabe der Erfindung ist es, eine konstruktiv unaufwendi­ge, kompakte und bedienungsfreundliche Vorrichtung sowie ein Verfahren anzugeben, mit denen sich eine hydraulisch abbindende Masse, insbesondere Naßmörtel oder Trockenmör­tel, in einer zum Einbau von Fasern hervorragend geeigne­ten Konsistenz kontinuierlich bereitstellen läßt, und die insbesondere eine kontinuierliche Herstellung von Faserbeton mit guter Materialausnutzung und immer wieder reproduzierbar vorgebbarer gleichbleibender Zusammenset­zung und Konsistenz erlauben.
  • Diese Aufgabe wird gelöst durch eine Vorrichtung nach Anspruch 1 und ein Verfahren nach Anspruch 19.
  • Die Erfindung ermöglicht die Herstellung von Faserbeton in einem kontinuierlichen Mischverfahren. Damit wird in einem stetigen Materialfluß Faserbeton von gleichbleiben­der, aber in weiten Grenzen variabler Zusammensetzung bereitgestellt, ohne daß die mit einem Spritzverfahren verbundenen Materialverluste eintreten. Faserart, Faser­länge und -menge lassen sich in weiten Grenzen variieren. Die Fasern werden durch das Mischverfahren schonend in den Mörtel eingebaut, und aufgrund der Bereitstellung in einem stetigen, vorzugsweise allein die erfindungsge­mäße Vorrichtung durchsetzenden Materialstrom besteht nicht die Gefahr, die Fasern durch zu langes Mischen zu schädigen oder zu zerstören.
  • Die Vorrichtung hat ein Gehäuse, das eine Beschickungs­stelle und eine Ausgabeöffnung aufweist. In dem Gehäuse ist eine angetrieben rotierende Welle aufgenommen, die einen Förderstrom durch das Gehäuse hindurch bewirkt. Die Welle ist mit in Förderrichtung hintereinander ange­ ordneten Werkzeugen zum Dosieren, Mischen, Feinzerkleinern und gegebenenfalls zum Einbau von Fasern bestückt.
  • Der Aufbau der Vorrichtung ist einfach und kompakt, und die vorzunehmenden Einstellungen sind einfach, so daß sie auch von ungelerntem Personal vorgenommen werden kön­nen. Beispielsweise läßt sich Ausstoß der Vorrichtung durch Drehzahländerung der Welle regeln. Selbstverständlich kann die Vorrichtung aber auch bei konstanter Drehzahl betrieben werden. Eine Änderung des Ausstoßes läßt sich dann gegebenenfalls durch Austausch der Dosierwelle her­herbeiführen.
  • In einer bevorzugten Bauform ist das Gehäuse im wesentli­chen zylinderrohrförmit und gegebenenfalls streckenweise konisch, und die Welle ist mittig und axial in dem Gehäu­se aufgenommen und vorzugsweise doppelt gelagert. Man erhält so einen besonders robusten, kompakten Aufbau. Das Gehäuse kann in Abschnitte geteilt sein, die sich vorzugsweise mit einem Schnellverschluß verbinden lassen. Die Vorrichtung läßt sich so in handliche und bequem zu transportierende Segmente zerlegen und schnell montieren und demontieren, wodurch insbesondere ihre Reinigung er­leichtert wird.
  • An der Beschickungsstelle der Vorrichtung kann ein Vorrats­behälter vorgesehen sein, beispielsweise in Form eines Aufsatzkastens oder Siloanschlusses. Damit kann sowohl eine Sackbeschickung, als auch eine Silobeschickung der Vorrichtung erfolgen, und zwar mit minimalem Umbauauf­wand. Zum Materialaustrag aus dem Vorratsbehälter dient vorzugsweise eine Dosierschnecke, die an einem Abschnitt der Welle im Innern des Vorratsbehälters sitzt. Man erhält so in konstruktiv unaufwendiger Weise eine präzise vor­gebbare Trockenstoffdosierung.
  • Das Gehäuse kann im Austrittsbereich des Vorratsbehälters eine vorzugsweise mittige Querschnittsverengung aufweisen, durch die die Welle mit der Dosierschnecke ragt. Durch diese Querschnittsverengung erhält man austrittsseitig an dem Vorratsbehälter einen Materialstau, der ein Kon­stanthalten der Dosierrate erleichtert. Weiter trennt die Querschnittsverengung einwandfrei eine Trockenzone der Vorrichtung, zu der der Vorratsbehälter gehört, von einer sich stromab gegebenenfalls anschließenden Naßzone. Bei einem Abschalten der Vorrichtung und einer damit ein­hergehenden Unterbrechung des Förderstroms dringt so kein Wasser in den Vorratsbehälter ein. Das ist höchst wichtig, da sich in der Praxis immer wieder die Notwendigkeit er­gibt, die Herstellung des Faserbetons kurzfristig zu un­terbrechen. Abschaltungen von bestimmter Dauer, z. B. 10 bis 15 Minuten, sind mit der erfindungsgemäßen Vor­richtung ohne besondere Maßnahmen möglich; sie läuft an­schließend prompt und problemlos wieder an.
  • An die Dosierzone der erfindungsgemäßen Vorrichtung schließt sich stromab eine Mischzone an, in der die Welle im wesentlichen radial davon abstehende Mischflügel trägt, von denen wenigstens ein Teil in einem Winkel zur Förder­richtung angestellt sein kann. Diese Mischflügel bewirken zugleich mit dem Mischen einen Vorwärtstransport der Mas­se. Sie können mit sich an die Rohrinnenwand und/oder die Stirnfläche der Querschnittsverengung anlegenden Ab­streifern bestückt sein, die sich in einer bevorzugten Ausführungsform in Axialrichtung erstrecken und an den Spitzen je eines Paares von Mischflügeln angebracht sind. Diese Abstreifer bewirken eine Intensivierung des Mischens, und sie sorgen dafür, daß sich die Mischzone bis unmittel­bar an die Rohrinnenwand erstreckt. Letztere wird ständig freigekratzt, womit zugleich eine Lagerung der Welle ein­hergeht. Das Arbeiten von Abstreifern an der Quer­ schnittsverengung des Gehäuses hält diesen Bereich von nasser Masse frei, so daß der Zeitabschnitt verlängert wird, über den die Vorrichtung problemlos abgeschaltet gelassen werden kann.
  • Das Gehäuse kann im Bereich der Mischzone einen peripheren Wasseranschluß mit vorzugsweise wenigstens geringfügig stromabweisender Sprührichtung haben. Bei Zugabe von Was­ser kann mit der erfindungsgemäßen Vorrichtung Mörtel angemacht werden, wie dies für die Herstellung von Faser­beton erforderlich ist. Durch das Einspeisen von Wasser mit Sprührichtung stromab wird das Wasser von Dosierzone und Vorratsbehälter ferngehalten, so daß wiederum die mögliche Abschaltzeit der Vorrichtung verlängert wird. Es sei aber betont, daß die erfindungsgemäße Vorrichtung nicht unbedingt unter Zugabe von Wasser arbeiten muß; sie kann auch zur Aufbereitung einer hydraulisch abbin­denden Trockenmasse vorzugsweise mit einem Faseranteil dienen.
  • Stromab von der Mischzone schließt sich eine Feinzerklei­nerungszone an, die gegebenenfalls aber auch entfallen kann. Als Feinzerkleinerungswerkzeug trägt die Welle wenig­stens einen Kamm, der mit wenigstens einem gehäusefest angeordneten weiteren Kamm nach dem Schlüssel-Schloß-Prin­zip in Eingriff steht. Die Kämme können sich in Axialrich­tung erstrecken und im wesentlichen radial gerichtete Stifte aufweisen. Es empfiehlt sich die Verwendung einer Mehrzahl von vorzugsweise unter gleichem Winkelabstand in Umfangsrichtung versetzt angeordneten Kämmen. Mit letz­teren erreicht man eine Homogenisierung und pastöse Ein­stellung der Masse, die im Ergebnis sehr fließfähig und praktisch frei von Klumpen ist und sich für den Einbau von Fasern hervorragend eignet. Dabei ist eine Zugabe von relativ aufwendigen Zusatzmitteln nicht unbedingt erforderlich, doch kann sie bei Bedarf natürlich erfol­gen, beispielsweise durch Einspeisung zusammen mit dem Anmachwasser.
  • Stromab von der Feinzerkleinerungszone kann sich eine Fasereingabestelle mit einem in das Gehäuse mündenden Fallschacht befinden. Die Welle trägt im Bereich des Fall­schachts eine Spiral-Axial-Schnecke und gegebenenfalls weitere Fasereinbauwerkzeuge, beispielsweise in Form ra­dial von der Welle abstehender, vorzugsweise in Umfangs­richtung entgegen der Drehrichtung der Welle gekrümmter Stifte. Letztere bewirken einen gleichmäßigen, schonenden Einbau der Fasern. Es können so auch empfindliche Fasern zum Einsatz kommen, die durch die vorangehende intensive Aufarbeitung der hydraulisch abbindenden Masse zerstört würden. Durch das Arbeiten in einem kontinuierlichen Materialstrom ist die Verweilzeit der Fasern im Bereich der Förderstrecke und Fasereinbaustifte in wohldefinierter Weise begrenzt, so daß einer Schädigung oder Zerstörung von Fasern durch das Einmischen wirksam vorgebeugt wird.
  • Die Fasern können aus einem Schneidwerk kommen, das dem Fallschacht vorgeordnet ist und hinsichtlich der zugeführ­ten Fasermenge und Faserlänge einstellbar sein sollte. Anhand der Betriebsgrößen eines solchen Schneidwerks läßt sich die Zusammensetzung der erhaltenen Masse leicht re­geln.
  • Das Gehäuse der Vorrichtung kann sich stromab von dem Fallschacht zu der Ausgabeöffnung hin konisch verjüngen und einen auf der Welle sitzenden, sich entsprechend ko­nisch verjüngenden Förderschneckenabschnitt enthalten. In diesem konischen Endteil des Gehäuses erfolgt ein inten­sives schonendes Nachmischen des Faserbetons.
  • Die erfindungsgemäße Vorrichtung hat eine Steuereinheit, die bei Inbetriebnahme die Welle mit einem Vorlauf bezüg­lich der Faserzugabe startet und beim Abschalten mit einem Nachlauf bezüglich der Faserzugabe stoppt. Man kann zwei wählbare Voralufperioden der Welle vorsehen, von denen eine längere für die Inbetriebnahme nach eventueller Demontage der Vorrichtung, und die kürzere zum Anfahren nach kurz­fristiger Arbeitsunterbrechung gedacht ist. Im letzteren Fall befindet sich noch Masse im Gehäuse, und es muß nur kurzfristig beim Anfahren ein Faserüberschuß in der Mi­schung verhindert wrden. Nach längerer Unterbrechung, Demontage und Reinigung der Vorrichtung ist dagegen das Gehäuse beim Starten leer, und man trägt der Laufzeit der Masse vom Vorratsbehälter bis zur Faserzugabestelle Rechnung.
  • Die Zusammensetzung der Masse bleibt auch nach Abschal­tung dieselbe, und es wird Fasermaterial gespart, das normalerweise der kostenintensivste Bestandteil ist.
  • Die erfindungsgemäße Vorrichtung kann mit einer Sicher­heitsschaltung versehen sein, die den Wasserdruck und/oder geeignete Betriebskenngrößen eines Faserschneidwerks über­wacht und im Störfall eine Abschaltung vornimmt.
  • Die Erfindung wird im folgenden anhand eines in den Zeich­nungen dargestellten Ausführungsbeispiels näher erläutert. Schematisch zeigen:
    • Figur 1 einen Längsschnitt der erfindungsgemäßen Vor­richtung;
    • Figur 2 den Austrittsbereich eines Vorratsbehälters der Vorrichtung, ebenfalls im Längsschnitt;
    • Figur 3 einen schematischen Querschnitt nach III-III von Figur 2;
    • Figur 4 ein Mischwerkzeug der erfindungsgemäßen Vor­richtung in Seitenansicht;
    • Figur 5 einen Schnitt nach V-V von Figur 4;
    • Figur 6 eine Einzelheit eines Feinzerkleinerungsbe­reichs der Vorrichtung im Längsschnitt;
    • Figur 7 zu der Vorrichtung gehörige Fasereinbauwerkzeu­ge in einer schematischen axialen Draufsicht auf einen Wellenabschnitt der Vorrichtung.
  • Die in Figur 1 dargestellte Vorrichtung hat ein Gehäuse mit einem horizontal zu liegen kommenden, im wesentlichen kreiszylindrischen Rohr 10. An dem einen Ende des Rohres befindet sich der Vorratsbehälter 12 für Trockenstoff, stromab davon ein radialer Wasseranschluß 14, weiter strom­ab eine Fasereinbaustation mit einem Faserschneidwerk 16, und schließlich am anderen Ende des Rohres 10 ein konisch sich verjüngendes Endteil 18, das nach unten hin eine Ausgabeöffnung 20 hat. Die Vorrichtung stellt bei Einsatz von Trockenstoff, Wasser und Fasern in einem kontinuierlichen Strom durch das Rohr 10 Faserbeton bereit.
  • Die Vorrichtung ist im Bereich des Vorratsbehälters 12 auf Rollen 22 montiert und mit einem Fuß 24 gegen den Boden abgestützt. Das Faserschneidwerk 16 hat ein separa­tes, ebenfalls auf Rollen 26 laufendes Gestell 28. Dieser Aufbau erlaubt es, einen Standortwechsel schnell und ein­fach durchzuführen.
  • Der Vorratsbehälter 12 ist in dem dargestellten Ausfüh­rungsbeispiel als Aufsatzkasten ausgebildet, der insbeson­dere mit einem Sackaufreißer versehen sein kann. Doch läßt sich statt eines Aufsatzkastens auch ein Siloanschluß­teil verwenden, über das der erfindungsgemäßen Vorrichtung Trockenstoff direkt aus einem Silo zugeführt wird. Der Umbau zwischen beiden Varianten ist einfach.
  • An den Vorratsbehälter 12 ist in axialer Verlängerung des Rohrs 10 ein Motor 30 angebaut. Dieser treibt eine Welle 32, die sowohl den Vorratsbehälter 12, als auch in mittiger, axialer Anordnung das Rohr 10 über seine volle Länge durchzieht. Die Welle 32 trägt eine Reihe von Werkzeugen, die zum Dosieren von Trockenstoff aus dem Vorratsbehälter 12, Mischen, Feinzerkleinern, zum Fasereinbau und nicht zuletzt zum Transport der Masse durch das Rohr 10 dienen.
  • Figur 2 zeigt schematisch, wie das Austragen von Trocken­stoff aus dem Vorratsbehälter 12 erfolgt. Ein im Innern des Vorratsbehälters 12 laufender Abschnitt der Welle 32 trägt eine Dosierschnecke 34 sowie einzelne, radial abstehende Auflockerungsflügel 35. Die Welle 32 ist durch eine frontseitige Austrittsöffnung 36 des Vorratsbehälters 12 hindurchgeführt, die den Übergang zu dem Rohr 10 dar­stellt. Die Austrittsöffnung 36 weist kreisrunden Quer­schnitt auf, und sie hat kleineren Durchmesser als das Rohr 10, bezüglich dessen sie mittig angeordnet ist. Die Querschnittsverengung wird von einer koaxial zu dem Rohr 10 angeordneten, radial nach innen vorstehenden Zylinder­buchse 38 gebildet, die einige Länge hat. Die Dosierschnek­ke 34 ragt in die Zylinderbuchse 38 hinein, in der sie endet.
  • Bei rotierender Welle 32 transportiert die Dosierschnecke 34 mit einer wohldefinierten Rate Trockengut aus dem vor­ratsbehälter 12 in das Rohr 10. Die Dosierrate hängt von der Baugeometrie, insbesondere der Größe der Austritts­öffnung 36 und Steigung der Dosierschnecke 34, dem Kammer­volumen sowie von der Drehzahl der Welle 32 ab, anhand derer sie in weiten Grenzen geregelt werden kann.
  • Bezugnehmend auf Figur 1 bis 5, schließt sich stromab von der Dosierzone in dem Rohr 10 eine Mischzone an. Die Welle 22 trägt hier radial davon abstehende Mischflügel 40, die in dem Rohr 10 befindliches Gut mischen und durch ihre Formgebung, einen geeigneten Anstellwinkel usw. zu­gleich transportieren. Ein Teil der Mischflügel ist mit Abstreifern 42, 44 bestückt, die aus Hartgummi o.ä. be­stehen und sich an die Innenwand des Rohrs 10 anlegen. Insbesondere in Figur 4 und 5 erkennt man Abstreifer 42, die am radial äußeren Ende je eines Paares von Mischflü­geln 40 befestigt sind und sich im wesentlichen in axialer Richtung erstrecken. Die Mischflügel tragen ein als Halter dienendes Flachteil 41, an dem mit Schrauben oder Nieten 43 die Abstreifer 42 befestigt sind. Es ist eine Anzahl derartiger Mischflügelgruppen 40 mit Abstreifern 4 vorge­sehen, die in Axialrichtung der Welle 32 mit Abstand auf­einder folgen (Figur 1). Die Mischflügel 40 der einzelnen Gruppen sind in Umfangsrichtung um 120° winkelversetzt. Auf der Höhe jeder Gruppe befinden sich auch einzelne Mischflügel 46 ohne Abstreifer, und zwar ebenfalls unter einem Winkelversatz von beispielsweise 120°. Diese Geome­trie ist schematisch in Figur 3 gezeigt.
  • Wie Figur 2 zu entnehmen, befindet sich einer der Abstrei­fer 44 am axialen Ende der Zylinderbuchse 38, an dem sich der Durchtrittsquerschnitt für das Gut auf das Innenmaß des Rohres 10 weitet. Der Abstreifer 44 legt sich sowohl an die Stirnfläche 48 der Zylinderbuchse 38, als auch an die Innenwand des Rohres 10 an. Er sorgt so dafür, daß der stufenförmige Übergang zum Austritt des Vorrats­behälters 12 stets von Material freigekratzt wird, wodurch unter anderem eine wohldefinierte Trennung von Naßzone und Trockenzone der erfindungsgemäßen Vorrichtung geför­dert wird.
  • Bezugnehmend auf Figur 1 und 2, befindet sich der Wasser­ anschluß 14 der Vorrichtung im Bereich der Mischzone, und zwar in ihrem stromauf gelegenen Teil. Der Wasseran­schluß 14 hat aber einigen Abstand zu der Durchmesserstu­fe am Ende der Zylinderbuchse 38. Er ist überdies gegen die Rohrachse geneigt, so daß ein eingespeister Wasser­strahl eine Sprührichtung stromab in Förderrichtung des Guts hat. Durch alle diese Maßnahmen, insbesondere die Durchmesserstufung des Gehäuses der Vorrichtung und den dort arbeitenden Abstreifer 44, verhindert man, daß Wasser in den Vorratsbehälter 12 gelangt. Diese Sperre ist ins­besondere auch dann wirksam, wenn der Antrieb der Welle abgeschaltet , und damit der Förderstrom des Guts unter­brochen wird. Es ist so möglich, die kontinuierliche Mörtelherstellung kurzfristig, beispielsweise für 10 bis 15 Minuten, zu unterbrechen, und die Vorrichtung dann wieder anzufahren, ohne daß besondere Maßnahmen ergriffen werden müßten.
  • Die Abstreifer 42, 44 bewirken eine Intensivierung des Mischvorgangs, und sie sorgen dafür, daß sich die Misch­zone über den vollen Querschnitt des Rohrs 10 erstreckt. Weiter dienen sie zugleich zur Lagerung der Welle 32. Wie Figur 1 zeigt, ist die Welle 32 so doppelt gelagert; als zweites Lager ist ein Wälzlager 50 an der Stirnseite des konischen Rohrendteils 18 vorgesehen.
  • An die Mischzone schließt sich stromab eine Feinzerklei­nerungszone der Vorrichtung an. In dieser trägt die Wel­le 32 kammähnliche Werkzeuge 52, die mit ihrem Kammrücken an die Welle 32 angrenzen, sich im wesentlichen in Radial­richtung erstrecken und radial abstehende Stifte haben. Es können auf gleicher axialer Höhe mehrere winkelver­setzte Kämme 52 angebracht sein, beispielsweise drei Kämme 52 unter einem Winkelabstand von 120°. Die mit der Welle 32 rotierenden Kämme 52 stehen mit gehäusefesten Kämmen 54 im Eingriff. Letztere kommen mit ihrem Kammrücken an der Innenwand des Rohrs 10 zu liegen, erstrecken sich im wesentlcihen in axialer Richtung, und haben radial nach innen gerichtete Zinken. Der nach dem Schlüssel-­Schloß-Prinzip erfolgende Eingriff der Kämme 52, 54 ist in Figur 6 verdeutlicht. Bei rotierender Welle 32 wird die durch das Rohr 10 geförderte Masse zwischen den Kämmen 52, 54 feinzerkleinert und homogenisiert. Sie ist so klum­penfrei, pastös und sehr fließfähig und damit insbesondere für den Einbau von Fasern optimal vorbereitet. Die Kämme 52, 54 bestehen vorzugsweise aus Stahldraht. Es ist aber auch ein Einsatz anderer Materialien, insbesondere Kunst­stoff und Hartgummi, möglich.
  • Stromab von der Feinzerkleinerungszone schließt sich die Faserzugabestelle mit dem Faserschneidwerk 16 an. Diesem werden Faserstränge 58, beispielsweise Glasfaserrovings zugeführt, die mit vorgebbarer Länge zerschnitten werden. Die pro Zeiteinheit bereitgestellte Fasermenge läßt sich über die Einzugsgeschwindigkeit des Faserschneidwerks 16 regeln. Nach dem Zerschneiden gelangen die Fasern in einen Fallschacht 56, der im wesentlichen vertikal orientiert ist und in das Rohr 10 der Vorrichtung mündet.
  • Die Erfindung ist nicht auf die Verwendung von Glasfasern, insbesondere alkaliwiderstandsfähigen Glasfasern, be­schränkt. Beispielsweise können auch andere mineralische Fasern, Kunststoffasern, Stahlfasern u.a. verarbeitet werden.
  • Das durch die Vorrichtung geförderte Gut wird stromab von den Kämmen 52, 54 von einer Spiral-Axial-Schnecke 60 übernommen, die sich unter dem Fallschacht 56 und durch das konische Endteil 18 hindurch bis hin zu der Ausgabe­öffnung 20 erstreckt. Die Schnecke 60 sitzt an der Welle 32 und mischt das Gut und die Fasern durch. Auf der Höhe des Fallschachts 56 ist die Welle 32 zusätzlich mit stift­förmigen Fasereinbauwerkzeugen 62 bestückt. Wie Figur 1 zu entnehmen, folgen diese Stifte 62 axial mit Abstand aufeinander. Sie sind weiter über den Umfang der Welle 32 verteilt, wobei auf gleicher axialer Höhe beispiels­weise drei winkelversetzte Stifte 62 angeordnet sein kön­nen. Dies ist in Figur 7 illustriert; die Schnecke 60 ist dabei der Übersichtlichkeit halber nicht dargestellt. Die Stifte 62 stehen im wesentlichen radial von der Welle 32 ab, und sie sind in Umfangsrichtung gekrümmt, und zwar entgegen der Drehrichtung der Welle 32. Mit diesen Stiften 62 erfolgt ein schonender, gleichmäßiger Einbau der Fasern in das Gut.
  • Stromab von dem Fallschacht 56 schließt sich das konische, zu der Ausgabeöffnung 20 hin sich verjüngende Rohrendteil 18 an. Der in diesem Endteil 18 enthaltene Abschnitt der Schnecke 60 verjüngt sich entsprechend. Durch diese Form­gebung erreicht man einen schonenden, besonders intensi­ven Einbau der Fasern.
  • Die erfindungsgemäße Vorrichtung ist segmentiert. Das konische Endteil 18 ist ein abnehmbares Teil, das mit dem Rohr 10 über einen Schnellverschluß 64 verbunden ist. Das Rohr 10 ist seinerseits mit einem entsprechenden, nicht näher dargestellten Schnellverschluß an dem Vorrats­behälter 12 angebracht. Man kann so das Gehäuse der Vor­richtung zu Reinigungszwecken leicht demontieren. Die Welle 32 ist mindestens von der Mischzone bis zu der Aus­gabeöffnung 20 einstückig. Der Wellenabschnitt im Innern des Vorratsbehälters 12 kann ein separates Teil sein, an dem sich die Welle 32 in einer drehfesten Verbindung lösbar festlegen läßt.
  • Die erfindungsgemäße Vorrichtung kann mit oder ohne Zu­gabe von Anmachwasser sowohl zur Herstellung von faserbe­wehrten hydraulisch abbindenden Massen, als auch für andere Zwecke Verwendung finden. Zu einer ersten Bauvari­ante der Vorrichtung gehört der vom Vorratsbehälter 12 bis kurz hinter die Feinzerkleinerungswerkzeuge 52, 54 reichende Teil. Mit diesem Aggregat erfolgt allein eine kontinuierliche Dosierung, Mischung und Feinzerkleinerung alternativ für Trockenstoff oder eine mit Wasser ange­machte Matrix. In einer zweiten Bauvariante schließt sich zusätzlich der Fasereinbauteil an. Auch das kombi­nierte Aggregat läßt sich alternativ dazu verwenden, Trockenstoff mit Fasern zu mischen, und Fasern in eine mit Wasser angemachte Matrix einzubauen. Ein bevorzugtes Anwendungsgebiet ist die Herstellung von Faserbeton in einem kontinuierlichen Mischverfahren.
  • Die Zugabe von Wasser erfolgt vorzugsweise mittels einer Wasserpumpe 66 über eine Dosiereinheit 68. Von dieser gelangt das Wasser über eine Leitung 70, in der ein Hahn 72 und eine Druckmeßuhr 74 liegen, an den Wasseranschluß 14.
  • Die erfindungsgemäße Vorrichtung hat eine Steuereinheit 76 mit einer Zeitverzögerungsschaltung, die bei Inbe­triebnahme und Abschaltung der Vorrichtung wirksam wird. Bei Inbetriebnahme läuft die Dosier- und Mischwelle 32 mit einem Vorlauf relativ zu dem Faserschneidwerk 16 an. Dabei gibt es zwei unterschiedlich lange Vorlaufperi­oden, die durch Knopfdruck gewält werden können. Eine längere Vorlaufperiode von beispielsweise ca. 8 Sekunden wird bei erstmaliger Inbetriebnahme der Vorrichtung, nach Demontage und Reinigung usw. verwendet, d.h. in einem Betriebszustand mit leerem Rohr 10. Man trägt so der Tatsache Rechnung, daß von der Dosierung des Guts aus dem Vorratsbehälter 12 bis zum Erreichen der Faserzu­gabestelle eine gewisse Laufzeit erforderlich ist. Nach einem kurzzeitigen Abschalten der Vorrichtung, das dank der Trennung von Trockenzone und Naßzone problemlos mög­lich ist, wird hingegen die kürzere Vorlaufperiode der Dosier- und Mischwelle 32 relativ zu dem Faserschneidwerk 16 gewählt, die beispielsweise ca. eine Sekunde betragen kann. Beim Abschalten der Vorrichtung wird zunächst im­mer das Faserschneidwerk gestoppt, während die Welle 32 kurze Zeit nachläuft, beispielsweise ebenfalls ca. eine Sekunde.
  • Bei Herstellung einer mit Wasser angemachten Mischung startet man die Wasserzufuhr zugleich mit dem Anlaufen der Dosier- und Mischwelle 32. Es ist eine Sicherheits­schaltung vorgesehen, die den Wasserdruck überwacht, und einen Betrieb der Vorrichtung bei nicht ausreichendem Wasserdruck verhindert. Weiter wird die ordnungsgemäße Funktion des Schneidwerks 16 überwacht, damit es nicht durch Einziehen ungeschnittener Fasern zu Betriebsstörun­gen kommt. Das Schneidwerk 16 enthält eine Walze, die pneumatisch gesteuert die Faserstränge gegen rotierende Schneidmesser drückt. Bei nicht ausreichendem pneumati­schem Arbeitsdruck erfolgt eine Abschaltung.
  • Ein Kerngedanke der Erfindung ist, verschiedene Funktio­nen mittels einer Welle und eines Antriebs hintereinander durchzuführen, insbesondere
    • 1. die Dosierung des Trockenstoffs (Fördern einer vorgegebenen Menge pro Zeiteinheit mit der Dosierschnecke),
    • 2. die Dosierung von Wasser und die Herstel­lung der Naßmischung in dosierter Menge (vorgegebene Menge pro Zeiteinheit) mittels eines Durchlaufmischers;
    • 3. das Unterziehen bzw. Untermischen bzw. Einbauen von Faserschnitzel, die in der Fasereinbauzone von einem Schneidwerk dosiert zugegeben werden.
  • Die erfindungsgemäße Vorrichtung erlaubt eine kontinuier­liche Herstellung von Faserbeton mit einstellbarem Faser­anteil und vorgebbarer Faserlänge in einem Mischverfahren, das einen stetigen Materialstrom von gleichbleibender und ausgezeichnet reproduzierbarer Zusammensetzung lie­fert. Das Material kann direkt in Formen, Schalungen usw. gegeben werden, beispielsweise um dünnwandige Form­körper von hoher Stabilität herzustellen. Weitere Anwen­dungsgebiete sind die Herstellung zementgebundener Rohr­beschichtungen, Faserputze, Bodenbeläge u.a.m. Vielfälti­ge Einsatzmöglichkeiten bietet schließlich die Bausanie­rung.
  • Liste der Bezugszeichen
    • 10 Rohr
    • 12 Vorratsbehälter
    • 14 Wasseranschluß
    • 16 Faserschneidwerk
    • 18 Rohrendteil
    • 20 Ausgabeöffnung
    • 22 Rolle
    • 24 Fuß
    • 26 Rolle
    • 28 Gestell
    • 30 Motor
    • 32 Welle
    • 34 Dosierschnecke
    • 35 Auflockerungsflügel
    • 36 Austrittsöffnung
    • 38 Zylinderbuchse
    • 40 Mischflügel
    • 41 Flachteil, Halter
    • 42 Abstreifer
    • 43 Schraube, Niet
    • 44 Abstreifer
    • 46 Mischflügel
    • 48 Stirnfläche
    • 50 Wälzlager
    • 52 Kamm
    • 54 Kamm
    • 56 Fallschacht
    • 58 Faserstrang
    • 60 Schnecke
    • 62 Stift
    • 64 Schnellverschluß
    • 66 Wasserpumpe
    • 68 Dosiereinheit
    • 70 Leitung
    • 72 Hahn
    • 74 Druckmeßuhr
    • 76 Steuereinheit

Claims (19)

1. Vorrichtung zur kontinuierlichen Bereitstellung von hydraulisch abbindender Masse, insbesondere Naßmör­tel oder Trockenmörtel vorzugsweise mit einem Anteil Fasern, mit einem Gehäuse, das eine Beschickungsstelle und eine Ausgabeöffnung (20) aufweist, und mit einer darin angetrieben rotierenden, einen Förderstrom durch das Gehäuse bewirkenden Welle (32), die mit in Förderrichtung hintereinander angeordneten Werk­zeugen zum Dosieren (34) Mischen (40, 46, 60), Fein­zerkleinern (52, 54) und gegebenenfalls zum Einbau von Fasern (60, 62) bestückt ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Gehäuse im wesentlichen zylinderrohrförmig (10) und gegebenenfalls streckenweise konisch (18) ist, und daß die Welle (32) mittig und axial in dem Gehäuse (10) aufgenommen und vorzugsweise doppelt gelagert ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß das Gehäuse in Abschnitte geteilt ist, die vorzugsweise mit einem Schnellverschluß (64) ver­bindbar sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß an der Beschickungsstelle ein Vorratsbehälter (12) vorgesehen ist, beispielsweise in Form eines Aufsatzkastens oder Siloanschlusses, und daß ein in den Vorratsbehälter (12) ragender Wel­lenabschnitt eine Dosierschnecke (34) trägt.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Gehäuse im Austrittsbereich (20) des Vorrats­behälters (12) eine vorzugsweise mittige Querschnitts­verengung aufweist, durch die die Welle (32) mit der Dosierschnecke (34) ragt.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Welle (32) stromab von der Dosierschnecke (34) im wesentlichen radial abstehende Mischflügel (40, 46) trägt, von denen wenigstens ein Teil in einem Winkel zur Förderrichtung angestellt sein kann.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Mischflügel (40) mit sich an die Rohrinnen­wand und/oder die Stirnfläche (48) der Querschnitts­verengung anlegenden Abstreifern (42, 44) bestückt sind, die sich insbesondere in Axialrichtung erstrek­ken und an den Spitzen je eines Paares von Mischflü­geln (40) angebracht sein können.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gehäuse im Bereich der motor­seitigen Mischzone einen peripheren Wasseranschluß (14) mit vorzugsweise wenigstens geringfügig stromab weisender Sprührichtung hat.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Welle (32) stromab von den Mischflügeln (40, 46) wenigstens einen Kamm (52) trägt, der mit wenigstens einem gehäusefest angeord­neten weiteren Kamm (54) zur Feinzerkleinerung des Mischguts in Eingriff steht.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß sich die Kämme (52, 54) in Axialrichtung erstrek­ken und im wesentlichen radial gerichtete Stifte haben.
11. Vorrichtung nach Anspruch 9 oder 10, gekennzeichnet durch eine Mehrzahl von vorzugsweise unter gleichem Winkelabstand in Umfangsrichtung versetzt angeordne­ten Kämmen (52, 54).
12. Vorrichtung nach einem der Ansprüche 1 bis 11, da­durch gekennzeichnet, daß sich stromab von der Fein­zerkleinerungszone eine Fasereingabestelle mit einem in das Gehäuse mündenden Fallschacht (56) befindet, und daß die Welle (32) im Bereich des Fallschachts (56) eine Spiral-Axial-Schnecke (60) und gegebenen­falls wenigstens ein weiteres Fasereinbauwerkzeug trägt.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß als Fasereinbauwerkzeug eine Anzahl von im wesent­lichen radial von der Welle (32) abstehender, vor­ zugsweise in Umfangsrichtung entgegen der Drehrichtung der Welle (32) gekrümmter Stifte (62) vorgesehen sind.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, da­durch gekennzeichnet, daß dem Fallschacht (56) ein hinsichtlich der zugeführten Fasermenge und/oder Faserschnittlänge vorzugsweise regelbares Faserschneid­werk (16) vorgeordnet ist.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, da­durch gekennzeichnet, daß sich das Gehäuse stromab von dem Fallschacht (56) zu der Ausgabeöffnung (20) konsich verjüngt und einen auf der Welle (32) sitzen­den, sich entsprechend konisch verjüngenden Förder­schneckenabschnitt (60) enthält.
16. Verfahren zum Betrieb und Steuereinheit der Vorrich­tung nach einem der Ansprüche 1 bis 15, dadurch ge­kennzeichnet, daß die Welle (32) mit einem Vorlauf bezüglich der Faserzugabe gestartet und mit einem Nachlauf bezügl ich der Faserzugabe gestoppt wird.
17. Verfahren und Steuereinheit nach Anspruch 16, gekenn­zeichnet durch zwei wählbare Vorlaufperioden der Welle (32), von denen eine längere für die Inbetrieb­nahme, und die andere kürzere zum Anfahren nach kurz­fristiger Unterbrechung Verwendung findet.
18. Steuereinheit nach Anspruch 16 oder 17, gekennzeichnet durch eine Sicherheitseinrichtung, die den Wasserdruck und/oder geeignete Betriebskenngrößen, bsp. den pneu­matischen Betriebsdruck des Faserschneidwerks (16) überwacht.
19. Herstellung von Faserbeton in einem kontinuierlichen Mischverfahren, insbesondere mit einer Vorrichtung nach einem der Ansprüche 1 bis 18.
EP86111814A 1985-09-13 1986-08-26 Vorrichtung und Verfahren zur kontinuierlichen Bereitstellung von hydraulisch abbindender Masse Expired - Lifetime EP0218864B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86111814T ATE54597T1 (de) 1985-09-13 1986-08-26 Vorrichtung und verfahren zur kontinuierlichen bereitstellung von hydraulisch abbindender masse.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19853546501 DE3546501A1 (de) 1985-09-13 1985-09-13 Vorrichtung zur kontinuierlichen bereitstellung von hydraulisch abbindender masse
DE19853532722 DE3532722A1 (de) 1985-09-13 1985-09-13 Vorrichtung und verfahren zur kontinuierlichen bereitstellung von hydraulisch abbindender masse
DE3532722 1985-09-13

Publications (3)

Publication Number Publication Date
EP0218864A2 true EP0218864A2 (de) 1987-04-22
EP0218864A3 EP0218864A3 (en) 1987-08-05
EP0218864B1 EP0218864B1 (de) 1990-07-18

Family

ID=25835954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86111814A Expired - Lifetime EP0218864B1 (de) 1985-09-13 1986-08-26 Vorrichtung und Verfahren zur kontinuierlichen Bereitstellung von hydraulisch abbindender Masse

Country Status (6)

Country Link
US (1) US4778276A (de)
EP (1) EP0218864B1 (de)
JP (1) JPS6262709A (de)
CA (1) CA1278567C (de)
DE (2) DE3532722A1 (de)
ZA (1) ZA866723B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584573A1 (de) * 1992-08-27 1994-03-02 BUG BETRIEBSANLAGEN UND GRUNDBESITZ GmbH Vorrichtung zur baustellenseitigen Herstellung von pumpfähigen Mörtelmassen
BE1009507A3 (nl) * 1995-07-18 1997-04-01 Lomar Nv Werkwijze en inrichting voor het toevoegen van bewapeningsvezels aan hardbare bouwspecies, en produkten hiertoe aangewend.
DE19719812A1 (de) * 1997-05-13 1998-11-19 Wolfgang Rath Verfahren und Vorrichtung zum Aufbereiten von plastischem Mörtel bzw. Beton
DE19911368A1 (de) * 1999-03-15 2000-09-21 Inotec Gmbh Verfahren und Vorrichtung zum Herstellen von Spritzmörtel zur Verwendung im Naßspritzverfahren
DE19542663C2 (de) * 1995-11-16 2003-05-15 Wagner Gmbh J Mischvorrichtung
US10388088B2 (en) * 2016-12-16 2019-08-20 Hyundai Motor Company Roll and brake test system and method of controlling the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905535C1 (de) * 1989-02-23 1990-03-15 Signode System Gmbh, 4220 Dinslaken, De
US5031546A (en) * 1989-02-28 1991-07-16 The Dow Chemical Company Hopper car discharge system
JPH0497804A (ja) * 1990-08-15 1992-03-30 Kato Kensetsu:Kk 固定翼を有するバトルミキサ
FR2671754B1 (fr) * 1991-01-22 1997-07-25 Omniplastic Sa Procede et dispositif de preparation, de transfert et d'application en continu d'une suspension minerale aqueuse fluide de ragreage.
DE4124220A1 (de) * 1991-07-20 1993-01-21 Putzmeister Maschf Materialaufgabebehaelter fuer dickstoffpumpen
DE9319066U1 (de) * 1993-12-14 1994-02-24 Müller, Anton, 79774 Albbruck Mörtelmischmaschine
IT1281757B1 (it) * 1995-03-22 1998-03-03 So Pa Ri S Di Vicchi Giuliano Impastatrice, in particolare per l'edilizia
DE29514183U1 (de) * 1995-09-05 1995-11-02 INOTEC GmbH Transport- und Fördersysteme, 79761 Waldshut-Tiengen Mörtelmischmaschine
US5795060A (en) * 1996-05-17 1998-08-18 Stephens; Patrick J. Method and apparatus for continuous production of colloidally-mixed cement slurries and foamed cement grouts
US6123445A (en) * 1996-09-16 2000-09-26 Grassi; Frank Dual stage continuous mixing apparatus
IT1287360B1 (it) * 1996-11-08 1998-08-04 Seko Spa Carro trincia-miscelatore-impagliatore provvisto di un gruppo perfezionato per la distribuzione della paglia all'esterno del carro.
US6309570B1 (en) * 1998-01-14 2001-10-30 American Equipment Systems Vacuum extrusion system for production of cement-based articles
DE29800831U1 (de) * 1998-01-20 1998-04-02 PFT Putz- und Fördertechnik GmbH & Co. KG, 97346 Iphofen Horizontalmischer für Mörtel
DE29817130U1 (de) 1998-09-24 1998-12-24 MBT Anlagenbau GmbH, 79685 Häg-Ehrsberg Vorrichtung zum Anmischen eines Mörtelmaterials mit Wasser
GB2390089A (en) * 1999-11-29 2003-12-31 Innovation Holdings A process for manufacturing concrete on a continuous basis
FR2867185A1 (fr) * 2004-03-03 2005-09-09 Saint Gobain Vetrotex Procede d'introduction et de dosage d'une matiere de renforcement au sein d'un liant mineral
DE202004020257U1 (de) * 2004-12-28 2006-02-09 Knauf Pft Gmbh & Co.Kg Mischvorrichtung
DE102006049171B4 (de) * 2006-10-18 2009-01-15 Werner Dutschmann Einrichtung zum kontinuierlichen und intensiven Mischen von Trockenmörtel
US7611275B2 (en) * 2007-06-14 2009-11-03 Crespo Pedro R Portable cement mixing and dispensing assembly
DE102007039055B4 (de) * 2007-08-17 2019-11-07 Temafa Maschinenfabrik Gmbh Verfahren zum Öffnen und Dosieren von Fasermaterial
ITNA20080068A1 (it) * 2008-11-28 2010-05-28 Gerardina Ferraro Macchina per la miscelazione in continuo di agglomerati in pietra composita.
US9446361B2 (en) * 2011-10-11 2016-09-20 Modern Process Equipment, Inc. Method of densifying coffee
DE102014005405A1 (de) 2014-04-14 2015-10-15 Sto Se & Co. Kgaa Vorrichtung zum Anmachen schwer benetzbarer Trockenbaustoffe
JP7089476B2 (ja) * 2016-03-01 2022-06-22 シーカ テクノロジー アクチェンゲゼルシャフト ミキサ、建築材料を適用するためのシステム、及び建築材料から構造物を製造するための方法
US10272399B2 (en) * 2016-08-05 2019-04-30 United States Gypsum Company Method for producing fiber reinforced cementitious slurry using a multi-stage continuous mixer
EP3600808B1 (de) * 2017-08-09 2023-05-10 Sika Technology AG System zum applizieren eines baustoffes
SG11202000999XA (en) 2017-08-09 2020-03-30 Sika Tech Ag Method for the application of mineral binder compositions containing fibres
US11623191B2 (en) 2017-08-09 2023-04-11 Sika Technology Ag System for applying a building material with multiple mixers and movement device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB608276A (en) * 1946-02-19 1948-09-13 William Peter Webb Improvements in machines for mixing concrete and the like
GB624017A (en) * 1946-11-04 1949-05-26 Elwin Adam Hawk Methods and apparatus for measuring and controlling a moving column of plastic material
US2525573A (en) * 1947-08-30 1950-10-10 Arthur W Caldwell Concrete mixer
GB787764A (en) * 1955-07-13 1957-12-18 Ici Ltd Improvements in or relating to mixing apparatus
FR1243318A (fr) * 1958-12-29 1960-10-07 Gyproc Products Ltd Perfectionnements apportés aux dispositifs mélangeurs
US3211436A (en) * 1961-12-04 1965-10-12 David N Butterfield Concrete-mixing attachment
FR1489131A (fr) * 1966-06-06 1967-07-21 Verre Textile Soc Du Procédé et installation pour l'incorporation de fibres ou fils, naturels ou synthétiques, à des liants minéraux, notamment à des matériaux tels que le plâtre, qu'ils sont destinés à renforcer
US3386131A (en) * 1961-07-19 1968-06-04 Pirelli Apparatus for the continuous treatment of rubber and plastic material in general
DE1684048A1 (de) * 1966-09-16 1971-04-15 Zyklos Metallbau Kg Anordnung zum Mischen und Foerdern von Gips
FR2175937A1 (en) * 1972-03-13 1973-10-26 Kobe Steel Ltd Rotating screw mixer - for compounding dmc and similar materials
FR2321319A1 (fr) * 1975-08-20 1977-03-18 Banbury Buildings Holdings Ltd Appareil et procede pour melanger des constituants particulaires
US4022439A (en) * 1975-07-11 1977-05-10 Caterpillar Tractor Co. Fibrous concrete batch forming system
DE2337129B2 (de) * 1972-07-22 1979-02-01 Caledonian Mining Co. Ltd., Carltonon-Trent, Nottinghamshire (Grossbritannien) Vorrichtung zum Bereiten und Abgeben von Faser-Beton-Gemischen
GB1599856A (en) * 1978-02-24 1981-10-07 Mathis Fertigputz Mixing apparatus
EP0051224A2 (de) * 1980-10-31 1982-05-12 Mathis System-Technik GmbH Verfahren und Vorrichtung zum kontinuierlichen Anmachen von Mörtel, Putz oder dgl. Baustoff oder Material

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US141947A (en) * 1873-08-19 Improvement in mortar-mixers
US2538891A (en) * 1948-02-19 1951-01-23 Hoge Warren Zimmerman Co Continuous mixing and delivering apparatus
US2910250A (en) * 1955-01-04 1959-10-27 Emery J Fisher Combination exfoliator and blower
DE1236316B (de) * 1956-10-01 1967-03-09 Robert M Frank Mischverfahren zum Herstellen einer Breimasse aus Fasern und Vorrichtung zur Durchfuehrung dieses Verfahrens
US2917395A (en) * 1957-06-24 1959-12-15 Iowa State College Res Found Method for combining a bituminous binder with an aggregate material
US3469824A (en) * 1968-02-27 1969-09-30 Irl Daffin Associates Mixing and conveying means
US4061316A (en) * 1976-08-16 1977-12-06 Phillips Petroleum Company Carbon black pelleter
AT352986B (de) * 1977-03-09 1979-10-25 Mathis Fertigputz Vorrichtung zur herstellung von angemachtem moertel od.dgl.
US4175867A (en) * 1978-03-01 1979-11-27 Maso-Therm Corp. Process and apparatus for static mixing
DE2942325A1 (de) * 1979-10-19 1981-04-30 Gebrüder Lödige Maschinenbau-Gesellschaft mbH, 4790 Paderborn Vorrichtung zum mischen von schuettguetern
DE3013280C2 (de) * 1980-04-05 1983-11-17 Mathis System-Technik Gmbh, 7801 Merdingen Vorrichtung zur insbesondere kontinuierlichen Herstellung von angemachtem Mörtel o.dgl.
US4334788A (en) * 1980-07-15 1982-06-15 Miner Robert M Pin action mixing pump
JPS6048323B2 (ja) * 1980-08-29 1985-10-26 松下電工株式会社 無機質成形材料の成形法
DE3174819D1 (en) * 1980-10-31 1986-07-17 Mathis Systemtechnik Gmbh Process and apparatus for the continuous preparation of mortar, plaster or the like building material
DE3100443A1 (de) * 1981-01-09 1982-08-12 Dietrich Dipl.-Ing. 6240 Königstein Maurer Verfahren und vorrichtung zur herstellung und gegebenenfalls foerderung von aufgeschaeumten gemischen aus bindemitteln oder bindemitteln mit zuschlagstoffen
JPS5925614Y2 (ja) * 1981-04-13 1984-07-27 スギウエエンジニアリング株式会社 現場用レミキシング装置
DE3119811C2 (de) * 1981-05-19 1987-02-19 Georg Schöndorfer GmbH & Co KG, 8230 Bad Reichenhall Verfahren zur kontinuierlichen Herstellung von spritzfähigem Naßbeton sowie Vorrichtung zur Durchführung des Verfahrens
BE893802A (fr) * 1982-07-08 1982-11-03 Maurer Dietrich Procede et dispositif pour la fabrication et eventuellement le transport de melanges en mousse constitues d'agents liants ou d'agents liants avec des additifs
DE3241193A1 (de) * 1982-11-08 1984-05-10 Dietrich Dipl.-Ing. 6240 Königstein Maurer Vorrichtung zum kontinuierlichen mischen von trockengut mit einer fluessigkeit und foerdern des mischgutes
DE3346823A1 (de) * 1983-12-23 1985-07-11 Innkieswerk-GmbH, 8201 Neubeuern Trockenmoertel-mischanlage
DE3347417A1 (de) * 1983-12-29 1985-07-11 Georg 8550 Forchheim Badum Vorrichtung zur aufbewahrung, dosierung und mischung von moertel-materialkomponenten und verfahren zum betrieb der vorrichtung
SU1206115A1 (ru) * 1984-09-24 1986-01-23 Республиканский Трест По Проектированию И Внедрению Новой Техники В Сельском Строительстве "Укроргтехсельстрой" Устройство дл перемешивани строительного раствора

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB608276A (en) * 1946-02-19 1948-09-13 William Peter Webb Improvements in machines for mixing concrete and the like
GB624017A (en) * 1946-11-04 1949-05-26 Elwin Adam Hawk Methods and apparatus for measuring and controlling a moving column of plastic material
US2525573A (en) * 1947-08-30 1950-10-10 Arthur W Caldwell Concrete mixer
GB787764A (en) * 1955-07-13 1957-12-18 Ici Ltd Improvements in or relating to mixing apparatus
FR1243318A (fr) * 1958-12-29 1960-10-07 Gyproc Products Ltd Perfectionnements apportés aux dispositifs mélangeurs
US3386131A (en) * 1961-07-19 1968-06-04 Pirelli Apparatus for the continuous treatment of rubber and plastic material in general
US3211436A (en) * 1961-12-04 1965-10-12 David N Butterfield Concrete-mixing attachment
FR1489131A (fr) * 1966-06-06 1967-07-21 Verre Textile Soc Du Procédé et installation pour l'incorporation de fibres ou fils, naturels ou synthétiques, à des liants minéraux, notamment à des matériaux tels que le plâtre, qu'ils sont destinés à renforcer
DE1684048A1 (de) * 1966-09-16 1971-04-15 Zyklos Metallbau Kg Anordnung zum Mischen und Foerdern von Gips
FR2175937A1 (en) * 1972-03-13 1973-10-26 Kobe Steel Ltd Rotating screw mixer - for compounding dmc and similar materials
DE2337129B2 (de) * 1972-07-22 1979-02-01 Caledonian Mining Co. Ltd., Carltonon-Trent, Nottinghamshire (Grossbritannien) Vorrichtung zum Bereiten und Abgeben von Faser-Beton-Gemischen
US4022439A (en) * 1975-07-11 1977-05-10 Caterpillar Tractor Co. Fibrous concrete batch forming system
FR2321319A1 (fr) * 1975-08-20 1977-03-18 Banbury Buildings Holdings Ltd Appareil et procede pour melanger des constituants particulaires
GB1599856A (en) * 1978-02-24 1981-10-07 Mathis Fertigputz Mixing apparatus
EP0051224A2 (de) * 1980-10-31 1982-05-12 Mathis System-Technik GmbH Verfahren und Vorrichtung zum kontinuierlichen Anmachen von Mörtel, Putz oder dgl. Baustoff oder Material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0584573A1 (de) * 1992-08-27 1994-03-02 BUG BETRIEBSANLAGEN UND GRUNDBESITZ GmbH Vorrichtung zur baustellenseitigen Herstellung von pumpfähigen Mörtelmassen
BE1009507A3 (nl) * 1995-07-18 1997-04-01 Lomar Nv Werkwijze en inrichting voor het toevoegen van bewapeningsvezels aan hardbare bouwspecies, en produkten hiertoe aangewend.
DE19542663C2 (de) * 1995-11-16 2003-05-15 Wagner Gmbh J Mischvorrichtung
DE19719812A1 (de) * 1997-05-13 1998-11-19 Wolfgang Rath Verfahren und Vorrichtung zum Aufbereiten von plastischem Mörtel bzw. Beton
DE19911368A1 (de) * 1999-03-15 2000-09-21 Inotec Gmbh Verfahren und Vorrichtung zum Herstellen von Spritzmörtel zur Verwendung im Naßspritzverfahren
DE19911368B4 (de) * 1999-03-15 2012-10-04 INOTEC GmbH Transport- und Fördersysteme Vorrichtung zum Herstellen von Spritzmörtel zur Verwendung im Naßspritzverfahren
US10388088B2 (en) * 2016-12-16 2019-08-20 Hyundai Motor Company Roll and brake test system and method of controlling the same

Also Published As

Publication number Publication date
DE3532722A1 (de) 1987-03-26
JPS6262709A (ja) 1987-03-19
EP0218864B1 (de) 1990-07-18
CA1278567C (en) 1991-01-02
DE3532722C2 (de) 1989-09-28
EP0218864A3 (en) 1987-08-05
DE3546501A1 (de) 1987-04-23
ZA866723B (en) 1987-05-27
DE3546501C2 (de) 1988-04-28
US4778276A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
EP0218864B1 (de) Vorrichtung und Verfahren zur kontinuierlichen Bereitstellung von hydraulisch abbindender Masse
DE69814786T2 (de) Mischer
DE2337129C3 (de) Vorrichtung zum Bereiten und Abgeben von Faser-Beton-Gemischen
DE102004033344B4 (de) Dosierzubringer und System zum Kneten und Strangpressen eines Materials
EP1914056B1 (de) Einrichtung zum kontinuierlichen und intensiven Mischen von Trockenmörtel
DE2637558A1 (de) Verfahren und vorrichtung zur erzeugung eines kontinuierlichen materialstroms
EP0370181A1 (de) Kontinuierlich arbeitender Mischer
EP0051224A2 (de) Verfahren und Vorrichtung zum kontinuierlichen Anmachen von Mörtel, Putz oder dgl. Baustoff oder Material
DE4318177C2 (de) Vorrichtung zur baustellenseitigen Herstellung von pumpfähigen Mörtelmassen
DE4021305C2 (de) Vorrichtung zum kontinuierlichen Conchieren von Schokolademasse
EP0584573B1 (de) Vorrichtung zur baustellenseitigen Herstellung von pumpfähigen Mörtelmassen
DE1244723B (de) Vorrichtung zum kontinuierlichen Mischen von trockenem Gut mit einer Fluessigkeit
EP1286811B1 (de) Einrichtung zum andrücken der messer an die lochplatte einer granuliervorrichtung
WO1990002610A1 (de) Verfahren und einrichtung zum intermittierenden aufspritzen einer pastösen masse
EP1541239B1 (de) Vorrichtung zum Zerreissen von Feststoffen, Zumischen von Flüssigkeit und Fördern der erzeugten Suspension in eine Verarbeitungsanlage
DE3626313C2 (de)
DE2543379A1 (de) Vorrichtung zur kontinuierlichen herstellung von angemachtem moertel
DE1782125A1 (de) Verfahren und Vorrichtung zum Mischen von pulverfoermigen und fluessigen Komponenten
EP0574728B1 (de) Herstellung und Förderung eines Baustoffgemisches
DE3543190A1 (de) Vorrichtung zum kontinuierlichen dispergieren und feinmahlen von feststoffen
DE3011410A1 (de) Maschine zum kontinuierlichen mischen und verspruehen von stoffen bzw. erzeugnissen fuer das verputzen und ueberziehen von gemauerten waenden
DE2918820C2 (de)
DE2523374A1 (de) Vorrichtung zur kontinuierlichen herstellung von angemachtem moertel
DE69116487T2 (de) Vorrichtung zum Stangpressen und zum gleichzeitigen Schneiden von Gummi
EP0036985A1 (de) Einrichtung zur Erzeugung eines Gemisches aus mindestens einem zerdrückbaren stückigen Feststoff und mindestens einem flüssigen Bestandteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19871026

17Q First examination report despatched

Effective date: 19881014

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 54597

Country of ref document: AT

Date of ref document: 19900815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3672739

Country of ref document: DE

Date of ref document: 19900823

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930817

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930830

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940607

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940613

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050826