EP0212106B1 - Measured value transmission method - Google Patents
Measured value transmission method Download PDFInfo
- Publication number
- EP0212106B1 EP0212106B1 EP86107772A EP86107772A EP0212106B1 EP 0212106 B1 EP0212106 B1 EP 0212106B1 EP 86107772 A EP86107772 A EP 86107772A EP 86107772 A EP86107772 A EP 86107772A EP 0212106 B1 EP0212106 B1 EP 0212106B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- monitoring
- monitoring points
- line
- points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000005540 biological transmission Effects 0.000 title description 13
- 238000012544 monitoring process Methods 0.000 claims abstract description 48
- 230000007935 neutral effect Effects 0.000 claims abstract description 6
- 238000011156 evaluation Methods 0.000 claims abstract description 3
- 230000015654 memory Effects 0.000 claims description 12
- 230000002146 bilateral effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims 2
- 239000007789 gas Substances 0.000 claims 1
- 230000000266 injurious effect Effects 0.000 claims 1
- 230000001960 triggered effect Effects 0.000 claims 1
- 230000011664 signaling Effects 0.000 description 8
- 238000009434 installation Methods 0.000 description 4
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B26/00—Alarm systems in which substations are interrogated in succession by a central station
- G08B26/005—Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
Definitions
- the invention relates to a method for the transmission of measured values in a monitoring system for protecting buildings according to the preamble of claim 1 (a method of this type is specified in EP-A 0 093 872).
- measuring points are distributed in extensive objects and connected to a signal center via a signal line.
- the measuring point it is becoming increasingly important to know the exact origin of the measured values in order to satisfy the needs of intelligent signal processing, i.e. the measuring point must be identifiable.
- the object of the invention is to provide a method for transmitting measured values in a transmission system and a device for carrying out the method, which avoids the disadvantages mentioned above, and in particular to create a transmission system which, with little installation effort, reliably identifies the measuring points which Maintaining their synchronization to a defined time grid and the transmission of their measured values to a signaling center enables identical measuring points which are connected in a chain to the signaling center to be used.
- a further object of the invention is to design the measuring points in such a way that they can be controlled from both sides by the signaling center via signal lines arranged in a loop.
- the method according to the invention avoids a major disadvantage of the chain indexing method, namely that the measuring points further away from the signaling center receive neither supply voltage nor signal for a long time.
- the origin of the signals arriving from the measuring points in the signal center i.e. Identification is possible using two methods: firstly by counting the commands sent and secondly by the measuring point address, provided that a cycle with special commands for setting an individual address in the address memory of a measuring point has been used.
- Identification is possible using two methods: firstly by counting the commands sent and secondly by the measuring point address, provided that a cycle with special commands for setting an individual address in the address memory of a measuring point has been used.
- the measured values can now be transmitted as described in DE-AS 2,533,382, i.e. the switching elements are actuated with each polling cycle. However, the transmission can also be carried out as in a parallel transmission system, the switching elements remaining closed.
- Fig. 1 shows the structure of a conventional monitoring system according to the chain advance principle.
- One or more signal lines L emanate from a signal center Z, to each of which a number of measuring points MS are connected.
- the measuring points MSm essentially contain, in addition to the measuring sensors and transducers, a signal receiver, a sequence control, a signal generator and a switching element Sm.
- a timing element begins to run in the measuring point MS1.
- the switching element S1 closes and applies the line voltage to the second measuring point MS2, where a timer also starts to run again. In this way, all switches of the measuring points MSm of a signal line L close one after the other.
- This process can be repeated periodically, so that all measuring points MS of a line are queried cyclically. After the line voltage is applied to a measuring point Msm or when the relevant switching element Sm is closed, the measured value of the measuring sensor M can be transmitted to the signal center Z.
- Storage capacitors located in the measuring points ensure the energy supply to the measuring point during any system-related voltage interruptions.
- each signal line L consists of a two-wire line to which all measuring points MS of a signal line L are connected in parallel.
- Each measuring point MS is characterized by a fixed address Am. By sending this characteristic address Am, the signal center Z can call up any measuring point MSm and, for example, cause it to deliver its measured value.
- the address signals can consist, for example, of a digital pulse sequence, a specific voltage, frequency or tone sequence, or of any combination of these elements.
- the measuring point MS can be a fire detector, e.g. B. an ionization detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in an intrusion protection system, e.g. a passive infrared detector, an ultrasonic detector or a noise detector, or any measuring point in a transmission system.
- a fire detector e.g. B. an ionization detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in an intrusion protection system, e.g. a passive infrared detector, an ultrasonic detector or a noise detector, or any measuring point in a transmission system.
- each measuring point MS there is a directionally symmetrical (bilateral) switching element S which connects the two input / output terminals 1 and 2 to one another.
- a sensor M, a transducer W, a control unit KE, an address memory AR and a command memory BS are provided in module B.
- the state of the switching element S is controlled by the control unit KE, which also contains means for signal detection.
- the measuring points are connected to one another and to the signal center Z via terminals 1 and 3A on the one hand and terminals 2 and 3B on the other hand, as shown in FIG. 4.
- the measuring points MS can be supplied with current from both sides, i.e. the signal lines can be connected to terminals 1 and 3A as well as to terminals 2 and 3B of the measuring point MS, which simplifies and increases the safety during assembly.
- the control unit KE also contains a line short-circuit detector for the left and right connection terminal. If a short circuit is detected, opening the switching element S prevents the voltage at the terminal which is not short-circuited from dropping below the necessary operating voltage. This makes it possible to maintain the operation of all measuring points MS up to the line short.
- the measuring points MS are symmetrical with regard to the connection terminals, i.e. interchangeable.
- a preferred embodiment of the method according to the invention provides that the signal line L is returned from the last measuring point MS back to the signal center.
- the measuring point MS can now be monitored from two sides. This, in conjunction with the short-circuit detector mentioned, makes it possible to fully maintain the data traffic from and to the measuring points MS in the event of a line short-circuit or interruption, while simultaneously reporting the line fault. It is of great importance in this connection that the location of the line disturbance can easily be determined by the method according to the invention. This is a particular advantage because it is well known that finding line faults is very time consuming and time consuming.
- FIG. 4 shows an embodiment of a transmission system according to the invention with measuring points MS which are controlled from the signal center Z. are.
- all measuring points MSm are distributed over one or more signal lines L.
- the measuring points MS are constructed in accordance with FIG. 3, that is to say they contain a directionally symmetrical (bilateral) switching element S which can switch through the line signal arriving at one input / output terminal K1 to the other input / output terminal K2 and insert changes into the switched line signal and into the Modules B each have a measuring sensor M, a transducer W, a control unit KE, an address memory AR for storing the individual measuring point address and a command memory BS for storing the commands.
- the changes inserted into the line signal by the switching element S are referred to as "markings".
- the marking is noticeable in the line going out from the measuring point MS as a current voltage interruption, which indicates to subsequent measuring points MS that the information coming from the signaling center Z may not be evaluated and may only be used for synchronization purposes.
- all switching elements S are conductive, so that all measuring points MS can synchronize with the synchronization information contained in the line signal.
- a reset command before the start of a cycle for querying measured values brings all m measuring points MS into a neutral state, which leads to all switching elements S, controlled by the associated control unit KE, at a defined point in time within the time frame given by the synchronization information, by means of a short time Open a current voltage interruption as a marking in the outgoing line signal, whereby all m - 1 measuring points following the first measuring point MS1 receive a signal with a marking, which they use exclusively for synchronization. Since the measuring points run synchronously, the voltage interruption is always impressed at the same point in time within the defined time grid, which allows the information to be transmitted without interference at the other times.
- the first measuring point MS1 is the only one to receive a line signal without marking, which means that it is the only one to evaluate the signal, execute the corresponding command, respond, then no commands except the reset command and no longer inserting a mark by switching the switching element S on continuously leaves.
- the continuous switching on of the switching element S has the consequence that from now on the line signal coming from the signal center Z reaches the subsequent measuring point MS2 without marking, which means that after evaluation it executes the corresponding command, responds, then also only accepts the reset command and the associated one Switching element S switches on continuously. This has the effect that the next but one measuring point MS2 also becomes active because it receives a line signal without marking.
- the cycle continues until the described process has been carried out in succession at all measuring points MS present in the signal line L. After completion of the cycle, a reset command is sent to all measuring points MS to go into the neutral state and to reinsert their mark by briefly opening the switching element S. A new cycle can then be started.
- each measuring point MS receives an identification that distinguishes it from the other measuring points.
- This type of addressing avoids any manipulation at the measuring points themselves and allows both the advantages of the parallel system and those of the derailleur system to be exploited without having their disadvantages.
- the addresses can be re-entered in the register at any time.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Uebertragung von Meßwerten in einem Ueberwachungssystem zum Schutz von Gebäuden gemäß Oberbegriff des Patentanspruchs 1 (ein Verfahren dieser Art ist in der EP-A 0 093 872 angegeben).The invention relates to a method for the transmission of measured values in a monitoring system for protecting buildings according to the preamble of claim 1 (a method of this type is specified in EP-A 0 093 872).
Zur Lösung vielfältiger Ueberwachungsaufgaben werden Meßstellen in ausgedehnten Objekten verteilt und über eine Signallinie an eine Signalzentrale angeschlossen. In diesem Zusammenhang wird es immer wichtiger, die genaue Herkunft der Meßwerte zu kennen, um die Bedürfnisse einer intelligenten Signalverarbeitung zu befriedigen, d.h. die Meßstelle muß identifizierbar sein.To solve a variety of monitoring tasks, measuring points are distributed in extensive objects and connected to a signal center via a signal line. In this context, it is becoming increasingly important to know the exact origin of the measured values in order to satisfy the needs of intelligent signal processing, i.e. the measuring point must be identifiable.
Die Identifizierbarkeit der Meßstellen ist grundsätzlich auf drei verschiedene Arten zu erreichen. Die älteste bekannte, heute aber nur noch sehr wenig angewandte Methode besteht darin, von jeder Meßstelle eine separate Leitung zur Signalzentrale zu ziehen. Diese Lösung ist mit einem sehr hohen Installationsaufwand verbunden. Moderne Systeme verwenden daher enweder das Kettenfortschaltprinzip, bei welchem die Meßstellen in Serie geschaltet sind und die Identifizierung durch Zählen entsprechender Fortschaltimpulse erfolgt (siehe Fig. 1), oder individuell fest adressierte Meßstellen, welche parallel an die Leitung angeschaltet sind (Fig. 2). Ein auf dem Fortschaltprinzip nach Fig. 1 beruhendes Verfahren ist in der DE-AS 2'533'382 beschrieben.There are three different ways of identifying the measuring points. The oldest known method, which is used very little today, is to pull a separate line from each measuring point to the signaling center. This solution is associated with a very high installation effort. Modern systems therefore use either the chain advancement principle, in which the measuring points are connected in series and the identification is made by counting corresponding advancing pulses (see Fig. 1), or individually addressed measuring points, which are connected in parallel to the line (Fig. 2). A method based on the indexing principle according to FIG. 1 is described in DE-AS 2,533,382.
Der wesentliche Unterschied zwischen den beiden zuletzt genannten Verfahren besteht darin, daß beim Forschaltprinzip alle Meßstellen identisch sein können, während sich beim Parallelsystem die Meßstellen durch ihre Adresse unterscheiden, was entweder durch Schalter oder sonstige Programmierhilfsmittel erreicht wird. Es leuchtet ein, daß identische Meßstellen sowohl vom Standpunkt der Großserienfertigung als auch der Wartung entscheidende Vorteile aufweisen und außerdem die Gefahr der Vertauschung und Fehladressierung ausschließen. Die bekannten Verfahren zur Identifizierung von Meßstellen in Uebertragungssystemen weisen folgende Nachteile auf.
- 1) Hoher Installationsaufwand, falls pro Meßstelle eine separate Ader zurückgeführt wird.
- 2) Die beim Kettenfortschaltprinzip entstehenden langen Pausen in der Stromversorgung der abgetrennten Meßstellen erfordern eine entsprechend leistungsfähige lokale Spannungsversorgung.
- 3) Beim Kettenfortschaltprinzip ist kein Signal vorhanden, welches die dauernde Synchronisation von Systemen erlaubt, die mit einem definierten Zeitraster arbeiten.
- 4) Das Kettenfortschaltprinzip reduziert die Uebertragungskapazität bei Systemen mit definiertem Zeitraster, da nach dem Zuschalten einer Meßstelle erst eine bestimmte Zeit zu deren Synchronisation verstreicht.
- 5) Unterschiedliche Meßstellen.
- 1) High installation effort if a separate wire is returned for each measuring point.
- 2) The long pauses in the power supply of the separated measuring points that arise with the chain advancement principle require a correspondingly powerful local power supply.
- 3) With the chain advance principle, there is no signal that allows the continuous synchronization of systems that work with a defined time grid.
- 4) The chain advancement principle reduces the transmission capacity in systems with a defined time grid, since after a measuring point has been switched on it only takes a certain time to synchronize it.
- 5) Different measuring points.
Ein Teil der vorhergenannten Nachteile (hoher Installationsaufwand, unterschiedliche Meßstellen) wird durch das in der EP-A 0 093 872 angegebene Verfahren beseitigt, welches auf der Kombination des Kettenfortschalt- und des Parallelprinzips beruht und auch eine sichere Identifizierung der Meßstellen gewährleistet.Some of the aforementioned disadvantages (high installation effort, different measuring points) are eliminated by the method specified in EP-A 0 093 872, which is based on the combination of the chain advancement principle and the parallel principle and also ensures reliable identification of the measuring points.
Aufgabe der Erfindung ist es, ein Verfahren zur Uebertragung von Meßwerten in einem Uebertragungssystem und eine Einrichtung zur Durchführung des Verfahrens zu schaffen, welche die vorstehend genannten Nachteile vermeidet und insbesondere, ein Uebertragungssystem zu schaffen, welches bei geringem Installationsaufwand eine sichere Identifizierung der Meßstellen, die Aufrechterhaltung deren Synchronisation auf ein definiertes Zeitraster und die Uebertragung von deren Meßwerten an eine Signalzentrale ermöglicht, wobei identische Meßstellen, welche kettenförmig an die Signalzentrale angeschlossen sind, verwendet werden können.The object of the invention is to provide a method for transmitting measured values in a transmission system and a device for carrying out the method, which avoids the disadvantages mentioned above, and in particular to create a transmission system which, with little installation effort, reliably identifies the measuring points which Maintaining their synchronization to a defined time grid and the transmission of their measured values to a signaling center enables identical measuring points which are connected in a chain to the signaling center to be used.
Eine weitere Aufgabe der Erfindung besteht darin, die Meßstellen so auszugestalten, daß sie über schleifenförmig angeordnete Signallinien von beiden Seiten her von der Signalzentrale angesteuert werden können.A further object of the invention is to design the measuring points in such a way that they can be controlled from both sides by the signaling center via signal lines arranged in a loop.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Die Erfindung wird durch die Merkmale der Unteransprüche weitergebildet.This object is achieved in a method of the type mentioned by the characterizing features of claim 1. The invention is further developed by the features of the subclaims.
Durch das erfindungsgemäße Verfahren wird ein wesentlicher Nachteil des Kettenfortschaltverfahrens, nämlich, daß die von der Signalzentrale weiter entfernten Meßstellen längere Zeit hindurch weder Speisespannung noch Signal erhalten, vermieden.The method according to the invention avoids a major disadvantage of the chain indexing method, namely that the measuring points further away from the signaling center receive neither supply voltage nor signal for a long time.
Die Herkunft der von den Meßstellen in der Signalzentrale eintreffenden Signale, d.h. die Identifizierung, ist nach zwei Methoden möglich: Erstens durch Zählen der ausgesandten Befehle und zweitens durch die Meßstellen-Adresse, sofern ein Zyklus mit speziellen Befehlen zum Setzen einer individuellen Adresse im Adreßspeicher einer Meßstelle verwendet worden ist. Durch die Kombination beider Methoden, gemäß der EP-A 0 093 872, d.h. durch Vergleich der Anzahl ausgesandter Befehle mit der von den Meßstellen zur Signalzentrale rückgemeldeten individuellen Adresse, läßt sich ein sehr hoher Sicherheitsgrad der Meßstellenidentifizierung erreichen.The origin of the signals arriving from the measuring points in the signal center, i.e. Identification is possible using two methods: firstly by counting the commands sent and secondly by the measuring point address, provided that a cycle with special commands for setting an individual address in the address memory of a measuring point has been used. By combining both methods, according to EP-A 0 093 872, i.e. by comparing the number of commands sent with the individual address reported back from the measuring points to the signaling center, a very high degree of security of the measuring point identification can be achieved.
Die Uebertragung der Meßwerte kann nun so erfolgen, wie es in der DE-AS 2'533'382 beschrieben wurde, d.h. es werden bei jedem Abfragezyklus die Schaltelemente betätigt. Die Uebertragung kann aber auch wie bei einem Parallel-Uebertragungssystem erfolgen, wobei die Schaltelemente geschlossen bleiben.The measured values can now be transmitted as described in DE-AS 2,533,382, i.e. the switching elements are actuated with each polling cycle. However, the transmission can also be carried out as in a parallel transmission system, the switching elements remaining closed.
Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens besteht aus Meßstellen, welche einen Meßgrößensensor, einen Meßwertwandler, eine Kontrolleinheit einen Adressenspeicher und ein Schaltelement aufweisen. Im folgenden wird anhand der Figuren eine bevorzugte Ausführungsform der Erfindung näher erläutert. Es zeigen
- Fig. 1 ein serielles, kettengeschaltetes Ueberwachungssystem nach dem Stand der Technik,
- Fig. 2 ein parallel adressiertes Ueberwachungssystem des Standes der Technik,
- Fig. 3 das Blockschaltbild einer Meßstelle MS zur Durchführung des erfindungsgemäßen Verfahrens und
- Fig. 4 eine Ausführungsform eines erfindungsgemäßen Ueberwachungssystems.
- 1 shows a serial, chain-connected monitoring system according to the prior art,
- 2 shows a parallel addressed monitoring system of the prior art,
- Fig. 3 shows the block diagram of a measuring point MS for performing the method according to the invention and
- Fig. 4 shows an embodiment of a monitoring system according to the invention.
Fig. 1 zeigt den Aufbau eines herkömmlichen Ueberwachungssystems nach dem Kettenfortschaltprinzip. Von einer Signalzentrale Z gehen eine oder mehrere Signallinien L aus, an welche jeweils mehrere Meßstellen MS angeschlossen sind. Die Meßstellen MSm enthalten im wesentlichen außer den Meßsensoren und Meßwertwandlern einen Signalempfänger, eine Ablaufsteuerung, einen Signalgenerator und ein Schaltelement Sm. Nach Anlegen der Linienspannung an die Signallinie L beginnt in der Meßstelle MS1 ein Zeitglied zu laufen. Nach einer bestimmten Verzögerung schließt das Schaltelement S1 und legt die Linienspannung an die zweite Meßstelle MS2, wo ebenfalls wieder ein Zeitglied zu laufen beginnt. Auf diese Art schließen nacheinander alle Schalter der Meßstellen MSm einer Signallinie L. Dieser Vorgang läßt sich periodisch wiederholen, so daß alle Meßstellen MS einer Linie zyklisch abgefragt werden. Nach Anlegen der Linienspannung an eine Meßstelle Msm bzw. beim Schließen des betreffenden Schaltelementes Sm kann eine Uebertragung des Meßwertes des Meßsensors M an die Signalzentrale Z erfolgen.Fig. 1 shows the structure of a conventional monitoring system according to the chain advance principle. One or more signal lines L emanate from a signal center Z, to each of which a number of measuring points MS are connected. The measuring points MSm essentially contain, in addition to the measuring sensors and transducers, a signal receiver, a sequence control, a signal generator and a switching element Sm. After the line voltage has been applied to the signal line L, a timing element begins to run in the measuring point MS1. After a certain delay, the switching element S1 closes and applies the line voltage to the second measuring point MS2, where a timer also starts to run again. In this way, all switches of the measuring points MSm of a signal line L close one after the other. This process can be repeated periodically, so that all measuring points MS of a line are queried cyclically. After the line voltage is applied to a measuring point Msm or when the relevant switching element Sm is closed, the measured value of the measuring sensor M can be transmitted to the signal center Z.
In den Meßstellen befindliche Speicherkondensatoren stellen die Energieversorgung der Meßstelle während eventuell auftreten der systembedingter Spannungsunterbrechungen sicher.Storage capacitors located in the measuring points ensure the energy supply to the measuring point during any system-related voltage interruptions.
Fig. 2 zeigt ein herkömmliches parallel adressiertes Ueberwachungssystem. Die einzelnen Meßstellen MS der gesamten Anlage sind wie in Fig. 1 auf verschiedene Signallinien L verteilt und über diese Signallinie L mit der Signalzentrale Z verbunden. Jede Signallinie L besteht aus einer Zweidrahtleitung, an die alle Meßstellen MS einer Signallinie L parallel angeschlossen sind. Jede Meßstelle MS ist durch eine fest eingestellte Adresse Am charakterisiert. Durch Aussenden dieser charakteristischen Adresse Am kann die Signalzentrale Z jede beliebige Meßstelle MSm aufrufen und zum Beispiel zur Abgabe ihres Meßwertes veranlassen. Die Adreßsignale können beispielsweise aus einer digitalen Impulsfolge, einer bestimmten Spannungs-, Frequenz-oder Tonfolge, oder aus beliebigen Kombinationen dieser Elemente bestehen. Bei einer größeren Anzahl von Meßstellen MS pro Signallinie L kommt praktisch nur eine digitale Impulsfolge in Frage, weil sich damit eine fast beliebige Anzahl verschiedener Adressen mit integrationsfreundlichen Elementen von bescheidener Genauigkeit realisieren läßt. Durch weitere digitale Impulsfolgen können zudem auch komplizierte Instruktionen an die jeweils adressierte Meßstelle übermittelt werden.2 shows a conventional monitoring system addressed in parallel. As in FIG. 1, the individual measuring points MS of the entire system are distributed over different signal lines L and connected to the signal center Z via this signal line L. Each signal line L consists of a two-wire line to which all measuring points MS of a signal line L are connected in parallel. Each measuring point MS is characterized by a fixed address Am. By sending this characteristic address Am, the signal center Z can call up any measuring point MSm and, for example, cause it to deliver its measured value. The address signals can consist, for example, of a digital pulse sequence, a specific voltage, frequency or tone sequence, or of any combination of these elements. In the case of a larger number of measuring points MS per signal line L, practically only one digital pulse sequence can be used, because it can be used to implement almost any number of different addresses with elements that are easy to integrate and of modest accuracy. By means of further digital pulse sequences, complicated instructions can also be transmitted to the measuring point addressed in each case.
Ein offenkundiger Nachteil des beschriebenen Parallelsystems besteht in der Möglichkeit einer Meßstellen-Verwechslung oder einer nur schwer auffindbaren Fehladressierung. Außerdem setzt ein Leitungskurzschluß eine ganze Signallinie außer Betrieb.An obvious disadvantage of the parallel system described is the possibility of confusing measuring points or incorrect addressing that is difficult to find. In addition, a line short circuit disables an entire signal line.
Fig. 3 zeigt das Blockschaltbild einer Meßstelle MS für den Einsatz im erfindungsgemäßen Uebertragungsverfahren. Die Meßstelle MS kann ein Brandmelder, z. B. ein lonisationsmelder, ein optischer Rauchmelder, ein Temperaturmelder oder ein Flammenmelder, oder ein Ueberwachungsgerät in einem Intrusionsschutzsystem, z.B. ein passiver Infrarotmelder, ein Ultraschallmelder oder ein Geräuschmelder, oder ein beliebige Meßstelle in einem Uebertragungssystem sein.3 shows the block diagram of a measuring point MS for use in the transmission method according to the invention. The measuring point MS can be a fire detector, e.g. B. an ionization detector, an optical smoke detector, a temperature detector or a flame detector, or a monitoring device in an intrusion protection system, e.g. a passive infrared detector, an ultrasonic detector or a noise detector, or any measuring point in a transmission system.
In jeder Meßstelle MS ist ein richtungssymmetrisches (bilaterales) Schaltelement S vorhanden, das die beiden Eingangs/Ausgangsklemmen 1 und 2 miteinander verbindet. In der Baugruppe B sind ein Meßsensor M ein Meßwertwandler W, eine Kontrolleinheit KE, ein Adreßspeicher AR und ein Befehlsspeicher BS vorgesehen.In each measuring point MS there is a directionally symmetrical (bilateral) switching element S which connects the two input /
Der Zustand des Schaltelementes S wird von der Kontrolleinheit KE gesteuert, welche auch Mittel zur Signalerkennung enthält. Ueber die Klemmen 1 und 3A einerseits und die Klemmen 2 und 3B andererseits sind die Meßstellen miteinander und mit der Signalzentrale Z verbunden, wie es in Fig. 4 dargestellt ist.The state of the switching element S is controlled by the control unit KE, which also contains means for signal detection. The measuring points are connected to one another and to the signal center Z via
Da das Schaltelement S richtungssymmetrisch (bilateral) ausgebildet ist, können die Meßstellen MS von beiden Seiten her mit Strom versorgt werden, d.h. die Signalleitungen können sowohl mit den Klemmen 1 und 3A als auch mit den Klemmen 2 und 3B der Meßstelle MS verbunden werden, was eine Vereinfachung und Erhöhung der Sicherheit bei der Montage bedeutet.Since the switching element S is directionally symmetrical (bilateral), the measuring points MS can be supplied with current from both sides, i.e. the signal lines can be connected to
Weiterhin enthält die Kontrolleinheit KE je einen Leitungskurzschlußdetektor für die linke und rechte Anschlußklemme. Wenn ein Kurzschluß erkannt ist, wird durch Oeffnen des Schaltelementes S ein Absinken der Spannung an der nicht kurzgeschlossenen Klemme unter die nötige Betriebsspannung verhindert. Dadurch ist es möglich, den Betrieb sämtlicher Meßstellen MS bis zum Leitungskurzschluß aufrechtzuerhalten.The control unit KE also contains a line short-circuit detector for the left and right connection terminal. If a short circuit is detected, opening the switching element S prevents the voltage at the terminal which is not short-circuited from dropping below the necessary operating voltage. This makes it possible to maintain the operation of all measuring points MS up to the line short.
Die Meßstellen MS sind bezüglich der Anschlußklemmen symmetrisch, d.h. vertauschbar. Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, daß die Signallinie L von der letzten Meßstelle MS wieder zur Signalzentrale zurückgeführt wird. Die Ueberwachung der Meßstelle MS kann nun von zwei Seiten erfolgen. Hierdurch wird in Verbindung mit dem erwähnten Kurzschlußdetektor ermöglicht, bei einem Leitungs-Kurzschluß oder -Unterbruch den Datenverkehr von und zu den Meßstellen MS voll aufrechtzuerhalten, bei gleichzeitiger Meldung der Linienstörung. Von großer Bedeutung ist in diesem Zusammenhang, daß durch das erfindungsgemäße Verfahren der Ort der Linienstörung leicht ermittelt werden kann. Dies ist ein besonderer Vorteil, denn es ist allgemein bekannt, daß das Auffinden von Leitungsfehlern sehr aufwendig und zeitraubend ist.The measuring points MS are symmetrical with regard to the connection terminals, i.e. interchangeable. A preferred embodiment of the method according to the invention provides that the signal line L is returned from the last measuring point MS back to the signal center. The measuring point MS can now be monitored from two sides. This, in conjunction with the short-circuit detector mentioned, makes it possible to fully maintain the data traffic from and to the measuring points MS in the event of a line short-circuit or interruption, while simultaneously reporting the line fault. It is of great importance in this connection that the location of the line disturbance can easily be determined by the method according to the invention. This is a particular advantage because it is well known that finding line faults is very time consuming and time consuming.
Fig. 4 zeigt eine Ausführungsform eines erfindungsgemäßen Uebertragungssystems mit Meßstellen MS, die von der Signalzentrale Z aus angesteuert sind. Es sind wie in Fig. 1 alle Meßstellen MSm auf eine oder mehrere Signallinien L verteilt. Die Meßstellen MS sind entsprechend Fig. 3 aufgebaut, d.h. sie enthalten ein richtungssymmetrisches (bilaterales) Schaltelement S, welches das auf der einen Eingangs/Ausgangsklemme K1 ankommende Liniensignal zur anderen Eingangs/Ausgangsklemme K2 durchschalten und Veränderungen in das durchgeschaltete Liniensignal einfügen kann und in den Baugruppen B je einen Meßsensor M, einen Meßwertwandler W, eine Kontrolleinheit KE, einen Adreßspeicher AR zur Speicherung der indviduellen Meßstellenadresse und einen Befehlsspeicher BS zur Speicherung der Befehle.FIG. 4 shows an embodiment of a transmission system according to the invention with measuring points MS which are controlled from the signal center Z. are. As in FIG. 1, all measuring points MSm are distributed over one or more signal lines L. The measuring points MS are constructed in accordance with FIG. 3, that is to say they contain a directionally symmetrical (bilateral) switching element S which can switch through the line signal arriving at one input / output terminal K1 to the other input / output terminal K2 and insert changes into the switched line signal and into the Modules B each have a measuring sensor M, a transducer W, a control unit KE, an address memory AR for storing the individual measuring point address and a command memory BS for storing the commands.
Die vom Schaltelement S in das Liniensignal eingefügten Veränderungen werden als "Markierung" bezeichnet. Die Markierung macht sich in der von der Meßstelle MS abgehenden Leitung als momentaner Spannungsunterbruch bemerkbar, was nachfolgenden Meßstellen MS anzeigt, daß die von der Signalzentrale Z kommende Information nicht ausgewertet und nur zu Synchronisationszwecken benützt werden darf. Bei Inbetriebnahme sind alle Schaltelemente S leitend, so daß alle Meßstellen MS auf die im Liniensignal enthaltene Synchronisierinformation synchronisieren können. Ein Rückstellbefehl vor Beginn eines Zyklus zur Abfrage von Meßwerten bringt alle m Meßstellen MS in einen neutralen Zustand, was dazu führt, daß alle Schaltelemente S, von der zugehörigen Kontrolleinheit KE gesteuert, zu einem definierten Zeitpunkt innerhalb des von der Synchronisierinformation gegebenen Zeitrasters, durch kurzzeitiges Oeffnen einen momentanen Spannungsunterbruch als Markierung in das abgehende Liniensignal einfügen, wodurch alle auf die erste Meßstelle MS1 folgenden m - 1 Meßstellen ein Signal mit einer Markierung erhalten, welches sie ausschließlich zur Synchronisation verwenden. Da die Meßstellen synchron laufen, erfolgt das Einprägen des Spannungsunterbruches immer zum gleichen Zeitpunkt innerhalb des definierten Zeitrasters, was zu den übrigen Zeiten eine störungsfreie Uebertragung der Information erlaubt.The changes inserted into the line signal by the switching element S are referred to as "markings". The marking is noticeable in the line going out from the measuring point MS as a current voltage interruption, which indicates to subsequent measuring points MS that the information coming from the signaling center Z may not be evaluated and may only be used for synchronization purposes. When commissioning, all switching elements S are conductive, so that all measuring points MS can synchronize with the synchronization information contained in the line signal. A reset command before the start of a cycle for querying measured values brings all m measuring points MS into a neutral state, which leads to all switching elements S, controlled by the associated control unit KE, at a defined point in time within the time frame given by the synchronization information, by means of a short time Open a current voltage interruption as a marking in the outgoing line signal, whereby all m - 1 measuring points following the first measuring point MS1 receive a signal with a marking, which they use exclusively for synchronization. Since the measuring points run synchronously, the voltage interruption is always impressed at the same point in time within the defined time grid, which allows the information to be transmitted without interference at the other times.
Die erste Meßstelle MS1 empfängt als einzige ein Liniensignal ohne Markierung, was bewirkt, daß sie als einzige das Signal auswertet, den entsprechenden Befehl ausführt, antwortet, danach keine Befehle außer dem Rückstellbefehl akzeptiert und keine Markierung mehr einfügt, indem sie das Schaltelement S dauernd eingeschaltet läßt. Das dauernde Einschalten des Schaltelements S hat zur Folge, daß von nun an das von der Signalzentrale Z kommende Liniensignal ohne Markierung zur nachfolgenden Meßstelle MS2 gelangt, wodurch dieselbe nach Auswertung den entsprechenden Befehl ausführt, antwortet, danach ebenfalls nur noch den Rückstellbefehl akzeptiert und das zugehörige Schaltelement S dauernd einschaltet. Dies bewirkt, daß auch die übernächste Meßstelle MS2 aktiv wird, weil sie ein Liniensignal ohne Markierung erhält. Der Zyklus dauert so lange, bis der beschriebene Vorgang nacheinander an allen in der Signallinie L vorhandenen Meßstellen MS abgelaufen ist. Nach Abschluß des Zyklus geht ein Rückstellbefehl an alle Meßstellen MS, in den neutralen Zustand zu gehen und ihre Markierung durch kurzzeitiges Oeffnen des Schaltelements S wiedereinzufügen. Es kann darauf ein neuer Zyklus gestartet werden.The first measuring point MS1 is the only one to receive a line signal without marking, which means that it is the only one to evaluate the signal, execute the corresponding command, respond, then no commands except the reset command and no longer inserting a mark by switching the switching element S on continuously leaves. The continuous switching on of the switching element S has the consequence that from now on the line signal coming from the signal center Z reaches the subsequent measuring point MS2 without marking, which means that after evaluation it executes the corresponding command, responds, then also only accepts the reset command and the associated one Switching element S switches on continuously. This has the effect that the next but one measuring point MS2 also becomes active because it receives a line signal without marking. The cycle continues until the described process has been carried out in succession at all measuring points MS present in the signal line L. After completion of the cycle, a reset command is sent to all measuring points MS to go into the neutral state and to reinsert their mark by briefly opening the switching element S. A new cycle can then be started.
Die Möglichkeit individuelle Befehle an jede einzelne Meßstelle MS zu geben, wird bei Inbetriebnahme des Uebertragungssystem dazu benützt, um jeder Meßstelle MS eine indivduelle Meßstellen- Adresse zu übermitteln, die sie in ihrem Adreßregister AR speichert. Auf diese Weise erhält jede Meßstelle MS eine Identifikation, die sie von den übrigen Meßstellen unterscheidet. Diese Art der Adressierung vermeidet jede Manipulation an den Meßstellen selbst und erlaubt sowohl die Ausnützung der Vorteile des Parallelsystems als auch jener des Kettenschaltungssystems, ohne aber deren Nachteile zu haben. Selbstverständlich kann man bei Systemausfall, Störung oder Wartung die Adressen jederzeit neu in die Register einschreiben.The possibility of giving individual commands to each individual measuring point MS is used when the transmission system is started up in order to transmit to each measuring point MS an individual measuring point address which it stores in its address register AR. In this way, each measuring point MS receives an identification that distinguishes it from the other measuring points. This type of addressing avoids any manipulation at the measuring points themselves and allows both the advantages of the parallel system and those of the derailleur system to be exploited without having their disadvantages. Of course, in the event of a system failure, malfunction or maintenance, the addresses can be re-entered in the register at any time.
- Adresse AAddress A
- Adreßspeicher ARAddress memory AR
- Baugruppe BAssembly B
- Befehlsspeicher BSCommand memory BS
- Kontrolleinheit KEKE control unit
- Eingangs/Ausgangsklemme K1Input / output terminal K1
- Eingangs/Ausgangsklemme K2Input / output terminal K2
- Signallinie LSignal line L
- Meßsensor MMeasuring sensor M
- Meßstelle MSMeasuring point MS
- Schaltelement SSwitching element S
- Meßwertwandler WTransducer W
- Signalzentrale ZSignaling center Z
- Klemmen 1Terminals 1
-
Klemmen 2
Terminals 2 -
Klemmen 3A
Terminals 3A -
Klemmen 3B
Terminals 3B
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT86107772T ATE51723T1 (en) | 1985-07-10 | 1986-06-06 | METHOD OF TRANSMITTING MEASUREMENTS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2967/85A CH668496A5 (en) | 1985-07-10 | 1985-07-10 | METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM. |
CH2967/85 | 1985-07-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0212106A1 EP0212106A1 (en) | 1987-03-04 |
EP0212106B1 true EP0212106B1 (en) | 1990-04-04 |
Family
ID=4245671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86107772A Expired - Lifetime EP0212106B1 (en) | 1985-07-10 | 1986-06-06 | Measured value transmission method |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0212106B1 (en) |
AT (1) | ATE51723T1 (en) |
BR (1) | BR8603217A (en) |
CH (1) | CH668496A5 (en) |
DE (1) | DE3670164D1 (en) |
NO (1) | NO862686L (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19940700C2 (en) * | 1999-08-27 | 2003-05-08 | Job Lizenz Gmbh & Co Kg | Method and device for the automatic assignment of detector addresses in a hazard detection system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10342044A1 (en) * | 2003-09-11 | 2005-04-07 | Robert Bosch Gmbh | Sensor, controller and method for operating sensors connected to a controller |
DE102004037227A1 (en) * | 2004-07-30 | 2006-02-16 | Sick Maihak Gmbh | Method and device for addressing subscribers of a bus system |
ITMO20040267A1 (en) * | 2004-10-11 | 2005-01-11 | Meta System Spa | '' METHOD AND SYSTEM OF AUTOMATIC ADDRESSING OF A PLURALITY OF COMMUNICATING ELEMENTS BY MEANS OF A SINGLE BUS. ''. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765016A (en) * | 1971-05-24 | 1973-10-09 | Oak Electro Netics Corp | Security system including means for polling the premises to be protected |
FR2214385A5 (en) * | 1973-01-16 | 1974-08-09 | Honeywell Bull Soc Ind | |
DE3008450C2 (en) * | 1980-03-05 | 1986-09-18 | Georg Prof. Dr. 8012 Ottobrunn Färber | Sequential transmission system for addressless connection of several participants to a control center |
BE892272A (en) * | 1982-02-25 | 1982-06-16 | Cifco S A | Remote measuring and signalling system - has transceiver units in series along common line by which they are cyclically interrogated by cpu using identifier circuits |
CH664637A5 (en) * | 1982-04-28 | 1988-03-15 | Cerberus Ag | METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM. |
-
1985
- 1985-07-10 CH CH2967/85A patent/CH668496A5/en not_active IP Right Cessation
-
1986
- 1986-06-06 EP EP86107772A patent/EP0212106B1/en not_active Expired - Lifetime
- 1986-06-06 DE DE8686107772T patent/DE3670164D1/en not_active Expired - Fee Related
- 1986-06-06 AT AT86107772T patent/ATE51723T1/en not_active IP Right Cessation
- 1986-07-02 NO NO862686A patent/NO862686L/en unknown
- 1986-07-09 BR BR8603217A patent/BR8603217A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19940700C2 (en) * | 1999-08-27 | 2003-05-08 | Job Lizenz Gmbh & Co Kg | Method and device for the automatic assignment of detector addresses in a hazard detection system |
Also Published As
Publication number | Publication date |
---|---|
CH668496A5 (en) | 1988-12-30 |
BR8603217A (en) | 1987-02-24 |
NO862686D0 (en) | 1986-07-02 |
DE3670164D1 (en) | 1990-05-10 |
EP0212106A1 (en) | 1987-03-04 |
NO862686L (en) | 1987-01-12 |
ATE51723T1 (en) | 1990-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH664637A5 (en) | METHOD FOR TRANSMITTING MEASURED VALUES IN A MONITORING SYSTEM. | |
EP1206765B1 (en) | Method and device for automatically allocating detector addresses in an alarm system | |
DE2817089B2 (en) | Alarm system | |
DE19960422C1 (en) | Faulty detector detection method for centralized alarm system e.g. fire alarm system, uses current-modulated data supplied by interrogated detectors to central evaluation point with controlled switch opening for fault location | |
DE2362344A1 (en) | DATA TRANSFER SYSTEM | |
EP0489346B1 (en) | Method for the automatic ranging of detector addresses by an alarm system | |
DE3624028A1 (en) | FIRE ALARM SYSTEM | |
EP0067339A2 (en) | Method and arrangement for disturbance detection in hazard signalling systems, especially fire signalling systems | |
EP0042501B1 (en) | Device for the transmission of measured values in a fire warning system | |
DE2533354C3 (en) | Device for transmitting control commands in a fire protection system | |
DE3207993C2 (en) | Monitoring system | |
DE2533330B2 (en) | PROCEDURE AND EQUIPMENT FOR TRANSMISSION OF MEASURED VALUES IN A FIRE DETECTION SYSTEM | |
DE3611949A1 (en) | DATA TRANSFER METHOD AND DATA TRANSFER DEVICE | |
EP0212106B1 (en) | Measured value transmission method | |
DE3623705C2 (en) | ||
DE3128796C2 (en) | ||
WO2006097430A2 (en) | Method for determining the configuration of a danger warning system, and danger warning system | |
DE3614692C2 (en) | ||
DE3225032C2 (en) | Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system | |
DE3415819C2 (en) | Fire alarm system | |
EP0362797B1 (en) | Method for the energy-saving operation of risk detectors in a risk detection arrangement | |
DE69326104T2 (en) | Detection system | |
EP1377798B1 (en) | Method for suppressing mutual interference of an optical multi-sensor system and corresponding multi-sensor system | |
EP0098553B1 (en) | Method and device for automatically demanding signal measure values and/or signal identification in an alarm installation | |
AT399957B (en) | Alarm signalling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19860606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19890426 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 51723 Country of ref document: AT Date of ref document: 19900415 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19900510 Year of fee payment: 5 |
|
REF | Corresponds to: |
Ref document number: 3670164 Country of ref document: DE Date of ref document: 19900510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19900516 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900518 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19900523 Year of fee payment: 5 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19900630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900630 Year of fee payment: 5 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19910422 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910513 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910515 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910530 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19910606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19910607 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19910630 |
|
BERE | Be: lapsed |
Owner name: CERBERUS A.G. Effective date: 19910630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19920101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19920630 Ref country code: CH Effective date: 19920630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19920606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930226 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930302 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 86107772.5 Effective date: 19920109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050606 |