Nothing Special   »   [go: up one dir, main page]

EP0200819A2 - Antenna array - Google Patents

Antenna array Download PDF

Info

Publication number
EP0200819A2
EP0200819A2 EP85115214A EP85115214A EP0200819A2 EP 0200819 A2 EP0200819 A2 EP 0200819A2 EP 85115214 A EP85115214 A EP 85115214A EP 85115214 A EP85115214 A EP 85115214A EP 0200819 A2 EP0200819 A2 EP 0200819A2
Authority
EP
European Patent Office
Prior art keywords
array antenna
antenna
antenna according
substrate plate
antenna elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85115214A
Other languages
German (de)
French (fr)
Other versions
EP0200819A3 (en
Inventor
Dietmar Dipl. Ing. Biere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19853514880 external-priority patent/DE3514880A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0200819A2 publication Critical patent/EP0200819A2/en
Publication of EP0200819A3 publication Critical patent/EP0200819A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave

Definitions

  • the invention is based on an array antenna according to the preamble of claim 1.
  • Planar array antennas using stripline technology for frequencies in the S, C and I bands are known (IEEE Transactions on Antennas and Propagation, Vol. AP 29, (1), Jan. 1981, pages 166 to 170).
  • frequencies in the X-band in particular above 10 GHz, it has so far not been possible to route the antenna energy from the antenna element to the corresponding microwave component with as little loss and as little reflection as possible. Due to the high line losses at these frequencies, the microwave components must be attached as directly as possible to the antenna element.
  • the antenna according to the invention with the characterizing features of claim 1 has the advantage that it is simple in construction, that the essential electronic components are arranged directly in the area of the antenna elements and that commercially available components can be used. Another advantage is that a metal plate is arranged between the substrate plate for the antenna elements and the other substrate plate, which takes over the coaxial line feedthrough. The necessary mechanical stability of the arrangement is thereby achieved. In addition, these coaxial connections can be realized in the simplest way and with the shortest length.
  • the desired decoupling impedance of the antenna element is set by eccentric (eccentric) contacting of the inner conductor of the coaxial feedthrough to a defined location of the antenna element.
  • the diameter of the coaxial feedthrough must be sufficiently small. This eliminates the need for complicated adaptation measures while at the same time adapting the antenna elements to the lines in a good and reproducible manner.
  • the antenna elements of one row of the array are combined in power by series connection on the first substrate plate.
  • the coaxial implementation also ensures that the conductors can be formed on the rear of the antenna in such a way that problem-free merging is possible using suitable cable routing.
  • the optional reception of the right or left circularly polarized signals is effected by bringing the horizontal and vertical reception components of the antenna elements together in the correct phase and is expediently carried out by means of a broadband 3 dB coupler (branch line coupler) which is located on the underside of the second substrate plate is arranged. This further simplifies the structure of the array antenna.
  • Antennas that can be swiveled mechanically are used for the direct reception of signals from radio satellites.
  • a purely mechanical tracking of the antennas is cumbersome. It is therefore more advantageous to electronically pivot the reception characteristics of the antenna.
  • swiveling in the elevation angle (elevation) electronically by means of a microwave phase shifter, for example is sufficient, while the antenna is mechanically tracked in the direction of the side angle (azimuth).
  • Such an antenna must be suitable for left and right rotating circular polarization.
  • it must be integrated as easily as possible into a vehicle and also be designed to be reliable and insensitive to vibrations.
  • An adaptation algorithm required for tracking the antenna which is not the subject of the invention, can act both on the phase shifters and on a stepper motor in the case of mechanical-electronic pivoting.
  • Fig. 1 the structure of a planar array antenna with a fixed setting of the preferably lobe-shaped radiation diagram for a linear polarization is shown in detail.
  • a first substrate plate 10 On the top of a first substrate plate 10 there are round, metallic, conductive antenna elements 11, which are preferably formed by partially etching away a metal lamination on the top.
  • a glass fiber reinforced polytetrafluoroethylene (PTFE) is preferably suitable as the substrate material.
  • the antenna elements 11 are arranged in a preferably square array antenna in vertical columns and horizontal rows, the distance between the individual elements being chosen so that the mutual influence is the least. 1 may also be replaced by square, triangular or other shaped antenna elements, which then differ only in terms of mode excitation.
  • the non-metallized underside of the first substrate plate 10 is connected to a metal plate 13, preferably made of aluminum.
  • the connection is preferably made by an adhesive layer 12.
  • the metal plate has a thickness d, which preferably corresponds to approximately half the operating wavelength x, and has a bore 14 for each antenna element 11.
  • Each bore contains a coaxial conductor 16 surrounded by insulation 15, the ends of which protrude somewhat from the metal plate 13 at the top and bottom. The upper ends fit into bores 17 of the first substrate plate 10 and are electrically conductively connected to the antenna elements 11.
  • a second substrate plate 18 (FIGS. 1 and 2) carries on its underside conductor tracks 20 (cf. FIG. 2) which are arranged in such a way that they form a symmetrical power divider and enable interconnection of the individual antenna elements with minimal power losses.
  • the second substrate plate 18 contains bores 21 for the lower ends of the conductors 16, which are electrically connected to the conductor tracks 20, for example by soldering.
  • the second substrate plate 18 is also connected to the metal plate 13 by an adhesive layer 19.
  • the insulation 15 consists of a low-loss dielectric material at high frequencies, preferably polytetrafluoroethylene, so that the metal plate 13, the insulation 15 and the conductor 16 each result in a coaxial passage. Since the ratio of the diameter of the inner conductor to the outer conductor determines the wave impedance of a coaxial cable, the diameter of the inner conductor is dependent on the outer diameter with constant wave resistance. In addition, the contacting of the inner conductor of the coaxial feedthrough on the antenna element 11 is carried out at a distance r from the center of the antenna element in order to achieve an adaptation to the characteristic impedance of the coaxial feedthrough.
  • the layered structure of the array antenna ensures very good mechanical stability of the entire arrangement. At the same time, it is prevented that undesired mode conversions occur at the boundary layers between the substrate plate and the metal plate 13, which would lead to reflections and thus to a reduction in the antenna gain. Moving the coupling elements to the rear of the antenna prevents interference with the directional characteristics.
  • FIG. 4 shows the structure of an array antenna for the reception of circularly polarized signals.
  • Such an antenna differs from the antenna design according to FIG. 1 in that there is a further metal plate 30 below the second substrate plate 18 and a third substrate plate 31 below it.
  • the first substrate plate 10, the metal plate 13 and the second substrate plate 18 each have a further bore 32, 33, 34 with respect to an antenna element 11, each with a bore 35 in the second metal plate 30 and a bore 36 in the third substrate plate 31 cursed.
  • the further bores mentioned are offset by 90 ° with respect to the first bore 17 in the antenna elements 11.
  • the third substrate plate 31 has no metal lamination on its upper side and conductor tracks 37 shaped on the underside to form a symmetrical power divider.
  • the individual parts shown in FIG. 4 are assembled in a manner analogous to that of the array antenna according to FIGS. 1 to 3.
  • FIG. 5 shows a diagram of a stripline antenna according to the invention for circular polarization and with electronic control of the preferably lobe-shaped radiation pattern in one direction.
  • the antenna elements 11 are arranged in a square array, for example for receiving the broadcast satellite signals provided that there is a sufficient reception field strength 16.
  • 16 256 antenna elements are required for an array antenna.
  • the elements on the top of the substrate plate 10 in the direction of the one polarization component, for example the horizontal component are successively connected to high-resistance stripline sections 30 of length n * ⁇ 2 , where n is an integer and preferably 1.
  • the antenna elements 11 of each line are also connected in series by strip line sections 31 of m.%, Where m is an integer, preferably 2. In this way, power can be shared, with each element contributing the same share of the performance.
  • the stripline sections 30, 31 are designed to be as high-resistance as the substrate material used allows.
  • the resulting wave impedance of the connecting lines determines the decoupling point or the radius r (see FIG. 2) in the antenna element.
  • the decoupling point in the antenna element is in turn determined by the required input impedance.
  • the input impedance and the wave impedance of the lines must be therefore be the same to ensure optimal power transmission.
  • the horizontal and vertical components are combined via connections 32 and 33 by means of 3 dB coupler 34. These couplers are designed for broadband signal addition and a fixed phase shift of 90 ° and provide 40 left-handed circular signals at their outputs and 41 right-handed circular signals at their outputs.
  • the signals of the first or second type are optionally fed to a phase shifter 35 by means of a switch 42.
  • the changeover switches are rigidly coupled to one another; see. dashed line 43 in FIG. 5.
  • a preferably electronic control circuit 36 controls all phase shifters 35 together (cf. line 37 in FIG. 5).
  • the advantage of such a series connection of the elements lies in the saving of power adders, which would contribute to a not inconsiderable degree to attenuation of the received signals.
  • the adjustable phase shifters 35 are connected to one another on the output side.
  • the common output of all phase shifters is designated 38.
  • the necessary phase difference from line to line is generated by microwave phase shifters, which are only activated when the portable receiver has to change its orientation in elevation.
  • the antenna should be inclined so far that the surface normal approximates the direction of the incident radiation. Due to the small half-width of the reception characteristic, a stepping motor with sufficient resolution, for example, must be provided for the mechanical pivoting of the antenna about the vertical axis. This requirement is easy to meet in the current state of the art because of the low rate of change in the side angle that occurs in practice. Since the moment of inertia of the antenna is low, stepper motors with a relatively low power consumption can be used.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A planar array antenna in strip-line technology is proposed which is especially suitable for the reception of X-Band satellite broadcast signals. The mechanical construction consists of a first substrate plate (10) as a carrier for antenna elements (11) and a second substrate plate (18) as a carrier for the coupler and the signal processing. The two substrate plates are connected to one another by a metal plate (13) whose thickness (d) corresponds to half the operating wavelength. The electrical connection between the antenna elements on the front side of the antenna and the couplers on the rear side of the antenna is produced by coaxial conductor pieces which are fed in an insulated manner through holes (14) in the metal plate. In a further variation of the array antenna according to the invention, with three substrate plates and two metal plates, it is also possible to receive circular-polarised signals. <IMAGE>

Description

Stand der TechnikState of the art

Die Erfindung geht von einer Array-Antenne nach der Gattung des Anspruchs 1 aus.The invention is based on an array antenna according to the preamble of claim 1.

Es sind planare Array-Antennen in Streifenleitertechnik für Frequenzen im S-, C- und I-Band bekannt (IEEE Transactions on Antennas and Propagation, Vol. AP 29, (1), Jan. 1981, Seiten 166 bis 170). Für Frequenzen im X-Band, insbesondere oberhalb von 10 GHz, ist es bisher nicht möglich, die Antennenenergie verlustarm und möglichst reflexionsfrei vom Antennenelement zum entsprechenden Mikrowellenbauteil zu führen. Aufgrund der hohen Leitungsverluste bei diesen Frequenzen müssen die Mikrowellenbauteile möglichst direkt an dem Antennenelement angebracht werden.Planar array antennas using stripline technology for frequencies in the S, C and I bands are known (IEEE Transactions on Antennas and Propagation, Vol. AP 29, (1), Jan. 1981, pages 166 to 170). For frequencies in the X-band, in particular above 10 GHz, it has so far not been possible to route the antenna energy from the antenna element to the corresponding microwave component with as little loss and as little reflection as possible. Due to the high line losses at these frequencies, the microwave components must be attached as directly as possible to the antenna element.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Antenne mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß sie einfach im Aufbau ist, daß die wesentlichen elektronischen Bauelemente direkt im Bereich der Antennenelemente angeordnet und daß handelsübliche Bauelemente verwendet werden können. Als weiterer Vorteil ist anzusehen, daß zwischen der Substratplatte für die Antennenelemente und der anderen Substratplatte eine Metallplatte angeordnet ist, welche die koaxiale Leitungsdurchführung übernimmt. Dadurch wird die notwendige mechanische Stabilität der Anordnung erreicht. Darüber hinaus lassen sich diese koaxialen Verbindungen auf einfachste Weise und mit kürzester Länge realisieren.The antenna according to the invention with the characterizing features of claim 1 has the advantage that it is simple in construction, that the essential electronic components are arranged directly in the area of the antenna elements and that commercially available components can be used. Another advantage is that a metal plate is arranged between the substrate plate for the antenna elements and the other substrate plate, which takes over the coaxial line feedthrough. The necessary mechanical stability of the arrangement is thereby achieved. In addition, these coaxial connections can be realized in the simplest way and with the shortest length.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Antenne möglich. Die gewünschte Auskopplungsimpedanz des Antennenelements wird durch außermittige (exzentrische) Konktaktierung des Innenleiters der koaxialen Durchführung an einen definierten Ort des Antennenelements eingestellt. Dabei muß der Durchmesser der koaxialen Durchführung hinreichend klein sein. Dadurch entfallen umständliche Anpassungsmaßnahmen bei gleichzeitig guter und reproduzierbarer Anpassung der Antennenelemente an die Leitungen.Advantageous further developments and improvements of the antenna specified in claim 1 are possible through the measures listed in the subclaims. The desired decoupling impedance of the antenna element is set by eccentric (eccentric) contacting of the inner conductor of the coaxial feedthrough to a defined location of the antenna element. The diameter of the coaxial feedthrough must be sufficiently small. This eliminates the need for complicated adaptation measures while at the same time adapting the antenna elements to the lines in a good and reproducible manner.

Weiterhin ist es für den Empfang zirkular polarisierter Signale vorteilhaft, wenn die Leistungszusammenführung der Antennenelemente einer Zeile des Arrays durch Serienschaltung auf der ersten Substratplatte erfolgt. Durch die koaxiale Durchführung wird dabei gleichzeitig erreicht, daß auf der Rückseite der Antenne die Leiter so ausgebildet werden können, daß durch eine geeignete Leitungsführung eine problemlose Zusammenführung möglich ist. Der wahlweise Empfang der rechts- bzw. linkszirkular polarisierten Signale wird durch die phasenrichtige Zusammenführung der horizontalen und vertikalen Empfangskomponenten der Antennenelemente bewirkt und erfolgt zweckmäßigerweise mittels eines breitbandigen 3-dB-Kopplers (Branch-Line-Kopplers), der auf der Unterseite der zweiten Substratplatte angeordnet wird. Der Aufbau der Array-Antenne wird dadurch weiter vereinfacht.Furthermore, for the reception of circularly polarized signals, it is advantageous if the antenna elements of one row of the array are combined in power by series connection on the first substrate plate. The coaxial implementation also ensures that the conductors can be formed on the rear of the antenna in such a way that problem-free merging is possible using suitable cable routing. The optional reception of the right or left circularly polarized signals is effected by bringing the horizontal and vertical reception components of the antenna elements together in the correct phase and is expediently carried out by means of a broadband 3 dB coupler (branch line coupler) which is located on the underside of the second substrate plate is arranged. This further simplifies the structure of the array antenna.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung wird in der Zeichnung anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen

  • Fig. 1 einen Ausschnitt aus einer erfindungsgemäßen Antenne für lineare Polarisation in perspektivischer Darstellung,
  • Fig. 2 eine perspektivische Ansicht einer zweiten einseitig metallkaschierten Substratplatte,
  • Fig. 3 eine nicht maßstäbliche Schnittansicht einer koaxialen Durchführung nach Fig. 1,
  • Fig. 4 den prinzipiellen Aufbau einer erfindungsgemäßen Antenne für zirkulare Polarisation in auseinandergezogener, perspektivischer Darstellung und
  • Fig. 5 einen Auschnitt aus einer steuerbaren Streifenleiterantenne in Array-Anordnung für zirkulare Polarisation.
An embodiment of the invention is shown in the drawing with the aid of several figures and explained in more detail in the following description. Show it
  • 1 shows a section of an antenna according to the invention for linear polarization in a perspective view,
  • 2 shows a perspective view of a second substrate plate metal-clad on one side,
  • 3 is a sectional view, not to scale, of a coaxial bushing according to FIG. 1,
  • Fig. 4 shows the basic structure of an antenna according to the invention for circular polarization in an exploded perspective view and
  • 5 shows a detail from a controllable stripline antenna in an array arrangement for circular polarization.

Beschreibung der ErfindungDescription of the invention

Für den Direktempfang der Signale von Rundfunksatelliten werden Antennen eingesetzt, die mechanisch schwenkbar sind. Beim Empfang in Fahrzeugen ist jedoch eine rein mechanische Nachführung der Antennen umständlich. Vorteilhafter ist daher eine elektronische Schwenkung der Empfangscharakteristik der Antenne. In den meisten terrestrischen Anwendungsfällen reicht eine Schwenkung beispielsweise im Höhenwinkel (Elevation) auf elektronischem Wege mittels Mikrowellenphasenschieber aus, während in Richtung des Seitenwinkels (Azimut) die Antenne mechanisch nachgeführt wird. Eine solche Antenne muß für links- und rechtsdrehende zirkulare Polarisation geeignet sein. Außerdem muß sie möglichst leicht in ein Fahrzeug integrierbar und auch betriebssicher sowie erschütterungsunempfindlich ausgebildet sein. Ein für die Nachführung der Antenne erforderlicher Adaptionsalgorithmus, der nicht Gegenstand der Erfindung ist, kann dabei sowohl auf die Phasenschieber als auch auf einen Schrittmotor bei mechanisch-elektronischer Schwenkung einwirken.Antennas that can be swiveled mechanically are used for the direct reception of signals from radio satellites. When receiving in vehicles, however, a purely mechanical tracking of the antennas is cumbersome. It is therefore more advantageous to electronically pivot the reception characteristics of the antenna. In most terrestrial applications, swiveling in the elevation angle (elevation) electronically by means of a microwave phase shifter, for example, is sufficient, while the antenna is mechanically tracked in the direction of the side angle (azimuth). Such an antenna must be suitable for left and right rotating circular polarization. In addition, it must be integrated as easily as possible into a vehicle and also be designed to be reliable and insensitive to vibrations. An adaptation algorithm required for tracking the antenna, which is not the subject of the invention, can act both on the phase shifters and on a stepper motor in the case of mechanical-electronic pivoting.

In Fig. 1 ist der Aufbau einer planaren Array-Antenne mit fester Einstellung des vorzugsweise keulenförmigen Strahlungsdiagramms für eine lineare Polarisation im Ausschnitt gezeigt. Auf der Oberseite einer ersten Substratplatte 10 befinden sich runde metallisch leitende Antennenelemente 11, die vorzugsweise durch teilweises Wegätzen einer auf der Oberseite vorhandenen Metallkaschierung entstanden sind. Als Substratmaterial eignet sich vorzugsweise ein glasfaserverstärktes Polytetrafluoräthylen (PTFE). Die Antennenelemente 11 sind bei einer vorzugsweise quadratischen Array-Antenne in vertikalen Spalten und horizontalen Zeilen angeordnet, wobei der Abstand zwischen den einzelnen Elementen so gewählt ist, daß die gegenseitige Beeinflussung am geringsten ist. An die Stelle der in Fig. 1 gezeigten kreisförmigen Elemente können gegebenenfalls auch quadratische, dreieckige oder anders geformte Antennenelemente treten, die sich dann nur hinsichtlich der Modenanregung unterscheiden. Die erste Substratplatte 10 ist mit ihrer nichtmetallisierten Unterseite mit einer Metallplatte 13, vorzugsweise aus Aluminium, verbunden. Die Verbindung erfolgt vorzugsweise durch eine Klebschicht 12. Die Metallplatte hat eine Dicke d, welche vorzugsweise etwa der halben Betriebswellenlänge x entspricht, und weist je Antennenelement 11 eine Bohrung 14 auf. Jede Bohrung enthält einen von einer Isolation 15 umgebenen koaxialen Leiter 16, dessen Enden oben und unten etwas aus der Metallplatte 13 herausragen. Die oberen Enden passen in Bohrungen 17 der ersten Substratplatte 10 und sind mit den Antennenelementen 11 elektrisch leitend verbunden.In Fig. 1, the structure of a planar array antenna with a fixed setting of the preferably lobe-shaped radiation diagram for a linear polarization is shown in detail. On the top of a first substrate plate 10 there are round, metallic, conductive antenna elements 11, which are preferably formed by partially etching away a metal lamination on the top. A glass fiber reinforced polytetrafluoroethylene (PTFE) is preferably suitable as the substrate material. The antenna elements 11 are arranged in a preferably square array antenna in vertical columns and horizontal rows, the distance between the individual elements being chosen so that the mutual influence is the least. 1 may also be replaced by square, triangular or other shaped antenna elements, which then differ only in terms of mode excitation. The non-metallized underside of the first substrate plate 10 is connected to a metal plate 13, preferably made of aluminum. The connection is preferably made by an adhesive layer 12. The metal plate has a thickness d, which preferably corresponds to approximately half the operating wavelength x, and has a bore 14 for each antenna element 11. Each bore contains a coaxial conductor 16 surrounded by insulation 15, the ends of which protrude somewhat from the metal plate 13 at the top and bottom. The upper ends fit into bores 17 of the first substrate plate 10 and are electrically conductively connected to the antenna elements 11.

Eine zweite Substratplatte 18 (Fig. 1 und 2) trägt auf ihrer Unterseite Leitungsbahnen 20 (vgl. Fig. 2), die derart angeordnet sind, daß sie einen symmetrischen Leistungsteiler bilden und eine Zusammenschaltung der einzelnen Antennenelemente unter geringsten Leistungsverlusten ermöglichen. Die zweite Substratplatte 18 enthält Bohrungen 21 für die unteren Enden der Leiter 16, die mit den Leiterbahnen 20 zum Beispiel durch Löten elektrisch verbunden werden. Die zweite Substratplatte 18 wird ebenfalls mit der Metallplatte 13 durch eine Klebschicht 19 verbunden.A second substrate plate 18 (FIGS. 1 and 2) carries on its underside conductor tracks 20 (cf. FIG. 2) which are arranged in such a way that they form a symmetrical power divider and enable interconnection of the individual antenna elements with minimal power losses. The second substrate plate 18 contains bores 21 for the lower ends of the conductors 16, which are electrically connected to the conductor tracks 20, for example by soldering. The second substrate plate 18 is also connected to the metal plate 13 by an adhesive layer 19.

In Fig. 3 sind gleiche Teile wie in Fig. 1 mit gleichen Bezugszahlen versehen. Die Isolation 15 besteht aus einem bei hohen Frequenzen verlustarmen dielektrischen Material, vorzugsweise Polytetrafluoräthylen, so daß die Metallplatte 13, die Isolation 15 und der Leiter 16 je eine koaxiale Durchführung ergeben. Da das Verhältnis der Durchmesser von Innenleiter und Außenleiter den Wellenwiderstand eines Koaxialkabels bestimmt, ist der Durchmesser des Innenleiters bei konstantem Wellenwiderstand vom Außendurchmesser abhängig. Außerdem wird die Kontaktierung des Innenleiters der koaxialen Durchführung an dem Antennenelement 11 im Abstand r vom Mittelpunkt des Antennenelements vorgenommen, um eine Anpassung an den Wellenwiderstand der koaxialen Durchführung zu erreichen.In Fig. 3, the same parts as in Fig. 1 are given the same reference numerals. The insulation 15 consists of a low-loss dielectric material at high frequencies, preferably polytetrafluoroethylene, so that the metal plate 13, the insulation 15 and the conductor 16 each result in a coaxial passage. Since the ratio of the diameter of the inner conductor to the outer conductor determines the wave impedance of a coaxial cable, the diameter of the inner conductor is dependent on the outer diameter with constant wave resistance. In addition, the contacting of the inner conductor of the coaxial feedthrough on the antenna element 11 is carried out at a distance r from the center of the antenna element in order to achieve an adaptation to the characteristic impedance of the coaxial feedthrough.

Durch den geschichteten Aufbau der Array-Antenne wird eine sehr gute mechanische Stabilität der gesamten Anordnung gewährleistet. Gleichzeitig wird verhindert, daß unerwünschte Modenkonversionen an den Grenzschichten zwischen Substratplatte und Metallplatte 13 auftreten, die zu Reflexionen und damit zu einer Verringerung des Antennengewinns führen würden. Mit der Verlagerung der Koppelelemente auf die Rückseite der Antenne werden Störeinflüsse auf die Richtcharakteristik verhindert.The layered structure of the array antenna ensures very good mechanical stability of the entire arrangement. At the same time, it is prevented that undesired mode conversions occur at the boundary layers between the substrate plate and the metal plate 13, which would lead to reflections and thus to a reduction in the antenna gain. Moving the coupling elements to the rear of the antenna prevents interference with the directional characteristics.

In Fig. 4 ist der Aufbau einer Array-Antenne für den Empfang zirkular polarisierter Signale dargestellt. Eine derartige Antenne unterscheidet sich von der Antennenausführung nach Fig. 1 dadurch, daß unterhalb der zweiten Substratplatte 18 eine weitere Metallplatte 30 und darunter eine dritte Substratplatte 31 vorhanden sind. Die erste Substratplatte 10, die Metallplatte 13 und die zweite Substratplatte 18 weisen bezogen auf ein Antennenelement 11 je eine weitere Bohrung 32, 33, 34 auf, die mit je einer Bohrung 35 in der zweiten Metallplatte 30 und je einer Bohrung 36 in der dritten Substratplatte 31 fluchten. Die genannten weiteren Bohrungen sind bezogen auf die erste Bohrung 17 in den Antennenelementen 11 um 90° versetzt. Die dritte Substratplatte 31 weist auf ihrer Oberseite keine Metallkaschierung und auf ihrer Unterseite zu einem symmetrischen Leistungsteiler geformte Leitungsbahnen 37 auf. Die Montage der in Fig. 4 gezeigten Einzelteile erfolgt in analoger Weise wie bei der Array-Antenne nach Fig. 1 bis 3.4 shows the structure of an array antenna for the reception of circularly polarized signals. Such an antenna differs from the antenna design according to FIG. 1 in that there is a further metal plate 30 below the second substrate plate 18 and a third substrate plate 31 below it. The first substrate plate 10, the metal plate 13 and the second substrate plate 18 each have a further bore 32, 33, 34 with respect to an antenna element 11, each with a bore 35 in the second metal plate 30 and a bore 36 in the third substrate plate 31 cursed. The further bores mentioned are offset by 90 ° with respect to the first bore 17 in the antenna elements 11. The third substrate plate 31 has no metal lamination on its upper side and conductor tracks 37 shaped on the underside to form a symmetrical power divider. The individual parts shown in FIG. 4 are assembled in a manner analogous to that of the array antenna according to FIGS. 1 to 3.

In Fig. 5 ist ein Schema einer erfindungsgemäßen Streifenleiterantenne für zirkulare Polarisation und mit elektronischer Steuerung des vorzugsweise keulenförmigen Strahlungsdiagramms in einer Richtung dargestellt. Die Antennenelemente 11 sind in einem quadratischen Array angeordnet, wobei zum Beispiel zum Empfang der Rundfunksatellitensignale unter der Voraussetzung einer ausreichenden Empfangsfeldstärke 16 . 16 = 256 Antennenelemente für eine Array-Antenne erforderlich sind. Innerhalb jeder Zeile des Arrays werden die Elemente auf der Oberseite der Substratplatte 10 in Richtung der einen Polarisationskomponente, beispielsweise der horizontalen Komponente, hintereinander mit hochohmigen Streifenleitungsabschnitten 30 der Länge n·λ 2 verbunden, wobei n eine ganze Zahl und vorzugsweise 1 ist. Zum Empfang der zweiten Polarisationskomponente, beispielsweise der vertikalen Komponente, sind die Antennenelemente 11 einer jeden Zeile weiterhin durch Streifenleitungsabschnitte 31 von m.% hintereinandergeschaltet, wobei m eine ganze Zahl, vorzugsweise 2, ist. Auf diese Weise ist eine Leistungsteilung möglich, wobei jedes Element den gleichen Anteil zur Leistung beisteuert. Die Streifenleitungsabschnitte 30, 31 werden so hochohmig ausgeführt, wie es das verwendete Substratmaterial zuläßt. Der sich daraus ergebende Wellenwiderstand der Verbindungsleitungen bestimmt dann den Auskoppelpunkt bzw. den Radius r (vgl. Fig. 2) im Antennenelement. Der Auskoppelpunkt im Antennenelement wird wiederum durch die erforderliche Eingangsimpedanz bestimmt. Die Eingangsimpedanz und der Wellenwiderstand der Leitungen müssen daher gleich sein, um optimale Leistungsübertragung zu gewährleisten. Die horizontalen und vertikalen Komponenten werden über Anschlüsse 32 und 33 mittels 3-dB-Koppler 34 zusammengefaßt. Diese Koppler sind für eine breitbandige Signaladdition und eine feste Phasenverschiebung von 90° ausgelegt und liefern an ihren Ausgängen 40 linksdrehend zirkulare Signale und an ihren Ausgängen 41 rechtsdrehend zirkulare Signale. Mittels je eines Umschalters 42 werden wahlweise die Signale der ersten oder zweiten Art einem Phasenschieber 35 zugeführt. Die Umschalter sind starr miteinander gekoppelt; vgl. gestrichelte Linie 43 in Fig. 5.5 shows a diagram of a stripline antenna according to the invention for circular polarization and with electronic control of the preferably lobe-shaped radiation pattern in one direction. The antenna elements 11 are arranged in a square array, for example for receiving the broadcast satellite signals provided that there is a sufficient reception field strength 16. 16 = 256 antenna elements are required for an array antenna. Within each row of the array, the elements on the top of the substrate plate 10 in the direction of the one polarization component, for example the horizontal component, are successively connected to high-resistance stripline sections 30 of length n * λ 2 , where n is an integer and preferably 1. To receive the second polarization component, for example the vertical component, the antenna elements 11 of each line are also connected in series by strip line sections 31 of m.%, Where m is an integer, preferably 2. In this way, power can be shared, with each element contributing the same share of the performance. The stripline sections 30, 31 are designed to be as high-resistance as the substrate material used allows. The resulting wave impedance of the connecting lines then determines the decoupling point or the radius r (see FIG. 2) in the antenna element. The decoupling point in the antenna element is in turn determined by the required input impedance. The input impedance and the wave impedance of the lines must be therefore be the same to ensure optimal power transmission. The horizontal and vertical components are combined via connections 32 and 33 by means of 3 dB coupler 34. These couplers are designed for broadband signal addition and a fixed phase shift of 90 ° and provide 40 left-handed circular signals at their outputs and 41 right-handed circular signals at their outputs. The signals of the first or second type are optionally fed to a phase shifter 35 by means of a switch 42. The changeover switches are rigidly coupled to one another; see. dashed line 43 in FIG. 5.

Zwecks elektronischer Schwenkung der Empfangscharakteristik der Array-Antenne, beispielsweise im Höhenwinkel, steuert eine vorzugsweise elektronische Steuerschaltung 36 alle Phasenschieber 35 gemeinsam (vgl. Linie 37 in Fig. 5).For the purpose of electronically pivoting the reception characteristic of the array antenna, for example at an elevation angle, a preferably electronic control circuit 36 controls all phase shifters 35 together (cf. line 37 in FIG. 5).

Der Vorteil einer derartigen Reihenschaltung der Elemente liegt in der Einsparung von Leistungsaddierern, die in nicht unerheblichem Maße zu einer Dämpfung der Empfangssignale beitragen würden. Die einstellbaren Phasenschieber 35 sind ausgangsseitig miteinander verbunden. Der gemeinsame Ausgang aller Phasenschieber ist mit 38 bezeichnet.The advantage of such a series connection of the elements lies in the saving of power adders, which would contribute to a not inconsiderable degree to attenuation of the received signals. The adjustable phase shifters 35 are connected to one another on the output side. The common output of all phase shifters is designated 38.

Der notwendige Phasenunterschied von Zeile zu Zeile wird durch Mikrowellen-Phasenschieber erzeugt, die nur dann angesteuert werden, wenn der ortsbewegliche Empfänger seine Ausrichtung im Höhenwinkel verändern muß. Mit zunehmender elektronischer Auslenkung der Empfangscharakteristik wird die Polarisierbarkeit schlechter; deshalb ist eine mechanische Grobausrichtung der Antennenfläche gegenüber der Horizontalen vorteilhaft. Dabei sollte die Antenne so weit geneigt werden, daß die Flächennormale mit der Richtung der einfallenden Strahlung annähernd übereinstimmt. Aufgrund der geringen Halbwertsbreite der Empfangscharakteristik muß für die mechanische Schwenkung der Antenne um die Hochachse beispielsweise ein Schrittmotor mit ausreichender Auflösung vorgesehen werden. Diese Anforderung ist wegen der geringen, in der Praxis vorkommenden Änderungsgeschwindigkeit im Seitenwinkel beim heutigen Stand der Technik leicht zu erfüllen. Da das Trägheitsmoment der Antenne gering ist, sind Schrittmotoren mit relativ niedriger Leistungsaufnahme einsetzbar.The necessary phase difference from line to line is generated by microwave phase shifters, which are only activated when the portable receiver has to change its orientation in elevation. With increasing electronic deflection of the reception characteristics, the polarizability becomes worse; a mechanical rough alignment of the antenna surface with respect to the horizontal is therefore advantageous. The antenna should be inclined so far that the surface normal approximates the direction of the incident radiation. Due to the small half-width of the reception characteristic, a stepping motor with sufficient resolution, for example, must be provided for the mechanical pivoting of the antenna about the vertical axis. This requirement is easy to meet in the current state of the art because of the low rate of change in the side angle that occurs in practice. Since the moment of inertia of the antenna is low, stepper motors with a relatively low power consumption can be used.

Claims (12)

1. Array-Antenne, insbesondere für den Empfang über Rundfunksatelliten ausgestrahlter linear polarisierter Signale, mit planarer Streifenleiter-Struktur, dadurch gekennzeichnet, daß die Antennensignale von auf der Oberseite einer ersten Substratplatte (10) angeordneten Antennenelementen (11) über koaxiale Durchführungen (14, 15, 16) einer mit der Unterseite der ersten Substratplatte verbundenen Metallplatte (13) an die Unterseite einer zweiten Substratplatte (18) gelangen, deren Oberseite ebenfalls mit der Metallplatte verbunden ist und deren Unterseite mit Leitungsbahnen (20) zur Signalzusammenführung und -weiterverarbeitung versehen ist.1. Array antenna, in particular for receiving linearly polarized signals transmitted via radio satellites, with a planar stripline structure, characterized in that the antenna signals from antenna elements (11) arranged on the top of a first substrate plate (10) via coaxial feedthroughs (14, 15, 16) of a metal plate (13) connected to the underside of the first substrate plate reach the underside of a second substrate plate (18), the top side of which is also connected to the metal plate and the underside of which is provided with conductor tracks (20) for signal merging and further processing . 2. Array-Antenne nach Anspruch 1, dadurch gekennzeichnet, daß die Metallplatte (13) eine Dicke (d) aufweist, die etwa ein ganzzahliges Vielfaches der halben Betriebswellenlänge (x) der zu übertragenden Signale ist.2. Array antenna according to claim 1, characterized in that the metal plate (13) has a thickness (d) which is approximately an integer multiple of half the operating wavelength (x) of the signals to be transmitted. 3. Array-Antenne nach Anspruch 1, dadurch gekennzeichnet, daß die gewünschte Impedanz des Antennenelements (11) durch die außermittige Ankopplung an einen definierten Punkt des Antennenelements eingestellt wird und der Durchmesser des Innenleiters der koaxialen Durchführung klein gegenüber dem Durchmesser der Antennenelemente (11) gewählt ist.3. Array antenna according to claim 1, characterized in that the desired impedance of the antenna element (11) is set by the eccentric coupling to a defined point of the antenna element and the diameter of the inner conductor of the coaxial passage is small compared to the diameter of the antenna elements (11) is selected. 4. Array-Antenne nach Anspruch 1, dadurch gekennzeichnet, daß die Antennenelemente (11) vorzugsweise kreisförmig, quadratisch oder dreieckig gestaltet sind.4. Array antenna according to claim 1, characterized in that the antenna elements (11) are preferably circular, square or triangular. 5. Array-Antenne nach Anspruch 1, dadurch gekennzeichnet, daß durch eine zweite, um 90° versetzte Auskopplung der Antennenelemente (11) eine getrennte Erfassung der orthogonalen Komponenten einer zirkular polarisierten Welle erfolgt, wobei für jede lineare Komponente eine eigene Substratplatte (18, 31) zur phasenrichtigen Leistungszusammenführung vorgesehen ist.5. Array antenna according to claim 1, characterized in that a separate detection of the orthogonal components of a circularly polarized wave is carried out by a second, 90 ° offset coupling of the antenna elements (11), with a separate substrate plate (18, 31) is provided for in-phase merger of services. 6. Array-Antenne nach Anspruch 5, dadurch gekennzeichnet, daß die getrennte Erfassung orthogonaler Polarisationsebenen den Empfang beider linear polarisierter Signale und bei phasenrichtiger Zusammenfassung durch einen 3-dB-Koppler gegebenenfalls auch den Empfang links- bzw. rechtszirkular polarisierter Signale gestattet (Fig. 5).6. Array antenna according to claim 5, characterized in that the separate detection of orthogonal polarization planes allows the reception of both linearly polarized signals and, when combined in phase by a 3-dB coupler, optionally also the reception of left or right circularly polarized signals (Fig. 5). 7. Array-Antenne nach Anspruch 1, dadurch gekennzeichnet, daß die Leistungszusammenführung der Antennenelemente (11) einer Zeile des Arrays (Fig. 5) durch Serienschaltung auf der ersten Substratplatte (10) erfolgt.7. Array antenna according to claim 1, characterized in that the power combination of the antenna elements (11) of a row of the array (Fig. 5) by series connection on the first substrate plate (10). 8. Array-Antenne nach Anspruch 7, dadurch gekennzeichnet, daß die für die Verbindung der Antennenelemente (11) benötigten Leiterbahnstücke (30, 31) eine einem ganzzahligen Vielfachen der halben Betriebswellenlänge entsprechende Länge aufweisen.8. Array antenna according to claim 7, characterized in that the conductor track pieces (30, 31) required for the connection of the antenna elements (11) have a length corresponding to an integral multiple of half the operating wavelength. 9. Array-Antenne nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Steuerung der Array-Antenne zur Schwenkung der Empfangsrichtung wenigstens in einer Richtung mittels einer elektronischen Steuerschaltung (36) erfolgt.9. Array antenna according to claim 7 or 8, characterized in that the control of the array antenna for pivoting the receiving direction is carried out at least in one direction by means of an electronic control circuit (36). 10. Array-Antenne nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die elektronische Steuerung über einstellbare Phasenschieber (35). erfolgt.10. Array antenna according to one of claims 7 to 9, characterized in that the electronic control via adjustable phase shifters (35). he follows. 11. Array-Antenne nach Anspruch 10, dadurch gekennzeichnet, daß die einstellbaren Phasenschieber (35) aktive Phasenschieber sind und daß jeder Zeile von Antennenelementen (11) ein einstellbarer Phasenschieber (35) zugeordnet ist.11. Array antenna according to claim 10, characterized in that the adjustable phase shifters (35) are active phase shifters and that each row of antenna elements (11) is assigned an adjustable phase shifter (35). 12. Array-Antenne nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die Phasenschieber (35) Halbleiterbauelemente enthalten, die auf der zweiten Substratplatte (18) angeordnet sind.12. Array antenna according to one of claims 7 to 11, characterized in that the phase shifters (35) contain semiconductor components which are arranged on the second substrate plate (18).
EP85115214A 1985-04-25 1985-11-30 Antenna array Withdrawn EP0200819A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3514880 1985-04-25
DE19853514880 DE3514880A1 (en) 1984-05-22 1985-04-25 Antenna array

Publications (2)

Publication Number Publication Date
EP0200819A2 true EP0200819A2 (en) 1986-11-12
EP0200819A3 EP0200819A3 (en) 1987-12-09

Family

ID=6269046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85115214A Withdrawn EP0200819A3 (en) 1985-04-25 1985-11-30 Antenna array

Country Status (1)

Country Link
EP (1) EP0200819A3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330699A1 (en) * 1987-09-09 1989-09-06 Phasar Corporation Microwave circuit module, such as an antenna, and method of making same
FR2652204A1 (en) * 1989-09-19 1991-03-22 Portenseigne Radiotechnique HIGH FREQUENCY FLAT ANTENNA FOR CIRCULAR POLARIZATION.
EP0445694A1 (en) * 1990-03-09 1991-09-11 Alcatel Espace Active printed circuit antenna system having high efficiency for a scanning radar for operation in space
WO1995015591A1 (en) * 1993-12-01 1995-06-08 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Planar antenna
WO1997035355A1 (en) * 1996-03-16 1997-09-25 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Planar emitter
FR2960101A1 (en) * 2010-05-12 2011-11-18 Thales Sa Electronic scanning antenna for use in airborne radar in radio frequency wave field, has excitation unit to excite radiating elements with linear polarization orthogonal to linearly polarized polarization of nominal use of antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854140A (en) * 1973-07-25 1974-12-10 Itt Circularly polarized phased antenna array
EP0012055A1 (en) * 1978-11-24 1980-06-11 Thomson-Csf Microstrip monopulse primary feed and antenna using same
GB2170356A (en) * 1985-01-28 1986-07-30 Singer Co Microstrip space-duplexed antenna
EP0089084B1 (en) * 1982-03-12 1988-03-02 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Flat microwave antenna structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854140A (en) * 1973-07-25 1974-12-10 Itt Circularly polarized phased antenna array
EP0012055A1 (en) * 1978-11-24 1980-06-11 Thomson-Csf Microstrip monopulse primary feed and antenna using same
EP0089084B1 (en) * 1982-03-12 1988-03-02 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Flat microwave antenna structure
GB2170356A (en) * 1985-01-28 1986-07-30 Singer Co Microstrip space-duplexed antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEE INTERNATIONAL CONFERENCE RADAR-82, London, 18.-20. Oktober 1982, Seiten 394-398; C.H. HAMILTON: "An X-band microstrip phased-array antenna with electronic polarization control" *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330699A1 (en) * 1987-09-09 1989-09-06 Phasar Corporation Microwave circuit module, such as an antenna, and method of making same
EP0330699A4 (en) * 1987-09-09 1990-04-10 Phasar Corp Microwave circuit module, such as an antenna, and method of making same.
FR2652204A1 (en) * 1989-09-19 1991-03-22 Portenseigne Radiotechnique HIGH FREQUENCY FLAT ANTENNA FOR CIRCULAR POLARIZATION.
EP0445694A1 (en) * 1990-03-09 1991-09-11 Alcatel Espace Active printed circuit antenna system having high efficiency for a scanning radar for operation in space
FR2659501A1 (en) * 1990-03-09 1991-09-13 Alcatel Espace HIGH PERFORMANCE ACTIVE PRINTED ANTENNA SYSTEM FOR SPATIAL AGILE RADAR.
US5206655A (en) * 1990-03-09 1993-04-27 Alcatel Espace High-yield active printed-circuit antenna system for frequency-hopping space radar
WO1995015591A1 (en) * 1993-12-01 1995-06-08 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Planar antenna
TR28051A (en) * 1993-12-01 1995-12-11 Pates Tech Patentverwertung Planar antenna.
AU690942B2 (en) * 1993-12-01 1998-05-07 Pates Technology Patentverwertungsgesellschaft Fur Satelliten- Und Moderne Informationstechnologien Mbh Planar antenna
US5777584A (en) * 1993-12-01 1998-07-07 Pates Technology Gmbh Planar antenna
CN1051408C (en) * 1993-12-01 2000-04-12 卫星和现代信息技术帕特斯技术专利应用有限公司 Panar antenna
WO1997035355A1 (en) * 1996-03-16 1997-09-25 Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh Planar emitter
US6204814B1 (en) 1996-03-16 2001-03-20 Lutz Rothe Planar emitter
FR2960101A1 (en) * 2010-05-12 2011-11-18 Thales Sa Electronic scanning antenna for use in airborne radar in radio frequency wave field, has excitation unit to excite radiating elements with linear polarization orthogonal to linearly polarized polarization of nominal use of antenna

Also Published As

Publication number Publication date
EP0200819A3 (en) 1987-12-09

Similar Documents

Publication Publication Date Title
DE69020319T2 (en) Mobile antenna system.
DE69925788T2 (en) Phase tunable antenna feed network
DE60214585T2 (en) PATCH VESSEL, PRINTED ANTENNA
DE69216998T2 (en) Broadband compliant group antenna made of inclined slot lines
DE2727883C2 (en) Waveguide emitter for left- and right-handed circularly polarized microwave signals
DE112004001506B4 (en) Broadband, dual polarized base station antenna for optimal horizontal radiation pattern and variable vertical beam tilt
DE69222464T2 (en) Microstrip antenna
DE69230655T2 (en) Circularly polarized antenna and phase shifter stripline arrangement for such an antenna
DE69613244T2 (en) PLANAR GROUP ANTENNA FOR TWO FREQUENCIES
DE69608132T2 (en) SLOT SPIRAL ANTENNA WITH INTEGRATED SYMMETRICAL DEVICE AND INTEGRATED LEAD
DE69530810T2 (en) Simplified tracking antenna
DE3784569T2 (en) Microwave antenna.
DE4037695A1 (en) ANTENNA WITH A GROUP OF SUPPLY WAVE LADDERS
EP0514380A1 (en) Antenna combination.
DE68910728T2 (en) Stripline array antenna.
DE4125386A1 (en) Radiation sensor suitable for radar or communication system
DE2610324A1 (en) PHASED ANTENNA LINE
DE3042456A1 (en) ANTENNA WITH A DEVICE FOR ROTATING THE POLARIZATION LEVEL
DE3702362C2 (en)
DE69221953T2 (en) Transition device from a waveguide to a microstrip line
DE3524503A1 (en) LEVEL MICROWAVE ANTENNA
EP1064691B1 (en) Integrated waveguide component
EP0737371B1 (en) Planar antenna
EP0200819A2 (en) Antenna array
DE69224033T2 (en) Antenna system for satellite communication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RTI1 Title (correction)
AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19880613

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIERE, DIETMAR, DIPL. ING.