Nothing Special   »   [go: up one dir, main page]

EP0296348B1 - Process for etching holes or grooves in n-type silicium - Google Patents

Process for etching holes or grooves in n-type silicium Download PDF

Info

Publication number
EP0296348B1
EP0296348B1 EP88107530A EP88107530A EP0296348B1 EP 0296348 B1 EP0296348 B1 EP 0296348B1 EP 88107530 A EP88107530 A EP 88107530A EP 88107530 A EP88107530 A EP 88107530A EP 0296348 B1 EP0296348 B1 EP 0296348B1
Authority
EP
European Patent Office
Prior art keywords
etching
manufacture
silicon
adjusted
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88107530A
Other languages
German (de)
French (fr)
Other versions
EP0296348A1 (en
Inventor
Helmut Dr. Föll
Volker Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0296348A1 publication Critical patent/EP0296348A1/en
Application granted granted Critical
Publication of EP0296348B1 publication Critical patent/EP0296348B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • H01L29/7392Gated diode structures with PN junction gate, e.g. field controlled thyristors (FCTh), static induction thyristors (SITh)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/93Variable capacitance diodes, e.g. varactors

Definitions

  • the invention relates to a method for producing hole openings or trenches in layers or substrates consisting of n-doped silicon, as are used in the production of semiconductor components, in particular highly integrated semiconductor circuits, by masked etching.
  • Silicon as the most important material in microelectronics requires ever more targeted and special processes for surface structuring.
  • the creation of trenches or holes in the silicon surface is a central technical problem.
  • the object of the invention is to achieve hole geometries and trenches controlled by an etching process in the simplest possible manner, both holes and trenches in silicon for microelectronics (diameter smaller than 1 ⁇ m, 10 ⁇ m deep) and those for the power components. Electronics with any cross sections should be generated. In addition, it should also be possible to produce fine trenches (perforations) for the absorption of dopants in silicon.
  • the object according to the invention is achieved in that an electrolytic etching is carried out in an electrolyte containing hydrofluoric acid with the application of a constant or changing potential according to claim 1.
  • the silicon body can also have an ohmic contact or another Have electrolyte contact (contact for the majority charge carriers).
  • FIG. 4 shows the basic IU characteristic of the hydrofluoric acid-electrolyte-n-silicon contact.
  • the divalent dissolution (I less than I PSL ) of the silicon takes place as an anodic electrode reaction without the formation of an electropolishing surface layer, as occurs in the tetravalent resolution range (I greater than I PSL ), that is to say the entire applied voltage falls over the space charge zone (RLZ).
  • ab P orous S ilicon L ayer; this layer forms in the anodic area in hydrofluoric acid on p and n silicon).
  • an electric current only flows if there are minority charge carriers (holes h+). These can be generated by lighting, so the current is a function of the incident light.
  • n-Si electrode with not too large current densities cause small deviations from the ideally smooth surface to rock, that is to say that a minimal hole or an etching pit bends the electric field of the space charge zone in such a way that all are close h+ are collected from this hole and thus the etching takes place more intensely on the hole bottom.
  • the hole of width D collects charge carriers from the area D + 2d.
  • FIG. 6 Reference number 1 denotes a silicon crystal wafer consisting of n-doped silicon, in whose surface the masking layer is to be used to produce the structures (holes or trenches).
  • This silicon crystal wafer 1 is clamped in a sample holder 2 made of Teflon, which is designed such that it contains the electrolyte 3 consisting of hydrofluoric acid solution in a sealed manner in its interior.
  • the silicon crystal wafer 1 is connected to the positive pole 5 of a voltage source (not shown) via an ohmic contact 4.
  • the silicon crystal wafer 1 is illuminated from the back with light of suitable intensity (see wavy arrow 8). Under these conditions, when the voltage is applied, anodic dissolution takes place on the surface of the silicon crystal wafer 1 which is not covered with the masking layer (not shown). The depth of the etching trenches or holes is predominantly set via the etching time.
  • a mask consisting of silicon nitride, for example, is applied to an n-doped silicon crystal wafer in a first step using conventional technology.
  • the arrangement of the holes predetermined by the mask is now pre-etched with an alkaline etching, for example 10% potassium hydroxide solution for 10 minutes (see FIG. 2).
  • the silicon crystal wafer is clamped in the arrangement shown in FIG. 6 or in an arrangement modified for production purposes.
  • the etching current per hole is 0.1 nA, set by illuminating the back with light, for example 800 nm wavelength (current I constant over time or decreasing depending on the hole shape to be produced).
  • the duration of the etching t is 20 minutes.
  • the n-doped substrate has a doping N n of 1 ohm cm and an orientation in the (100) direction.
  • the etching takes place at room temperature.
  • the pretreatment and aftertreatment in potassium hydroxide solution is carried out as described in the first embodiment; analogous values apply to the concentration of the electrolyte and the lighting.
  • the subsequent doping (see dashed line in Figure 8) is carried out using conventional technology.
  • the doping N n is in the range between 1 and 100 ohm cm.
  • the etching in potassium hydroxide solution is intensified in order to connect the individual holes specified by the mask to form a closed trench. This is done either by a longer etching time and / or by higher concentrations and / or by a higher temperature of the KOH solution.
  • the doping N n is in the range between 1 and 100 ohm cm. Minority carriers present in the p-area are cleared out by the etched and possibly metallized channels.
  • A, K and G denote the anode, cathode and gate of the thyristors.
  • the same parameters apply as described in the exemplary embodiments 1 to 4, with the exception of:
  • the etching current I is increased by a factor of 2 to 10 in the range from 1 to 100 nA, as a result of which the hole expansion is achieved.
  • G denotes the gate connections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Weting (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen von Lochöffnungen oder Gräben in aus n-dotiertem Silizium bestehenden Schichten oder Substraten, wie sie bei der Herstellung von Halbleiterbauelementen, insbesondere hochintegrierten Halbleiterschaltungen, verwendet werden, durch maskiertes Einätzen.The invention relates to a method for producing hole openings or trenches in layers or substrates consisting of n-doped silicon, as are used in the production of semiconductor components, in particular highly integrated semiconductor circuits, by masked etching.

Silizium als wichtigster Werkstoff der Mikroelektronik erfordert immer gezieltere und speziellere Verfahren zur Oberflächenstrukturierung. Das Erzeugen von Gräben bzw. Löchern in der Siliziumoberfläche ist hierbei ein zentrales technisches Problem.Silicon as the most important material in microelectronics requires ever more targeted and special processes for surface structuring. The creation of trenches or holes in the silicon surface is a central technical problem.

Bisher werden chemische Ätzverfahren oder Plasmaätzverfahren zur Erzeugung von loch- oder grabenförmigen Strukturen verwendet. Dabei treten folgende Schwierigkeiten auf:

  • a) Beim isotropen chemischen Ätzen (sauer) treten Unterätzungen (10) auf, die die möglichen Ätzgeometrien sehr beschränken (siehe Figur 1).
  • b) Beim anisotropen chemischen Ätzen (alkalisch) ist durch die Kristallflächen (111) und (100) die Anzahl der realisierbaren Ätzgeometrien stark eingeschränkt (siehe Figur 2).
  • c) Beim Plasmaätzen, wie es beispielsweise zur Realisierung der Grabenzellen von Mbit-Speichern in einem Bericht von Morie et. al. aus dem IEEE Electron Device Letters, Vol.-EDL-4, Nr. 11 (November 1983), auf den Seiten 411 bis 414 zu entnehmen ist, sind Abmessungen unter 1 µm, sowie Tiefe/Breite-Verhältnisse T/B größer 10 bei Löchern nur sehr schwierig erreichbar (siehe Figur 3). Der rechtwinklige Grabenquerschnitt ist bei Morie vom Gasdruck des Reaktionsgases (Trifluorbrommethan) stark abhängig.
So far, chemical etching processes or plasma etching processes have been used to produce perforated or trench-shaped structures. The following difficulties arise:
  • a) In the case of isotropic chemical etching (acidic), there are undercuts (10) which limit the possible etching geometries very much (see FIG. 1).
  • b) In the case of anisotropic chemical etching (alkaline), the number of etching geometries that can be achieved is severely limited by the crystal surfaces (111) and (100) (see FIG. 2).
  • c) In plasma etching, as is the case, for example, for realizing the trench cells of Mbit memories in a report by Morie et. al. From IEEE Electron Device Letters, Vol.-EDL-4, No. 11 (November 1983), on pages 411 to 414, dimensions below 1 µm and depth / width ratios T / B greater than 10 are shown Holes are very difficult to reach (see Figure 3). For Morie, the right-angled trench cross-section is the gas pressure of the reaction gas (trifluorobromomethane) heavily dependent.

Durch die Erfindung soll die Aufgabe gelöst werden, Lochgeometrien und Gräben kontrolliert durch ein Ätzverfahren in möglichst einfacher Weise herzustellen, wobei sowohl Löcher und Gräben im Silizium für die Mikroelektronik (Durchmesser kleiner 1 µm, 10 µm tief), als auch solche für die Leistungsbauelemente-Elektronik mit beliebigen Querschnitten erzeugt werden sollen. Außerdem soll es auch möglich sein, feine Gräben (Perforationen) für die Aufnahme von Dotierstoffen im Silizium zu erzeugen.The object of the invention is to achieve hole geometries and trenches controlled by an etching process in the simplest possible manner, both holes and trenches in silicon for microelectronics (diameter smaller than 1 µm, 10 µm deep) and those for the power components. Electronics with any cross sections should be generated. In addition, it should also be possible to produce fine trenches (perforations) for the absorption of dopants in silicon.

Die Lösung der erfindungsgemäßen Aufgabe erfolgt dadurch, daß eine elektrolytische Ätzung in einem flußsäurehaltigen Elektrolyten unter Anlegung eines konstanten oder sich zeitlich ändernden Potentials durchgeführt wird gemäß Anspruch 1.The object according to the invention is achieved in that an electrolytic etching is carried out in an electrolyte containing hydrofluoric acid with the application of a constant or changing potential according to claim 1.

Es liegt im Rahmen der Erfindung, die Elektrolyse durch Bleuchtung des Siliziumkörpers von der Rückseite her zu injizieren und die Beleuchtung konstant oder zeitlich variiert aufrechtzuerhalten, um den Ätzstrom durch die Bildung von Minoritätsladungsträgern zu steuern.It is within the scope of the invention to inject the electrolysis by illuminating the silicon body from the rear and to maintain the illumination constant or varying in time in order to control the etching current through the formation of minority charge carriers.

Es hat sich außerdem als vorteilhaft erwiesen, zusätzlich vor und/oder nach der elektrolytischen Ätzung eine chemische Ätzung vorzugsweise in Kalilauge durchzuführen, wobei ein Netzmittel zugesetzt werden kann.It has also proven advantageous to additionally carry out chemical etching, preferably in potassium hydroxide solution, before and / or after the electrolytic etching, in which case a wetting agent can be added.

Zusätzlich kann der Siliziumkörper außer dem zu ätzenden Elektrolytkontakt einen ohmschen Kontakt oder einen weiteren Elektrolytkontakt (Kontakt für die Majoritätsladungsträger) aufweisen.In addition to the electrolyte contact to be etched, the silicon body can also have an ohmic contact or another Have electrolyte contact (contact for the majority charge carriers).

Weitere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.Further refinements of the invention result from the subclaims.

Im folgenden soll auf die Physik des erfindungsgemäßen Verfahrens am Beispiel des elektrolytischen Löcherätzens im n-dotierten Silizium noch näher eingegangen werden.In the following, the physics of the method according to the invention will be discussed in more detail using the example of electrolytic hole etching in n-doped silicon.

Die Figur 4 zeigt die prinzipielle I-U-Kennlinie des Flußsäure-Elektrolyt-n-Silizium-Kontaktes. Im schraffierten Gebiet erfolgt als anodische Elektrodenreaktion die divalente Auflösung (I kleiner IPSL) des Siliziums ohne Bildung einer elektropolierenden Oberflächenschicht, wie sie im tetravalenten Auflösungsbereich (I größer IPSL) auftritt, das heißt die gesamte angelegte Spannung fällt über der Raumladungszone (RLZ) ab (PSL bedeutet Porous Silicon Layer; diese Schicht bildet sich im anodischen Bereich in Flußsäure auf p- und n-Silizium). Ein elektrischer Strom fließt jedoch nur, wenn Minoritätsladungsträger (Löcher h⁺) vorhanden sind. Diese können durch Beleuchtung erzeugt werden, der Strom ist damit eine Funktion des einfallenden Lichtes. Diese speziellen Eigenschaften der n-Si-Elektrode bei nicht zu großen Stromdichten führt dazu, daß kleine Abweichungen von der ideal glatten Oberfläche sich aufschaukeln, das heißt, ein minimales Loch bzw. eine Ätzgrube verbiegt das elektrische Feld der Raumladungszone gerade so, daß alle nahen h⁺ von diesem Loch gesammelt werden und damit die Ätzung verstärkt am Lochboden erfolgt. Wie aus Figur 5 ersichtlich ist, sammelt das Loch der Breite D Ladungsträger aus dem Bereich D + 2d. Nach einiger Zeit bildet sich durch den beschriebenen Prozeß ein System feiner, eng benachbarter Löcher. Diese mikroskopische Wabenoberfläche absorbiert Licht sehr stark, das heißt, ist makroskopisch tief schwarz.FIG. 4 shows the basic IU characteristic of the hydrofluoric acid-electrolyte-n-silicon contact. In the shaded area, the divalent dissolution (I less than I PSL ) of the silicon takes place as an anodic electrode reaction without the formation of an electropolishing surface layer, as occurs in the tetravalent resolution range (I greater than I PSL ), that is to say the entire applied voltage falls over the space charge zone (RLZ). ab (PSL means P orous S ilicon L ayer; this layer forms in the anodic area in hydrofluoric acid on p and n silicon). However, an electric current only flows if there are minority charge carriers (holes h⁺). These can be generated by lighting, so the current is a function of the incident light. These special properties of the n-Si electrode with not too large current densities cause small deviations from the ideally smooth surface to rock, that is to say that a minimal hole or an etching pit bends the electric field of the space charge zone in such a way that all are close h⁺ are collected from this hole and thus the etching takes place more intensely on the hole bottom. As can be seen from FIG. 5, the hole of width D collects charge carriers from the area D + 2d. After some time, the process described creates a system of fine, closely adjacent holes. This microscopic honeycomb surface absorbs light very strongly, that is, it is macroscopically deep black.

Durch eine geeignete Maske und einer Vorätzung mit zum Beispiel Kalilauge können die erwähnten kleinen Abweichungen vorgegeben werden und damit die Löcher lokalisiert werden. Ein einzelnes Loch wird durch die spezielle Form der Raumladungszone sich verzweigen und so eine baumartige Lochstruktur bilden, während ein gleichmäßiges Muster von Löchern durch gegenseitige Beeinflussung zu einer streng vertikalen Wachstumsrichtung führt. Die Form und Abmessung der Löcher ist stark variierbar und von folgenden Parametern abhängig:

  • 1. Die Lochanordnung (Maske) bestimmt über die Wirkung auf die Raumladungszone stark die Geometrie der Löcher (Verzweigung oder Linearität).
  • 2. Die Vorätzung mit Kalilauge verbessert nur die durch die Maske vorgegebenen kleinen Abweichungen von der ideal glatten Oberfläche (Keim) und wirkt sich nur auf die Form des oberen Lochrandes aus.
  • 3. Das angelegte Potential zwischen Silizium und Referenzelektrode (Spannung) bestimmt das elektrische Feld in der Raumladungszone und damit die Wandrauhigkeit der Löcher (bei Spannungen im Bereich der Durchbruchfeldstärke sind die Löcher spitz und schmal und die Lochwand ist stark durch feine Kanäle (Spitzenentladungen) gestört).
  • 4. Der Ätzstrom durch die Probenoberfläche ist eine Funktion des einfallenden Liches; er bestimmt hauptsächlich die Lochbreite, hat aber auch Einfluß auf den Durchbruchmechanismus.
  • 5. Die Lochtiefe ist näherungsweise proportional zur Ätzdauer.
  • 6. Die Dotierung des Substrats bestimmt die Ausdehnung und das Feld in der Raumladungszone. Aus Scaling-Regeln läßt sich ableiten, daß sich bei Vervierfachung der Dotierung die geometrischen Abmessungen der Löcher um den Faktor 2 vergrößern.
  • 7. Die Einflüsse der Flußsäure-Konzentration und der Temperatur sind noch nicht eingehend untersucht, werden jedoch als eher gering eingeschätzt.
  • 8. Eine Nachätzung, zum Beispiel in Kalilauge, dient einmal zur Entfernung der sich prozeßbedingt bildenden porösen Siliziumschicht (= PSL in Figur 4), oder zum anderen, um feinstrukturierte Kanäle zu gröberen Strukturen zum Beispiel zu Gräben zu verbinden.
Using a suitable mask and pre-etching with, for example, potassium hydroxide solution, the small deviations mentioned can be specified and the holes can thus be localized. A single hole will branch out due to the special shape of the space charge zone and thus form a tree-like hole structure, while a uniform pattern of holes through interaction leads to a strictly vertical direction of growth. The shape and dimension of the holes can be varied widely and depends on the following parameters:
  • 1. The hole arrangement (mask) strongly determines the geometry of the holes (branching or linearity) via the effect on the space charge zone.
  • 2. The pre-etching with potassium hydroxide solution only improves the small deviations from the ideally smooth surface (germ) specified by the mask and only affects the shape of the upper edge of the hole.
  • 3. The potential applied between silicon and reference electrode (voltage) determines the electric field in the space charge zone and thus the wall roughness of the holes (at voltages in the range of the breakdown field strength, the holes are pointed and narrow and the hole wall is strongly disturbed by fine channels (peak discharges) ).
  • 4. The etch current through the sample surface is a function of the incident light; it mainly determines the hole width, but also has an influence on the breakthrough mechanism.
  • 5. The depth of the hole is approximately proportional to the etching time.
  • 6. The doping of the substrate determines the extent and the field in the space charge zone. It can be derived from scaling rules that the geometrical dimensions of the holes increase by a factor of 2 when the doping is quadrupled.
  • 7. The influences of the hydrofluoric acid concentration and the temperature have not yet been thoroughly investigated, but are estimated to be rather minor.
  • 8. An etching, for example in potassium hydroxide solution, serves once to remove the porous silicon layer which is formed as a result of the process (= PSL in FIG. 4), or on the other hand, in order to connect finely structured channels to coarser structures, for example to form trenches.

Weitere Einzelheiten der Erfindung insbesondere ihre Anwendung werden anhand von fünf Ausführungsbeispielen und der Figuren 6 bis 11 im folgenden noch näher beschrieben.Further details of the invention, in particular its application, are described in more detail below with reference to five exemplary embodiments and FIGS. 6 to 11.

Dabei zeigt

die Figur 6
schematisch den Ätzprozeß in einer Elektrolysierzelle, wobei im Schnittbild ein Probenhalter zur Durchführung der elektrolytischen Ätzung abgebildet ist.
In den Figuren 7 bis 11
sind Schnittbilder durch die nach dem Ätzen erhaltenen Strukturen dargestellt.
It shows
the figure 6
schematically the etching process in an electrolysis cell, a sample holder for performing the electrolytic etching being shown in the sectional view.
In Figures 7 to 11
are sectional views through the structures obtained after the etching.

Figur 6: Mit dem Bezugszeichen 1 ist eine aus n-dotiertem Silizium bestehende Siliziumkristallscheibe bezeichnet, in deren mit einer Maskierschicht versehenen Oberfläche die Strukturen (Löcher oder Gräben) erzeugt werden sollen. Diese Siliziumkristallscheibe 1 ist in einem aus Teflon bestehenden Probenhalter 2 eingespannt, der so ausgebildet ist, daß er in seinem Inneren den aus Flußsäurelösung bestehenden Elektrolyten 3 dicht verschlossen enthält. Über einen ohmschen Kontakt 4 wird die Siliziumkristallscheibe 1 mit dem positiven Pol 5 einer Spannungsquelle (nicht abgebildet) verbunden. Die Gegenelektrode 6 (negativer Pol 7 = Kathode) besteht aus einem gegenüber Flußsäure resistenten Material, zum Beispiel aus Platin. Um die benötigte Stromdichte zu erreichen, wird die Siliziumkristallscheibe 1 mit Licht geeigneter Intensität (siehe gewellter Pfeil 8) von der Rückseite her beleuchtet. Unter diesen Bedingungen erfolgt bei angelegter Spannung anodische Auflösung an den nicht mit der Maskierschicht (nicht dargestellt) bedeckten Oberfläche der Siliziumkristallscheibe 1. Die Tiefe der Ätzgräben oder -löcher wird vorwiegend über die Ätzzeit eingestellt.FIG. 6: Reference number 1 denotes a silicon crystal wafer consisting of n-doped silicon, in whose surface the masking layer is to be used to produce the structures (holes or trenches). This silicon crystal wafer 1 is clamped in a sample holder 2 made of Teflon, which is designed such that it contains the electrolyte 3 consisting of hydrofluoric acid solution in a sealed manner in its interior. The silicon crystal wafer 1 is connected to the positive pole 5 of a voltage source (not shown) via an ohmic contact 4. The counter electrode 6 (negative pole 7 = cathode) consists of a material which is resistant to hydrofluoric acid, for example of platinum. In order to achieve the required current density, the silicon crystal wafer 1 is illuminated from the back with light of suitable intensity (see wavy arrow 8). Under these conditions, when the voltage is applied, anodic dissolution takes place on the surface of the silicon crystal wafer 1 which is not covered with the masking layer (not shown). The depth of the etching trenches or holes is predominantly set via the etching time.

Erstes Ausführungsbeispiel:First embodiment:

Herstellung von Löchern in Speicherbausteinen wie zum Beispiel Trenchzellen (siehe Figur 7).Production of holes in memory chips such as trench cells (see Figure 7).

Es sollen Löcher in n-Silizium mit 1 µm Durchmesser und 10 µm Tiefe hergestellt werden, die zur Aufnahme des Varaktors oder des Varaktors und Auswahltransistors eines DRAMs (= dynamic random access memory) dienen. Dazu wird in einem ersten Arbeitsschritt in konventioneller Technik eine zum Beispiel aus Siliziumnitrid bestehende Maske auf einer n-dotierten Siliziumkristallscheibe aufgebracht. Die durch die Maske vorgegebene Anordnung der Löcher wird nun mit einer alkalischen Ätze, zum Beispiel 10 %iger Kalilauge 10 Minuten vorgeätzt (siehe Figur 2). Im weiteren Verlauf wird die Siliziumkristallscheibe in der in Figur 6 dargestellten oder einer für Produktionszwecke modifizierten Anordnung eingespannt.Holes are to be made in n-silicon with a diameter of 1 µm and a depth of 10 µm, which are used to hold the varactor or the varactor and selection transistor of a DRAM (= dynamic random access memory). For this purpose, a mask consisting of silicon nitride, for example, is applied to an n-doped silicon crystal wafer in a first step using conventional technology. The arrangement of the holes predetermined by the mask is now pre-etched with an alkaline etching, for example 10% potassium hydroxide solution for 10 minutes (see FIG. 2). In the further course, the silicon crystal wafer is clamped in the arrangement shown in FIG. 6 or in an arrangement modified for production purposes.

Die elektrolytische Ätzung in einer Flußsäurelösung (2,5 Gewichtsprozent), die mit einem Netzmittel auf Formaldehydbasis (MirsaolR, 3 Tropfen pro Liter) versetzt ist, erfolgt nun unter folgenden Parametern (die in den folgenden Ausführungsbeispielen genannten Parameter sind nur grobe Richtwerte, die je nach Anwendung optimiert und zeitlich variiert werden müssen):The electrolytic etching in a hydrofluoric acid solution (2.5 percent by weight), which is mixed with a formaldehyde-based wetting agent (Mirsaol R , 3 drops per liter), is now carried out under the following parameters (the parameters mentioned in the following exemplary embodiments are only rough guide values that must be optimized and varied in time depending on the application):

Das Potential zwischen Referenzelektrode und ohmschem Probenkontakt wird auf U = 1V (positiver Pol an Probe) eingestellt.The potential between the reference electrode and the ohmic sample contact is set to U = 1V (positive pole on sample).

Der Ätzstrom pro Loch beträgt 0,1 nA, eingestellt durch Beleuchtung der Rückseite mit Licht, zum Beispiel 800 nm Wellenlänge, (Strom I zeitlich konstant oder abnehmend je nach zu produzierender Lochform).The etching current per hole is 0.1 nA, set by illuminating the back with light, for example 800 nm wavelength (current I constant over time or decreasing depending on the hole shape to be produced).

Die Dauer der Ätzung t beträgt 20 Minuten. Das n-dotierte Substrat weist eine Dotierung Nn von 1 Ohm cm und eine Orientierung in (100)-Richtung auf.The duration of the etching t is 20 minutes. The n-doped substrate has a doping N n of 1 ohm cm and an orientation in the (100) direction.

Die Ätzung erfolgt bei Raumtemperatur.The etching takes place at room temperature.

Abschließend erfolgt eine Nachätzung von 10 Minuten in 1 %iger Kalilauge zur Entfernung der beim Ätzen sich bildenden porösen Siliziumschicht (in Figur 4 als PSL bezeichnet).Finally, there is an after-etching of 10 minutes in 1% potassium hydroxide solution to remove the porous silicon layer formed during the etching (referred to as PSL in FIG. 4).

Zweites Ausführungsbeispiel:Second embodiment:

Herstellung von tiefen, vertikalen Dotierungen (eventuell durch die ganze Siliziumkristallscheibendicke) bei geringer horizontaler Dotiertiefe (siehe Figur 8), sowie Herstellung großflächiger Kondensatoren oder pn-Übergänge (zum Beispiel für steuerbare Kondensatoren (Varicaps) großer Kapazität) in kleinem Volumen.Production of deep, vertical doping (possibly through the entire silicon crystal wafer thickness) with a low horizontal doping depth (see FIG. 8), as well as production of large-area capacitors or pn junctions (for example for controllable capacitors (varicaps) of large capacitance) in a small volume.

Die Vor- und Nachbehandlung in Kalilauge erfolgt wie im ersten Ausführungsbeispiel beschrieben; für die Konzentration des Elektrolyten und die Beleuchtung gelten analoge Werte.The pretreatment and aftertreatment in potassium hydroxide solution is carried out as described in the first embodiment; analogous values apply to the concentration of the electrolyte and the lighting.

Das Potential zwischen Referenzelektrode und ohmschem Probenkontakt wird auf U = 2V, der Ätzstrom I auf 1 nA, die Ätzzeit t auf 100 Minuten und die Dotierung auf Nn auf einen Bereich von 0,1 bis 1 Ohm cm eingestellt.The potential between the reference electrode and the ohmic sample contact is set to U = 2V, the etching current I to 1 nA, the etching time t to 100 minutes and the doping to N n to a range from 0.1 to 1 ohm cm.

Die anschließende Dotierung (siehe strichlierte Linie in Figur 8) erfolgt mit konventioneller Technik.The subsequent doping (see dashed line in Figure 8) is carried out using conventional technology.

Drittes Ausführungsbeispiel:Third embodiment:

Herstellung von tiefen, schmalen Gräben zur elektrischen Isolation von Bereichen A und B (siehe Figur 9) in einem Si-Substrat.Production of deep, narrow trenches for the electrical insulation of areas A and B (see FIG. 9) in a Si substrate.

Es gelten die gleichen Parameter wie bei den Ausführungsbeispielen 1 und 2 beschrieben, mit Ausnahme von:The same parameters apply as described in exemplary embodiments 1 and 2, with the exception of:

Das Potential zwischen Referenzelektrode und ohmschen Probenkontakt wird auf U = 2 bis 20V, der Ätzstrom I auf 1 nA und die Ätzzeit t auf 100 Minuten eingestellt. Die Dotierung Nn liegt im Bereich zwischen 1 bis 100 Ohm cm.The potential between the reference electrode and ohmic sample contact is set to U = 2 to 20V, the etching current I to 1 nA and the etching time t to 100 minutes. The doping N n is in the range between 1 and 100 ohm cm.

Die Nachätzung in Kalilauge wird verstärkt, um die einzelnen durch die Maske vorgegebenen Löcher zu einem geschlossenen Graben zu verbinden. Dies erfolgt entweder durch längere Ätzzeit und/oder durch höhere Konzentrationen und/oder durch höhere Temperatur der KOH-Lösung.The etching in potassium hydroxide solution is intensified in order to connect the individual holes specified by the mask to form a closed trench. This is done either by a longer etching time and / or by higher concentrations and / or by a higher temperature of the KOH solution.

Viertes Ausführungsbeispiel:Fourth embodiment:

Kontaktierung tiefer liegender Schichten, zum Beispiel zum schnellen Ausräumen von Ladungsträgern in abschaltbaren (GTO = gate turn off)-Thyristoren (siehe Figur 10).Contacting of deeper layers, for example for the rapid removal of charge carriers in switchable (GTO = gate turn off) thyristors (see Figure 10).

Es gelten die gleichen Parameter wie bei den Ausführungsbeispielen 1 bis 3 mit Ausnahme von:The same parameters apply as in working examples 1 to 3, with the exception of:

Das Potential zwischen Referenzelektrode und ohmschem Probenkontakt wird auf U = 2V, der Ätzstrom I auf 1 bis 100 nA und die Ätzzeit t auf 100 Minuten eingestellt. Die Dotierung Nn liegt im Bereich zwischen 1 bis 100 Ohm cm. Im p-Gebiet vorhandene Minoritätsladungsträger werden durch die geätzten und eventuell metallisierten Kanäle ausgeräumt.The potential between the reference electrode and the ohmic sample contact is set to U = 2V, the etching current I to 1 to 100 nA and the etching time t to 100 minutes. The doping N n is in the range between 1 and 100 ohm cm. Minority carriers present in the p-area are cleared out by the etched and possibly metallized channels.

Mit den Buchstaben A, K und G sind die Anode, Kathode und das Gate der Thyristoren bezeichnet.The letters A, K and G denote the anode, cathode and gate of the thyristors.

Fünftes Ausführungsbeispiel:Fifth embodiment:

Herstellung spannungsgesteuerter Thyristoren (siehe Figur 11).Production of voltage controlled thyristors (see Figure 11).

Es gelten die gleichen Parameter wie bei den Ausführungsbeispielen 1 bis 4 beschrieben mit Ausnahme von: Das Potential zwischen Referenzelektrode und ohmschen Kontakt wird auf U = 2V, die Ätzzeit auf 100 Minuten und die Dotierung Nn auf einen Bereich zwischen 10 bis 100 Ohm cm eingestellt. Nach zwei Drittel der Ätzzeit erfolgt eine Erhöhung des Ätzstromes I im Bereich von 1 bis 100 nA um den Faktor 2 bis 10, wodurch die Lochaufweitung erreicht wird.The same parameters apply as described in the exemplary embodiments 1 to 4, with the exception of: The potential between the reference electrode and the ohmic contact is set to U = 2V, the etching time to 100 minutes and the doping N n to a range between 10 to 100 Ohm cm . After two thirds of the etching time, the etching current I is increased by a factor of 2 to 10 in the range from 1 to 100 nA, as a result of which the hole expansion is achieved.

Durch die spannungsabhängige Vergrößerung der Raumladungszone um die Löcher wird der Strom zwischen der Anode A und Kathode K des Bauelements gesteuert. Mit G sind die Gateanschlüsse bezeichnet.Due to the voltage-dependent enlargement of the space charge zone the current between the anode A and cathode K of the component is controlled around the holes. G denotes the gate connections.

Claims (22)

  1. Method of producing hole apertures or trenches in layers or substrates which comprise n-doped silicon and are used to manufacture semiconductor components, in particular LSI semiconductor circuits, by preferably masked etching, in which an electrolytic etching is carried out in an electrolyte (3) containing hydrofluoric acid by applying a constant potential or a potential which varies with time, the layer comprising silicon or the substrate (1) being connected as positively polarised electrode (5) of an electrolysis cell, and in which minority charge carriers necessary for the injection of the electrolysis are produced in the silicon and the etching is first carried out at small deviations from the ideally flat surface of the silicon at not unduly high current densities in the divalent dissolution region of silicon and is intensified at those points, and a system of fine holes is formed.
  2. Method according to Claim 1, characterised in that the small deviations are provided by an etching mask.
  3. Method according to Claim 2, characterised in that a patterned silicon nitride layer is used as etching mask.
  4. Method according to one of Claims 1 to 3, characterised in that a chemical etching, preferably in alkali hydroxide solution, is additionally carried out before and/or after the electrolytic etching.
  5. Method according to one of Claims 1 to 4, characterised in that a wetting agent is added to the electrolyte (3).
  6. Method according to Claim 5, characterised in that a wetting agent based on formaldehyde is used.
  7. Method according to one of Claims 1 to 6, characterised in that the electrolysis is injected by illuminating (8) the silicon body (1) from the back.
  8. Method according to Claim 7, characterised in that the illumination (8) is maintained as constant or varying with time in order to control the etching current.
  9. Method according to one of Claims 1 to 8, characterised in that the hydrofluoric acid concentration in the electrolyte (3) is adjusted to approximately 2.5% by weight.
  10. Method according to one of Claims 1 to 9, characterised in that during the etching, a further contact (4) in addition to the electrolyte contact (5) is used for the majority charge carriers.
  11. Method according to Claim 10, characterised in that an ohmic contact is used as contact (4).
  12. Method according to one of Claims 1 to 11, characterised in that to manufacture holes having a diameter of approximately 1 µm and a depth of approximately 10 µm in an n-doped silicon substrate in the region of 1 ohm · cm, the etching current is adjusted for each hole to 0.1 nA, the voltage to 1 V and the etching time to 20 minutes.
  13. Method according to one of Claims 1 to 11, characterised in that, to manufacture fine-pored trenches which receive dopant and to manufacture large-area capacitors or p-n junctions in a small volume in the n-doped silicon substrate in the range from 0.1 to 1.0 ohm · cm, the etching current is adjusted to 1 nA, the voltage to 2 V and the etching time to 100 minutes.
  14. Method according to one of Claims 1 to 11, characterised in that, to manufacture trenches in the n-doped silicon substrate in the range from 1 to 100 ohm · cm having a trench diameter in the region of 5 µm and a depth of approximately 20 µm for the reception of insulating material, the etching current is adjusted to 1 nA, the voltage is adjusted in the range from 2 to 20 V and the etching time is adjusted to 100 minutes.
  15. Method according to one of Claims 4 to 14, characterised in that the afteretching is carried out in 1 to 10%-strength by weight potassium hydroxide solution with an etching time of 10 minutes.
  16. Method according to one of Claims 4 to 15, characterised in that the preliminary etching is carried out in 10%-strength by weight potassium hydroxide solution with an etching time of 10 minutes.
  17. Application of the method according to at least one of Claims 1 to 16 for the manufacture of trenches for the reception of trench-cell capacitors (trench cells) for memory modules in the sub-µm region.
  18. Application of the method according to at least one of Claims 1 to 16 for the manufacture of insulating trenches for LSI semiconductor circuits.
  19. Application of the method according to at least one of Claims 1 to 16 for the manufacture of controllable capacitors (varicaps) having high capacitance.
  20. Application of the method according to at least one of Claims 1 to 16 for the manufacture of vias in deeply situated layers in silicon semiconductor substrates such as those used, in particular, in turn-off thyristors, the etching current being adjusted to a range from 1 to 100 nA, the voltage to 2 V and the etching time to 100 minutes.
  21. Application of the method according to Claim 20 for the manufacture of voltage-controlled thyristors, the etching current being increased by a factor of 2 to 10 after two thirds of the etching time for the purpose of hole enlargement.
  22. Application of the method according to at least one of Claims 1 to 16 for the manufacture of large-area capacitors in a small volume.
EP88107530A 1987-05-27 1988-05-10 Process for etching holes or grooves in n-type silicium Expired - Lifetime EP0296348B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3717851 1987-05-27
DE3717851 1987-05-27

Publications (2)

Publication Number Publication Date
EP0296348A1 EP0296348A1 (en) 1988-12-28
EP0296348B1 true EP0296348B1 (en) 1993-03-31

Family

ID=6328522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107530A Expired - Lifetime EP0296348B1 (en) 1987-05-27 1988-05-10 Process for etching holes or grooves in n-type silicium

Country Status (4)

Country Link
US (1) US4874484A (en)
EP (1) EP0296348B1 (en)
JP (1) JP2694731B2 (en)
DE (1) DE3879771D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117363A1 (en) * 2001-04-06 2002-10-17 Infineon Technologies Ag Production of a porous silicon dioxide disk comprises oxidizing a porous silicon disk having a number of macroscopic pores extending between the upper and lower sides of the plate and having a macroscopic pore diameter
DE102005046711B4 (en) * 2005-09-29 2007-12-27 Infineon Technologies Austria Ag Method of fabricating a vertical thin-film MOS semiconductor device with deep vertical sections
DE102008012479B3 (en) * 2008-03-04 2009-05-07 Christian-Albrechts-Universität Zu Kiel Electrochemical etching of macropores in n-type silicon wafers under illumination of backside of the wafer using an aqueous electrolyte, where the electrolyte is an aqueous acetic acid solution of a composition with hydrogen fluoride

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59010140D1 (en) * 1989-05-31 1996-03-28 Siemens Ag Method for large-area electrical contacting of a semiconductor crystal body with the help of electrolytes
RU2082258C1 (en) * 1991-08-14 1997-06-20 Сименс АГ Circuit structure with at least one capacitor and its manufacturing process
US5277769A (en) * 1991-11-27 1994-01-11 The United States Of America As Represented By The Department Of Energy Electrochemical thinning of silicon
DE4202454C1 (en) * 1992-01-29 1993-07-29 Siemens Ag, 8000 Muenchen, De
DE4202455C1 (en) * 1992-01-29 1993-08-19 Siemens Ag, 8000 Muenchen, De
US6033534A (en) * 1992-05-20 2000-03-07 Siemens Aktiengesellschaft Method for producing an Al-containing layer with a planar surface on a substrate having hole structures with a high aspect ratio in the surface
DE4219031C2 (en) * 1992-06-10 1994-11-10 Siemens Ag Multi-chip module with capacitor, which is realized on the carrier made of silicon (monocrystalline substrate)
US5338415A (en) * 1992-06-22 1994-08-16 The Regents Of The University Of California Method for detection of chemicals by reversible quenching of silicon photoluminescence
US5318676A (en) * 1992-06-22 1994-06-07 The Regents Of The University Of California Photolithographic fabrication of luminescent images on porous silicon structures
DE4304846A1 (en) * 1993-02-17 1994-08-18 Fraunhofer Ges Forschung Method and arrangement for plasma production
DE4310205C1 (en) * 1993-03-29 1994-06-16 Siemens Ag Prodn. of hole structure in silicon substrate - by producing pores in substrate by etching, forming mask on substrate and selectively etching
DE4310206C2 (en) * 1993-03-29 1995-03-09 Siemens Ag Method for producing a solar cell from a substrate wafer
EP0630058A3 (en) * 1993-05-19 1995-03-15 Siemens Ag Process for forming an arrangement of pyrodetectors by electrochemically etching a silicon substrate.
US5421958A (en) * 1993-06-07 1995-06-06 The United States Of America As Represented By The Administrator Of The United States National Aeronautics And Space Administration Selective formation of porous silicon
DE4331798B4 (en) * 1993-09-18 2004-08-26 Robert Bosch Gmbh Process for the production of micromechanical components
US5985164A (en) * 1994-03-07 1999-11-16 Regents Of The University Of California Method for forming a filter
US5660680A (en) * 1994-03-07 1997-08-26 The Regents Of The University Of California Method for fabrication of high vertical aspect ratio thin film structures
US5645684A (en) * 1994-03-07 1997-07-08 The Regents Of The University Of California Multilayer high vertical aspect ratio thin film structures
US5651900A (en) * 1994-03-07 1997-07-29 The Regents Of The University Of California Microfabricated particle filter
US5985328A (en) * 1994-03-07 1999-11-16 Regents Of The University Of California Micromachined porous membranes with bulk support
US5798042A (en) * 1994-03-07 1998-08-25 Regents Of The University Of California Microfabricated filter with specially constructed channel walls, and containment well and capsule constructed with such filters
US5770076A (en) * 1994-03-07 1998-06-23 The Regents Of The University Of California Micromachined capsules having porous membranes and bulk supports
DE19600782C1 (en) * 1996-01-11 1997-03-06 Itt Ind Gmbh Deutsche Forming adjacent channels or holes in semiconductor substrate, for application of masking layer
WO1997040527A1 (en) * 1996-04-22 1997-10-30 Siemens Aktiengesellschaft Process for producing a doped area in a semiconductor substrate
US5773369A (en) * 1996-04-30 1998-06-30 The Regents Of The University Of California Photoelectrochemical wet etching of group III nitrides
US6767840B1 (en) * 1997-02-21 2004-07-27 Canon Kabushiki Kaisha Wafer processing apparatus, wafer processing method, and semiconductor substrate fabrication method
US5938923A (en) * 1997-04-15 1999-08-17 The Regents Of The University Of California Microfabricated filter and capsule using a substrate sandwich
US5997713A (en) * 1997-05-08 1999-12-07 Nanosciences Corporation Silicon etching process for making microchannel plates
US6121552A (en) * 1997-06-13 2000-09-19 The Regents Of The University Of Caliofornia Microfabricated high aspect ratio device with an electrical isolation trench
DE19732250A1 (en) * 1997-07-26 1999-01-28 Bosch Gmbh Robert Process for the production of metallic microstructures
US6328876B1 (en) 1997-07-28 2001-12-11 Nft Nanofiltertechnik Gesellschaft Mit Beschankter Haftung Method for producting a filter
US5965005A (en) * 1997-09-22 1999-10-12 National Science Council Mask for porous silicon formation
WO1999025026A1 (en) * 1997-11-12 1999-05-20 Epcos Ag Circuitry with at least one capacitor and process for producing the same
DE19756603C1 (en) 1997-12-18 1999-06-24 Siemens Ag Integrated detonation circuit arrangement for automobile occupant restraint device especially airbag
KR100265289B1 (en) * 1998-01-26 2000-09-15 윤종용 Method for manufacturing the cathode of the plasma etching apparatus and the cathode manufactured accordingly
US6228734B1 (en) 1999-01-12 2001-05-08 Semiconductor Components Industries Llc Method of manufacturing a capacitance semi-conductor device
EP1063688A1 (en) 1999-01-13 2000-12-27 Mitsubishi Denki Kabushiki Kaisha Method of producing silicon device
DE19919903A1 (en) * 1999-04-30 2000-11-02 Nft Nano Filtertechnik Gmbh Process for making a filter
US6954613B1 (en) * 1999-09-10 2005-10-11 Virtual Geosatellite Holdings, Inc. Fixed satellite constellation system employing non-geostationary satellites in sub-geosynchronous elliptical orbits with common ground tracks
WO2001091170A1 (en) * 2000-05-24 2001-11-29 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for radiation-assisted electrochemical etching, and etched product
US7470546B2 (en) 2000-05-31 2008-12-30 Infineon Technologies Ag Method and arrangement for taking up a first medium, which is present in a first phase, into a capillary device
WO2002025630A2 (en) * 2000-09-20 2002-03-28 Molecular Reflections Microfabricated ultrasound array for use as resonant sensors
US6750153B2 (en) 2000-10-24 2004-06-15 Nanosciences Corporation Process for producing macroscopic cavities beneath the surface of a silicon wafer
DE10055712B4 (en) 2000-11-10 2006-07-13 Infineon Technologies Ag Method for producing trench capacitors for highly integrated semiconductor memories
DE10055711B4 (en) * 2000-11-10 2008-04-30 Qimonda Ag Method of making trench capacitors
CA2369204A1 (en) * 2001-01-26 2002-07-26 Ebara Corporation Solar cell and method of manufacturing same
CA2370731A1 (en) * 2001-02-07 2002-08-07 Ebara Corporation Solar cell and method of manufacturing same
DE10127950B4 (en) * 2001-06-08 2007-04-12 Infineon Technologies Ag Method for producing a semiconductor component and semiconductor component
DE10133688A1 (en) * 2001-07-11 2002-09-26 Infineon Technologies Ag Production of the lower capacitor electrode of a trench capacitor comprises preparing a substrate with a trench and an ohmic contact, forming an electrical connection on the contact, and etching mesopores on an exposed substrate region
CN100349314C (en) * 2002-01-03 2007-11-14 尼电源系统公司 Porous fuel cell electrode structures having conformal electrically conductive layers thereon
DE10210626A1 (en) * 2002-03-11 2003-09-25 Transmit Technologietransfer Process for the production of hollow fibers
DE10217569A1 (en) * 2002-04-19 2003-11-13 Infineon Technologies Ag Device based on partially oxidized porous silicon
WO2003102633A2 (en) 2002-06-04 2003-12-11 Lake Shore Cryotronics, Inc. Spectral filter for green and shorter wavelengths and method of manufacturing same
EP1552328A4 (en) * 2002-10-16 2005-12-14 Lake Shore Cryotronics Inc Spectral filter for green and longer wavelengths
DE10345573A1 (en) * 2003-09-29 2005-04-21 Univ Muenster Wilhelms Permeability analysis of cell or tissue sections, useful e.g. for determining transport of pharmaceuticals through barrier-forming cells, where test cells are immobilized on a substrate with unidirectional pores
US7560018B2 (en) * 2004-01-21 2009-07-14 Lake Shore Cryotronics, Inc. Semiconductor electrochemical etching processes employing closed loop control
DE102005008798A1 (en) * 2005-02-25 2006-09-07 Infineon Technologies Ag Miniaturized detection coil body for NMR spectroscopy
US20060256428A1 (en) * 2005-05-16 2006-11-16 Lake Shore Cryotronics, Inc. Long wave pass infrared filter based on porous semiconductor material and the method of manufacturing the same
DE102005033254B4 (en) * 2005-07-15 2008-03-27 Qimonda Ag Method for producing a silicon chip carrier substrate with continuous contacts
US7705342B2 (en) 2005-09-16 2010-04-27 University Of Cincinnati Porous semiconductor-based evaporator having porous and non-porous regions, the porous regions having through-holes
US20070131860A1 (en) * 2005-12-12 2007-06-14 Freeouf John L Quadrupole mass spectrometry chemical sensor technology
DE102006047244B4 (en) * 2006-10-04 2018-01-18 Infineon Technologies Austria Ag Semiconductor device with a monocrystalline semiconductor body and method for producing the same
DE102006049562A1 (en) * 2006-10-20 2008-04-24 Qimonda Ag Substrate e.g. germanium substrate, manufacturing method for use in semiconductor module, involves sealing channel with material e.g. gold, and filling channel with electrically conductive material e.g. copper
DE102007019552B4 (en) * 2007-04-25 2009-12-17 Infineon Technologies Ag Method for producing a substrate with feedthrough and substrate and semiconductor module with feedthrough
US7977798B2 (en) 2007-07-26 2011-07-12 Infineon Technologies Ag Integrated circuit having a semiconductor substrate with a barrier layer
US8188595B2 (en) 2008-08-13 2012-05-29 Progressive Cooling Solutions, Inc. Two-phase cooling for light-emitting devices
US20100132404A1 (en) * 2008-12-03 2010-06-03 Progressive Cooling Solutions, Inc. Bonds and method for forming bonds for a two-phase cooling apparatus
DE102009042321A1 (en) 2009-09-21 2011-03-31 Martin-Luther-Universität Halle-Wittenberg Method for manufacturing n-doped silicon body utilized in article for e.g. electrical purposes to determine chemical molecules, involves manufacturing body from crystalline Neutron-Transmutation-Doped silicon
DE102013201479A1 (en) * 2013-01-30 2014-08-14 Siemens Aktiengesellschaft Method for through-contacting a semiconductor substrate and semiconductor substrate
US9679774B2 (en) 2014-03-18 2017-06-13 Infineon Technologies Ag Method for removing crystal originated particles from a crystalline silicon body

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB161573I5 (en) * 1961-12-22
US3471922A (en) * 1966-06-02 1969-10-14 Raytheon Co Monolithic integrated circuitry with dielectric isolated functional regions
NL144778B (en) * 1966-12-20 1975-01-15 Western Electric Co METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE BY ANISOTROOPE ETCHING AS WELL AS THE DEVICE MANUFACTURED THEREFORE.
CH469362A (en) * 1968-01-16 1969-02-28 Bbc Brown Boveri & Cie Method and device for setting the ignition current of a controllable semiconductor element to a desired value
US3661741A (en) * 1970-10-07 1972-05-09 Bell Telephone Labor Inc Fabrication of integrated semiconductor devices by electrochemical etching
JPS5013153B1 (en) * 1970-12-04 1975-05-17
US3801390A (en) * 1970-12-28 1974-04-02 Bell Telephone Labor Inc Preparation of high resolution shadow masks
US3962713A (en) * 1972-06-02 1976-06-08 Texas Instruments Incorporated Large value capacitor
DE2359511C2 (en) * 1973-11-29 1987-03-05 Siemens AG, 1000 Berlin und 8000 München Method for localized etching of trenches in silicon crystals
US3962052A (en) * 1975-04-14 1976-06-08 International Business Machines Corporation Process for forming apertures in silicon bodies
JPS5265672A (en) * 1975-11-28 1977-05-31 Hitachi Ltd Formation of grrove in semiconductor wafer
FR2339953A1 (en) * 1976-01-29 1977-08-26 Anvar Thin silicon films made for surface barrier diodes - and mfr. of nuclear particle detectors using the diodes
US4180439A (en) * 1976-03-15 1979-12-25 International Business Machines Corporation Anodic etching method for the detection of electrically active defects in silicon
DE3068851D1 (en) * 1979-05-02 1984-09-13 Ibm Apparatus and process for selective electrochemical etching
DE3029792A1 (en) * 1980-08-06 1982-03-11 Siemens AG, 1000 Berlin und 8000 München METHOD FOR DIVIDING A SEMICONDUCTOR CRYSTAL IN DISKS
JPS5956482A (en) * 1982-08-30 1984-03-31 Daikin Ind Ltd Etchant composition
US4689125A (en) * 1982-09-10 1987-08-25 American Telephone & Telegraph Co., At&T Bell Labs Fabrication of cleaved semiconductor lasers
US4414066A (en) * 1982-09-10 1983-11-08 Bell Telephone Laboratories, Incorporated Electrochemical photoetching of compound semiconductors
US4482443A (en) * 1983-12-30 1984-11-13 At&T Technologies Photoelectrochemical etching of n-type silicon
JPS60229342A (en) * 1984-04-27 1985-11-14 Sord Comput Corp N type silicon wafer with through hole and manufacture thereof
JPS60245161A (en) * 1984-05-18 1985-12-04 Matsushita Electric Ind Co Ltd Semiconductor memory and manufacture thereof
JPS6068650A (en) * 1984-08-27 1985-04-19 Mitsubishi Electric Corp Manufacture of semiconductor device
EP0178387B1 (en) * 1984-10-19 1992-10-07 BBC Brown Boveri AG Gate turn-off power semiconductor device
US4628591A (en) * 1984-10-31 1986-12-16 Texas Instruments Incorporated Method for obtaining full oxide isolation of epitaxial islands in silicon utilizing selective oxidation of porous silicon
JPS61152022A (en) * 1984-12-25 1986-07-10 Yokogawa Electric Corp Manufacture of round silicon diaphragm
JPS6266661A (en) * 1985-09-19 1987-03-26 Oki Electric Ind Co Ltd Forming large capacity memory cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117363A1 (en) * 2001-04-06 2002-10-17 Infineon Technologies Ag Production of a porous silicon dioxide disk comprises oxidizing a porous silicon disk having a number of macroscopic pores extending between the upper and lower sides of the plate and having a macroscopic pore diameter
DE102005046711B4 (en) * 2005-09-29 2007-12-27 Infineon Technologies Austria Ag Method of fabricating a vertical thin-film MOS semiconductor device with deep vertical sections
DE102008012479B3 (en) * 2008-03-04 2009-05-07 Christian-Albrechts-Universität Zu Kiel Electrochemical etching of macropores in n-type silicon wafers under illumination of backside of the wafer using an aqueous electrolyte, where the electrolyte is an aqueous acetic acid solution of a composition with hydrogen fluoride

Also Published As

Publication number Publication date
JP2694731B2 (en) 1997-12-24
JPS63310122A (en) 1988-12-19
DE3879771D1 (en) 1993-05-06
EP0296348A1 (en) 1988-12-28
US4874484A (en) 1989-10-17

Similar Documents

Publication Publication Date Title
EP0296348B1 (en) Process for etching holes or grooves in n-type silicium
EP0001550B1 (en) Integrated semiconductor circuit for a small-sized structural element, and method for its production
DE1764281C3 (en) Method of manufacturing a semiconductor device
DE4331798B4 (en) Process for the production of micromechanical components
EP0010633A1 (en) Method for forming very narrow doping regions in a semiconductor body and use of this method for producing semiconductor regions insulated from each other, bipolar semiconductor devices, integrated injection logics and double-diffused FET semiconductor devices
EP0528281A2 (en) Structure of circuit having at least a capacitor and process of fabrication
DE4310206A1 (en) Method for producing a solar cell from a substrate wafer
DE2928923C2 (en)
EP0609536A2 (en) Process for manufacturing vertical MOS transistors
DE2721397B2 (en) Process for the production of an HF semiconductor component containing at least one planar diode
DE102018216855A1 (en) A silicon carbide semiconductor device and a method of manufacturing a silicon carbide semiconductor device
DE102020125660B4 (en) BOSCH HIGH ASPECT RATIO DEEP ETCHING AND SEMICONDUCTOR DEVICE
DE2328090C2 (en) Method for producing a semiconductor capacitor
DE4130555A1 (en) SEMICONDUCTOR DEVICE WITH HIGH BREAKTHROUGH VOLTAGE AND LOW RESISTANCE, AND PRODUCTION METHOD
DE1924712C3 (en) Integrated thin-film blocking or Decoupling capacitor for monolithic circuits and method for its manufacture
DE102018102949B4 (en) METHOD OF MANUFACTURING A POWER SEMICONDUCTOR DEVICE
EP0630058A2 (en) Process for forming an arrangement of pyrodetectors by electrochemically etching a silicon substrate
DE2550346A1 (en) PROCESS FOR PRODUCING AN ELECTRICALLY INSULATING AREA IN THE SEMICONDUCTOR BODY OF A SEMICONDUCTOR COMPONENT
DE4418430C1 (en) Method for producing a silicon capacitor
DE4310205C1 (en) Prodn. of hole structure in silicon substrate - by producing pores in substrate by etching, forming mask on substrate and selectively etching
DE69229927T2 (en) Integrated structure of a bipolar power device with high current density and a fast diode and method for its production
DE2149247A1 (en) Method for shaping a semiconductor body
DE3304642A1 (en) INTEGRATED SEMICONDUCTOR CIRCUIT WITH BIPOLAR TRANSISTOR STRUCTURES AND METHOD FOR THEIR PRODUCTION
DE4416549C2 (en) Process for the production of a solar cell
EP0168771A1 (en) Method of making lateral doping gradients in disc shaped silicon crystals for semi conductor devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19890126

17Q First examination report despatched

Effective date: 19910807

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 3879771

Country of ref document: DE

Date of ref document: 19930506

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT TRANSFER- EPCOS AG * SI

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: EPCOS AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030507

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030520

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030613

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030626

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

BERE Be: lapsed

Owner name: *EPCOS A.G.

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST