EP0254111B1 - UV-Strahler - Google Patents
UV-Strahler Download PDFInfo
- Publication number
- EP0254111B1 EP0254111B1 EP87109674A EP87109674A EP0254111B1 EP 0254111 B1 EP0254111 B1 EP 0254111B1 EP 87109674 A EP87109674 A EP 87109674A EP 87109674 A EP87109674 A EP 87109674A EP 0254111 B1 EP0254111 B1 EP 0254111B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- dielectric
- radiator according
- tube
- discharge space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 18
- 239000002826 coolant Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 7
- 229910052756 noble gas Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 239000003989 dielectric material Substances 0.000 claims description 6
- 229910052724 xenon Inorganic materials 0.000 claims description 6
- 229910052743 krypton Inorganic materials 0.000 claims description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 5
- 229910052753 mercury Inorganic materials 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 239000011669 selenium Substances 0.000 claims description 3
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 229910052805 deuterium Inorganic materials 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- 239000010410 layer Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical class [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
Definitions
- the invention relates to a UV lamp with a discharge space filled with filling gas and delimited by walls, at least one wall being formed by a dielectric, with a first and a second metallic electrode, the first electrode on the surface of the dielectric facing away from the discharge space is arranged, and an alternating current source connected to the two electrodes for supplying the discharge, and means for directing the radiation generated by silent electrical discharges into an outside space.
- the invention relates to a state of the art, such as that obtained from the publication "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" by GA Volkova. NN Kirillova, EN Pavlovskaya and AV Yakovleva in the SU magazine Zhurnal Prikladnoi Spektoskopii 41 - (1984) No. 4, 691-695. published in an English translation by Plenum Publishing Corporation 1985. Doc. No. 0021-9037 / 84 / 4104-1194 $ 08.50. P. 1194 ff., Results.
- high-performance lamps especially high-performance UV lamps, e.g. Disinfection, curing of paints and synthetic resins, flue gas cleaning, destruction and synthesis of special chemical compounds.
- the wavelength of the emitter will have to be matched very precisely to the intended process.
- the best-known UV lamp is probably the mercury lamp, which emits UV radiation with wavelengths of 254 nm and 185 nm with high efficiency.
- a low-pressure glow discharge burns in a noble gas-mercury vapor mixture in these lamps.
- This radiator consists of a tube made of dielectric material with a rectangular cross section. Two opposite tube walls are provided with flat electrodes in the form of metal foils, which are connected to a pulse generator. The tube is closed at both ends and filled with an inert gas (argon, krypton or xenon). Such filling gases form so-called excimers when an electrical discharge is ignited under certain conditions.
- An excimer is a molecule that is formed from an excited atom and an atom in the ground state. e.g. Ar + Ar - Ar * 2nd
- the UV light generated in a first embodiment reaches the outside through an end window in the dielectric tube.
- the broad sides of the tube are provided with metal foils which form the electrodes.
- the tube is provided with recesses, over which special windows are glued, through which the radiation can escape.
- the efficiency that can be achieved with the known radiator is of the order of 1%, which is far below the theoretical value of around 50% because the filling gas heats up inadmissibly.
- Another inadequacy of the known radiator can be seen in the fact that its light exit window has only a comparatively small area for reasons of stability.
- a low-pressure UV lamp for the near UV spectrum is known from BE-A-739 064.
- the walls of this lamp consist of a UV-permeable dielectric, which is provided on both sides with a UV-permeable electrically conductive layer.
- This three-layer arrangement serves as a capacitor for stabilizing the lamp.
- the outer of the two layers is also an electrode and consists of indium or tin oxide, i.e. materials which are known to be only transparent to visible light or near UV.
- the invention has for its object to provide a UV lamp that has a high efficiency, can be operated with high electrical power densities, enables the generation of UV radiation in a wide spectral range and the construction of large-area lamps with practically any large light emission areas.
- the geometry of the high-performance lamp can be adapted to the process in which it is used within wide limits. In addition to large, flat spotlights, cylindrical ones that radiate inwards or outwards are also possible.
- the discharges can be operated at high pressure (0.1 - 10 bar. With this construction, electrical power densities of 1 - 50 KW / m2 can be realized.
- the wavelength of the radiation can be adjusted by the kind of the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm) As with other gas discharges, it is also advisable to mix different types of gas.
- the filling gas eg mercury (185 nm, 254 nm), nitrogen (337-415 nm), selenium (196, 204, 206 nm), xenon (119, 130, 147 nm), Krypton (124 nm)
- the advantage of these emitters is the areal radiation of large radiation outputs with high efficiency. Almost all of the radiation is concentrated in one or a few wavelength ranges. It is important in all cases that the radiation can escape through one of the electrodes.
- This problem can be solved with transparent, electrically conductive layers or else by using a fine-mesh wire network or applied conductor tracks as electrodes, which on the one hand ensure the current supply to the dielectric, but on the other hand are largely transparent to the radiation.
- a transparent electrolyte for example H2O, can be used as a further electrode, which is particularly advantageous for the irradiation of water / waste water, since in this way the radiation generated passes directly into the liquid to be irradiated and this liquid also serves as a coolant.
- a metal electrode 1 which is in contact on one side with a cooling medium 2, for example water.
- a plate 4 made of dielectric material is arranged, spaced apart by electrically insulating spacers 3, which are distributed over a certain area.
- a UV high-performance lamp it consists, for example, of quartz or sapphire, which is transparent to the UV radiation. Materials such as magnesium fluoride and calcium fluoride are also suitable for very short-wave radiation.
- Dielectric 4 and metal electrode 1 delimit a discharge space 5 with a typical gap width between 1 and 10 mm.
- a wire mesh there can also be a transparent, electrically conductive layer, the layer of indium or tin oxide being used for visible light, a gold layer 50-100 angstroms thick for visible and UV light, and especially a thin layer of alkali metals in UV can.
- An AC power source 7 is connected between the metal electrode 1 and the counter electrode (wire mesh 6).
- alternating current source 7 those can generally be used which have long been used in connection with ozone generators.
- the discharge space 5 is laterally closed in the usual way, was evacuated before closing and was filled with an inert gas or a substance that forms excimers under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
- an inert gas or a substance that forms excimers under discharge conditions e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, filled, optionally using an additional further noble gas (Ar, He, Ne) as a buffer gas.
- a substance according to the following table can be used: Filling gas radiation helium 60-100 nm neon 80 - 90 nm argon 107 - 165 nm xenon 160-190 nm nitrogen 337 - 415 nm krypton 124 nm, 140-160 nm Krypton + fluorine 240 - 255 nm mercury 185, 254 nm selenium 196, 204, 206 nm deuterium 150-250 nm Xenon + fluorine 400 - 550 nm Xenon + chlorine 300-320 nm
- the electron energy distribution can be optimally adjusted by varying the gap width of the discharge space, pressure and / or temperature (via the intensity of the cooling).
- a metal tube 8, a tube 9 made of dielectric material and an outer metal tube 10 are arranged coaxially one inside the other. Coolant or a gaseous coolant is passed through the interior 11 of the metal tube.
- the annular gap 12 between the tubes 8 and 9 forms the discharge space.
- the dielectric tube 9 a quartz tube in the example
- the outer metal tube spaced from it by a further annular gap 13 is the liquid to be irradiated, in the example water, which forms the other electrode due to its electrolytic property.
- the AC power source 7 is therefore connected to the two metal tubes 8 and 10.
- This arrangement has the advantage that the radiation can act directly on the water, the water also serves as a coolant, and a separate electrode on the outer surface of the dielectric tube 9 is therefore unnecessary.
- one of the electrodes mentioned in connection with FIG. 1 can be used (transparent electrically conductive layer, wire mesh) can be applied to the outer surface of the dielectric tube 9.
- a quartz tube 9 provided with a transparent, electrically conductive inner electrode 14 is arranged coaxially in a metal tube 8.
- An annular discharge gap 12 extends between the two tubes 8, 9.
- the metal tube 8 is formed to form an annular cooling gap 15 through which a coolant, e.g. Water that can be passed through is surrounded by an outer tube 10.
- the AC power source 7 is connected between the inner electrode 14 and the metal tube 8.
- the substance to be irradiated is guided through the interior 16 of the dielectric tube 9 and, if suitable, simultaneously serves as a coolant.
- an electrolyte e.g. Use water as an electrode.
- the individual tubes are spaced or fixed relative to one another by means of spacing elements, such as are used in ozone technology.
- FIG. 4 The basic structure of such a high-power radiator is shown in FIG. 4. There are those with the same effect as Fig. 1 Provide parts with the same reference numerals.
- the basic difference between FIGS. 1 and 4 consists in the interposition of a second dielectric 17 between the discharge space 5 and the metallic electrode 1.
- the metallic electrode 1 is cooled by a cooling medium 2; the radiation leaves the discharge space 5 through the dielectric 4 which is permeable to the radiation and the wire mesh 6 serving as the second electrode.
- FIG. 5 A practical implementation of such a high-power radiator is illustrated schematically in FIG. 5.
- a double-walled quartz tube 18, consisting of an inner tube 19 and an outer tube 20, is surrounded on the outside by a wire mesh 6, which serves as the first electrode.
- the second electrode is designed as a metal layer 21 on the inner wall of the inner tube 19.
- the AC power source 7 is connected to these two electrodes.
- the annular space between the inner and outer tube serves as a discharge space 5. This is sealed off from the outer space by melting the filler neck.
- the radiator is cooled by passing a coolant through the interior of the inner tube 19, a tube 23 being inserted into the inner tube 19 to guide the coolant, leaving an annular space 24 between the inner tube 19 and the tube 23.
- the direction of flow of the coolant is shown by arrows.
- the hermetically sealed radiator according to FIG. 5 can also be operated as an internal radiator analogous to FIG. 3 if the cooling is fitted on the outside and the UV-permeable electrode on the inside.
- the high-power radiators according to FIGS. 4 and 5 can also be modified in a variety of ways without departing from the scope of the invention: 4, the metallic electrode 1 can be dispensed with if the cooling medium is an electrolyte which also serves as an electrode.
- the wire mesh 6 can also be replaced by an electrically conductive, radiation-permeable layer.
- the wire mesh 6 can be replaced by such a layer.
- the metal layer 21 is formed as a layer which is transparent to the radiation, e.g. from indium or tin oxide, the radiation can be applied directly to the cooling medium, e.g. Water. If the coolant itself is an electrolyte, this can take over the function of the electrode 21.
- each volume element in the discharge gap will emit its radiation in the entire solid angle 4 ⁇ . If one only wants to use the radiation that emerges from the UV-permeable electrode 6, the usable radiation can be practically doubled if the counter electrode 21 is made of a material that reflects UV radiation well (e.g. aluminum). 5, the inner electrode could be aluminum vapor deposition.
- Thin (0.1-1 ⁇ m) layers of alkali metals are also suitable for the UV-permeable, electrically conductive electrode 6.
- the alkali metals lithium, potassium, rubidium, cesium in the ultraviolet spectral range have a high transparency with little reflection. Alloys (e.g. 25% sodium / 75% potassium) are also suitable. Since the alkali metals react with air (sometimes very violently), they must be provided with a UV-permeable protective layer (e.g. Mg F2) after application in a vacuum.
- a UV-permeable protective layer e.g. Mg F2
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Description
- Die Erfindung bezieht sich auf einen UV-Strahler mit einem mit Füllgas gefüllten, von Wänden begrenzten Entladungsraum wobei mindestens eine Wand von einem Dielektrikum gebildet wird, mit einer ersten und einer zweiten metallischen Elektrode, wobei die erste Elektrode auf der dem Entladungsraum abgewandten Oberfläche des Dielektrikums angeordnet ist, und einer an die beiden Elektroden angeschlossenen Wechselstromquelle zur Speisung der Entladung, sowie Mitteln zur Leitung der durch stille elektrische Entladungen erzeugten Strahlung in einen Aussenraum.
- Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich beispielsweise aus der Veröffentlichung "Vacuum-ultraviolet lamps with a barrier discharge in inert gases" Von G.A. Volkova. N.N. Kirillova, E.N. Pavlovskaya and A.V. Yakovleva in der SU-Zeitschrift Zhurnal Prikladnoi Spektroskopii 41 -(1984) No. 4, 691-695. veröffentlicht in einer englischsprachigen Uebersetzung der Plenum Publishing Corporation 1985. Dok. Nr. 0021-9037/84/4104-1194 $ 08.50. S. 1194 ff., ergibt.
- Für Hochleistungsstrahler, insbesondere Hochleistungs-UV-Strahler, gibt es diverse Anwendungen wie z.B. Entkeimung, Aushärten von Lacken und Kunstharzen, Rauchgasreinigung, Zerstörung und Synthese spezieller chemischer Verbindungen. Im allgemeinen wird die Wellenlänge des Strahlers sehr genau auf den beabsichtigten Prozess abgestimmt sein müssen. Der bekannteste UV-Strahler ist vermutlich der Quecksilberstrahler, der UV-Strahlung der Wellenlänge 254 nm und 185 nm mit hohem Wirkungsgrad abstrahlt. In diesen Strahlern brennt eine Niederdruck-Glimmentladung in einem Edelgas-Quecksilberdampf-Gemisch.
- In der eingangs genannten Veröffentlichung "Vakuum ultraviolet lamps ..." wird eine auf dem Prinzip der stillen elektrischen Entladung basierende UV-Strahlenquelle beschrieben. Dieser Strahler besteht aus einem Rohr aus dielektrischem Material mit Rechteckquerschnitt. Zwei gegenüberliegende Rohrwände sind mit flächenhaften Elektroden in Form von Metallfolien versehen, die an einen Impulsgenerator angeschlossen sind. Das Rohr ist an beiden Enden verschlossen und mit einem Edelgas (Argon. Krypton oder Xenon) gefüllt. Derartige Füllgase bilden beim Zünden einer elektrischen Entladung unter bestimmten Bedingungen sogenannte Excimere. Ein Excimer ist ein Molekül, das aus einem angeregten Atom und einem Atom im Grundzustand gebildet wird.
- Es ist bekannt, dass die Umwandlung von Elektronenenergie in UV-Strahlung mit diesen Excimeren sehr effizient erfolgt. Bis zu 50 % der Elektronenenergie kann in UV-Strahlung umgewandelt werden, wobei die angeregten Komplexe nur einige Nanosekunden leben und beim Zerfall ihre Bindungsenergie in Form von UV-Strahlung abgehen. Wellenlängenbereiche:
- Bei dem bekannten Strahler gelangt das erzeugte UV-Licht bei einer ersten Ausführung über ein stirnseitiges Fenster im dielektrischen Rohr in den Aussenraum. Bei einer zweiten Ausführungsform sind die Breitseiten des Rohres mit Metallfolien versehen, welche die Elektroden bilden. An den Schmalseiten ist das Rohr mit Ausnehmungen versehen, über welche spezielle Fenster geklebt sind, durch welche die Strahlung austreten kann.
- Der mit dem bekannten Strahler erreichbare Wirkungsgrad liegt in der Grössenordnung von 1 %, also weit unter dem theoretischen Wert von um 50 %, weil sich das Füllgas unzulässig aufheizt. Eine weitere Unzulänglichkeit des bekannten Strahlers ist darin zu sehen, dass sein Lichtaustrittsfenster aus Stabilitätsgründen nur eine vergleichsweise kleine Fläche aufweist.
- Aus der BE-A-739 064 ist eine UV-Niederdruck-Lampe für das nahe UV-Spektrum bekannt. Die Wandungen dieser Lampe bestehen aus einem UV-durchlässigem Dielektrikum, das auf beiden Seiten mit einer UV-durchlässigen elektrisch leitenden Schicht versehen ist. Diese Dreischicht-Anordnung dient als Kondensator zur Stabilisierung der Lampe. Die äussere der beiden Schichten ist gleichzeitig Elektrode und besteht aus Indium- oder Zinnoxid, also Materialien, welche bekanntlich nur für sichtbares Licht oder das nahe UV transparent sind.
- Aus der Zusammenfassung des Dokuments JP-A-60-79662 ist ferner bekannt, der negativen Wirkung, die sich aus einer unzulässigen Aufheizung des Füllgases einer UV-Sterilisationslampe ergibt, dadurch entgegenzutreten, indem ein Kühleffekt auf den Entladungsraum ausgeübt wird.
- Ausgehend vom Bekannten liegt der Erfindung die Aufgabe zugrunde, einen UV-Strahler zu schaffen, der einen hohen Wirkungsgrad aufweist, mit hohen elektrischen Leistungsdichten betrieben werden kann, die Erzeugung von UV-Strahlung in einem weiten Spektralbereich ermöglicht und den Bau grossflächiger Strahler mit praktisch beliebig grossen Lichtaustrittsflächen zulässt.
- Die Lösung dieser Aufgabe erfolgt erfindungsgemäss durch die in den Patentansprüchen gekennzeichneten Merkmale.
- Auf diese Weise ist ein Hochleistungsstrahler geschaffen, der mit grossen elektrischen Leistungsdichten und hohem Wirkungsgrad betrieben werden kann. Die Geometrie des Hochleistungsstrahlers ist in weiten Grenzen dem Prozess anpassbar, in welchem er eingesetzt wird. So sind neben grossflächigen ebenen Strahlern auch zylindrische, die nach innen oder nach aussen strahlen, möglich. Die Entladungen können bei hohem Druck (0.1 - 10 bar betrieben werden. Mit dieser Bauweise lassen sich elektrische Leistungsdichten von 1 - 50 KW/m² realisieren. Da die Elektronenenergie in der Entladung weitgehend optimiert werden kann, liegt der Wirkungsgrad solcher Strahler sehr hoch, auch dann, wenn man Resonanzlinien geeigneter Atome anregt. Die Wellenlänge der Strahlung lässt sich durch die Art des Füllgases einstellen z.B. Quecksilber (185 nm, 254 nm), Stickstoff (337-415 nm), Selen (196, 204, 206 nm), Xenon (119, 130, 147 nm), Krypton (124 nm). Wie bei anderen Gasentladungen empfiehlt sich auch die Mischung verschiedener Gasarten.
- Der Vorteil dieser Strahler liegt in der flächenhaften Abstrahlung grosser Strahlungsleistungen mit hohem Wirkungsgrad. Fast die gesamte Strahlung ist auf einen oder wenige Wellenlängenbereiche konzentriert. Wichtig ist in allen Fällen, dass die Strahlung durch eine der Elektroden austreten kann. Dieses Problem ist lösbar mit transparenten, elektrisch leitenden Schichten oder aber auch, indem man ein feinmaschiges Drahtnetz oder aufgebrachte Leiterbahnen als Elektrode benützt, die einerseits die Stromzufuhr zum Dielektrikum gewährleisten, andererseits für die Strahlung aber weitgehend transparent sind. Auch kann ein transparenter Elektrolyt, z.B. H₂O, als weitere Elektrode verwendet werden, was insbesondere für die Bestrahlung von Wasser/Abwasser vorteilhaft ist, da auf diese Weise die erzeugte Strahlung unmittelbar in die zu bestrahlende Flüssigkeit gelangt und diese Flüssigkeit gleichzeitig als Kühlmittel dient.
- In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt
- Fig. 1
- ein Ausführungsbeispiel der Erfindung in Gestalt eines ebenen Flächenstrahlers im Schnitt
- Fig. 2
- einen zylindrischen nach aussen abstrahlenden Strahler, der in einen Bestrahlungsbehälter für durchströmende Flüssigkeiten oder Gase integriert ist im Schnitt
- Fig. 3
- einen zylindrischen nach innen abstrahlenden Strahler für photochemische Reaktionen
- Fig. 4
- eine Abwandlung des Strahlers nach Fig. 1 mit einem beidseits durch ein Dielektrikum begrenzten Enladungsraum
- Fig. 5
- ein Ausführungsbeispiel eines Strahlers in Gestalt eines doppelwandigen Quarzrohrs.
- Der Hochleistungsstrahler nach Fig. 1 umfasst eine Metallelektrode 1, die auf ihrer einen Seite mit einem Kühlmedium 2, z.B. Wasser, in Kontakt steht. Auf der anderen Seite der Metallelektrode 1 ist - distanziert durch elektrisch isolierende Distanzstücke 3, die punktuell über Fläche verteilt sind - eine Platte 4 aus dielektrischem Material angeordnet. Sie besteht für einen UV-Hochleistungsstrahler z.B. aus Quarz oder Saphir, das für die UV-Strahlung durchlässig ist. Für sehr kurzwellige Strahlungen kommen auch Materialien, wie z.B. Magnesiumfluorid und Calziumfluorid in Frage. Für Strahler, welche Strahlung im sichtbaren Bereich des Lichtes liefern sollen, ist das Dielektrikum Glas. Dielektrikum 4 und Metallelektrode 1 begrenzen einen Entladungsraum 5 mit einer typischen Spaltweite zwischen 1 und 10 mm. Auf der dem Entladungsraum 5 abgewandten Oberfläche der dielektrischen Platte 4 ist ein feines Drahtnetz 6 aufgebracht, von dem nur die Kett- oder Schussfäden in Fig. 1 sichtbar sind. Anstelle eines Drahtnetzes kann auch eine transparente elektrisch leitende Schicht vorhanden sein, wobei für sichtbares Licht die Schicht aus Indium- oder Zinnoxid, für sichtbares und UV-Licht eine 50 - 100 Angström dicke Goldschicht und speziell im UV auch eine dünne Schicht aus Alkalimetallen verwendet werden kann. Eine Wechselstromquelle 7 ist zwischen die Metallelektrode 1 und die Gegenelektrode (Drahtnetz 6) geschaltet.
- Als Wechselstromquelle 7 können generell solche verwendet werden, wie sie im Zusammenhang mit Ozonerzeugern seit langem eingesetzt werden.
- Der Entladungsraum 5 ist seitlich in üblicher Weise geschlossen, wurde vor dem Verschliessen evakuiert und mit einem inerten Gas, oder einer bei Entladungsbedingungen Excimere bildenden Substanz, z.B. Quecksilber, Edelgas, Edelgas-Metalldampf-Gemisch, Edelgas-Halogen-Gemisch, gefüllt, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases (Ar, He, Ne) als Puffergas.
- Je nach gewünschter spektraler Zusammensetzung der Strahlung kann dabei eine Substanz gemäss nachfolgender Tabelle Verwendung finden:
Füllgas Strahlung Helium 60 - 100 nm Neon 80 - 90 nm Argon 107 - 165 nm Xenon 160 - 190 nm Stickstoff 337 - 415 nm Krypton 124 nm, 140 - 160 nm Krypton + Fluor 240 - 255 nm Quecksilber 185, 254 nm Selen 196, 204, 206 nm Deuterium 150 - 250 nm Xenon + Fluor 400 - 550 nm Xenon + Chlor 300 - 320 nm - In der sich bildenden stillen Entladung (dielectric barrier discharge) kann die Elektronenenergieverteilung durch Variation der Spaltweite des Entladungsraumes, Druck und/oder Temperatur (über die Intensität der Kühlung) optimal eingestellt werden.
- Beim Ausführungsbeispiel nach Fig. 2 sind ein Metallrohr 8, ein von diesem distanziertes Rohr 9 aus dielektrischem Material und ein äusseres Metallrohr 10 koaxial ineinander angeordnet. Durch den Innenraum 11 des Metallrohres wird Kühlflüssigkeit oder ein gasförmiges Kühlmittel geleitet. Der Ringspalt 12 zwischen den Rohren 8 und 9 bildet den Entladungsraum. Zwischen dem dielektrischen Rohr 9 (im Beispielsfall ein Quarzrohr) und dem von diesem durch einen weiteren Ringspalt 13 distanzierten äusseren Metallrohr befindet sich die zu bestrahlende Flüssigkeit, im Beispielsfall Wasser, das aufgrund seiner elektrolytischen Eigenschaft die andere Elektrode bildet. Die Wechselstromquelle 7 ist demzufolge an die beiden Metallrohre 8 und 10 angeschlossen.
- Diese Anordnung hat den Vorteil, dass die Strahlung unmittelbar auf das Wasser einwirken kann, das Wasser gleichzeitig als Kühlmittel dient, und damit eine separate Elektrode auf der äusseren Oberfläche des dielektrischen Rohres 9 entbehrlich ist.
- Ist die zu bestrahlende Flüssigkeit kein Elektrolyt, so kann eine der im Zusammenhang mit Fig. 1 genannten Elektroden (transparente elektrisch leitende Schicht, Drahtnetz) auf die äussere Oberfläche des dielektrischen Rohres 9 aufgebracht sein.
- Im Ausführungsbeispiel nach Fig. 3 ist ein mit einer transparenten elektrisch leitenden Innenelektrode 14 versehenes Quarzrohr 9 koaxial in einem Metallrohr 8 angeordnet. Zwischen beiden Rohren 8, 9 erstreckt sich ein ringförmiger Entladungsspalt 12. Das Metallrohr 8 ist unter Bildung eines ringförmigen Kühlspaltes 15, durch den ein Kühlmittel, z.B. Wasser, hindurchleitbar ist, von einem äusseren Rohr 10 umgeben. Die Wechselstromquelle 7 ist zwischen die Innenelektrode 14 und das Metallrohr 8 geschaltet.
- Wie im Falle der Fig. 2 wird durch den Innenraum 16 des dielektrischen Rohres 9 die zu bestrahlende Substanz geführt und dient - sofern geeignet - gleichzeitig als Kühlmittel.
- Auch bei der Anordnung nach Fig. 3 kann neben festen, auf dem Rohrinneren angebrachten Innenelektroden 14 (Schichten, Drahtnetz) ein Elektrolyt, z.B. Wasser als Elektrode Verwendung finden.
- Sowohl bei Aussenstrahlern gemäss Fig. 2 als auch bei Innenstrahlern nach Fig. 3 erfolgt die Distanzierung bzw. relative Fixierung der einzelnen Rohre gegeneinander durch Distanzierungselemente, wie sie in der Ozontechnik verwendet werden.
- Experimente haben gezeigt, dass es vorteilhaft sein kann, bei bestimmten Füllgasen hermetisch abgeschlossene Entladungsgeometrien, z.B. abgeschmolzene Quarz- oder Glasbehälter, zu verwenden. In einer solchen Konfiguration kommt das Füllgas nicht mehr mit einer metallischen Elektrode in Berührung, die Entladung ist allseits von Dielektrika begrenzt.
Der prinzipielle Aufbau eines derartigen Hochleistungsstrahlers geht aus Fig. 4 hervor. Dort sind die mit Fig. 1 gleichwirkenden Teile mit denselben Bezugszeichen versehen. Der prinzipielle Unterschied zwischen Fig. 1 und Fig. 4 besteht in der Zwischenschaltung eines zweiten Dielektrikums 17 zwischen Entladungsraum 5 und metallischer Elektrode 1. Wie im Falle der Fig. 1 ist die metallische Elektrode 1 durch ein Kühlmedium 2 gekühlt; die Strahlung verlässt den Entladungsraum 5 durch das für die Strahlung durchlässige Dielektrikum 4 und das als zweite Elektrode dienende Drahtnetz 6. - Eine praktische Realisierung eines derartigen Hochleistungsstrahlers ist in Fig. 5 schematisch veranschaulicht. Ein doppelwandiges Quarzrohr 18, bestehend aus einem Innenrohr 19 und einem Aussenrohr 20 ist aussen von einem Drahtnetz 6 umgeben, das als erste Elektrode dient. Die zweite Elektrode ist als Metallschicht 21 an der Innenwandung des Innenrohrs 19 ausgeführt. Die Wechselstromquelle 7 ist an diese beiden Elektroden angeschlossen. Der Ringraum zwischen Innen- und Aussenrohr dient als Entladungsraum 5. Dieser ist durch Abschmelzen des Füllstutzens hermetisch gegenüber dem Aussenraum abgeschlossen. Die Kühlung des Strahlers erfolgt durch Hindurchleiten eines Kühlmittels durch den Innenraum des Innenrohrs 19, wobei zur Kühlmittelführung ein Rohr 23 in das Innenrohr 19 unter Belassung eines Ringraums 24 zwischen Innenrohr 19 und Rohr 23 eingesetzt ist. Die Strömungsrichtung des Kühlmittels ist durch Pfeile verdeutlicht. Auch der hermetisch abgeschlossene Strahler nach Fig. 5 lässt sich als Innenstrahler analog Fig. 3 betreiben, wenn man die Kühlung aussen anbringt und die UV-durchlässige Elektrode innen.
- Im Lichte der Ausführungen zu den in den Figuren 1 bis 3 beschriebenen Anordnungen versteht es sich von selbst, dass auch die Hochleistungsstrahler gemäss Fig. 4 und 5 in mannigfaltiger Weise abgewandelt werden können, ohne den Rahmen der Erfindung zu verlassen:
So kann bei der Ausführung nach Fig. 4 auf die metallische Elektrode 1 verzichtet werden, wenn das Kühlmedium ein Elektrolyt ist, der gleichzeitig als Elektrode dient. Auch kann das Drahtnetz 6 durch eine elektrisch leitfähige, für die Strahlung durchlässige Schicht ersetzt werden. - Auch im Falle der Fig. 5 kann das Drahtnetz 6 durch eine derartige Schicht ersetzt werden. Bildet man die Metallschicht 21 als für die Strahlung durchlässige Schicht, z.B. aus Indium- oder Zinnoxid, aus, so kann die Strahlung unmittelbar auf das Kühlmedium, z.B. Wasser, einwirken. Ist das Kühlmittel selbst ein Elektrolyt, so kann dieses die Funktion der Elektrode 21 übernehmen.
- Bei den vorgeschlagenen inkohärenten Strahlern wird jedes Volumenelement im Entladungsspalt seine Strahlung in den ganzen Raumwinkel 4π abstrahlen. Will man nur die Strahlung ausnutzen, die aus der UV-durchlässigen Elektrode 6 austritt, kann man die nutzbare Strahlung praktisch verdoppeln, wenn die Gegenelektrode 21 aus einem Material ist, das UV-Strahlung gut reflektiert (z.B. Aluminium). Bei der Anordnung der Fig. 5 könnte die innere Elektrode eine Aluminiumbedampfung sein.
- Für die UV-durchlässige elektrisch leitfähige Elektrode 6 bieten sich auch dünne (0.1-1µm) Schichten aus Alkalimetallen an. Wie bekannt ist, weisen die Alkalimetalle Lithium, Kalium, Rubidium, Cäsium im ultravioletten Spektralbereich eine hohe Transparenz bei geringer Reflexion auf. Auch Legierungen (z.B. 25 % Natrium / 75 % Kalium) bieten sich an. Da die Alkali-Metalle mit Luft (z.T. sehr heftig) reagieren, muss man sie nach der Aufbringung im Vakuum mit einer UV-durchlässigen Schutzschicht (z.B. Mg F₂) versehen.
Claims (16)
- UV-Strahler mit einem mit Füllgas gefüllten, von Wänden begrenzten Entladungsraum (5), wobei mindestens eine Wand von einem Dielektrikum (4;9;17;19;20) gebildet wird, mit einer ersten (6;10;14) und einer zweiten metallischen Elektrode (1;8;21), wobei die erste Elektrode auf der dem Entladungsraum (5) abgewandten Oberfläche des Dielektrikums angeordnet ist, und einer an die beiden Elektroden angeschlossenen Wechselstromquelle (7) zur Speisung der Entladung, sowie Mitteln zur Leitung der durch stille elektrische Entladungen erzeugten Strahlung in einen Aussenraum, dadurch gekennzeichnet, dass die erste Elektrode aus linien- oder streifenförmigem Metall besteht, dass sowohl diese erste Elektrode als auch das Dielektrikum für die durch die stillen elektrischen Entladungen erzeugte Strahlung durchlässig sind, und dass zumindest die zweite Elektrode gekühlt ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass die erste Elektrode aus auf das Dielektrikum aufgebrachten Leiterbahnen besteht.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Elektrode (1;8;21) eine UV-Licht reflektierende Schicht, vorzugsweise Aluminiumschicht ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass das Füllgas ein unter Entladungsbedingungen Excimere bildendes Edelgas oder Edelgasgemisch ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass das Füllgas Quecksilber, Stickstoff, Selen, Deuterium oder ein Gemisch dieser Substanzen allein oder mit einem Edelgas ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Metallelektrode (1) und das Dielektrikum (4) plattenförmig ausgebildet sind und die zweite Metallelektrode (1) von dem Dielektrikum (4) mittels Distanzstücken (3) distanziert ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Metallelektrode (8) und das Dielektrikum (9) rohrförmig ausgebildet sind und zwischen sich den Entladungsraum (12) bilden.
- UV-Strahler nach Anspruch 7, dadurch gekennzeichnet, dass das Dielektrikum (9) die zweite Metallelektroden (8) konzentrisch umgibt und an seiner äusseren Oberfläche mit einer transparenten elektrisch leitenden Schicht versehen ist oder unmittelbar an einen Elektrolyt angrenzt, welcher die erste Elektrode bildet.
- UV-Strahler nach Anspruch 7, dadurch gekennzeichnet, dass das Dielektrikum (9) konzentrisch innerhalb der zweiten Metallelektrode (8) angeordnet ist und seine innere Oberfläche mit einer transparenten elektrisch leitenden Schicht (14) versehen ist oder an einen Elektrolyt angrenzt, welcher die erste Elektrode bildet.
- UV-Strahler nach Anspruch 9, dadurch gekennzeichnet, dass die zweite Metallelektrode (8) unter Belassung eines Kühlspaltes (15) von einem Rohr (10') umgeben ist, durch welchen Kühlspalt ein Kühlmittel hindurchleitbar ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass der Entladungsraum (5) im wesentlichen durch zwei distanzierte Platten (4,17) aus dielektrischen Material gebildet ist, an welche sich nach aussen hin Elektroden (6,1) anschliessen, wovon die eine (1) gekühlt ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass der Entladungsraum (5) durch den Ringraum zweier Rohre (19,20) aus dielektrischem Material gebildet ist, wobei die dem Entladungsraum (5) abgewandten Oberflächen der Rohre mit einer für die Strahlung durchlässigen ersten Elektrode (6) und mit einer gekühlten zweiten Elektrode (21) versehen sind.
- UV-Strahler nach Anspruch 12, dadurch gekennzeichnet, dass die Innenfläche des inneren Rohres (19) mit einer Elektrode (21) versehen ist, dass in den Innenraum des inneren Rohres (19) und von diesem distanziert ein Kühlmittelführungsrohr (23) hineinragt, durch welches ein Kühlmittel zuführbar und durch den Ringraum (24) zwischen diesem und dem inneren Rohr (19) entlang der besagten Elektrode (21) abführbar ist.
- UV-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass das Füllgas ein Edelgas/Halogen-Gemisch, vorzugsweise ein Ar/F-, Kr/F-, Xe/Cl-, Xe/J-Gemisch, ist.
- UV-Strahler nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Füllgas ein Puffergas in Form eines zusätzlichen Edelgases, vorzugsweise Ar, He oder Ne, emthält.
- UV-Strahler nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass zumindest die zweite Elektrode (1) flüssigkeitsgekühlt ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2924/86A CH670171A5 (de) | 1986-07-22 | 1986-07-22 | |
CH2924/86 | 1986-07-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0254111A1 EP0254111A1 (de) | 1988-01-27 |
EP0254111B1 true EP0254111B1 (de) | 1992-01-02 |
Family
ID=4244683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87109674A Expired - Lifetime EP0254111B1 (de) | 1986-07-22 | 1987-07-06 | UV-Strahler |
Country Status (5)
Country | Link |
---|---|
US (1) | US4837484A (de) |
EP (1) | EP0254111B1 (de) |
CA (1) | CA1288800C (de) |
CH (1) | CH670171A5 (de) |
DE (1) | DE3775647D1 (de) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0363832A1 (de) * | 1988-10-10 | 1990-04-18 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0371304A1 (de) * | 1988-12-01 | 1990-06-06 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0378826A2 (de) * | 1989-01-17 | 1990-07-25 | Heidelberger Druckmaschinen Aktiengesellschaft | Einrichtung zum Trocknen von Farben auf Papier |
US4945290A (en) * | 1987-10-23 | 1990-07-31 | Bbc Brown Boveri Ag | High-power radiator |
EP0385205A1 (de) * | 1989-02-27 | 1990-09-05 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0389980A1 (de) * | 1989-03-29 | 1990-10-03 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
WO1991009984A1 (de) * | 1989-12-22 | 1991-07-11 | Asea Brown Boveri Aktiengesellschaft | Beschichtungsverfahren |
CH678128A5 (en) * | 1989-01-26 | 1991-07-31 | Asea Brown Boveri | High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode |
EP0458140A1 (de) * | 1990-05-22 | 1991-11-27 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0459127A1 (de) * | 1990-04-24 | 1991-12-04 | Asea Brown Boveri Ag | Hochleistungsstrahler mit Stromversorgungseinrichtung |
EP0489184A1 (de) * | 1990-12-03 | 1992-06-10 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0510503A2 (de) * | 1991-04-25 | 1992-10-28 | Heraeus Noblelight GmbH | Verfahren zur Behandlung von Oberflächen |
EP0515711A1 (de) * | 1991-05-27 | 1992-12-02 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0517929A1 (de) * | 1991-06-01 | 1992-12-16 | Heraeus Noblelight GmbH | Bestrahlungseinrichtung mit einem Hochleistungsstrahler |
EP0547366A1 (de) * | 1991-12-09 | 1993-06-23 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
US5225251A (en) * | 1989-12-22 | 1993-07-06 | Asea Brown Boveri Aktiengesellschaft | Method for forming layers by UV radiation of aluminum nitride |
US5288305A (en) * | 1991-03-20 | 1994-02-22 | Asea Brown Boveri Ltd. | Method for charging particles |
DE4242171A1 (de) * | 1992-12-15 | 1994-06-16 | Heraeus Noblelight Gmbh | Flüssigkeitsentkeimung |
DE4332866A1 (de) * | 1993-09-27 | 1995-03-30 | Fraunhofer Ges Forschung | Oberflächenbehandlung mit Barrierenentladung |
US5432398A (en) * | 1992-07-06 | 1995-07-11 | Heraeus Noblelight Gmbh | High-power radiator with local field distortion for reliable ignition |
EP0721204A2 (de) * | 1993-09-08 | 1996-07-10 | Ushiodenki Kabushiki Kaisha | Entladungslampe mit dieelektrischer Barriere |
EP0732727A2 (de) * | 1995-02-04 | 1996-09-18 | Leybold Aktiengesellschaft | Verwendung und Verfahren zur Behandlung von Oberflächen mittels einer dielektrisch behinderten Entladungsvorrichtung, die Plasmateilchen und/oder UV-Strahlung erzeugt |
EP0782871A2 (de) | 1995-11-22 | 1997-07-09 | Heraeus Noblelight GmbH | Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung |
EP0818206A2 (de) * | 1996-07-12 | 1998-01-14 | Heraeus Noblelight GmbH | Verfahren zum Desinfizieren und Reinigen von Kleinteilen und dafür geeignete Vorrichtung |
US6060828A (en) * | 1996-09-11 | 2000-05-09 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Electric radiation source and irradiation system with this radiation source |
US6409842B1 (en) | 1999-11-26 | 2002-06-25 | Heraeus Noblelight Gmbh | Method for treating surfaces of substrates and apparatus |
DE19922566B4 (de) * | 1998-12-16 | 2004-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Erzeugung von Ultraviolettstrahlung |
WO2023222178A1 (de) | 2022-05-19 | 2023-11-23 | IOT - Innovative Oberflächentechnologien GmbH | Bestrahlungsgerät mit excimerstrahlern als uv-quelle |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH675504A5 (de) * | 1988-01-15 | 1990-09-28 | Asea Brown Boveri | |
US5118989A (en) * | 1989-12-11 | 1992-06-02 | Fusion Systems Corporation | Surface discharge radiation source |
DE59009300D1 (de) * | 1990-10-22 | 1995-07-27 | Heraeus Noblelight Gmbh | Hochleistungsstrahler. |
DE4041884A1 (de) * | 1990-12-27 | 1992-07-02 | Abb Patent Gmbh | Verfahren zur behandlung von oberflaechen |
US5220236A (en) * | 1991-02-01 | 1993-06-15 | Hughes Aircraft Company | Geometry enhanced optical output for rf excited fluorescent lights |
EP0509110B1 (de) | 1991-04-15 | 1995-06-21 | Heraeus Noblelight GmbH | Bestrahlungseinrichtung |
DE4113524A1 (de) * | 1991-04-25 | 1992-10-29 | Abb Patent Gmbh | Verfahren zur behandlung von oberflaechen |
EP0521553B1 (de) * | 1991-07-01 | 1996-04-24 | Koninklijke Philips Electronics N.V. | Hochdrucksglimmentladungslampe |
DE4208376A1 (de) * | 1992-03-16 | 1993-09-23 | Asea Brown Boveri | Hochleistungsstrahler |
DE4235743A1 (de) * | 1992-10-23 | 1994-04-28 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
DE4238324A1 (de) * | 1992-11-13 | 1994-05-19 | Abb Research Ltd | Verfahren und Einrichtung zur Entgiftung von schadstoffhaltigen Gasen |
DE4242172A1 (de) * | 1992-12-15 | 1994-06-16 | Heraeus Noblelight Gmbh | Verfahren zur Entkeimung |
DE4243210A1 (de) * | 1992-12-19 | 1994-06-30 | Heraeus Noblelight Gmbh | Hochleistungsstrahler |
DE4243208A1 (de) * | 1992-12-19 | 1994-06-23 | Heraeus Noblelight Gmbh | Verfahren zur Abwasserreinigung |
DE69409677T3 (de) * | 1993-01-20 | 2001-09-20 | Ushiodenki K.K., Tokio/Tokyo | Entladungslampe mit dielektrischer Sperrschicht |
DE4302465C1 (de) * | 1993-01-29 | 1994-03-10 | Fraunhofer Ges Forschung | Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung |
DE4305704B4 (de) * | 1993-02-25 | 2006-02-16 | Matter + Siegmann Ag | Verfahren und Vorrichtung zur Untersuchung von in einem Gas befindlichen Partikeln |
DE4314510A1 (de) * | 1993-05-03 | 1994-11-10 | Abb Research Ltd | Verfahren zur Erzeugung von Ozon |
DE4342643C2 (de) * | 1993-09-13 | 1999-04-29 | Fraunhofer Ges Forschung | Erwärmungsarme Fixierung mit Barrierenentladung in Tintenstrahldruckern |
TW260806B (de) * | 1993-11-26 | 1995-10-21 | Ushio Electric Inc | |
DE4415242A1 (de) * | 1994-04-30 | 1995-11-02 | Wissenschaftlich Tech Optikzen | Quasi-kontinuierlich emittierender UV-Laser, insbesondere Excimer-Laser |
DE4430300C1 (de) * | 1994-08-26 | 1995-12-21 | Abb Research Ltd | Excimerstrahler und dessen Verwendung |
JP2775699B2 (ja) * | 1994-09-20 | 1998-07-16 | ウシオ電機株式会社 | 誘電体バリア放電ランプ |
JP3025414B2 (ja) * | 1994-09-20 | 2000-03-27 | ウシオ電機株式会社 | 誘電体バリア放電ランプ装置 |
JP3082638B2 (ja) * | 1995-10-02 | 2000-08-28 | ウシオ電機株式会社 | 誘電体バリア放電ランプ |
DE19627119A1 (de) * | 1996-07-05 | 1998-01-15 | Hassia Verpackung Ag | Vorrichtung zum Entkeimen und/oder Sterilisieren von Packstoffbahnen |
US5843374A (en) * | 1996-10-11 | 1998-12-01 | Tetra Laval Holdings & Finance, Sa | Method and apparatus for sterilizing packaging |
US6194821B1 (en) * | 1997-02-12 | 2001-02-27 | Quark Systems Co., Ltd. | Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus |
US6888041B1 (en) | 1997-02-12 | 2005-05-03 | Quark Systems Co., Ltd. | Decomposition apparatus of organic compound, decomposition method thereof, excimer UV lamp and excimer emission apparatus |
DE19708148A1 (de) * | 1997-02-28 | 1998-09-03 | Umex Ges Fuer Umweltberatung U | Vorrichtung zur UV-Bestrahlung strömender Flüssigkeiten und Gase mit elektrodenloser Entladungslampe |
DE19708149A1 (de) * | 1997-02-28 | 1998-09-03 | Umex Ges Fuer Umweltberatung U | Vorrichtung zur UV-Bestrahlung von Flüssigkeiten und Gasen |
US5945790A (en) * | 1997-11-17 | 1999-08-31 | Schaefer; Raymond B. | Surface discharge lamp |
US6015759A (en) * | 1997-12-08 | 2000-01-18 | Quester Technology, Inc. | Surface modification of semiconductors using electromagnetic radiation |
CA2224699A1 (en) * | 1997-12-12 | 1999-06-12 | Resonance Ltd. | Hollow electrode electrodeless lamp |
US6049086A (en) * | 1998-02-12 | 2000-04-11 | Quester Technology, Inc. | Large area silent discharge excitation radiator |
JP3346291B2 (ja) * | 1998-07-31 | 2002-11-18 | ウシオ電機株式会社 | 誘電体バリア放電ランプ、および照射装置 |
JP3264898B2 (ja) * | 1999-02-25 | 2002-03-11 | 大村 智 | 液状、泥状物の殺菌用紫外線照射装置 |
FR2792774B1 (fr) | 1999-04-26 | 2003-08-01 | Joint Industrial Processors For Electronics | Procede et dispositif de traitement d'un materiau par rayonnement electromagnetique et sous atmosphere controlee |
DE19920693C1 (de) * | 1999-05-05 | 2001-04-26 | Inst Oberflaechenmodifizierung | Offener UV/VUV-Excimerstrahler und Verfahren zur Oberflächenmodifizierung von Polymeren |
US6133694A (en) * | 1999-05-07 | 2000-10-17 | Fusion Uv Systems, Inc. | High-pressure lamp bulb having fill containing multiple excimer combinations |
KR20010106114A (ko) * | 1999-10-07 | 2001-11-29 | 다나카 아키히로 | 자외선 조사장치 |
IES20000339A2 (en) * | 2000-05-05 | 2001-11-14 | G A Apollo Ltd | Apparatus for irradiating material |
WO2002043781A1 (de) * | 2000-11-29 | 2002-06-06 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und vorrichtung zur oberflächenbehandlung von objekten |
US20020067130A1 (en) * | 2000-12-05 | 2002-06-06 | Zoran Falkenstein | Flat-panel, large-area, dielectric barrier discharge-driven V(UV) light source |
US6759664B2 (en) * | 2000-12-20 | 2004-07-06 | Alcatel | Ultraviolet curing system and bulb |
US7381976B2 (en) | 2001-03-13 | 2008-06-03 | Triton Thalassic Technologies, Inc. | Monochromatic fluid treatment systems |
DE10112900C1 (de) * | 2001-03-15 | 2002-07-11 | Heraeus Noblelight Gmbh | Excimer-Strahler, insbesondere UV-Strahler |
US6597003B2 (en) * | 2001-07-12 | 2003-07-22 | Axcelis Technologies, Inc. | Tunable radiation source providing a VUV wavelength planar illumination pattern for processing semiconductor wafers |
US6646256B2 (en) | 2001-12-18 | 2003-11-11 | Agilent Technologies, Inc. | Atmospheric pressure photoionization source in mass spectrometry |
US6559607B1 (en) | 2002-01-14 | 2003-05-06 | Fusion Uv Systems, Inc. | Microwave-powered ultraviolet rotating lamp, and process of use thereof |
US20030157000A1 (en) * | 2002-02-15 | 2003-08-21 | Kimberly-Clark Worldwide, Inc. | Fluidized bed activated by excimer plasma and materials produced therefrom |
ATE366624T1 (de) * | 2002-04-29 | 2007-08-15 | Fh Hildesheim Holzminden Goe | Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung |
DE10235036A1 (de) * | 2002-07-31 | 2004-02-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | UV-Lichtquelle |
DE10260579A1 (de) * | 2002-12-21 | 2004-07-08 | Gesellschaft zur Förderung der Spektrochemie und angewandten Spektroskopie e.V. | Verfahren zur Gasionisierung eines Analyten in einem Ionenbeweglichkeitsspektrometer sowie Ionenbeweglichkeitsspektrometer |
RU2236060C1 (ru) * | 2002-12-25 | 2004-09-10 | Закрытое акционерное общество Научно-производственный центр "СОЛИТОН-НТТ" | Газоразрядный источник ультрафиолетового излучения |
US7268355B2 (en) | 2002-12-27 | 2007-09-11 | Franek Olstowski | Excimer UV fluorescence detection |
US6971939B2 (en) * | 2003-05-29 | 2005-12-06 | Ushio America, Inc. | Non-oxidizing electrode arrangement for excimer lamps |
DE102004018887B4 (de) * | 2004-04-15 | 2009-04-16 | Heraeus Quarzglas Gmbh & Co. Kg | Verfahren für die Herstellung eines Bauteils aus Quarzglas zum Einsatz mit einer UV-Strahlenquelle und Verfahren für die Eignungsdiagnose eines derartigen Quarzglas-Bauteils |
DE102004020398A1 (de) * | 2004-04-23 | 2005-11-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Dielektrische Barriere-Entladungslampe mit Außenelektroden und Beleuchtungssystem mit dieser Lampe |
DE102004022859B4 (de) * | 2004-05-06 | 2006-04-13 | Kalle Gmbh | Künstliche Nahrungsmittelhülle sowie Verfahren zu deren Herstellung |
US7196473B2 (en) * | 2004-05-12 | 2007-03-27 | General Electric Company | Dielectric barrier discharge lamp |
CN101133475B (zh) * | 2004-07-09 | 2012-02-01 | 皇家飞利浦电子股份有限公司 | 带有反射器的uvc/vuv电介质阻挡放电灯 |
DE102005007370B3 (de) * | 2005-02-17 | 2006-09-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Kompakte UV-Lichtquelle |
EP1972000A4 (de) * | 2005-12-21 | 2011-10-26 | Trojan Techn Inc | Excimerstrahlungslampenbaugruppe und quellenmodul und fluidbehandlungssystem damit |
WO2007071043A2 (en) * | 2005-12-21 | 2007-06-28 | Trojan Technologies Inc. | Excimer radiation lamp assembly, and source module and fluid treatment system containing same |
US20090274576A1 (en) * | 2006-01-18 | 2009-11-05 | Barry Ressler | System and method for container sterilization using UV light source |
JP4971665B2 (ja) * | 2006-03-31 | 2012-07-11 | 公立大学法人名古屋市立大学 | 皮膚疾患治療用光線治療器 |
EP2046687B1 (de) * | 2006-07-13 | 2010-02-10 | Philips Intellectual Property & Standards GmbH | Flüssigkeitsverarbeitungssystem mit einem strahlungsquellenmodul und einem kühlmittel |
DE102007030915A1 (de) * | 2007-07-03 | 2009-01-22 | Cinogy Gmbh | Vorrichtung zur Behandlung von Oberflächen mit einem mittels einer Elektrode über ein Feststoff-Dielektrikum durch eine dielektrische behinderte Gasentladung erzeugten Plasma |
DE112007003669A5 (de) * | 2007-11-26 | 2011-01-13 | Osram Gesellschaft mit beschränkter Haftung | Dielektrische Barrieren-Entladungslampe in Doppelrohrkonfiguration |
JP2011522381A (ja) * | 2008-05-30 | 2011-07-28 | コロラド ステート ユニバーシティ リサーチ ファンデーション | プラズマに基づく化学源装置およびその使用方法 |
US8125333B2 (en) * | 2008-06-04 | 2012-02-28 | Triton Thalassic Technologies, Inc. | Methods, systems and apparatus for monochromatic UV light sterilization |
GB2474032B (en) * | 2009-10-01 | 2016-07-27 | Heraeus Noblelight Gmbh | Flash lamp or gas discharge lamp with integrated reflector |
TWI483287B (zh) | 2010-06-04 | 2015-05-01 | Access Business Group Int Llc | 感應耦合介電質屏障放電燈 |
DE102010043208A1 (de) | 2010-11-02 | 2012-05-03 | Osram Ag | Vorrichtung zum Bestrahlen von Oberflächen |
TWI483285B (zh) | 2012-11-05 | 2015-05-01 | Ind Tech Res Inst | 介電質屏障放電燈及其製作方法 |
US9117636B2 (en) | 2013-02-11 | 2015-08-25 | Colorado State University Research Foundation | Plasma catalyst chemical reaction apparatus |
US9269544B2 (en) | 2013-02-11 | 2016-02-23 | Colorado State University Research Foundation | System and method for treatment of biofilms |
US9532826B2 (en) | 2013-03-06 | 2017-01-03 | Covidien Lp | System and method for sinus surgery |
US9555145B2 (en) | 2013-03-13 | 2017-01-31 | Covidien Lp | System and method for biofilm remediation |
US10237962B2 (en) | 2014-02-26 | 2019-03-19 | Covidien Lp | Variable frequency excitation plasma device for thermal and non-thermal tissue effects |
US9722550B2 (en) | 2014-04-22 | 2017-08-01 | Hoon Ahn | Power amplifying radiator (PAR) |
DE102014207688A1 (de) * | 2014-04-24 | 2015-10-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur photochemischen Behandlung von verunreinigtem Wasser |
US10524849B2 (en) | 2016-08-02 | 2020-01-07 | Covidien Lp | System and method for catheter-based plasma coagulation |
KR102116867B1 (ko) | 2018-05-08 | 2020-05-29 | 주식회사 원익큐엔씨 | 임플란트 표면개질 처리장치 |
JP7132540B2 (ja) * | 2018-06-13 | 2022-09-07 | ウシオ電機株式会社 | エキシマランプ |
DE102018214715B4 (de) * | 2018-08-30 | 2020-07-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Abbau von Schadstoffen in Wasser |
DE102021108009B4 (de) | 2021-03-30 | 2023-02-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2769117A (en) * | 1952-07-01 | 1956-10-30 | Pirillo Santo | Ozone producing device |
US2943223A (en) * | 1958-05-02 | 1960-06-28 | Union Carbide Corp | Silent electric discharge light source |
DE6753632U (de) * | 1968-09-19 | 1969-05-29 | Philips Nv | Niederdruckentladungslampe mit einer den entladungsraum unschliessenden wand, die u.a. aus einen traeger besteht. |
NL6913956A (de) * | 1968-09-19 | 1970-03-23 | ||
DE2222454A1 (de) * | 1972-05-08 | 1973-11-22 | Patra Patent Treuhand | Gekuehlte fuesse fuer hochleistungsentladungslampe |
US3763806A (en) * | 1972-10-16 | 1973-10-09 | C & W Sewing Machine | Separately retractable paired needles |
FR2406606A1 (fr) * | 1977-10-18 | 1979-05-18 | Degremont | Electrode pour appareil generateur d'ozone |
US4179616A (en) * | 1978-02-21 | 1979-12-18 | Thetford Corporation | Apparatus for sanitizing liquids with ultra-violet radiation and ozone |
CH631950A5 (de) * | 1978-06-07 | 1982-09-15 | Bbc Brown Boveri & Cie | Vorrichtung zum entkeimen von fluessigkeiten, insbesondere wasser, mittels ultravioletter strahlen. |
US4266166A (en) * | 1979-11-09 | 1981-05-05 | Gte Laboratories Incorporated | Compact fluorescent light source having metallized electrodes |
JPS5834560A (ja) * | 1981-08-21 | 1983-03-01 | 周 成祥 | 放電灯ディスプレイ装置 |
US4427921A (en) * | 1981-10-01 | 1984-01-24 | Gte Laboratories Inc. | Electrodeless ultraviolet light source |
US4492898A (en) * | 1982-07-26 | 1985-01-08 | Gte Laboratories Incorporated | Mercury-free discharge lamp |
-
1986
- 1986-07-22 CH CH2924/86A patent/CH670171A5/de not_active IP Right Cessation
-
1987
- 1987-07-06 EP EP87109674A patent/EP0254111B1/de not_active Expired - Lifetime
- 1987-07-06 DE DE8787109674T patent/DE3775647D1/de not_active Expired - Lifetime
- 1987-07-21 CA CA000542606A patent/CA1288800C/en not_active Expired - Lifetime
- 1987-07-22 US US07/076,926 patent/US4837484A/en not_active Expired - Lifetime
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4945290A (en) * | 1987-10-23 | 1990-07-31 | Bbc Brown Boveri Ag | High-power radiator |
EP0363832A1 (de) * | 1988-10-10 | 1990-04-18 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
CH676168A5 (de) * | 1988-10-10 | 1990-12-14 | Asea Brown Boveri | |
US5006758A (en) * | 1988-10-10 | 1991-04-09 | Asea Brown Boveri Ltd. | High-power radiator |
EP0371304A1 (de) * | 1988-12-01 | 1990-06-06 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
JPH02199767A (ja) * | 1988-12-01 | 1990-08-08 | Asea Brown Boveri Ag | 高出力ビーム発生器 |
CH677846A5 (de) * | 1988-12-01 | 1991-06-28 | Asea Brown Boveri | |
EP0378826A2 (de) * | 1989-01-17 | 1990-07-25 | Heidelberger Druckmaschinen Aktiengesellschaft | Einrichtung zum Trocknen von Farben auf Papier |
EP0378826A3 (de) * | 1989-01-17 | 1991-04-17 | Heidelberger Druckmaschinen Aktiengesellschaft | Einrichtung zum Trocknen von Farben auf Papier |
CH678128A5 (en) * | 1989-01-26 | 1991-07-31 | Asea Brown Boveri | High power ultraviolet lamp with particle density control - heats and cools mercury reservoir connected to discharge space above dielectric covered wire counter electrode |
EP0385205A1 (de) * | 1989-02-27 | 1990-09-05 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
CH677292A5 (de) * | 1989-02-27 | 1991-04-30 | Asea Brown Boveri | |
US5013959A (en) * | 1989-02-27 | 1991-05-07 | Asea Brown Boveri Limited | High-power radiator |
CH677557A5 (de) * | 1989-03-29 | 1991-05-31 | Asea Brown Boveri | |
US5049777A (en) * | 1989-03-29 | 1991-09-17 | Asea Brown Boveri Limited | High-power radiator |
EP0389980A1 (de) * | 1989-03-29 | 1990-10-03 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
WO1991009984A1 (de) * | 1989-12-22 | 1991-07-11 | Asea Brown Boveri Aktiengesellschaft | Beschichtungsverfahren |
US5225251A (en) * | 1989-12-22 | 1993-07-06 | Asea Brown Boveri Aktiengesellschaft | Method for forming layers by UV radiation of aluminum nitride |
EP0459127A1 (de) * | 1990-04-24 | 1991-12-04 | Asea Brown Boveri Ag | Hochleistungsstrahler mit Stromversorgungseinrichtung |
CH680246A5 (de) * | 1990-04-24 | 1992-07-15 | Asea Brown Boveri | |
EP0458140A1 (de) * | 1990-05-22 | 1991-11-27 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
CH680099A5 (de) * | 1990-05-22 | 1992-06-15 | Asea Brown Boveri | |
US5214344A (en) * | 1990-05-22 | 1993-05-25 | Asea Brown Boveri Ltd. | High-power radiator |
US5198717A (en) * | 1990-12-03 | 1993-03-30 | Asea Brown Boveri Ltd. | High-power radiator |
EP0489184A1 (de) * | 1990-12-03 | 1992-06-10 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
US5288305A (en) * | 1991-03-20 | 1994-02-22 | Asea Brown Boveri Ltd. | Method for charging particles |
EP0510503A2 (de) * | 1991-04-25 | 1992-10-28 | Heraeus Noblelight GmbH | Verfahren zur Behandlung von Oberflächen |
EP0510503A3 (en) * | 1991-04-25 | 1993-03-17 | Abb Patent Gmbh | Process for the treatment of surfaces |
EP0515711A1 (de) * | 1991-05-27 | 1992-12-02 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
EP0517929A1 (de) * | 1991-06-01 | 1992-12-16 | Heraeus Noblelight GmbH | Bestrahlungseinrichtung mit einem Hochleistungsstrahler |
EP0547366A1 (de) * | 1991-12-09 | 1993-06-23 | Heraeus Noblelight GmbH | Hochleistungsstrahler |
US5386170A (en) * | 1991-12-09 | 1995-01-31 | Heraeus Noblelight Gmbh | High-power radiator |
US5432398A (en) * | 1992-07-06 | 1995-07-11 | Heraeus Noblelight Gmbh | High-power radiator with local field distortion for reliable ignition |
DE4242171A1 (de) * | 1992-12-15 | 1994-06-16 | Heraeus Noblelight Gmbh | Flüssigkeitsentkeimung |
EP0721204A2 (de) * | 1993-09-08 | 1996-07-10 | Ushiodenki Kabushiki Kaisha | Entladungslampe mit dieelektrischer Barriere |
DE4332866A1 (de) * | 1993-09-27 | 1995-03-30 | Fraunhofer Ges Forschung | Oberflächenbehandlung mit Barrierenentladung |
EP0732727A2 (de) * | 1995-02-04 | 1996-09-18 | Leybold Aktiengesellschaft | Verwendung und Verfahren zur Behandlung von Oberflächen mittels einer dielektrisch behinderten Entladungsvorrichtung, die Plasmateilchen und/oder UV-Strahlung erzeugt |
US5698039A (en) * | 1995-02-04 | 1997-12-16 | Leybold Ag | Process for cleaning a substrate using a barrier discharge |
EP0782871A2 (de) | 1995-11-22 | 1997-07-09 | Heraeus Noblelight GmbH | Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung |
US5955840A (en) * | 1995-11-22 | 1999-09-21 | Heraeus Noblelight Gmbh | Method and apparatus to generate ultraviolet (UV) radiation, specifically for irradiation of the human body |
EP0818206A2 (de) * | 1996-07-12 | 1998-01-14 | Heraeus Noblelight GmbH | Verfahren zum Desinfizieren und Reinigen von Kleinteilen und dafür geeignete Vorrichtung |
US6060828A (en) * | 1996-09-11 | 2000-05-09 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Electric radiation source and irradiation system with this radiation source |
DE19922566B4 (de) * | 1998-12-16 | 2004-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Erzeugung von Ultraviolettstrahlung |
US6409842B1 (en) | 1999-11-26 | 2002-06-25 | Heraeus Noblelight Gmbh | Method for treating surfaces of substrates and apparatus |
US6588122B2 (en) | 1999-11-26 | 2003-07-08 | Heraeus Noblelight Gmbh | Method for treating surfaces of substrates and apparatus |
WO2023222178A1 (de) | 2022-05-19 | 2023-11-23 | IOT - Innovative Oberflächentechnologien GmbH | Bestrahlungsgerät mit excimerstrahlern als uv-quelle |
Also Published As
Publication number | Publication date |
---|---|
DE3775647D1 (de) | 1992-02-13 |
EP0254111A1 (de) | 1988-01-27 |
CH670171A5 (de) | 1989-05-12 |
CA1288800C (en) | 1991-09-10 |
US4837484A (en) | 1989-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0254111B1 (de) | UV-Strahler | |
EP0312732B1 (de) | Hochleistungsstrahler | |
EP0324953B1 (de) | Hochleistungsstrahler | |
EP0578953B1 (de) | Hochleistungsstrahler | |
EP0458140B1 (de) | Hochleistungsstrahler | |
DE4113241C2 (de) | Gepulster Gasentladungslaser | |
EP0371304B1 (de) | Hochleistungsstrahler | |
EP0389980B1 (de) | Hochleistungsstrahler | |
DE4140497C2 (de) | Hochleistungsstrahler | |
CH676168A5 (de) | ||
EP0482230B1 (de) | Hochleistungsstrahler | |
EP0517929B1 (de) | Bestrahlungseinrichtung mit einem Hochleistungsstrahler | |
DE19543342A1 (de) | Verfahren und Strahlungsanordnung zur Erzeugung von UV-Strahlen zur Körperbestrahlung sowie Verwendung | |
DE4302465C1 (de) | Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung | |
EP0489184A1 (de) | Hochleistungsstrahler | |
DE1489527B2 (de) | Quecksilberdampfhochdrucklampe | |
DE4235743A1 (de) | Hochleistungsstrahler | |
DE4036122A1 (de) | Koronaentladungs-lichtquellenzelle | |
DE4208376A1 (de) | Hochleistungsstrahler | |
DE4203345A1 (de) | Hochleistungsstrahler | |
DE2461568A1 (de) | Dampfentladungslampe | |
DE3240757A1 (de) | Optische anzeigevorrichtung | |
EP0334355B1 (de) | Wandstabilisierte Hochdruck-Entladungslampe | |
DE19613357A1 (de) | Gepulste Lichtquelle | |
WO1994013330A1 (de) | Flüssigkeitsentkeimung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19880627 |
|
17Q | First examination report despatched |
Effective date: 19890905 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3775647 Country of ref document: DE Date of ref document: 19920213 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
ITTA | It: last paid annual fee | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: HERAEUS NOBLELIGHT GMBH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CESSIONE;HERAEUS NOBLELIGHT GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
NLS | Nl: assignments of ep-patents |
Owner name: HERAEUS NOBLELIGHT GMBH TE KLEINOSTHEIM, BONDSREPU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060714 Year of fee payment: 20 Ref country code: FR Payment date: 20060714 Year of fee payment: 20 Ref country code: DE Payment date: 20060714 Year of fee payment: 20 Ref country code: CH Payment date: 20060714 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060720 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060731 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20060822 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070706 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20070706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070705 |
|
BE20 | Be: patent expired |
Owner name: *HERAEUS NOBLELIGHT G.M.B.H. Effective date: 20070706 |