Nothing Special   »   [go: up one dir, main page]

EP0130177A1 - Sintered iron-base alloy - Google Patents

Sintered iron-base alloy Download PDF

Info

Publication number
EP0130177A1
EP0130177A1 EP84890116A EP84890116A EP0130177A1 EP 0130177 A1 EP0130177 A1 EP 0130177A1 EP 84890116 A EP84890116 A EP 84890116A EP 84890116 A EP84890116 A EP 84890116A EP 0130177 A1 EP0130177 A1 EP 0130177A1
Authority
EP
European Patent Office
Prior art keywords
alloy
carbon
niobium
chromium
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84890116A
Other languages
German (de)
French (fr)
Other versions
EP0130177B1 (en
Inventor
Alfred Dr. Kulmburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0130177A1 publication Critical patent/EP0130177A1/en
Application granted granted Critical
Publication of EP0130177B1 publication Critical patent/EP0130177B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Definitions

  • the present invention relates to an iron-based sintered alloy, especially for cold work tools.
  • a sintered alloy for internal combustion engines which, in addition to carbon, chromium, niobium, molybdenum and nickel, has a minimum content of 0.1% by weight of phosphorus, whereby liquid phase sintering at temperatures below 1250 ° C. is achieved shall be.
  • Such an alloy is provided for valve seats, piston rings and the like.
  • Ledeburitic steels with 12% chromium and a carbon content of around 3% have a particularly high carbide content of around 30% by volume. A hardness of approx. 66 to 70 HRc can be achieved with this. These steels are characterized by high hardenability and excellent wear resistance as well as small dimensional changes during hardening. The mechanical strength and the hot formability are relatively low. In order to increase the hot formability, it has already been proposed to remodel such alloys using the electroslag remelting process melt. Thus, a slight increase, although the mechanical strength can be achieved, while at the same arnverformbarkeit to an improvement in the W to approximately twice the value.
  • the object of the present invention is now to provide an iron-based sintered alloy which has an increased carbide content, has increased mechanical strength values compared to a corresponding alloy obtained by melt metallurgy and which has a longer service life due to the increased carbide content , and which has a high thermoformability based on the carbide content.
  • An additional content of 0.4 to 0.7% by weight of manganese also improves the sinterability of the alloy.
  • the alloy can additionally have a content of 0.05 to 2.0% by weight of tantalum.
  • the alloy has a content of between 0.02 and 2.0% by weight of boron, it is completely surprising that the hot-formability is fully retained, and at the same time the service life can be increased via the boride content.
  • the alloys listed in Table 1 were produced by melt metallurgy, part of the melt being poured off directly, and another part being kept in a nitrogen atomization process to obtain the desired powder. This powder was processed by hot isostatic pressing at a temperature of approximately 1050 ° C. at 1000 bar and an exposure time of 3 hours. Samples were produced from the compacts or cast blocks thus obtained, which were then subjected to the tests were thrown. In order to determine the rotational speed at 1100 ° C., the samples were heated to 1100 ° C. and kept at this temperature for 15 minutes and then rotated in a warm torsion device until they broke. To determine the bending strength ( bB ) the sample was adjusted to a hardness of 63 HRc by tempering.
  • Table 2 compares the hardness, the flexural strength and the number of twists to break at 1100 ° C. of the cast samples with those obtained by sintered metallurgy. This comparison shows, on the one hand, that the hardness values of the alloys obtained by sinter metallurgy are the same or slightly higher than the comparative alloy. In contrast, the flexural strength of the powder metallurgical alloys is in any case higher. The speed of rotation of sintered metallurgical alloys is significantly higher than that of cast samples.
  • Alloy 2 has good hot formability despite the increased carbon content.
  • tantalum does not impair the strength and a corresponding deformability is still maintained.
  • the increased tantalum and niobium contents show a reduction in the bending strength and the deformability, which is directly attributable to the increased proportion of carbides.
  • wear resistance I increases wear resistance
  • niobium increases the wear resistance, whereby both the flexural strength and the warm torsion resistance are reduced.
  • alloys 8 and 10 the hot formability of the casting alloys is exceptional Lich bad, whereas this has been preserved with the powder metallurgical alloy.
  • Silicon increases the strength, as can be seen from the values for alloys 9 and 10.
  • the properties of alloy 11 essentially correspond to those of alloy 7, the addition of manganese increasing the sinterability. Due to the high carbon content of alloy 12, the cast alloy has extremely low values, whereas the powder metallurgical values still correspond.
  • the statements for alloy 13 correspond to those for alloy 12. Alloy 14 has a higher strength due to the increased silicon content, the deformability still being fully given.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

1. Sintered iron-base alloy with carbon, chromium, niobium, molybdenum, vanadium, tungsten, and optionally boron and/or tantalum, more particularly for cold-working tools, characterised in that it comprises the following percentages by weight : carbon 2.3 to 4.4, more particularly 3.5 to 4.4, chromium 11.0 to 15.0 molybdenum 0.2 to 2.0 vanadium 3.5 to 6.5 tungsten 0.2 to 3.0 niobium 0.1 to 2.5 preferably 0.02 to 0.5 silicon, preferably 0.4 to 0.7 manganese, preferably 0.05 to 2.0 tantalum, preferably 0.02 to 2.0 boron, the remainer being iron and impurities resulting from manufacture.

Description

Die vorliegende Erfindung bezieht sich auf eine Sinterlegierung auf Eisenbasis, insbesondere für Kaltarbeitswerkzeuge.The present invention relates to an iron-based sintered alloy, especially for cold work tools.

Aus der DE-OS 22 04 886 wird eine Legierung mit etwa 5 Gew.-% Molybdän, 6 Gew.-% wolfram, 4 Gew.-% Chrom, 2 Gew.-% Vanadium, 1 Gew.-% Kohlenstoff und Rest Eisen bekannt, die durch Mischung einer Legierung aus 24 Gew.-% Wolfram, 17 Gew.-% Chrom, 8 Gew.-% Vanadium, 19 Gew.-% Molybdän, 2 Gew.-% Silizium und 4 Gew.-% Kohlenstoff und einem duktilen Eisenpulver mit nachfolgendem Verpressen und Sintern erhalten wird.From DE-OS 22 04 886 an alloy with about 5 wt .-% molybdenum, 6 wt .-% tungsten, 4 wt .-% chromium, 2 wt .-% vanadium, 1 wt .-% carbon and the rest iron known by mixing an alloy of 24 wt .-% tungsten, 17 wt .-% chromium, 8 wt .-% vanadium, 19 wt .-% molybdenum, 2 wt .-% silicon and 4 wt .-% carbon and a ductile iron powder with subsequent pressing and sintering is obtained.

Aus der DE-OS 30 15 897 wird eine Sinterlegierung für Verbrennungsmotoren bekannt, die neben Kohlenstoff, Chrom, Niob, Molybdän und Nickel einen Mindestgehalt von 0,1 Gew.-% Phosphor ausweist, wodurch ein Flüssigphasensintern bei Temperaturen unterhalb von 1250 °C erreicht werden soll. Eine derartige Legierung ist für Ventilsitze, Kolbenringe und dgl. vorgesehen.From DE-OS 30 15 897 a sintered alloy for internal combustion engines is known which, in addition to carbon, chromium, niobium, molybdenum and nickel, has a minimum content of 0.1% by weight of phosphorus, whereby liquid phase sintering at temperatures below 1250 ° C. is achieved shall be. Such an alloy is provided for valve seats, piston rings and the like.

12 % Chrom aufweisende ledeburitische Stähle mit einem Kohlenstoff-Gehalt von etwa 3 %, weisen einen besonders hohen Carbidanteil von ca. 30 Vol.-% auf. Damit läßt sich eine Härte von ca. 66 bis 70 HRc erreichen. Diese Stähle zeichnen sich durch hohe Härtbarkeit und ausgezeichnete Verschleißbeständigkeit sowie geringe Maßänderungen beim Härten aus. Die mechanische Festigkeit sowie die Warmverformbarkeit ist relativ gering. Um die Warmverformbarkeit zu erhöhen, wurde bereits vorgeschlagen, derartige Legierungen mit dem Elektroschlackeumschmelzverfahren umzuschmelzen. Dadurch kann zwar eine leichte Steigerung der mechanischen Festigkeit erreicht werden, wobei gleichzeitig eine Verbesserung der Warnverformbarkeit auf ca. den doppelten Wert eintritt.Ledeburitic steels with 12% chromium and a carbon content of around 3% have a particularly high carbide content of around 30% by volume. A hardness of approx. 66 to 70 HRc can be achieved with this. These steels are characterized by high hardenability and excellent wear resistance as well as small dimensional changes during hardening. The mechanical strength and the hot formability are relatively low. In order to increase the hot formability, it has already been proposed to remodel such alloys using the electroslag remelting process melt. Thus, a slight increase, although the mechanical strength can be achieved, while at the same arnverformbarkeit to an improvement in the W to approximately twice the value.

Die Aufgabe der vorliegenden Erfindung besteht nun darin, eine Sinterlegierung auf Eisenbasis zu schaffen, die einen erhöhten Gehalt an Carbiden aufweist, gesteigerte Werte in der mechanischen Festigkeit gegenüber einer entsprechenden schmelzmetallurgisch gewonnenen Legierung besitzt, die auf Grund des erhöhten Carbid-Gehaltes eine höhere Standzeit aufweist, und die bezogen auf den Carbid-Gehalt eine hohe Warmverformbarkeit aufweist.The object of the present invention is now to provide an iron-based sintered alloy which has an increased carbide content, has increased mechanical strength values compared to a corresponding alloy obtained by melt metallurgy and which has a longer service life due to the increased carbide content , and which has a high thermoformability based on the carbide content.

Die erfindungsgemäße Sinterlegierung auf Eisenbasis, insbesondere für Kaltarbeitswerkzeuge, weist in Gew.-% einen Gehalt an

  • Kohlenstoff 2,3 bis 4,4, insbesondere 3,5 bis 4,4,
  • Chrom 11,0 bis 15,0
  • Molybdän 0,2 bis 2,0
  • Vanadin 3,5 bis 6,5
  • Wolfram 0,2 bis 3,0
  • Niob 0,1 bis 2,5

Rest Eisen und herstellungsbedingte Verunreinigungen auf.The sintered alloy based on iron, in particular for cold work tools, has a content in% by weight
  • Carbon 2.3 to 4.4, in particular 3.5 to 4.4,
  • Chromium 11.0 to 15.0
  • Molybdenum 0.2 to 2.0
  • Vanadium 3.5 to 6.5
  • Tungsten 0.2 to 3.0
  • Niobium 0.1 to 2.5

Remainder iron and manufacturing-related impurities.

Durch den hohen Anteil an Kohlenstoff und an Carbidbildnern kann ein Werkzeug, z.B. Preßstempel, Schneidwerkzeuge, Gesteinsbearbeitungswerkzeuge, Stanzwerkzeuge u. dgl., erhalten werden, das eine hohe Härte und damit Formbeständigkeit aufweist. Durch die gleichzeitige Anwesenheit von Vanadium und Wolfram wird eine bessere Einhärttiefe erreicht, wobei über den Niob-Gehalt eine höhere Härte bedingt wird. Völlig überraschend war, daß bei Zusatz von zwischen 0,2 und 0,5 Gew.-% Silizium eine Steigerung der mechanischen Festigkeit zu erreichen ist. Dieser Effekt könnte darauf zurückzuführen sein, daß bei der Herstellung des Metallpulvers sich der Silizium-Gehalt günstiger auf die sphärische Ausgestaltung der einzelnen Partikelchen auswirkt, wodurch ein günstigeres Sinterverhalten eintritt.Due to the high proportion of carbon and carbide formers, a tool, for example a press die, cutting tools, stone processing tools, punching tools and the like. Like. Are obtained, which has a high hardness and thus dimensional stability. The simultaneous presence of vanadium and tungsten results in a better hardening depth, whereby a higher hardness is caused by the niobium content. It was completely surprising that with the addition of between 0.2 and 0.5% by weight of silicon an increase in the mechanical strength can be achieved. This effect could be due to the fact that the silicon content has a more favorable effect on the spherical configuration of the individual particles during the production of the metal powder, as a result of which a more favorable sintering behavior occurs.

Ein zusätzlicher Gehalt von 0,4 bis 0,7 Gew.-% Mangan bewirkt ebenfalls eine bessere Sinterfähigkeit der Legierung.An additional content of 0.4 to 0.7% by weight of manganese also improves the sinterability of the alloy.

Um die Standzeit des Werkzeuges zu erhöhen, kann zusätzlich die Legierung einen Gehalt zwischen 0,05 bis 2,0 Gew.-% Tantal aufweisen.In order to increase the service life of the tool, the alloy can additionally have a content of 0.05 to 2.0% by weight of tantalum.

Weist die Legierung einen Gehalt zwischen 0,02 und 2,0 Gew.-% Bor auf, so zeigt sich völlig überraschend, daß die Warmverformbarkeit voll erhalten bleibt, wobei gleichzeitig über den Borid-Gehalt eine Erhöhung der Standzeit eintreten kann.If the alloy has a content of between 0.02 and 2.0% by weight of boron, it is completely surprising that the hot-formability is fully retained, and at the same time the service life can be increased via the boride content.

Im folgenden wird die Erfindung anhand der Beispiele näher erläutert.The invention is explained in more detail below with the aid of the examples.

Die in der Tabelle 1 angegebenen Legierungen wurden schmelzmetallurgisch hergestellt, wobei ein Teil der Schmelze direkt abgegossen wurde, und ein weiterer Teil zur Gewinnung des gewünschten Pulvers im Stickstoff-Verdüsungsver-Ifahren gehalten wurde. Dieses Pulver wurde durch heißisostatisches Verpressen bei einer Temperatur von ca. 1050 0c bei 1000 Bar und Einwirkungszeit 3 Stunden, verarbeitet. Aus den so gewonnenen Preßkörpern bzw. Gußblöcken wurden Proben hergestellt, die sodann den Untersuchungen unterworfen wurden. Zur Bestimmung der Verdrehzahl bei 1100 °C wurden die Proben auf 1100 °C erhitzt und 15 min auf dieser Temperatur gehalten und sodann in einer Warmtorsionseinrichtung bis zum Bruch verdreht. Zur Bestimmung der Biegebruchfestigkeit (

Figure imgb0001
bB) wurde die Probe durch Vergüten auf eine Härte von 63 HRc eingestellt.The alloys listed in Table 1 were produced by melt metallurgy, part of the melt being poured off directly, and another part being kept in a nitrogen atomization process to obtain the desired powder. This powder was processed by hot isostatic pressing at a temperature of approximately 1050 ° C. at 1000 bar and an exposure time of 3 hours. Samples were produced from the compacts or cast blocks thus obtained, which were then subjected to the tests were thrown. In order to determine the rotational speed at 1100 ° C., the samples were heated to 1100 ° C. and kept at this temperature for 15 minutes and then rotated in a warm torsion device until they broke. To determine the bending strength (
Figure imgb0001
bB ) the sample was adjusted to a hardness of 63 HRc by tempering.

In der Tabelle 2 sind die Härte, die Biegebruchfestigkeit sowie die Anzahl der Verdrehung bis zum Bruch bei 1100 °C von den gegossenen Proben, denjenigen, die auf sintermetallurgischem Wege gewonnen wurden, gegenübergestellt. Dieser Gegenüberstellung kann man einerseits entnehmen, daß die Härtewerte der sintermetallurgisch gewonnenen Legierungen gleich bzw. geringfügig höher als der Vergleichslegierung liegen. Demgegenüber liegt die Biegebruchfestigkeit der pulvermetallurgischen Legierungen jedenfalls höher. Die Verdrehzahl liegt bei den sintermetallurgischen Legierungen wesentlich höher als bei den gegossenen Proben.Table 2 compares the hardness, the flexural strength and the number of twists to break at 1100 ° C. of the cast samples with those obtained by sintered metallurgy. This comparison shows, on the one hand, that the hardness values of the alloys obtained by sinter metallurgy are the same or slightly higher than the comparative alloy. In contrast, the flexural strength of the powder metallurgical alloys is in any case higher. The speed of rotation of sintered metallurgical alloys is significantly higher than that of cast samples.

Die Legierung 2 weist trotz des erhöhten Kohlenstoffgehaltes gute Warmverformbarkeit auf. Wie bei Legierung 3 zu entnehmen, beeinträchtigt Tantal nicht die Festigkeit und eine entsprechende Verformbarkeit bleibt weiterhin erhalten. Bei den Legierungen 4, 5 und 6 kann durch den erhöhten Tantal- und Niobgehalt eine Absenkung der Biegefestigkeit und der Verformbarkeit festgestellt werden, was unmittelbar auf den erhöhten Anteil von Carbiden zurückzuführen ist. Allerdings wird dadurch die Verschleißfestigkeit I angehoben. Ein Zusatz von Niob erhöht, wie bei Legierung 7 zu entnehmen, die Verschleißbeständigkeit, wobei sowohl die Biegebruchfestigkeit als auch die Warmtorsionsbeständigkeit erniedrigt wird. Bei den Legierungen 8 und 10 ist die Warmverformbarkeit bei den Gußlegierungen außerordentlich schlecht, wohingegen diese bei der pulvermetallurgischen Legierung erhalten geblieben ist. Silizium erhöht, wie den Werten zu den Legierungen 9 und 10 zu entnehmen, die Festigkeit. Die Eigenschaften der Legierung 11 entsprechen im wesentlichen jenen der Legierung 7, wobei der Zusatz von Mangan die Sinterbarkeit erhöht. Auf Grund des hohen Kohlenstoffgehaltes der Legierung 12 weist die Gußlegierung außerordentlich niedrige Werte auf, wohingegen die pulvermetallurgischen Werte durchaus noch entsprechen. Die Aussagen für die Legierung 13 entsprechen jenen für die Legierung 12. Die Legierung 14 weist auf Grund des erhöhten Siliziumgehaltes eine höhere Festigkeit auf, wobei die Verformbarkeit noch voll gegeben ist.

Figure imgb0002
Figure imgb0003
Alloy 2 has good hot formability despite the increased carbon content. As can be seen with alloy 3, tantalum does not impair the strength and a corresponding deformability is still maintained. In the case of alloys 4, 5 and 6, the increased tantalum and niobium contents show a reduction in the bending strength and the deformability, which is directly attributable to the increased proportion of carbides. However, this increases wear resistance I. The addition of niobium, as can be seen in alloy 7, increases the wear resistance, whereby both the flexural strength and the warm torsion resistance are reduced. With alloys 8 and 10, the hot formability of the casting alloys is exceptional Lich bad, whereas this has been preserved with the powder metallurgical alloy. Silicon increases the strength, as can be seen from the values for alloys 9 and 10. The properties of alloy 11 essentially correspond to those of alloy 7, the addition of manganese increasing the sinterability. Due to the high carbon content of alloy 12, the cast alloy has extremely low values, whereas the powder metallurgical values still correspond. The statements for alloy 13 correspond to those for alloy 12. Alloy 14 has a higher strength due to the increased silicon content, the deformability still being fully given.
Figure imgb0002
Figure imgb0003

Claims (2)

1. Sinterlegierung auf Eisenbasis mit Kohlenstoff, Chrom, Niob, Molybdän, Vanadin, Wolfram und gegebenenfalls Bor und/oder Tantal, insbesondere für Kaltarbeitswerkezuge, dadurch gekennzeichnet, daß sie einen Gehalt an Gew.-% Kohlenstoff 2,3 bis 4,4, insbesondere 3,5 bis 4,4, Chrom 11,0 bis 15,0 Molybdän 0,2 bis 2,0 Vanadin 3,5 bis 6,5 Wolfram 0,2 bis 3,0 Niob 0,1 bis 2,5,
vorzugsweise 0,02 bis 0,5 Silizium, vorzugsweise 0,4 bis 0,7 Mangan, vorzugsweise 0,05 bis 2,0 Tantal, vorzugsweise 0,02 bis 2,0 Bor, Rest Eisen und herstellungsbedingte Verunreinigungen aufweist.
1. Sintered iron-based alloy with carbon, chromium, niobium, molybdenum, vanadium, tungsten and optionally boron and / or tantalum, in particular for cold work tools, characterized in that they contain a% by weight. Carbon 2.3 to 4.4, in particular 3.5 to 4.4, Chromium 11.0 to 15.0 Molybdenum 0.2 to 2.0 Vanadium 3.5 to 6.5 Tungsten 0.2 to 3.0 Niobium 0.1 to 2.5,
preferably 0.02 to 0.5 silicon, preferably 0.4 to 0.7 manganese, preferably 0.05 to 2.0 tantalum, preferably 0.02 to 2.0 boron, balance iron and production-related impurities.
2. Verwendung der Sinterlegierung nach Anspruch 1 für Kaltarbeitswerkzeuge.2. Use of the sintered alloy according to claim 1 for cold work tools.
EP19840890116 1983-06-23 1984-06-20 Sintered iron-base alloy Expired EP0130177B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0231683A AT383619B (en) 1983-06-23 1983-06-23 IRON-BASED SINTER ALLOY
AT2316/83 1983-06-23

Publications (2)

Publication Number Publication Date
EP0130177A1 true EP0130177A1 (en) 1985-01-02
EP0130177B1 EP0130177B1 (en) 1986-12-03

Family

ID=3532106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840890116 Expired EP0130177B1 (en) 1983-06-23 1984-06-20 Sintered iron-base alloy

Country Status (3)

Country Link
EP (1) EP0130177B1 (en)
AT (1) AT383619B (en)
DE (1) DE3461548D1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322397A2 (en) * 1987-12-23 1989-06-28 BÖHLER Gesellschaft m.b.H. High speed steel prepared by powder metallurgy, wear-resistant part prepared thereby and process for its manufacture
WO1996028580A1 (en) * 1995-03-10 1996-09-19 Powdrex Limited Stainless steel powders and articles produced therefrom by powder metallurgy
US20130186237A1 (en) * 2008-04-08 2013-07-25 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder
WO2014149932A1 (en) * 2013-03-15 2014-09-25 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
US9162285B2 (en) 2008-04-08 2015-10-20 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
US9546412B2 (en) 2008-04-08 2017-01-17 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591349A (en) * 1969-08-27 1971-07-06 Int Nickel Co High carbon tool steels by powder metallurgy
FR2106034A5 (en) * 1970-08-28 1972-04-28 Hoeganaes Ab
FR2151279A5 (en) * 1971-08-20 1973-04-13 Boehler & Co Ag Geb
FR2185017A1 (en) * 1972-05-18 1973-12-28 Stora Kopparbergs Bergslags Ab
FR2436824A1 (en) * 1978-09-20 1980-04-18 Crucible Inc CR-V STEEL POWDER, OBJECTS MANUFACTURED FROM THIS POWDER AND LIKELY OF HEAT TREATMENT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591349A (en) * 1969-08-27 1971-07-06 Int Nickel Co High carbon tool steels by powder metallurgy
FR2106034A5 (en) * 1970-08-28 1972-04-28 Hoeganaes Ab
FR2151279A5 (en) * 1971-08-20 1973-04-13 Boehler & Co Ag Geb
FR2185017A1 (en) * 1972-05-18 1973-12-28 Stora Kopparbergs Bergslags Ab
FR2436824A1 (en) * 1978-09-20 1980-04-18 Crucible Inc CR-V STEEL POWDER, OBJECTS MANUFACTURED FROM THIS POWDER AND LIKELY OF HEAT TREATMENT

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322397A2 (en) * 1987-12-23 1989-06-28 BÖHLER Gesellschaft m.b.H. High speed steel prepared by powder metallurgy, wear-resistant part prepared thereby and process for its manufacture
EP0322397A3 (en) * 1987-12-23 1989-10-25 Bohler Gesellschaft M.B.H. High speed steel prepared by powder metallurgy, wear-resistant part prepared thereby and process for its manufacture
WO1996028580A1 (en) * 1995-03-10 1996-09-19 Powdrex Limited Stainless steel powders and articles produced therefrom by powder metallurgy
US5856625A (en) * 1995-03-10 1999-01-05 Powdrex Limited Stainless steel powders and articles produced therefrom by powder metallurgy
US20130186237A1 (en) * 2008-04-08 2013-07-25 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder
US9162285B2 (en) 2008-04-08 2015-10-20 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
US9546412B2 (en) 2008-04-08 2017-01-17 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
US9624568B2 (en) 2008-04-08 2017-04-18 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder
US10543535B2 (en) 2008-04-08 2020-01-28 Tenneco Inc. Method for producing powder metal compositions for wear and temperature resistance applications
WO2014149932A1 (en) * 2013-03-15 2014-09-25 Federal-Mogul Corporation Powder metal compositions for wear and temperature resistance applications and method of producing same
CN105307803A (en) * 2013-03-15 2016-02-03 费德罗-莫格尔公司 Powder metal compositions for wear and temperature resistance applications and method of producing same

Also Published As

Publication number Publication date
DE3461548D1 (en) 1987-01-15
AT383619B (en) 1987-07-27
ATA231683A (en) 1986-12-15
EP0130177B1 (en) 1986-12-03

Similar Documents

Publication Publication Date Title
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
DE2846122C2 (en) Sintered alloy for the manufacture of sliding elements for engines
EP0331679B1 (en) High density sintered ferrous alloys
DE69734515T2 (en) SINTERED HARD ALLOY
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
DE69030366T2 (en) Aluminum alloy powder, sintered aluminum alloy and process for producing this sintered alloy
DE19705527B4 (en) Sintered iron-based alloy with hard particle dispersion and process for its preparation
DE69010125T2 (en) Sintered materials.
DE4036614A1 (en) VALVE SEAT IN A SINTERED FE-BASED ALLOY WITH HIGH WEAR RESISTANCE
DE3238555C2 (en)
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
DE3041565C2 (en)
DE69705289T2 (en) Abrasion-resistant valve seat consisting of a sintered iron alloy for an internal combustion engine
DE3708035A1 (en) WEAR-RESISTANT, SINTERED IRON-BASED ALLOY
DE3837006C3 (en) hard metal
EP0348380B2 (en) Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
DE60300728T2 (en) Iron-based sintered alloy for use as a valve seat
DE60002669T2 (en) HIGH-FIXED POWDER METALLURGICAL TOOL STEEL AND ITEM OBTAINED THEREFROM
DE69717541T2 (en) Low-alloy steel powder for hardener sintering
DE3730082C2 (en)
DE69514935T2 (en) MATERIALS WITH HIGH TENSILE STRENGTH
DE69521516T2 (en) IRON BASE POWDER WITH CHROME, MOLYBDEN AND MANGANESE
EP0130177B1 (en) Sintered iron-base alloy
DE69007201T2 (en) Heat-resistant steel can be used for valves of internal combustion engines.
DE3619664C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850624

17Q First examination report despatched

Effective date: 19860220

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3461548

Country of ref document: DE

Date of ref document: 19870115

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910412

Year of fee payment: 8

Ref country code: FR

Payment date: 19910412

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910423

Year of fee payment: 8

Ref country code: CH

Payment date: 19910423

Year of fee payment: 8

Ref country code: BE

Payment date: 19910423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910607

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: VEREINIGTE EDELSTAHLWERKE A.G. VEW

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84890116.1

Effective date: 19930109