Nothing Special   »   [go: up one dir, main page]

EP0108963B1 - Power supply circuit for an electrostatic dust separator - Google Patents

Power supply circuit for an electrostatic dust separator Download PDF

Info

Publication number
EP0108963B1
EP0108963B1 EP83110554A EP83110554A EP0108963B1 EP 0108963 B1 EP0108963 B1 EP 0108963B1 EP 83110554 A EP83110554 A EP 83110554A EP 83110554 A EP83110554 A EP 83110554A EP 0108963 B1 EP0108963 B1 EP 0108963B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
thyristor
transformer
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110554A
Other languages
German (de)
French (fr)
Other versions
EP0108963A1 (en
Inventor
Friedrich Eiserlo
Kurt Emmrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Walther and Co AG
Original Assignee
Walther and Co AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6177481&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0108963(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Walther and Co AG filed Critical Walther and Co AG
Priority to AT83110554T priority Critical patent/ATE20833T1/en
Publication of EP0108963A1 publication Critical patent/EP0108963A1/en
Application granted granted Critical
Publication of EP0108963B1 publication Critical patent/EP0108963B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/903Precipitators

Definitions

  • the invention relates to a supply circuit for an electrostatic dust collector with a transformer, the primary circuit of which contains a thyristor circuit and the secondary circuit of which is coupled to the electrode of the dust collector, and to a detector which is coupled to the electrode and which only detects rapid voltage changes which occur in the event of a flashover at the dust collector. responds and acts on the thyristor circuit.
  • Two sizes are required for electrostatically cleaning a gas from dust.
  • charge carriers that are emitted as a result of a corona under the influence of high voltage from the spray electrode of the separator and accumulate on the dust particles that are carried in the gas.
  • a high-voltage field is required in which the charged particles are subjected to a force according to Coulomb's law, which drives them in the direction of the positive anode.
  • This force which is exerted on the particles in the high-voltage field, is proportional to the level of the electric field strength, i.e. also the level of the applied voltage, i.e. the faster the particles are moved, the smaller the filter can be designed.
  • the pulses In order to be able to introduce pulses with a high power density into the filter, the pulses should be present as briefly as possible, i.e. in the range between 40 and 200 us. As a result of the short period of time, the voltage of these pulses can now be set very high above the normal breakdown voltage, because the time delay in the growth of the channel discharge, which leads to the arc, gives the voltage time to decay and thus the replenishment of energy into the discharge channel introduced is missing.
  • the known circuit (DE-A-26 08 436) consists essentially of a separator capacitor and a thyristor circuit through which energy is transferred from a storage capacitor to the separator capacitor.
  • the inductance of the transformer forms a resonant circuit with the capacitance of the dust collector and with a coupling capacitor, which causes the energy stored in the separator to be returned during the pulse of the voltage source.
  • the returning energy is fed back to the storage capacitor by a so-called free-wheeling diode, so that only the losses in the circuit and the sprayed-off current have to be replaced.
  • Thyristors for short-term switching of high voltages and high powers are very expensive.
  • an electrostatic precipitator in which very high voltages are briefly applied in order to generate the necessary charge carriers, it often happens that a flashover occurs during a voltage pulse.
  • the voltage at the electrode of the dust separator breaks down suddenly because the dust separator is short-circuited to a certain extent.
  • This short circuit creates an oscillating circuit, which now only consists of the transformer and the coupling capacitor. This vibration is transferred to the primary side of the transformer and generates a high current there, which tends to charge the charging capacitor.
  • the thyristor circuit is turned on, this current can flow freely to the storage capacitor.
  • a voltage spike is generated at it, which can destroy the thyristors and the free-wheeling diodes.
  • the transformer is supplied with AC voltage via the thyristor circuit.
  • This alternating voltage is fed to the electrode of the dust collector via a rectifier.
  • the electrode voltage is monitored by a detector, which detects rapid changes in the electrode voltage, such as those which take place in the event of a flashover, and sets the thyristor circuit in the blocking state in the event of a sparkover. Thereupon the voltage supply to the electrode is completely interrupted, so that the dust collector is inactive for a certain time. Since high voltages occur at the thyristor circuit in the event of a flashover, there is a risk that the thyristors will be destroyed in the blocking state.
  • the invention has for its object to provide a supply circuit of the type mentioned that with short-term pulses high voltage can be operated to achieve effective generation of charge carriers without the risk of destroying the thyristors or other electronic components.
  • the primary circuit of the transformer is connected to a DC voltage source via the thyristor circuit, the thyristor circuit is controlled by a pulse generator, and the electrode is additionally connected to a DC voltage which supplies the pulses generated by the thyristor circuit via the transformer and a capacitor are supplied, and that the detector controls the thyristor circuit in the conducting state in the event of a flashover.
  • the thyristors are effectively protected against overvoltages and destruction by the action of the detector.
  • a protective circuit which taps the potentials in front of and behind the thyristor circuit and controls the thyristor circuit to the conductive state when the potential difference exceeds a predetermined value.
  • This protection circuit responds directly to the voltage between the main electrodes of the thyristors. It must have an extremely short response time of e.g. 1 ⁇ s to control the thyristors in the conductive state before voltage breakdowns can take place on the blocked thyristors.
  • the high-voltage pulses In order to generate a sufficient amount of free charge carriers during the high-voltage pulses at the dust collector, it is important that the high-voltage pulses have a high voltage on the one hand, but are on the other hand very short in order to avoid flashovers. Short high-voltage pulses can only be achieved with a transformer if the leakage inductance of the transformer is as low as possible.
  • the usual transformers have an iron core made of laminated metal sheets. The sheets do not form a continuous magnetic path, but have joints that are the cause of magnetic losses and scattering.
  • the transformer is designed as a toroidal core transformer, the core of which carries the windings consists of a spirally wound sheet metal. This creates a continuous magnetic path free of impact points, the leakage inductance of which is limited to a minimum.
  • a toroidal transformer With such a toroidal transformer, short high-voltage pulses can be generated on the secondary side. Because of the short pulse duration, it is possible to make the voltage higher than with the known transformers without increasing the risk of voltage flashovers on the dust separator.
  • the transformer in addition to a secondary winding and a primary winding, has an auxiliary winding through which a rectified counter-magnetizing current flows, which generates a magnetic field which is opposite to that of the pulse current through the primary winding.
  • This counter-magnetizing current is a direct current, which ensures after each transmitted pulse that the iron of the transformer is magnetized back to the operating point.
  • the counter-magnetizing current is preferably generated by the secondary coil of an auxiliary transformer, the primary coil of which is connected in series with the thyristor circuit.
  • the magnitude of the demagnetizing direct current is generated as a function of the magnitude or frequency of the pulse current, so that the magnetization back is limited to the required extent. If the pulses are generated with a higher frequency, a larger counter-magnetizing current results than in the case that the pulses are generated at a lower frequency.
  • the housing 11 of a dust collector 10 is connected to earth potential.
  • An electrode 12 protrudes into the pot-shaped housing 11, on which a high voltage with respect to the housing 11 is generated in a manner still to be explained.
  • the voltage between the electrode 12 and the housing 11 is designated U F.
  • a base voltage U B of, for example, 35 kV is applied to the electrode 12 via a choke 13.
  • This base voltage is a DC voltage that is supplied by a voltage source (not shown).
  • the electrode 12 is connected to one end of the secondary winding 15 of the transformer 16 via a coupling capacitor 14 of 1 ⁇ F.
  • the other end of the secondary winding 15 is connected to ground potential.
  • the primary winding 17 of the transformer 16 is also connected to ground potential at one end and to the thyristor circuit 19 at the other end via an adjustable inductor 18.
  • the thyristor circuit 19 consists of a plurality of pairs connected in parallel, each consisting of a thyristor 20 and an antiparallel to the thyristor 20 Diode 21. Only one of these pairs is shown for reasons of clarity.
  • the thyristor circuit 19 is connected via the primary winding 23 of an auxiliary transformer 22 to the positive pole of the supply voltage U 1 , which has a size of, for example, 7 kV.
  • the storage capacitor 24, whose other electrode is connected to ground potential, is connected to the connection between the primary winding 23 and the thyristor circuit 19.
  • the maximum voltage of U F is approximately 60 kV, and this pulse is superimposed on the base voltage U e .
  • the course of the current flowing in the series resonant circuit is also shown in FIG. 3. It can be seen that the current I first runs through a positive half-wave. At the time when the pulse voltage U F reaches its maximum value, the current 1 goes through zero, and this is followed by a negative half-wave of the current I during the decay of the voltage U F.
  • control voltage U c ie the pulse that the control circuit 25 generates in order to control the thyristor 20.
  • This pulse U c initially has a short voltage peak in order to open the thyristor 20, and this is followed by a region of lower voltage.
  • the total duration of the pulse U c is approximately 20 ⁇ s, and the total duration of the pulse U F is approximately 120 ⁇ s.
  • the times indicated in FIG. 3 are calculated from the time t o at which the control of the thyristor 20 begins.
  • the thyristor 20 is already in the blocking state, and a voltage is generated across it that has the opposite polarity to the diode 21 and can not flow through this diode.
  • a detector 27 is connected to the electrode 12, which supplies a pulse to a transformer 29 via line 28 when the voltage U F drops sharply.
  • the secondary winding of the transformer 29 is connected between the anode connection and the control connection of the thyristor 20.
  • the transmitted on the secondary coil of the transformer 29 pulse from line 28 controls the thyristor 20 in the conductive state, so that the high primary voltage caused by the secondary short circuit of the transformer 16 can discharge through the conductive thyristor 20 to the storage capacitor 24.
  • the detector 27 consists of a series connection of a capacitor 30 and a resistor 31, which is connected to ground potential.
  • the RC constant of the detector 27 is approximately 1 ⁇ s, so that only very brief changes in the voltage U F can generate a signal on line 28, while the normal pulse voltage, which is shown in FIG. 3, does not cause a signal change on line 28 .
  • a further protective circuit 32 which generates a control signal on line 45 as a function of the voltage that prevails between the main electrodes of the thyristor 20.
  • This protective circuit consists of a first voltage divider consisting of resistors 33 and 34 and a second voltage divider consisting of resistors 35 and 36. The taps of the two voltage dividers are connected to one another and connected to the input of an amplifier 37. The output of amplifier 37 is connected to transformer 29 via line 45.
  • the ohmic voltage divider 33, 34 has a reaction time which is too great due to the capacitances or inductances which the resistors necessarily have. For this reason, the voltage divider 35, 36 is provided in parallel with the ohmic voltage divider, which has a short response time due to the capacitor 36.
  • the structural design of the transformer 16 is shown schematically in FIG. 2.
  • the transformer has a toroidal core 38 made from a spirally wound single sheet metal strip.
  • the cylindrical toroid is wound with the primary winding 17 and the secondary winding 15 in the manner shown.
  • the toroidal core 38 also carries an auxiliary winding 39 which is wound in the opposite direction to the primary winding 17, which is indicated in FIG. 1 by the points.
  • the auxiliary winding 39 is connected to the two ends of the secondary coil 41 of the auxiliary transformer 22 via a rectifier 40.
  • the primary winding 23 of the auxiliary transformer 22 is traversed by current.
  • a voltage is generated in the secondary winding 41, which is rectified by the rectifier 40 and discharged via the auxiliary winding 39.
  • a direct current is generated in the auxiliary winding 39, the magnitude of which depends on the frequency and strength of the pulses at the dust separator 10 and which generates a counter-magnetization in the core 38, thereby preventing the core 38 from gradually increasing due to the pulses the saturation is controlled.
  • a capacitor (not shown) can be provided in parallel with the auxiliary winding 39.
  • a series circuit comprising a diode 42 and a capacitor 43 is connected between the thyristor and ground potential.
  • a resistor 44 is connected in parallel to the capacitor 43.
  • the diode 42 ensures that negative pulse jumps are kept away from the cathode connection of the thyristor 20. Such negative pulse jumps charge the capacitor 43 via the diode 42, which can then slowly discharge via the resistor 44.
  • This protective circuit also helps to prevent sudden overvoltages on the thyristor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The pulse voltage for the electrode (12) of a dust separator (10) is generated by a thyristor circuit (19) to be transferred to a dust separator through a transformer (16). It being possible that voltage arcings take place at the dust separator (10), there is the risk, in case of a blocked thyristor (20) that from the secondary of the transformer (16) a high voltage is produced at thyristor (20) to destroy the thyristor. To avoid such an occurrence, a detector (27) is provided which is only responsive to sudden voltage drops whereupon the thyristor (20) is enabled to become conductive so that the energy of the secondary circuit may be discharged to the storage capacitor (24) in the primary circuit.

Description

Die Erfindung betrifft eine Versorgungsschaltung für einen elektrostatischen Staubabscheider mit einem Transformator, dessen Primärkreis eine Thyristorschaltung enthält und dessen Sekundärkreis mit der Elektrode des Staubabscheiders gekoppelt ist,und einem mit der Elektrode gekoppelten Detektor, der nur auf schnelle Spannungsänderungen, die bei Funkenüberschlag am Staubabscheider auftreten, anspricht und auf die Thyristorschaltung einwirkt.The invention relates to a supply circuit for an electrostatic dust collector with a transformer, the primary circuit of which contains a thyristor circuit and the secondary circuit of which is coupled to the electrode of the dust collector, and to a detector which is coupled to the electrode and which only detects rapid voltage changes which occur in the event of a flashover at the dust collector. responds and acts on the thyristor circuit.

Zur elektrostatischen Reinigung eines Gases von Staub werden zwei Größen benötigt. Zum einen Ladungsträger, die infolge einer Korona unter Hochspannungseinfluß von der Sprühelektrode des Abscheiders abgestrahlt werden und sich an die Staubteilchen, die im Gas mitgeführt werden, anlagern. Zum zweiten wird ein Hochspannungsfeld benötigt, in dem die beladenen Teilchen entsprechend dem Coulombischen Gesetz einer Krafteinwirkung ausgesetzt werden, die sie in Richtung der positiven Anode treibt. Diese Kraft, die auf die Teilchen im Hochspannungsfeld ausgeübt wird, ist proportional der Höhe der elektrischen Feldstärke, also auch der Höhe der anliegenden Spannung, d.h., je schneller die Teilchen bewegt werden, umso kleiner kann das Filter ausgelegt werden. In diesem Bestreben wurde versucht, die Spannung so hoch wie möglich zu hatten, was bei manchen Stäuben, vor allem bei hochisolierenden Stäuben, den Nachteil mit sich bringt, daß ein sehr großer Überschuß an Ladungsträgern erzeugt wird, und in kritischen Fällen zum Rücksprühen führen kann. Diese beiden Funktionen, nämlich Erzeugung von Ladungsträgern und Zurverfügungstellen einer hohen Spannung, werden bei der pulsförmigen Energieversorgung getrennt. Ein kurzer Spannungspuls, der über der Durchschlagsspannung liegt, soll explosionsartig für kurze Zeit Ladungsträger erzeugen, während ein zweites Gerät eine möglichst glatte sogenannte Basisspannung erzeugt, die nur zur Beschleunigung der Ladung der beladenen Staubteilchen dient. Diese Basisspannung soll sich möglichst knapp an der Glimm-Einsetzspannung bewegen, um einen Überschuß an Ladungsträgern zu vermeiden. Um nun gezielt Pulse einer hohen Leistungsdichte in das Filter einbringen zu können, sollen die pulse möglichst kurzzeitig anstehen, d.h. in der Größenordnung zwischen 40 und 200 us. Infolge der kurzen Zeitdauer kann man nun die Spannung dieser pulse sehr hoch über der normalen Durchschlagsspannung ansetzen, weil durch die Zeitverzögerung des Vorwachsens der Kanalentladung, die zum Lichtbogen führt, der Spannung wieder Zeit gegeben wird abzuklingen und so der Nachschub an Energie in den eingeleiteten Entladungskanal fehlt. Die bekannte Schaltung (DE-A-26 08 436) besteht im wesentlichen aus einem Abscheiderkondensator und einer Thyristorschaltung, durch die Energie aus einem Speicherkondensator in den Abscheiderkondensator transferiert wird. Infolge der in jedem Stromkreis enthaltenen Streuinduktivitäten und einem Widerstand erfolgt dieser Übergang der Energie aus dem Speicherkondensator in den Abscheiderkondensator in Form einer gedämpften Schwingung. Die Induktivität des Transformators bildet mit der Kapazität des Staubabscheiders und mit einem Koppelkondensator einen Schwingkreis, der die Rückführung der während des Impulses der Spannungsquelle in dem Abscheider gespeicherten Energie bewirkt. Die zurückschwingende Energie wird durch eine sogenannte Freilaufdiode dem Speicherkondensator wieder zugeführt, so daß nur noch die Verluste im Stromkreis und der abgesprühte Strom zu ersetzen sind.Two sizes are required for electrostatically cleaning a gas from dust. On the one hand, charge carriers that are emitted as a result of a corona under the influence of high voltage from the spray electrode of the separator and accumulate on the dust particles that are carried in the gas. Secondly, a high-voltage field is required in which the charged particles are subjected to a force according to Coulomb's law, which drives them in the direction of the positive anode. This force, which is exerted on the particles in the high-voltage field, is proportional to the level of the electric field strength, i.e. also the level of the applied voltage, i.e. the faster the particles are moved, the smaller the filter can be designed. In this endeavor it was attempted to have the voltage as high as possible, which has the disadvantage with some dusts, especially with highly insulating dusts, that a very large excess of charge carriers is generated and, in critical cases, can lead to back spraying . These two functions, namely the generation of charge carriers and the provision of a high voltage, are separated in the pulsed energy supply. A short voltage pulse, which is above the breakdown voltage, is said to explosively generate charge carriers for a short time, while a second device generates a base voltage that is as smooth as possible, which only serves to accelerate the charge of the loaded dust particles. This base voltage should move as close as possible to the glow threshold voltage in order to avoid an excess of charge carriers. In order to be able to introduce pulses with a high power density into the filter, the pulses should be present as briefly as possible, i.e. in the range between 40 and 200 us. As a result of the short period of time, the voltage of these pulses can now be set very high above the normal breakdown voltage, because the time delay in the growth of the channel discharge, which leads to the arc, gives the voltage time to decay and thus the replenishment of energy into the discharge channel introduced is missing. The known circuit (DE-A-26 08 436) consists essentially of a separator capacitor and a thyristor circuit through which energy is transferred from a storage capacitor to the separator capacitor. As a result of the leakage inductances and a resistance contained in each circuit, this transition of the energy from the storage capacitor into the separator capacitor takes place in the form of a damped oscillation. The inductance of the transformer forms a resonant circuit with the capacitance of the dust collector and with a coupling capacitor, which causes the energy stored in the separator to be returned during the pulse of the voltage source. The returning energy is fed back to the storage capacitor by a so-called free-wheeling diode, so that only the losses in the circuit and the sprayed-off current have to be replaced.

Thyristoren zum kurzzeitigen Schalten hoher Spannungen und hoher Leistungen sind sehr teuer. Bei einem Elektrofilter, bei dem zur Erzeugung der erforderlichen Ladungsträger kurzzeitig sehr hohe Spannungen angelegt werden, kommt es häufig vor, daß während eines Spannungsimpulses ein Funkenüberschlag erfolgt. Dabei bricht die Spannung an der Elektrode des Staubabscheiders schlagartig zusammen, weil der Staubabscheider gewissermaßen kurzgeschlossen wird. Durch diesen Kurzschluß entsteht ein Schwingkreis, der nunmehr nur noch aus dem Transformator und dem Kopplungskondensator besteht. Diese Schwingung überträgt sich auf die Primärseite des Transformators und erzeugt dort einen hohen Strom, der bestrebt ist, den Ladekondensator aufzuladen. Wenn die Thyristorschaltung in den leitenden Zustand gesteuert ist, kann dieser Strom ungehindert auf den Speicherkondensator fließen. Ist die Thyristorschaltung jedoch bereits gesperrt, dann entsteht an ihr eine Spannungsspitze, die zur Zerstörung der Thyristoren und der Freilaufdioden führen kann.Thyristors for short-term switching of high voltages and high powers are very expensive. In the case of an electrostatic precipitator in which very high voltages are briefly applied in order to generate the necessary charge carriers, it often happens that a flashover occurs during a voltage pulse. The voltage at the electrode of the dust separator breaks down suddenly because the dust separator is short-circuited to a certain extent. This short circuit creates an oscillating circuit, which now only consists of the transformer and the coupling capacitor. This vibration is transferred to the primary side of the transformer and generates a high current there, which tends to charge the charging capacitor. When the thyristor circuit is turned on, this current can flow freely to the storage capacitor. However, if the thyristor circuit is already blocked, a voltage spike is generated at it, which can destroy the thyristors and the free-wheeling diodes.

Bei einem bekannten Staubabscheider der eingangs genannten Art (US-A-4 282 014) wird der Transformator über die Thyristorschaltung mit Wechselspannung versorgt. Diese Wechselspannung wird über einen Gleichrichter der Elektrode des Staubabscheiders zugeführt. Die Elektrodenspannung wird von einem Detektor überwacht, welcher schnelle Änderungen der Elektrodenspannung, wie sie bei einem Funkenüberschlag stattfinden, feststellt und bei einem Funkenüberschlag die Thyristorschaltung in den Sperrzustand versetzt. Daraufhin wird die Spannungszufuhr zur Elektrode vollständig unterbrochen, so daß der Staubabscheider für eine bestimmte Zeit lang unwirksam ist. Da bei einem Funkenüberschlag hohe Spannungen an der Thyristorschaltung auftreten, besteht die Gefahr, daß die Thyristoren im Sperrzustand zerstört werden.In a known dust collector of the type mentioned at the beginning (US-A-4 282 014), the transformer is supplied with AC voltage via the thyristor circuit. This alternating voltage is fed to the electrode of the dust collector via a rectifier. The electrode voltage is monitored by a detector, which detects rapid changes in the electrode voltage, such as those which take place in the event of a flashover, and sets the thyristor circuit in the blocking state in the event of a sparkover. Thereupon the voltage supply to the electrode is completely interrupted, so that the dust collector is inactive for a certain time. Since high voltages occur at the thyristor circuit in the event of a flashover, there is a risk that the thyristors will be destroyed in the blocking state.

Der Erfindung liegt die Aufgabe zugrunde, eine Versorgungsschaltung der eingangs genannten Art zu schaffen, die mit kurzzeitigen Impulsen hoher Spannung betrieben werden kann, um eine wirksame Erzeugung von Ladungsträgern zu erzielen, ohne daß die Gefahr des Zerstörens der Thyristoren oder anderer elektronischer Bauteile besteht.The invention has for its object to provide a supply circuit of the type mentioned that with short-term pulses high voltage can be operated to achieve effective generation of charge carriers without the risk of destroying the thyristors or other electronic components.

Zur Lösung dieser Aufgabe ist erfindungsgemäß vorgesehen, daß der Primärkreis des Transformators über die Thyristorschaltung an-eine Gleichspannungsquelle angeschlossen ist, die Thyristorschaltung durch einen Impulsgenerator gesteuert ist, die Elektrode zusätzlich an eine Gleichspannung gelegt ist, der die von der Thyristorschaltung erzeugten Impulse über den Transformator und einen Kondensator zugeführt werden, und daß der Detektor bei einem Funkenüberschlag die Thyristorschaltung in den leitenden Zustand steuert.To achieve this object, it is provided according to the invention that the primary circuit of the transformer is connected to a DC voltage source via the thyristor circuit, the thyristor circuit is controlled by a pulse generator, and the electrode is additionally connected to a DC voltage which supplies the pulses generated by the thyristor circuit via the transformer and a capacitor are supplied, and that the detector controls the thyristor circuit in the conducting state in the event of a flashover.

Wenn der plötzliche Spannungszusammenbruch durch Funkenüberschlag bei leitender Thyristorschaltung erfolgt, kann der von der Sekundärseite des Transformators auf die Primärseite übertragene Schwingstrom zum Ladekondensator abfließen. Andernfalls würde sich bei gesperrter Thyristorschaltung an dieser eine so hohe Spannung aufbauen, daß die Thyristoren möglicherweise zerstört würden. Ein solcher Spannungsaufbau wird durch den Detektor verhindert, der auf die normale Impulsübertragung auf die Elektrode des Staubabscheiders nicht reagiert, wohl aber auf einen plötzlichen Spannungszusammenbruch anspricht und daraufhin die Thyristorschaltung unverzüglich in den leitenden Zustand versetzt. Auf diese Weise werden durch die Wirkung des Detektors die Thyristoren gegen Überspannungen und Zerstörung wirksam geschützt.If the sudden voltage breakdown occurs due to arcing with a conductive thyristor circuit, the oscillating current transmitted from the secondary side of the transformer to the primary side can flow off to the charging capacitor. Otherwise, with a blocked thyristor circuit, such a high voltage would build up on it that the thyristors would possibly be destroyed. Such a voltage build-up is prevented by the detector, which does not react to the normal impulse transmission to the electrode of the dust collector, but does respond to a sudden voltage breakdown and then immediately switches the thyristor circuit into the conductive state. In this way, the thyristors are effectively protected against overvoltages and destruction by the action of the detector.

Die Thyristoren können im gesperrten Zustand aber auch durch andere Spannungseinflüsse gefährdet sein, die entweder über den Transformator oder über die Spannungsversorgung kommen. Wenn derartige Überspannungen auftreten, die einen langsamen Spannungsaufbau haben und von dem Detektor nicht erkannt werden, sind die Thyristoren gefährdet. Um solche Gefährdungen zu verhindern, ist nach einer vorteilhaften Weiterbildung der Erfindung eine Schutzschaltung vorgesehen, die die Potentiale vor und hinter der Thyristorschaltung abgreift und die Thyristorschaltung in den leitenden Zustand steuert, wenn die Potentialdifferenz einen vorgegebenen Wert übersteigt. Diese Schutzschaltung reagiert unmittelbar auf die Spannung zwischen den Hauptelektroden der Thyristoren. Sie muß eine extrem kurze Ansprechzeit von z.B. 1 µs haben, um die Thyristoren in den leitenden Zustand zu steuern, bevor an den gesperrten Thyristoren Spannungsdurchbrüche stattfinden können.In the blocked state, however, the thyristors can also be endangered by other voltage influences that come either via the transformer or via the voltage supply. If such overvoltages occur, which have a slow voltage build-up and are not recognized by the detector, the thyristors are at risk. In order to prevent such hazards, a protective circuit is provided according to an advantageous development of the invention, which taps the potentials in front of and behind the thyristor circuit and controls the thyristor circuit to the conductive state when the potential difference exceeds a predetermined value. This protection circuit responds directly to the voltage between the main electrodes of the thyristors. It must have an extremely short response time of e.g. 1 µs to control the thyristors in the conductive state before voltage breakdowns can take place on the blocked thyristors.

Zur Erzeugung einer ausreichenden Menge freier Ladungsträger während der Hochspannungsimpulse am Staubabscheider ist es wichtig, daß die Hochspannungsimpulse einerseits eine hohe Spannung haben, andererseits aber sehr kurz sind, um Spannungsüberschläge zu vermeiden. Kurze Hochspannungsimpulse lassen sich mit einem Transformator aber nur dann erzielen, wenn die Streuinduktivität des Transformators möglichst gering ist. Die üblichen Transformatoren weisen einen Eisenkern aus nebeneinandergeschichteteten Blechen auf. Die Bleche bilden keinen kontinuierlichen Magnetweg, sondern sie haben Stoßstellen, die die Ursache von magnetischen Verlusten und Streuungen sind. Zur Erzielung kurzzeitiger und scharf begrenzter Spannungsimpulse ist gemäß einem weiteren Aspekt der Erfindung vorgesehen, daß der Transformator als Ringkerntransformator ausgebildet ist, dessen die Wicklungen tragender Kern aus einem spiralförmig gewickelten Blech besteht. Hierbei bildet sich ein kontinuierlicher, von Stoßstellen freier Magnetweg aus, dessen Streuinduktivität auf ein Mindestmaß begrenzt ist. Mit einem derartigen Ringkerntransformator können sekundärseitig kurze Hochspannungsimpulse erzeugt werden. Wegen der kurzen Impulsdauer ist es möglich, die Spannung höher zu machen als bei den bekannten Transformatoren, ohne daß die Gefahr von Spannungsüberschlägen am Staubabscheider erhöht wird.In order to generate a sufficient amount of free charge carriers during the high-voltage pulses at the dust collector, it is important that the high-voltage pulses have a high voltage on the one hand, but are on the other hand very short in order to avoid flashovers. Short high-voltage pulses can only be achieved with a transformer if the leakage inductance of the transformer is as low as possible. The usual transformers have an iron core made of laminated metal sheets. The sheets do not form a continuous magnetic path, but have joints that are the cause of magnetic losses and scattering. To achieve short-term and sharply limited voltage pulses, it is provided according to a further aspect of the invention that the transformer is designed as a toroidal core transformer, the core of which carries the windings consists of a spirally wound sheet metal. This creates a continuous magnetic path free of impact points, the leakage inductance of which is limited to a minimum. With such a toroidal transformer, short high-voltage pulses can be generated on the secondary side. Because of the short pulse duration, it is possible to make the voltage higher than with the known transformers without increasing the risk of voltage flashovers on the dust separator.

Ein weiteres Problem, das bei der Erzeugung hoher Impulsspannungen mit einem Transformator auftritt, besteht darin, daß der Kern des Transformators bei jedem Impuls in derselben Richtung magnetisiert wird. Jeder Impuls hinterläßt im Kern eine Restmagnetisierung oder Remanenz. Auf dieser baut sich in der gleichen Richtung die neue Magnetisierung auf, so daß nach wenigen Impulsen die Magnetisierung des Kernes in die Sättigung geht und die sekundärseitig erzeugten Impulse immer kleinere Amplituden haben. Um diesen Effekt zu vermeiden, ist vorgesehen, daß der Transformator außer einer Sekundärwicklung und einer Primärwicklung eine Hilfswicklung aufweist, die von einem gleichgerichteten Gegenmagnetisierungsstrom durchflossen ist, der ein Magnetfeld erzeugt, das demjenigen des Impulsstromes durch die Primärwicklung entgegengerichtet ist. Dieser Gegenmagnetisierungsstrom ist ein Gleichstrom, der nach jedem übertragenen Impuls dafür sorgt, daß das Eisen des Transformators wieder auf den Arbeitspunkt rückmagnetisiert wird.Another problem that arises when generating high pulse voltages with a transformer is that the core of the transformer is magnetized in the same direction with each pulse. Each pulse leaves a residual magnetization or remanence in the core. The new magnetization builds up on this in the same direction, so that after a few pulses the magnetization of the core saturates and the pulses generated on the secondary side have ever smaller amplitudes. In order to avoid this effect, it is provided that the transformer, in addition to a secondary winding and a primary winding, has an auxiliary winding through which a rectified counter-magnetizing current flows, which generates a magnetic field which is opposite to that of the pulse current through the primary winding. This counter-magnetizing current is a direct current, which ensures after each transmitted pulse that the iron of the transformer is magnetized back to the operating point.

Vorzugsweise wird der Gegenmagnetisierungsstrom durch die Sekundärspule eines Hilfstransformators erzeugt, dessen Primärspule mit der Thyristorschaltung in Reihe liegt. Auf diese Weise wird die Größe des entmagnetisierenden Gleichstroms in Abhängigkeit von der Größe bzw. Häufigkeit des Impulsstromes erzeugt, so daß die Rückmagnetisierung auf das erforderliche Maß begrenzt ist. Wenn die Impulse mit höherer Frequenz erzeugt werden, stellt sich ein größerer Gegenmagnetisierungsstrom ein als in dem Fall, daß die Impulse mit niedrigerer Frequenz erzeugt werden.The counter-magnetizing current is preferably generated by the secondary coil of an auxiliary transformer, the primary coil of which is connected in series with the thyristor circuit. In this way, the magnitude of the demagnetizing direct current is generated as a function of the magnitude or frequency of the pulse current, so that the magnetization back is limited to the required extent. If the pulses are generated with a higher frequency, a larger counter-magnetizing current results than in the case that the pulses are generated at a lower frequency.

Im folgenden wird unter Bezugnahme auf die Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert.In the following an embodiment of the invention will be explained with reference to the drawings.

Es zeigen:

  • Fig. 1 ein schematisches Schaltbild der Versorgungsschaltung für den Staubabscheider,
  • Fig. 2 eine schematische Darstellung des Ringkerntransformators und
  • Fig. 3 ein Strom-Spannungs-Diagramm der Impulse.
Show it:
  • 1 is a schematic circuit diagram of the supply circuit for the dust collector,
  • Fig. 2 is a schematic representation of the toroidal transformer
  • Fig. 3 is a current-voltage diagram of the pulses.

Gemäß Fig. 1 ist das Gehäuse 11 eines Staubabscheiders 10 mit Erdpotential verbunden. In das topfförmige Gehäuse 11 ragt eine Elektrode 12 hinein, an der in noch zu erläuternder Weise eine Hochspannung gegenüber dem Gehäuse 11 erzeugt wird. Die Spannung zwischen der Elektrode 12 und dem Gehäuse 11 ist mit UF bezeichnet.1, the housing 11 of a dust collector 10 is connected to earth potential. An electrode 12 protrudes into the pot-shaped housing 11, on which a high voltage with respect to the housing 11 is generated in a manner still to be explained. The voltage between the electrode 12 and the housing 11 is designated U F.

An der Elektrode 12 liegt über eine Drossel 13 eine Basisspannung UB von z.B. 35kV. Diese Basisspannung ist eine Gleichspannung, die von einer (nicht dargestellten) Spannungsquelle geliefert wird.A base voltage U B of, for example, 35 kV is applied to the electrode 12 via a choke 13. This base voltage is a DC voltage that is supplied by a voltage source (not shown).

Die Elektrode 12 ist über einen Kopplungskondensator 14 von 1 µF an das eine Ende der Sekundärwicklung 15 des Transformators 16 angeschlossen. Das andere Ende der Sekundärwicklung 15 ist mit Erdpotential verbunden.The electrode 12 is connected to one end of the secondary winding 15 of the transformer 16 via a coupling capacitor 14 of 1 μF. The other end of the secondary winding 15 is connected to ground potential.

Die Primärwicklung 17 des Transformators 16 ist mit einem Ende ebenfalls mit Erdpotential verbunden und mit dem anderen Ende über eine verstellbare Induktivität 18 mit der Thyristorschaltung 19. Die Thyristorschaltung 19 besteht aus mehreren parallelgeschalteten Paaren aus jeweils einem Thyristor 20 und einer antiparallel zu dem Thyristor 20 geschalteten Diode 21. Aus Gründen der Übersichtlichkeit ist nur eines dieser Paare dargestellt. Die Thyristorschaltung 19 ist über die Primärwicklung 23 eines Hilfstransformators 22 mit dem positiven Pol der Versorgungsspannung U1 verbunden, die eine Größe von z.B. 7kV hat. An die Verbindung zwischen der Primärwicklung 23 und der Thyristorschaltung 19 ist der Speicherkondensator 24 angeschlossen, dessen andere Elektrode mit Erdpotential verbunden ist.The primary winding 17 of the transformer 16 is also connected to ground potential at one end and to the thyristor circuit 19 at the other end via an adjustable inductor 18. The thyristor circuit 19 consists of a plurality of pairs connected in parallel, each consisting of a thyristor 20 and an antiparallel to the thyristor 20 Diode 21. Only one of these pairs is shown for reasons of clarity. The thyristor circuit 19 is connected via the primary winding 23 of an auxiliary transformer 22 to the positive pole of the supply voltage U 1 , which has a size of, for example, 7 kV. The storage capacitor 24, whose other electrode is connected to ground potential, is connected to the connection between the primary winding 23 and the thyristor circuit 19.

Die bisher beschriebene Schaltung ist bekannt. Sie arbeitet so, daß der Speicherkondensator 24 auf die Spannung U1 aufgeladen wird. Wenn der Thyristor 20 durch Anlegen eines kurzzeitigen Impulses von einem Steuergerät 25 an seinen Steueranschluß in den leitenden Zustand gesteuert wird, fließt ein Strom über die Induktivität 18 durch die Primärwicklung 17. Dieser Strom induziert in der Sekundärwicklung 15 eine Hochspannung. Das Wicklungsverhältnis von Primarwicklung 17 zur Sekundärwicklung 15 beträgt beispielsweise 1:7. Die Sekundärwicklung 15 bildet mit dem Kondensator 14 und der Kapazität des Staubabscheiders 10 einen Reihenschwingkreis. Am Staubabscheider 10 entsteht der in Fig. 3 dargestellte .Spannungsverlauf UF, der ziemlich genau die Funktion einer Sinuskurve hat. Die Maximalspannung von UF beträgt etwa 60kV,und dieser Impuls überlagert sich der Basisspannung Ue. Der Verlauf des Stromes, der in dem Reihenschwingkreis fließt, ist in Fig. 3 ebenfalls dargestellt. Man erkennt, daß der Strom I zunächst eine positive Halbwelle durchläuft. Zu dem Zeitpunkt, zu dem die Impulsspannung UF ihren Maximalwert erreicht, geht der Strom 1 durch Null, und hieran schließt sich während des Abklingens der Spannung UF eine negative Halbwelle des Stromes I an.The circuit described so far is known. It works in such a way that the storage capacitor 24 is charged to the voltage U 1 . When the thyristor 20 is driven into the conductive state by the application of a brief pulse from a control device 25 to its control connection, a current flows through the inductance 18 through the primary winding 17. This current induces a high voltage in the secondary winding 15. The winding ratio of primary winding 17 to secondary winding 15 is, for example, 1: 7. The secondary winding 15 forms a series resonant circuit with the capacitor 14 and the capacitance of the dust separator 10. The one shown in FIG. 3 is formed on the dust separator 10 . Voltage curve U F , which has the function of a sine curve almost exactly. The maximum voltage of U F is approximately 60 kV, and this pulse is superimposed on the base voltage U e . The course of the current flowing in the series resonant circuit is also shown in FIG. 3. It can be seen that the current I first runs through a positive half-wave. At the time when the pulse voltage U F reaches its maximum value, the current 1 goes through zero, and this is followed by a negative half-wave of the current I during the decay of the voltage U F.

In Fig. 3 ist außerdem die Steuerspannung Uc dargestellt, d.h. derjenige Impuls, den die Steuerschaltung 25 erzeugt, um den Thyristor 20 zu steuern. Dieser Impuls Uc hat zunächst eine kurze Spannungsspitze, um den Thyristor 20 aufzusteuern, und hieran schließt sich ein Bereich niedrigerer Spannung an. Die Gesamtdauer des Impulses Uc beträgt ca. 20 µs, und die Gesamtdauer des Impulses UF beträgt ca. 120 µs. Die in Fig. 3 angegebenen Zeiten berechnen sich vom Zeitpunkt to, zu dem die Ansteuerung des Thyristors 20 beginnt.3 also shows the control voltage U c , ie the pulse that the control circuit 25 generates in order to control the thyristor 20. This pulse U c initially has a short voltage peak in order to open the thyristor 20, and this is followed by a region of lower voltage. The total duration of the pulse U c is approximately 20 µs, and the total duration of the pulse U F is approximately 120 µs. The times indicated in FIG. 3 are calculated from the time t o at which the control of the thyristor 20 begins.

An dem Staubabscheider 10 können Spannungsüberschläge von der Elektrode 12 zum Gehäuse 11 auftreten. Dies ist durch die gestrichelt angedeutete Funkenstrecke 26 symbolisiert. Im Falle eines Spannungsüberschlags fällt die Spannung UF schlagartig auf Null. Der sekundärseitige Schwingkreis des Transformators 16 besteht dann lediglich noch aus der Sekundärwicklung 15 und dem Kondensator 14. Obwohl die Spannung UF Null geworden ist, fließt über die Funkstrecke 26 ein hoher Strom. Dieser Strom erzeugt eine Spannung an der Primärwicklung 17,und diese Spannung entlädt sich über die Induktivität 18 und die Thyristorschaltung 19 auf den Speicherkondensator 24, der dadurch wieder aufgeladen wird. Dieser Vorgang ist ungefährlich, wenn der Thyristor 20 sich noch im leitenden Zustand befindet. Ist der Thyristor 20 aber bereits gesperrt, dann wird an ihm durch den Kurzschluß der Funkenstrecke 26 eine gefährlich hohe Spannung erzeugt.Voltage flashovers from the electrode 12 to the housing 11 can occur on the dust separator 10. This is symbolized by the spark gap 26 indicated by dashed lines. In the event of a voltage flashover, the voltage U F suddenly drops to zero. The secondary-side resonant circuit of the transformer 16 then only consists of the secondary winding 15 and the capacitor 14. Although the voltage U F has become zero, a high current flows through the radio link 26. This current generates a voltage across the primary winding 17, and this voltage discharges via the inductance 18 and the thyristor circuit 19 onto the storage capacitor 24, which is thereby recharged. This process is harmless if the thyristor 20 is still in the conductive state. If the thyristor 20 is already blocked, then a dangerously high voltage is generated on it by the short circuit of the spark gap 26.

Zum Zeitpunkt t1 (Fig. 3), in dem die Spannung UF den Maximalwert erreicht und der Strom I des Schwingkreises durch Null geht, ist der Thyristor 20 noch geöffnet, obwohl die Steuerspannung Uc schon beendet ist. Bekanntlich wird ein Thyristor erst gelöscht, wenn der Thyristorstrom durch Null geht. Wenn also ein Spannungsüberschlag am Staubabscheider 10 zwischen den Zeiten to und tt auftritt, so bleibt der bis dahin leitende Thyristor 20 leitend, weil er nach dem Spannungsüberschlag zum Aufladen des Speicherkondensators 24 in gleicher Richtung durchflossen wird wie während der positiven Halbwelle des Impulsstromes. Tritt der Spannungsüberschlag jedoch nach dem Zeitpunkt t1 auf, z.B. zum Zeitpunkt t2, dann ist der Thyristor 20 bereits im Sperrzustand,und an ihm entsteht eine Spannung, die gegenpolig ist zur Diode 21 und nicht über diese Diode abfließen kann.At time t 1 (FIG. 3), when the voltage U F reaches the maximum value and the current I of the resonant circuit goes through zero, the thyristor 20 is still open, although the control voltage U c has already ended. As is known, a thyristor is only extinguished when the thyristor current passes through zero. If a voltage flashover occurs at the dust separator 10 between times t o and t t , then the thyristor 20, which has been conductive until then, remains conductive, because after the voltage flashover it flows through in the same direction to charge the storage capacitor 24 as during the positive half-wave of the pulse current. However, if the voltage flashover occurs after the time t 1 , for example at the time t 2 , then the thyristor 20 is already in the blocking state, and a voltage is generated across it that has the opposite polarity to the diode 21 and can not flow through this diode.

Um zu verhindern, daß der Thyristor 20 in diesem Zustand zerstört wird, ist an die Elektrode 12 ein Detektor 27 angeschlossen, der bei einem steilen Abfall der Spannung UF über Leitung 28 einen Impuls an einen Übertrager 29 liefert. Die Sekundärwicklung des Übertragers 29 ist zwischen Anodenanschluß und Steueranschluß des Thyristors 20 geschaltet. Der auf die Sekundärspule des Übertragers 29 übertragene Impuls von Leitung 28 steuert den Thyristor 20 in den leitenden Zustand, so daß sich die durch den sekundärseitigen Kurzschluß des Transformators 16 entstandene hohe primärseitige Spannung über den leitenden Thyristor 20 auf den Speicherkondensator 24 entladen kann.In order to prevent the thyristor 20 from being destroyed in this state, a detector 27 is connected to the electrode 12, which supplies a pulse to a transformer 29 via line 28 when the voltage U F drops sharply. The secondary winding of the transformer 29 is connected between the anode connection and the control connection of the thyristor 20. The transmitted on the secondary coil of the transformer 29 pulse from line 28 controls the thyristor 20 in the conductive state, so that the high primary voltage caused by the secondary short circuit of the transformer 16 can discharge through the conductive thyristor 20 to the storage capacitor 24.

Der Detektor 27 besteht aus der Reihenschaltung eines Kondensators 30 und eines Widerstandes 31, der mit Erdpotential verbunden ist. Die RC-Konstante des Detektors 27 beträgt ca. 1 µs, so daß nur sehr kurzzeitige Änderungen der Spannung UF ein Signal an Leitung 28 erzeugen können, während die normale Impulsspannung, die in Fig. 3 dargestellt ist, keine Signaländerung an Leitung 28 hervorruft.The detector 27 consists of a series connection of a capacitor 30 and a resistor 31, which is connected to ground potential. The RC constant of the detector 27 is approximately 1 μs, so that only very brief changes in the voltage U F can generate a signal on line 28, while the normal pulse voltage, which is shown in FIG. 3, does not cause a signal change on line 28 .

Zum Schutz des Thyristors 20 ist eine weitere Schutzschaltung 32 vorgesehen, die in Abhängigkeit von der Spannung, die zwischen den Hauptelektroden des Thyristors 20 herrscht, ein Steuersignal an Leitung 45 erzeugt. Diese Schutzschaltung besteht aus einem ersten Spannungsteiler aus den Widerständen 33 und 34 und einem zweiten Spannungsteiler aus den Widerständen 35 und 36. Die Abgriffe der beiden Spannungsteiler sind untereinander verbunden und an den Eingang eines Verstärkers 37 angeschlossen. Der Ausgang des Verstärkers 37 ist über Leitung 45 mit dem Übertrager 29 verbunden. Der ohmsche Spannungsteiler 33, 34 hat infolge der Kapazitäten bzw. Induktivitäten, die die Widerstände notwendigerweise haben, eine zu große Reaktionszeit. Aus diesem Grunde ist parallel zu dem ohmschen Spannungsteiler der Spannungsteiler 35, 36 vorgesehen, der infolge des Kondensators 36 eine kurze Reaktionszeit hat.To protect the thyristor 20, a further protective circuit 32 is provided, which generates a control signal on line 45 as a function of the voltage that prevails between the main electrodes of the thyristor 20. This protective circuit consists of a first voltage divider consisting of resistors 33 and 34 and a second voltage divider consisting of resistors 35 and 36. The taps of the two voltage dividers are connected to one another and connected to the input of an amplifier 37. The output of amplifier 37 is connected to transformer 29 via line 45. The ohmic voltage divider 33, 34 has a reaction time which is too great due to the capacitances or inductances which the resistors necessarily have. For this reason, the voltage divider 35, 36 is provided in parallel with the ohmic voltage divider, which has a short response time due to the capacitor 36.

Die konstruktive Ausführung des Transformators 16 ist in Fig. 2 schematisch dargestellt. Der Transformator weist einen Ringkern 38 aus einem spiralförmig aufgewickelten einzigen Blechstreifen auf. Der zylindrische Ringkern ist in der dargestellten Weise mit der Primärwicklung 17 und der Sekundärwicklung 15 umwickelt. Außerdem trägt der Ringkern 38 noch eine Hilfswicklung 39, die gegensinnig zur Primärwicklung 17 gewickelt ist, was in Fig. 1 durch die Punkte angedeutet ist. Die Hilfswicklung 39 ist über einen Gleichrichter 40 an die beiden Enden der Sekundärspule 41 des Hilfstransformators 22 angeschlossen.The structural design of the transformer 16 is shown schematically in FIG. 2. The transformer has a toroidal core 38 made from a spirally wound single sheet metal strip. The cylindrical toroid is wound with the primary winding 17 and the secondary winding 15 in the manner shown. In addition, the toroidal core 38 also carries an auxiliary winding 39 which is wound in the opposite direction to the primary winding 17, which is indicated in FIG. 1 by the points. The auxiliary winding 39 is connected to the two ends of the secondary coil 41 of the auxiliary transformer 22 via a rectifier 40.

Während der Impulse, die unter Steuerung durch das Steuergerät 25 von dem Thyristor 20 erzeugt werden, wird die Primärwicklung 23 des Hilfstransformators 22 von Strom durchflossen. Hierdurch wird in der Sekundärwicklung 41 eine Spannung erzeugt, die durch den Gleichrichter 40 gleichgerichtet wird und sich über die Hilfswicklung 39 entlädt. Auf diese Weise wird in der Hilfswicklung 39 ein Gleichstrom erzeugt, dessen Größe von der Häufigkeit und Stärke der Impulse am Staubabscheider 10 abhängt und der in dem Kern 38 eine Gegenmagnetisierung erzeugt, wodurch verhindert wird, daß der Kern 38 durch die Impulse stufenweise immer mehr in die Sättigung gesteuert wird. Parallel zu der Hilfswicklung 39 kann ein (nicht dargestellter) Kondensator vorgesehen sein.During the pulses generated by the thyristor 20 under control by the control device 25, the primary winding 23 of the auxiliary transformer 22 is traversed by current. As a result, a voltage is generated in the secondary winding 41, which is rectified by the rectifier 40 and discharged via the auxiliary winding 39. In this way, a direct current is generated in the auxiliary winding 39, the magnitude of which depends on the frequency and strength of the pulses at the dust separator 10 and which generates a counter-magnetization in the core 38, thereby preventing the core 38 from gradually increasing due to the pulses the saturation is controlled. A capacitor (not shown) can be provided in parallel with the auxiliary winding 39.

Zum weiteren Schutz des Thyristors 20 ist zwischen dem Thyristor und Erdpotential eine Reihenschaltung aus einer Diode 42 und einem Kondensator 43 geschaltet. Dem Kondensator 43 ist ein Widerstand 44 parallelgeschaltet. Durch die Diode 42 wird erreicht, daß negative Impulssprünge von dem Kathodenanschluß des Thyristors 20 ferngehalten werden. Solche negativen Impulssprünge laden über die Diode 42 den Kondensator 43 auf, der sich anschließend über den Widerstand 44 langsam entladen kann. Auch diese Schutzschaltung trägt dazu bei, plötzlich auftretende Überspannungen am Thyristor zu verhindern.To further protect the thyristor 20, a series circuit comprising a diode 42 and a capacitor 43 is connected between the thyristor and ground potential. A resistor 44 is connected in parallel to the capacitor 43. The diode 42 ensures that negative pulse jumps are kept away from the cathode connection of the thyristor 20. Such negative pulse jumps charge the capacitor 43 via the diode 42, which can then slowly discharge via the resistor 44. This protective circuit also helps to prevent sudden overvoltages on the thyristor.

Claims (5)

1. Power supply circuit for electrostatic dust separator comprising
a transformer (16) whose primary circuit includes a thyristor circuit (19) and whose secondary ciruit is coupled to the electrode (12) of the dust separator (10),
and a detector (27) coupled to the electrode (12), said detector being responsive only to quick voltage changes occurring in case of a spark-over at the dust separator (10) to act on the thyristor circuit (19),
characterized in that
the primary circuit of the transformer (16) is connected through the thyristor circuit (19) to the d.c. voltage source (Ul),
the thyristor circuit (19) is controlled by a pulse generator (25),
the electrode (12) is additionally applied to a d.c. voltage (UB) to which the pulses produced by the thyristor circuit (19) may be fed via the transformer (16) and a capacitor (14),
and that, in case of a spark-over, the detector (27) drives the thyristor circuit (19) into the conductive state.
2. Power supply circuit as defined in claim 1, characterized by a protective circuit (32) tapping the potential ahead and downstream of the thyristor circuit (19) and driving the latter into the conductive state when the potential difference exceeds a predetermined value.
3. Power supply circuit as defined in claim 1 or 2, characterized in that the transformer (16) is a torodial transformer whose winding-carrying core (38) consists of a helically wound sheet metal.
4. Power supply circuit as defined in one of claims 1 to 3, characterized in that, in addition to a primary winding (17) and a secondary winding (15), the transformer includes an auxiliary winding (39) which is traversed by a rectified anti-magnetizing current generating a magnetic field being inverse to that of the pulse current by the primary winding (17).
5. Power supply circuit as defined in claim 4, characterized in that the anti-magnetizing current is produced by the secondary coil (41) of an auxiliary transformer (22) whose primary coil (23) is connected in series with the thyristor circuit (19).
EP83110554A 1982-11-06 1983-10-22 Power supply circuit for an electrostatic dust separator Expired EP0108963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83110554T ATE20833T1 (en) 1982-11-06 1983-10-22 SUPPLY CIRCUIT FOR AN ELECTROSTATIC DUST COLLECTOR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3241060 1982-11-06
DE19823241060 DE3241060A1 (en) 1982-11-06 1982-11-06 ELECTRICAL CIRCUIT FOR AN ELECTROSTATIC WORKING DUST SEPARATOR

Publications (2)

Publication Number Publication Date
EP0108963A1 EP0108963A1 (en) 1984-05-23
EP0108963B1 true EP0108963B1 (en) 1986-07-23

Family

ID=6177481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110554A Expired EP0108963B1 (en) 1982-11-06 1983-10-22 Power supply circuit for an electrostatic dust separator

Country Status (10)

Country Link
US (1) US4854948A (en)
EP (1) EP0108963B1 (en)
JP (1) JPS5999976A (en)
AT (1) ATE20833T1 (en)
AU (1) AU559636B2 (en)
DE (2) DE3241060A1 (en)
ES (1) ES526977A0 (en)
GR (1) GR78707B (en)
IN (1) IN160445B (en)
ZA (1) ZA838180B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008561A1 (en) * 1990-03-16 1991-09-19 Siemens Ag Operating voltage supply for electrofilter - using intermediate circuit converter and following oscillating circuit with inductance for HV transformer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511622A1 (en) * 1985-03-29 1986-10-09 Metallgesellschaft Ag, 6000 Frankfurt METHOD AND DEVICE FOR SUPPLYING AN ELECTRIC SEPARATOR WITH HIGH VOLTAGE PULSES
FR2601829B1 (en) * 1986-07-18 1988-11-10 Ducellier & Cie HIGH VOLTAGE ELECTRIC GENERATOR AND DUST COLLECTOR SYSTEM COMPRISING SUCH A GENERATOR
WO1990001991A1 (en) * 1988-08-19 1990-03-08 Gosudarstvenny Nauchno-Issledovatelsky Energetichesky Institut Imeni G.M.Krzhizhanovskogo Pulsed-voltage source for gas-cleaning electrofilters
JPH03505297A (en) * 1988-08-24 1991-11-21 ゴスダルストヴェニ ナウチノ イスレドヴァテルスキ エネルゲチチェスキ インスチテュート イメニ ゲー エム クルジザーノフスコゴ Pulsed voltage source for electrostatic precipitator
WO1990001993A1 (en) * 1988-08-26 1990-03-08 Gosudarstvenny Nauchno-Issledovatelsky Energetichesky Institut Imeni G.M.Krzhizhanovskogo Pulsed voltage source for gas-cleaning electrofilters
US6063168A (en) * 1997-08-11 2000-05-16 Southern Company Services Electrostatic precipitator
PT1652586E (en) 2004-10-26 2011-09-12 Smidth As F L Pulse generating system for electrostatic precipitator
US7452403B2 (en) * 2005-12-29 2008-11-18 General Electric Company System and method for applying partial discharge analysis for electrostatic precipitator
ES2387853B1 (en) * 2010-09-22 2013-08-23 Endesa S.A. GENERATOR OF ENERGIZATION PULSES FOR AN ELECTROFILTER.
EP3154702B1 (en) * 2014-06-13 2021-07-21 FLSmidth A/S Controlling a high voltage power supply for an electrostatic precipitator
CN114244147B (en) * 2021-12-17 2023-05-12 四川大学 Electromagnetic field coupling generating device and method for electromagnetic strengthening treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2000422A1 (en) 1969-01-08 1970-07-23 Hitachi Ltd Method and device for protecting thyristors
DE2253601A1 (en) 1972-11-02 1974-05-16 8601 Steinfeld PROCESS AND EQUIPMENT FOR ELECTRONIC DUST SEPARATION
DE2608436A1 (en) 1975-03-03 1976-09-16 Lindberg As Nea ELECTROSTATIC SEPARATOR ARRANGEMENT
US4282014A (en) 1975-01-31 1981-08-04 Siemens Aktiengesellschaft Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator
US4325114A (en) 1979-04-24 1982-04-13 Tokyo Shibaura Denki Kabushiki Kaisha Gate controlling circuit for a thyristor converter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2085060A (en) * 1935-07-29 1937-06-29 Hugh E Young Constant current system
US3064219A (en) * 1955-01-19 1962-11-13 Trak Electronics Company Inc Controllable inductor apparatus
FR84810E (en) * 1963-08-06 1965-04-23 Comp Generale Electricite Symmetrical locking-unlocking device
DE1911923B2 (en) * 1969-03-08 1972-08-17 Siemens AG, 1000 Berlin u. 8000 München ARRANGEMENT FOR THE INDEPENDENT CONTROL OF THE SEPARATOR VOLTAGE IN AN ELECTRIC CUTTER
US3873282A (en) * 1972-07-27 1975-03-25 Gen Electric Automatic voltage control for an electronic precipitator
US3877896A (en) * 1973-08-14 1975-04-15 Vectrol Inc Solid state voltage control system for electrostatic precipitators
DE2540084C2 (en) * 1975-09-09 1983-08-25 Metallgesellschaft Ag, 6000 Frankfurt Device for detecting flashovers on the high voltage side in an electrostatic precipitator
US3996543A (en) * 1976-02-04 1976-12-07 Westinghouse Electric Corporation Current transformer
US4116728B1 (en) * 1976-09-02 1994-05-03 Gen Electric Treatment of amorphous magnetic alloys to produce a wide range of magnetic properties
DE2713675C2 (en) * 1977-03-28 1984-08-23 Siemens AG, 1000 Berlin und 8000 München Power supply for an electrostatic precipitator
DE3017685A1 (en) * 1980-05-08 1981-11-12 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR REGULATING THE VOLTAGE OF AN ELECTROFILTER USED IN A PLANT
DE3027172A1 (en) * 1980-07-17 1982-02-18 Siemens AG, 1000 Berlin und 8000 München METHOD FOR OPERATING AN ELECTROFILTER
US4336520A (en) * 1980-07-25 1982-06-22 Trayer Frank C Method and apparatus for short circuit protection of high voltage distribution systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2000422A1 (en) 1969-01-08 1970-07-23 Hitachi Ltd Method and device for protecting thyristors
DE2253601A1 (en) 1972-11-02 1974-05-16 8601 Steinfeld PROCESS AND EQUIPMENT FOR ELECTRONIC DUST SEPARATION
US4282014A (en) 1975-01-31 1981-08-04 Siemens Aktiengesellschaft Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator
DE2608436A1 (en) 1975-03-03 1976-09-16 Lindberg As Nea ELECTROSTATIC SEPARATOR ARRANGEMENT
US4325114A (en) 1979-04-24 1982-04-13 Tokyo Shibaura Denki Kabushiki Kaisha Gate controlling circuit for a thyristor converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008561A1 (en) * 1990-03-16 1991-09-19 Siemens Ag Operating voltage supply for electrofilter - using intermediate circuit converter and following oscillating circuit with inductance for HV transformer
DE4008561C2 (en) * 1990-03-16 1998-09-10 Siemens Ag Method for operating a voltage supply device for an electrostatic filter

Also Published As

Publication number Publication date
AU559636B2 (en) 1987-03-19
GR78707B (en) 1984-09-27
ATE20833T1 (en) 1986-08-15
US4854948A (en) 1989-08-08
DE3241060A1 (en) 1984-05-10
IN160445B (en) 1987-07-11
JPS5999976A (en) 1984-06-08
ZA838180B (en) 1984-06-27
ES8500766A1 (en) 1984-11-16
ES526977A0 (en) 1984-11-16
EP0108963A1 (en) 1984-05-23
DE3364745D1 (en) 1986-08-28
AU2064083A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
DE69408811T2 (en) DC high-performance switch
DE69020076T2 (en) High voltage pulse generator circuit and electrostatic precipitator with this circuit.
EP0108963B1 (en) Power supply circuit for an electrostatic dust separator
DE2630179B2 (en) Pulse generator circuit for generating clock pulses of adjustable amplids and constant width
DE3334791C2 (en) Multiple spark capacitor ignition device for internal combustion engines
EP0116275A2 (en) Reactive power compensator
DE1132594B (en) Power amplifier equipped with a controllable four-layer diode
DE3403619A1 (en) ELECTRIC POWER SUPPLY SOURCE FOR USE IN AN ELECTROSTATIC RECEIVER
DE2608436C2 (en) Electrical circuit for an electrostatic dust collector
EP0197369B1 (en) Method and device to supply high-voltage pulses to an electrostatic filter
DE830522C (en) Circuit for generating a high-frequency power pulse triggered by a control pulse
CH659157A5 (en) CIRCUIT FOR COMPENSATING BLIND POWER IN AN ELECTRICAL AC VOLTAGE NETWORK.
EP0134433B1 (en) Control circuit for pulse current devices
EP2820728B1 (en) Spark gap arrangement
EP1131874B1 (en) Load protection system in a power modulator
EP0213354B1 (en) Spark-over protection device in a transmitter circuit
DE4418864C2 (en) Arc welder
DE3116447A1 (en) Pulse generator
DE3412563A1 (en) DEVICE FOR NEUTRALIZING CHARGED WORKPIECES
DE2748641A1 (en) PULSE GENERATOR
DE4008561C2 (en) Method for operating a voltage supply device for an electrostatic filter
DE3542752C2 (en)
DE102015000292B4 (en) Soft switch-on device and method for soft switch-on of an energisable electrical power unit
CH645761A5 (en) ARRANGEMENT FOR THE SIMULTANEOUS END OF A MULTIPLE OF SERIES THYRISTORS.
DE2618222B2 (en) Electronic ignition system for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840925

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 20833

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3364745

Country of ref document: DE

Date of ref document: 19860828

ET Fr: translation filed
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19861031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861031

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19870423

Opponent name: F.L. SMIDTH & CO. A/S

Effective date: 19870422

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Opponent name: F.L. SMIDTH & CO A/S

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19891022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19891031

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

BERE Be: lapsed

Owner name: WALTHER & CIE. A.G.

Effective date: 19891031

27W Patent revoked

Effective date: 19900129

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 83110554.9

Effective date: 19900706