Nothing Special   »   [go: up one dir, main page]

EP0170847B1 - Method for the phase-locked transmission of a low-frequency modulation signal and circuit arrangement for performing this method - Google Patents

Method for the phase-locked transmission of a low-frequency modulation signal and circuit arrangement for performing this method Download PDF

Info

Publication number
EP0170847B1
EP0170847B1 EP85107696A EP85107696A EP0170847B1 EP 0170847 B1 EP0170847 B1 EP 0170847B1 EP 85107696 A EP85107696 A EP 85107696A EP 85107696 A EP85107696 A EP 85107696A EP 0170847 B1 EP0170847 B1 EP 0170847B1
Authority
EP
European Patent Office
Prior art keywords
auxiliary carrier
frequency
modulation signal
sideband
rac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85107696A
Other languages
German (de)
French (fr)
Other versions
EP0170847A1 (en
Inventor
Manfred Tiesnes
Willy Zimmerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT85107696T priority Critical patent/ATE43035T1/en
Publication of EP0170847A1 publication Critical patent/EP0170847A1/en
Application granted granted Critical
Publication of EP0170847B1 publication Critical patent/EP0170847B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/67Common-wave systems, i.e. using separate transmitters operating on substantially the same frequency

Definitions

  • the invention relates to a method for the phase-locked transmission of a low-frequency modulation signal according to the preamble of claim 1 and a circuit arrangement for carrying out the method.
  • a method of the type mentioned is e.g. B. from Brown Boveri Mitt 5/6, 1983, pp. 186-188 and from DE-A-3 044 438.
  • Common-frequency radio is frequently used for frequency-economical radio coverage of large areas, in which a plurality of interconnected base stations are operated simultaneously on the same frequency channel.
  • the base stations are distributed in such a way that the areas they cover adjoin one another and cover the entire radio coverage area.
  • the carrier frequencies of the different base stations are coupled to one another and absolutely identical.
  • a separate, highly stable oscillator for the carrier frequency is provided in each base station, the maximum deviation between the carrier frequencies of different base stations not being allowed to be more than 5-20 Hz.
  • the modulation signals are transmitted from a central signal source to the individual base stations via feeder connections, where they modulate the respective carrier. Since the base stations are at different distances from the central signal source and different technical systems (LF line, radio link, etc.) may be used for the feeder connections, there are in particular runtime and phase differences between the modulation signals transmitted on different feeder connections, which are balanced in a suitable manner must be in order to limit disturbing interference phenomena in the overlap areas.
  • any carrier frequency transmission systems cannot be used as feeder connections, because the transposition of the different channels at the different locations produces signals with different phases and frequencies, which cannot be matched to one another in the known way by inserting correction elements.
  • the present invention is therefore based on the object of specifying a method for the phase-locked transmission of modulation signals from the central signal source to the base stations of a single-wave radio system, in which the compensation of phase errors occurring is achieved regardless of the type of feeder connection, and which therefore also Permission to use any carrier frequency transmission systems as feeder connections.
  • the essence of the invention is to mix the modulation signal with a subcarrier before transmission, to transmit at least one of the side bands resulting from the mixing together with the subcarrier to the base stations and there to mix again with the transmitted subcarrier or with a phase-locked coupling to it to demodulate locally generated subcarriers. Since the sideband signal and the subcarrier always experience the same phase shifts on the feeder connection, the phase shift of the modulation signal is automatically compensated for during demodulation by means of the transmitted subcarrier.
  • the side band and subcarrier preferably lie in the same channel, which is designed as a telephony channel.
  • the circuit arrangement for carrying out the method has a modulator with a local oscillator, preferably a quartz oscillator, and a first mixer behind each signal source and a corresponding demodulator with a second mixer and means for recovering the auxiliary carrier in front of each base station.
  • a modulator with a local oscillator preferably a quartz oscillator
  • FIG. 1 shows an exemplary single-wave radio system according to the prior art.
  • the radio coverage of a large area takes place via a plurality of base stations B1, ..., B3, which simultaneously transmit the carrier signal modulated with a low-frequency modulation signal via corresponding antennas A1, ..., A3.
  • the modulation signal comes from a low-frequency signal source 1, e.g. B. a microphone, and is distributed via feeder connections to the individual base stations B1, ..., B3.
  • the feeder connections can be realized by LF lines 11, 12 of different lengths, but also by a single-channel radio link 13 with a radio relay 2 and a radio receiver 3.
  • phase correction elements 4 are provided in the lines, which compensate for phase differences by means of runtime differences and differences in the phase response.
  • the modulation signal is now changed before it is transmitted via the feeder connection in such a way that the phase change can be corrected by the feeder connection at the base station without knowing the properties of the connection itself.
  • FDM Frequency Division Multiplex
  • FIG. 2 The block diagram of a single such FDM feeder connection with phase correction according to the invention is shown in Fig. 2. Since an FDM system only makes sense if several channels have to be transmitted at the same time, a plurality of low-frequency signal sources 1 is assumed in FIG. Each of the signal sources is assigned its own channel. The modulation signals coming from the signal sources 1 are first modified within their channel by a subsequent modulator in the sense of the method according to the invention. The details of this modification will be discussed in more detail later in connection with the design of the modulator 5.
  • the individual channels are transposed to higher frequencies by a carrier frequency multiplexer 6 in a manner known per se and are transmitted in frequency to one another via a carrier frequency transmitter 7 and a carrier frequency path 14 to a carrier frequency receiver 8.
  • a subsequent carrier frequency demultiplexer 9 returns the channels to their starting position in terms of frequency and forwards them separately to a number of demodulators 10 corresponding to the number of channels, in which the respective phase shift is corrected and the original modulation signal is recovered.
  • the recovered modulation signals are then passed on to a base station B, where they modulate the carrier signal emitted via an antenna A.
  • FIG. 3 A preferred exemplary embodiment of the modulator 5 from FIG. 2 is shown with its block diagram in FIG. 3. A detailed representation of the circuitry structure of the individual blocks has been dispensed with here as well as with the corresponding circuit diagram of the demodulator 10, because the execution is known to every person skilled in carrier frequency technology.
  • the modulation signal from the signal source 1 is first applied to the input of a first input amplifier 16 via a first isolating transformer 15, which preferably has a transmission ratio of 1: 1 and an impedance of 600 ohms, and there to a for further signal processing favorable level strengthened.
  • the first input amplifier 16 is followed by a band limit filter 17 which limits the frequency band of the modulation signal and preferably has an upper limit frequency of approximately 3 kHz.
  • the pass characteristic of the band limitation filter is entered as a dashed line in FIG. 5 a, which shows the low frequency band NB of the modulation signal, which results from the limitation and lies between 0.3 and 3 kHz.
  • the low-frequency band NB is fed to the one input of a first mixer 18 which mixes the modulation signal with an auxiliary carrier HT of preferably 3.3 kHz, shown on the frequency axis in FIG. 5b.
  • the subcarrier HT is derived from the oscillator frequency of a local oscillator, preferably a quartz oscillator 20, which, for. B. 3,3792 MHz and is divided by a subsequent first frequency divider 21 with a division ratio of 210: 1 to 3.3 kHz. Other oscillator frequencies accordingly require different sub-ratios.
  • a lower sideband USB and an upper sideband OSB are formed symmetrically to the frequency of the subcarrier HT. Both sidebands are shown in Fig. 5c.
  • the lower sideband USB corresponds to the low-frequency band NB in the upside-down position and, taken by itself, contains the same information.
  • the first mixer 18 is therefore preferably followed by a first sideband filter 19 with a pass characteristic shown in dashed lines in FIG. 5c, which suppresses the subcarrier HT and the upper sideband OSB with an upper limit frequency of 3 kHz.
  • the remaining lower sideband USB arrives at an input of an adder amplifier 23.
  • a subcarrier residue HTR which is reduced in amplitude, is fed to another input of the adder amplifier 23, which is transmitted via an harmonic filter 22 with an upper cutoff frequency of e.g. B. 4 kHz, is taken at the output of the first frequency divider 21.
  • a modified modulation signal then appears at the output of the adder amplifier 23, which is composed of the lower sideband USB and the adjacent subcarrier residue HTR. Both are shown in solid lines in FIG. 5c.
  • the modified modulation signal can now over any feeder connection with the appropriate bandwidth such.
  • B. the FDM system of FIG. 2 can be transmitted to the base stations, where it is previously corrected and converted back in the demodulator 10.
  • a preferred embodiment of the demodulator 10 which matches the modulator of FIG. 3 is shown with its block diagram in FIG. 4.
  • the modified modulation signal of FIG. 6a arriving via the feeder connection is first amplified in the modulator 10 in a second input amplifier 24 and fed to a second mixer 25.
  • the auxiliary carrier residue HTR is branched off from the amplified signal by means of a high-pass filter 29, which has a lower cut-off frequency of 3.2 kHz for the exemplary frequencies from FIG. 6a, and is further used in the demodulator 10 for the local generation of a phase-locked-coupled auxiliary carrier.
  • the branched subcarrier remainder HTR is amplified in a carrier signal amplifier 30 and passed on for synchronization of a PLL (phase locked loop) circuit 31 to its synchronization input.
  • the PLL circuit preferably generates a frequency of 6.6 kHz, which is divided down in a subsequent second frequency divider 32 with a division ratio of 2: 1 to 3.3 kHz and fed to the feedback input of the PLL circuit 31 via a feedback loop.
  • the local subcarrier is mixed in the second mixer 25 with the amplified modified modulation signal, as a result of which a lower sideband USB and an upper sideband OSB are produced again according to FIG. 6b.
  • the lower sideband USB corresponds to the original low-frequency band NB from FIG. 5a and is separated by a second sideband filter 26 (upper cut-off frequency: 3 kHz), whose pass characteristic is entered in FIG. 6b (FIG. 6c), amplified in an output amplifier 27 and passed on to the subsequent base station via a second isolating transformer 28 (transmission ratio: 1: 1; impedance: 600 ohms).
  • the modified modulation signal (lower sideband USB in reverse position + auxiliary carrier rest HTR) can be transmitted via any internationally standardized telephony channel that has one Has a minimum bandwidth of 0.3 to 3.4 kHz.
  • the method according to the invention provides a method to easily compensate for phase shifts of the modulation signal to be transmitted when controlling base transmitters of a single-wave radio system, regardless of the type of feeder connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

1. Method for the phase-locked transmission of a voice-frequency modulation signal from a central signal source via feeder connections to a plurality of spatially distributed base stations of a common-frequency radio system, in which method phase rotations of the modulation signal in the feeder connection are compensated, characterized in that - an auxiliary carrier (AC) located outside the voice-frequency band (VB) of the modulation signal is generated ; - the auxiliary carrier (AC) is mixed with the modulation signal ; - the lover sideband (LSB) resulting from the mixing, together with a residual auxiliary carrier (RAC), is transmitted to the base stations (B, B1, ..., B3) ; and - the original modulation signal is recovered at the base stations (B, B1, ..., B3) from the lower sideband (LSB) by mixing with the aid of the residual auxiliary carrier (RAC) transmitted.

Description

Die Erfindung betrifft ein Verfahren zur phasenstarren Übertragung eines niederfrequenten Modulationssignals gemäss dem Oberbegriff des Anspruchs 1 sowie eine Schaltungsanordnung zur Durchführung des Verfahrens. Ein Verfahren der genannten Art ist z. B. aus der Druckschrift Brown Boveri Mitt 5/6, 1983, S. 186 - 188 sowie aus der DE-A-3 044 438 bekannt.The invention relates to a method for the phase-locked transmission of a low-frequency modulation signal according to the preamble of claim 1 and a circuit arrangement for carrying out the method. A method of the type mentioned is e.g. B. from Brown Boveri Mitt 5/6, 1983, pp. 186-188 and from DE-A-3 044 438.

Zur frequenzökonomischen Funkversorgung grossflächiger Gebiete wird häufig der Gleichwellenfunk verwendet, bei dem simultan eine Mehrzahl von zusammengeschalteten Basisstationen auf dem gleichen Frequenzkanal betrieben werden. Die Basisstationen sind dabei so verteilt, dass die von ihnen abgedeckten Bereiche aneinandergrenzen und das gesamte Funkversorgungsgebiet überdecken.Common-frequency radio is frequently used for frequency-economical radio coverage of large areas, in which a plurality of interconnected base stations are operated simultaneously on the same frequency channel. The base stations are distributed in such a way that the areas they cover adjoin one another and cover the entire radio coverage area.

Um die Empfangsstörungen in den unvermeidbaren Überlappungsgebieten mehrerer Basisstationen möglichst gering zu halten, müssen bestimmte Bedingungen hinsichtlich der Synchronisation der Basisstationen eingehalten werden.In order to keep the reception interference in the unavoidable overlap areas of several base stations as low as possible, certain conditions with regard to the synchronization of the base stations must be observed.

Bei einem vollsynchronen System, das mit einem hohen technischen Aufwand verbunden ist, sind die Trägerfrequenzen der verschiedenen Basisstationen untereinander verkoppelt und absolut gleich.In the case of a fully synchronous system, which is associated with a high level of technical complexity, the carrier frequencies of the different base stations are coupled to one another and absolutely identical.

Bei einem quasisynchronen System ist in jeder Basisstation ein eigener hochstabiler Oszillator für die Trägerfrequenz vorgesehen, wobei die maximale Abweichung zwischen den Trägerfrequenzen verschiedener Basisstationen nicht mehr als 5 - 20 Hz betragen darf.In a quasi-synchronous system, a separate, highly stable oscillator for the carrier frequency is provided in each base station, the maximum deviation between the carrier frequencies of different base stations not being allowed to be more than 5-20 Hz.

Neben die durch Trägerfrequenzdifferenzen bedingten Empfangsstörungen in den Überlappungsgebieten eines quasisynchronen Gleichwellensystems treten zusätzlich die modulationsabhängigen Störungen: Die Modulationssignale werden von einer zentralen Signalquelle über Zubringerverbindungen an die einzelnen Basisstationen übermittelt und modulieren dort den jeweiligen Träger. Da die Basisstationen unterschiedliche Entfernungen zu der zentralen Signalquelle haben und für die Zubringerverbindungen möglicherweise unterschiedliche technische Systeme (NF-Leitung, Richtfunkstrecke etc.) eingesetzt werden, ergeben sich insbesondere Laufzeit- und Phasenunterschiede zwischen den auf verschiedenen Zubringerverbindungen übermittelten Modulationssignalen, die auf geeignete Weise ausgeglichen werden müssen, um störende Interferenzerscheinungen in den Überlappungsgebieten zu begrenzen.In addition to the reception interference caused by carrier frequency differences in the overlap areas of a quasi-synchronous single-frequency system, there are also the modulation-dependent interference: The modulation signals are transmitted from a central signal source to the individual base stations via feeder connections, where they modulate the respective carrier. Since the base stations are at different distances from the central signal source and different technical systems (LF line, radio link, etc.) may be used for the feeder connections, there are in particular runtime and phase differences between the modulation signals transmitted on different feeder connections, which are balanced in a suitable manner must be in order to limit disturbing interference phenomena in the overlap areas.

Es ist nun bekannt, bei der Verwendung von NF-Leitungen oder einkanaligen Richtfunkstrecken als Zubringerverbindungen die Phasenverschiebung durch geeignete, in die Verbindung eingefügte Phasenkorrekturglieder und Laufzeitglieder zu kompensieren, wobei jedes dieser Glieder auf die speziellen Übertragungseigenschaften der jeweiligen Zubringerverbindungn abgestimmt sein muss (Brown Boveri Mitt. 5/6, 1983, S. 186 - 188). Dies erfordert für jedes Gleichwellen-Funksystem einen speziellen Aufbau in den einzelnen Zubringerverbindungen und führt daher zu einem erhöhten Aufwand.When using LF lines or single-channel radio links as feeder connections, it is now known to compensate for the phase shift by means of suitable phase correction elements and delay elements inserted into the connection, each of these elements having to be matched to the special transmission properties of the respective feeder connections (Brown Boveri Mitt . 5/6, 1983, pp. 186-188). For each single-wave radio system, this requires a special structure in the individual feeder connections and therefore leads to increased expenditure.

Darüber hinaus können als Zubringerverbindungen keine beliebigen Trägerfrequenz-Übertragungssysteme verwendet werden, weil durch die Transponierung der verschiedenen Kanäle an den verschiedenen Standorten Signale mit unterschiedlicher Phase und Frequenz entstehen, die auf die bekannte Art durch Einfügen von Korrekturgliedern nicht aufeinander abgestimmt werden können.In addition, any carrier frequency transmission systems cannot be used as feeder connections, because the transposition of the different channels at the different locations produces signals with different phases and frequencies, which cannot be matched to one another in the known way by inserting correction elements.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur phasenstarren Übertragung von Modulationssignalen von der zentralen Signalquelle zu den Basisstationen eines Gleichwellen-Funksystems anzugeben, bei dem der Ausgleich von auftretenden Phasenfehlern unabhängig von der Art der Zubringerverbindung erreicht wird, und welches daher auch die Verwendung von beliebigen Trägerfrequenz- Übertragungssystemen als Zubringerverbindungen gestattet.The present invention is therefore based on the object of specifying a method for the phase-locked transmission of modulation signals from the central signal source to the base stations of a single-wave radio system, in which the compensation of phase errors occurring is achieved regardless of the type of feeder connection, and which therefore also Permission to use any carrier frequency transmission systems as feeder connections.

Die Aufgabe wird bei einem Verfahren der eingangs genannten Art durch die Merkmale aus dem Kennzeichen des Anspruchs 1 gelöst.The object is achieved in a method of the type mentioned by the features from the characterizing part of claim 1.

Der Kern der Erfindung besteht darin, das Modulationssignal vor der Übermittlung mit einem Hilfsträger zu mischen, wenigstens eines der bei der Mischung entstehenden Seitenbänder zusammen mit dem Hilfsträger an die Basisstationen zu übermitteln und dort durch erneutes Mischen mit dem übermittelten Hilfsträger oder einem an diesen phasenstarr gekoppelten lokal erzeugten Hilfsträger zu demodulieren. Da das Seitenbandsignal und der Hilfsträger auf der Zubringerverbindung stets die gleichen Phasenverschiebungen erleiden, wird die Phasenverschiebung des Modulationssignals bei der Demodulation mittels des übermittelten Hiflsträgers automatisch kompensiert.The essence of the invention is to mix the modulation signal with a subcarrier before transmission, to transmit at least one of the side bands resulting from the mixing together with the subcarrier to the base stations and there to mix again with the transmitted subcarrier or with a phase-locked coupling to it to demodulate locally generated subcarriers. Since the sideband signal and the subcarrier always experience the same phase shifts on the feeder connection, the phase shift of the modulation signal is automatically compensated for during demodulation by means of the transmitted subcarrier.

Vorzugsweise liegen Seitenband und Hilfsträger im selben Kanal, der als Telefoniekanal ausgebildet ist.The side band and subcarrier preferably lie in the same channel, which is designed as a telephony channel.

Die Schaltungsanordnung zur Durchführung des Verfahrens weist hinter jeder Signalquelle einen Modulator mit Lokaloszillator, vorzugsweise einem Quarzoszillator, und einem ersten Mischer und vor jeder Basisstation einen entsprechenden Demodulator mit einem zweiten Mischer und Mitteln zur Wiedergewinnung des Hilfsträgers auf.The circuit arrangement for carrying out the method has a modulator with a local oscillator, preferably a quartz oscillator, and a first mixer behind each signal source and a corresponding demodulator with a second mixer and means for recovering the auxiliary carrier in front of each base station.

Die Erfindung soll nun nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen:

  • Fig. 1 das Blockschaltbild eines bekannten Gleichwellen-Funksystems mit verschiedenartigen Zubringerverbindungen,
  • Fig. 2 das Blockschaltbild einer einzelnen Zubringerverbindung mit Trägerfrequenz-Übertragungssystem und Phasenkorrektur nach der Erfindung,
  • Fig. 3 das Blockschaltbild eines Ausführungsbeispiels des Modulators aus Fig. 2,
  • Fig. 4 das entsprechende Blockschaltbild für den Demodulator aus Fig. 2,
  • Fig. 5a-c die in einem Modulator nach Fig. 3 auftretenden Frequenzen und Frequenzbänder,
  • Fig. 6a-c die entsprechenden Frequenzen und Frequenzbänder im Demodulator nach Fig. 4.
The invention will now be explained in more detail below on the basis of exemplary embodiments in connection with the drawing. Show it:
  • 1 shows the block diagram of a known single-wave radio system with different feeder connections,
  • 2 shows the block diagram of a single feeder connection with carrier frequency transmission system and phase correction according to the invention,
  • 3 shows the block diagram of an exemplary embodiment of the modulator from FIG. 2,
  • 4 shows the corresponding block diagram for the demodulator from FIG. 2,
  • 5a-c the frequencies and frequency bands occurring in a modulator according to FIG. 3,
  • 6a-c the corresponding frequencies and frequency bands in the demodulator of FIG. 4th

In Fig. 1 ist ein beispielhaftes Gleichwellen-Funksystem nach dem Stand der Technik dargestellt. Die Funkversorgung eines grossflächigen Gebiets erfolgt über eine Mehrzahl von Basisstationen B1, ..., B3, die über entsprechende Antennen A1, ..., A3 simultan das mit einem niederfrequenten Modulationssignal modulierte Trägersignal aussenden.1 shows an exemplary single-wave radio system according to the prior art. The radio coverage of a large area takes place via a plurality of base stations B1, ..., B3, which simultaneously transmit the carrier signal modulated with a low-frequency modulation signal via corresponding antennas A1, ..., A3.

Das Modulationssignal stammt aus einer niederfrequenten Signalquelle 1, z. B. einem Mikrofon, und wird über Zubringerverbindungen an die einzelnen Basisstationen B1, ..., B3 verteilt. Die Zubringerverbindungen können durch NF-Leitungen 11, 12 verschiedener Länge realisiert werden, aber auch durch eine einkanalige Richtfunkstrecke 13 mit einem Richtfunksender 2 und einem Richtfunkempfänger 3.The modulation signal comes from a low-frequency signal source 1, e.g. B. a microphone, and is distributed via feeder connections to the individual base stations B1, ..., B3. The feeder connections can be realized by LF lines 11, 12 of different lengths, but also by a single-channel radio link 13 with a radio relay 2 and a radio receiver 3.

Um die auf den verschiedenen Zubringerleitungen entstehenden Phasenunterschiede zu kompensieren, sind in den Leitungen Phasenkorrekturglieder 4 vorgesehen, die Phasendifferenzen durch Laufzeitunterschiede und Unterschiede im Phasengang ausgleichen. Jedes dieser Phasenkorrekturglieder ist auf die Laufzeit und den Phasengang des jeweiligen Übertragungsweges abgestimmt und erfüllt diese Funktion in einem Frequenzkanal mit relativ schmaler Bandbreite (z. B. Telefoniekanal mit A f = 3,1 kHz).In order to compensate for the phase differences occurring on the different feeder lines, phase correction elements 4 are provided in the lines, which compensate for phase differences by means of runtime differences and differences in the phase response. Each of these phase correction elements is matched to the transit time and the phase response of the respective transmission path and fulfills this function in a frequency channel with a relatively narrow bandwidth (e.g. telephony channel with A f = 3.1 kHz).

Gemäss der Erfindung wird nun das Modulationssignal vor seiner Übermittlung über die Zubringerverbindung so verändert, dass die Phasenänderung durch die Zubringerverbindung an der Basisstation korrigiert werden kann, ohne die Eigenschaften der Verbindung selbst zu kennen. Dies ist besonders vorteilhaft für Anwendungsfälle, in denen beliebige Trägerfrequenzsysteme mit FDM (Frequency Division Multiplex) als Zubringerverbindungen eingesetzt werden.According to the invention, the modulation signal is now changed before it is transmitted via the feeder connection in such a way that the phase change can be corrected by the feeder connection at the base station without knowing the properties of the connection itself. This is particularly advantageous for applications in which any carrier frequency systems with FDM (Frequency Division Multiplex) are used as feeder connections.

Das Blockschaltbild einer einzelnen solchen FDM-Zubringerverbindung mit Phasenkorrektur nach der Erfindung ist in Fig. 2 wiedergegeben. Da ein FDM-System nur sinnvoll ist, wenn mehrere Kanäle gleichzeitig übertragen werden müssen, wird in Fig. 2 von einer Mehrzahl von niederfrequenten Signalquellen 1 ausgegangen. Jeder der Signalquellen ist ein eigener Kanal zugeordnet. Die aus den Signalquellen 1 kommenden Modulationssignale werden zunächst innerhalb ihres Kanals durch einen nachfolgenden Modulator im Sinne des erfindungsgemässen Verfahrens modifiziert. Auf die Einzelheiten dieser Modifizierung wird später im Zusammenhang mit der Ausführung des Modulators 5 noch näher eingegangen.The block diagram of a single such FDM feeder connection with phase correction according to the invention is shown in Fig. 2. Since an FDM system only makes sense if several channels have to be transmitted at the same time, a plurality of low-frequency signal sources 1 is assumed in FIG. Each of the signal sources is assigned its own channel. The modulation signals coming from the signal sources 1 are first modified within their channel by a subsequent modulator in the sense of the method according to the invention. The details of this modification will be discussed in more detail later in connection with the design of the modulator 5.

Nach der Modifizierung der Modulationssignale in den Modulatoren 5 werden die einzelnen Kanäle durch einen Trägerfrequenz-Multiplexer 6 in an sich bekannter Weise zu höheren Frequenzen hin transponiert und frequenzmässig aneinandergereiht über einen Trägerfrequenzsender 7 und eine Trägerfrequenzstrecke 14 an einen Trägerfrequenzempfänger 8 übermittelt. Ein nachfolgender Trägerfrequenz-Demultiplexer 9 versetzt die Kanäle in ihre frequenzmässige Ausgangslage zurück und leitet sie getrennt an eine der Kanalzahl entsprechende Anzahl von Demodulatoren 10 weiter, in denen die jeweilige Phasenverschiebung korrigiert und das ursprüngliche Modulationssignal zurückgewonnen wird.After the modulation signals in the modulators 5 have been modified, the individual channels are transposed to higher frequencies by a carrier frequency multiplexer 6 in a manner known per se and are transmitted in frequency to one another via a carrier frequency transmitter 7 and a carrier frequency path 14 to a carrier frequency receiver 8. A subsequent carrier frequency demultiplexer 9 returns the channels to their starting position in terms of frequency and forwards them separately to a number of demodulators 10 corresponding to the number of channels, in which the respective phase shift is corrected and the original modulation signal is recovered.

Die zurückgewonnenen Modulationssignale werden dann an eine Basisstation B weitergegeben und modulieren dort das über eine Antenne A abgestrahlte Trägersignal.The recovered modulation signals are then passed on to a base station B, where they modulate the carrier signal emitted via an antenna A.

Ein bevorzugtes Ausführungsbeispiel des Modulators 5 aus Fig. 2 ist mit seinem Blockschaltbild in Fig. 3 dargestellt. Auf eine detaillierte Wiedergabe des schaltungstechnischen Aufbaus der einzelnen Blöcke ist hier wie auch beim entsprechenden Schaltbild des Demodulators 10 verzichtet worden, weil die Ausführung jedem Fachmann der Trägerfrequenztechnik bekannt ist.A preferred exemplary embodiment of the modulator 5 from FIG. 2 is shown with its block diagram in FIG. 3. A detailed representation of the circuitry structure of the individual blocks has been dispensed with here as well as with the corresponding circuit diagram of the demodulator 10, because the execution is known to every person skilled in carrier frequency technology.

Das Modulationssignal aus der Signalquelle 1 wird innerhalb des Modulators 5 zunächst über einen ersten Trenntransformator 15, der vorzugsweise ein Übertragungsverhältnis von 1 : 1 und eine Impedanz von 600 Ohm hat, auf den Eingang eines ersten Eingangsverstärkers 16 gegeben und dort auf ein für die weitere Signalverarbeitung günstiges Niveau verstärkt.Within the modulator 5, the modulation signal from the signal source 1 is first applied to the input of a first input amplifier 16 via a first isolating transformer 15, which preferably has a transmission ratio of 1: 1 and an impedance of 600 ohms, and there to a for further signal processing favorable level strengthened.

Dem ersten Eingangsverstärker 16 ist ein Bandbegrenzungsfilter 17 nachgeordnet, welches das Frequenzband des Modulationssignals begrenzt und vorzugsweise eine obere Grenzfrequenz von etwa 3 kHz aufweist. Die Durchlasskennlinie des Bandbegrenzungsfilters ist als gestrichelte Linie in der Fig. 5a eingetragen, die das aus der Begrenzung resultierende, zwischen 0,3 und 3 kHz liegende Niederfrequenzband NB des Modulationssignals zeigt.The first input amplifier 16 is followed by a band limit filter 17 which limits the frequency band of the modulation signal and preferably has an upper limit frequency of approximately 3 kHz. The pass characteristic of the band limitation filter is entered as a dashed line in FIG. 5 a, which shows the low frequency band NB of the modulation signal, which results from the limitation and lies between 0.3 and 3 kHz.

Das Niederfrequenzband NB wird dem einen Eingang eines ersten Mischers 18 zugeführt, der das Modulationssignal mit einem Hilfsträger HT von vorzugsweise 3,3 kHz, dargestellt auf der Frequenzachse in Fig. 5b, mischt. Der Hilfsträger HT wird aus der Oszillatorfrequenz eines Lokaloszillators, vorzugsweise eines Quarzoszillators 20 abgeleitet, die z. B. 3,3792 MHz beträgt und durch einen nachfolgenden ersten Frequenzteiler 21 mit einem Teilverhältnis von 210 : 1 auf 3,3 kHz heruntergeteilt wird. Andere Oszillatorfrequenzen bedingen entsprechend andere Teilverhältnisse.The low-frequency band NB is fed to the one input of a first mixer 18 which mixes the modulation signal with an auxiliary carrier HT of preferably 3.3 kHz, shown on the frequency axis in FIG. 5b. The subcarrier HT is derived from the oscillator frequency of a local oscillator, preferably a quartz oscillator 20, which, for. B. 3,3792 MHz and is divided by a subsequent first frequency divider 21 with a division ratio of 210: 1 to 3.3 kHz. Other oscillator frequencies accordingly require different sub-ratios.

Bei der Mischung von Modulationssignal und Hilfsträger HT entstehen ein unteres Seitenband USB und ein oberes Seitenband OSB symmetrisch zur Frequenz des Hilfsträgers HT. Beide Seitenbänder sind in Fig. 5c dargestellt. Das untere Seitenband USB entspricht dem Niederfrequenzband NB in Kehrlage und enthält, für sich genommen, die gleiche Information. Zur Einsparung von Bandbreite ist daher vorzugsweise dem ersten Mischer 18 ein erstes Seitenbandfilter 19 mit einer in Fig. 5c gestrichelt eingezeichneten Durchlasskennlinie nachgeschaltet, welches mit einer oberen Grenzfrequenz von 3 kHz den Hilfsträger HT sowie das obere Seitenband OSB unterdrückt.When the modulation signal and subcarrier HT are mixed, a lower sideband USB and an upper sideband OSB are formed symmetrically to the frequency of the subcarrier HT. Both sidebands are shown in Fig. 5c. The lower sideband USB corresponds to the low-frequency band NB in the upside-down position and, taken by itself, contains the same information. To save bandwidth, the first mixer 18 is therefore preferably followed by a first sideband filter 19 with a pass characteristic shown in dashed lines in FIG. 5c, which suppresses the subcarrier HT and the upper sideband OSB with an upper limit frequency of 3 kHz.

Das verbleibende untere Seitenband USB gelangt auf einen Eingang eines Addierverstärkers 23. Auf einen anderen Eingang des Addierverstärkers 23 wird ein in der Amplitude abgesenkter Hilfsträgerrest HTR gegeben, der über ein Oberwellenfilter 22 mit einer oberen Grenzfrequenz von z. B. 4 kHz, am Ausgang des ersten Frequenzteilers 21 entnommen wird.The remaining lower sideband USB arrives at an input of an adder amplifier 23. A subcarrier residue HTR, which is reduced in amplitude, is fed to another input of the adder amplifier 23, which is transmitted via an harmonic filter 22 with an upper cutoff frequency of e.g. B. 4 kHz, is taken at the output of the first frequency divider 21.

Am Ausgang des Addierverstärkers 23 erscheint dann ein modifiziertes Modulationssignal, das sich aus dem unteren Seitenband USB und dem danebenliegenden Hilfsträgerrest HTR zusammensetzt. Beide sind in Fig. 5c durchgezogen dargestellt. Das modifizierte Modulationssignal kann nun über eine beliebige Zubringerverbindung mit entsprechender Bandbreite wie z. B. das FDM-System der Fig. 2 an die Basisstationen übermittelt werden, wo es zuvor im Demodulator 10 korrigiert und rückgewandelt wird.A modified modulation signal then appears at the output of the adder amplifier 23, which is composed of the lower sideband USB and the adjacent subcarrier residue HTR. Both are shown in solid lines in FIG. 5c. The modified modulation signal can now over any feeder connection with the appropriate bandwidth such. B. the FDM system of FIG. 2 can be transmitted to the base stations, where it is previously corrected and converted back in the demodulator 10.

Ein bevorzugtes zum Modulator der Fig. 3 passendes Ausführungsbeispiel des Demodulators 10 ist mit seinem Blockschaltbild in Fig. 4 wiedergegeben. Das modifizierte, über die Zubringerverbindung ankommende Modulationssignal der Fig. 6a wird innerhalb des Modulators 10 zunächst in einem zweiten Eingangsverstärker 24 verstärkt und einem zweiten Mischer 25 zugeführt. Gleichzeitig wird aus dem verstärkten Signal mittels eines Hochpassfilters 29, welches für die beispielhaften Frequenzen aus Fig. 6a eine untere Grenzfrequenz von 3,2 kHz aufweist, der Hilfsträgerrest HTR abgezweigt und zur lokalen Erzeugung eines phasenstarr gekoppelten Hilfsträgers im Demodulator 10 weiterverwendet.A preferred embodiment of the demodulator 10 which matches the modulator of FIG. 3 is shown with its block diagram in FIG. 4. The modified modulation signal of FIG. 6a arriving via the feeder connection is first amplified in the modulator 10 in a second input amplifier 24 and fed to a second mixer 25. At the same time, the auxiliary carrier residue HTR is branched off from the amplified signal by means of a high-pass filter 29, which has a lower cut-off frequency of 3.2 kHz for the exemplary frequencies from FIG. 6a, and is further used in the demodulator 10 for the local generation of a phase-locked-coupled auxiliary carrier.

Der abgezweigte Hilfsträgerrest HTR wird dazu in einem Trägersignalverstärker 30 verstärkt und zur Synchronisation einer PLL (Phase Locked Loop)-Schaltung 31 an deren Synchronisationseingang weitergeleitet. Die PLL-Schaltung erzeugt vorzugsweise eine Freqenz von 6,6 kHz, die in einem nachfolgenden zweiten Frequenzteiler 32 mit einem Teilverhältnis von 2 : 1 auf 3,3 kHz heruntergeteilt und über eine Rückkopplungsschleife auf den Rückkopplungseingang der PLL-Schaltung 31 gegeben wird.The branched subcarrier remainder HTR is amplified in a carrier signal amplifier 30 and passed on for synchronization of a PLL (phase locked loop) circuit 31 to its synchronization input. The PLL circuit preferably generates a frequency of 6.6 kHz, which is divided down in a subsequent second frequency divider 32 with a division ratio of 2: 1 to 3.3 kHz and fed to the feedback input of the PLL circuit 31 via a feedback loop.

Auf diese Weise steht am Ausgang des zweiten Frequenzteilers 32 ein lokal erzeugter ungestörter Hilfsträger von 3,3 kHz zur Verfügung, der an den im modifizierten Modulationssignal mitübertragenen Hilfsträgerrest HTR phasenstarr gekoppelt ist.In this way, a locally generated undisturbed subcarrier of 3.3 kHz is available at the output of the second frequency divider 32, which is phase-locked to the subcarrier residue HTR, which is also transmitted in the modified modulation signal.

Der lokale Hilfsträger wird im zweiten Mischer 25 mit dem verstärkten modifizierten Modulationssignal gemischt, wodurch gemäss Fig. 6b wieder ein unteres Seitenband USB und ein oberes Seitenband OSB entstehen. Das untere Seitenband USB entspricht dem ursprünglichen Niederfrequenzband NB aus Fig. 5a und wird durch ein zweites Seitenbandfilter 26 (obere Grenzfrequenz: 3 kHz), dessen Durchlasskennlinie in Fig. 6b eingetragen ist, absepariert (Fig. 6c), in einem Ausgangsverstärker 27 verstärkt und über einen zweiten Trenntransformator 28 (Übertragungsverhältnis: 1 : 1; Impedanz: 600 Ohm) an die nachfolgende Basisstation weitergegeben.The local subcarrier is mixed in the second mixer 25 with the amplified modified modulation signal, as a result of which a lower sideband USB and an upper sideband OSB are produced again according to FIG. 6b. The lower sideband USB corresponds to the original low-frequency band NB from FIG. 5a and is separated by a second sideband filter 26 (upper cut-off frequency: 3 kHz), whose pass characteristic is entered in FIG. 6b (FIG. 6c), amplified in an output amplifier 27 and passed on to the subsequent base station via a second isolating transformer 28 (transmission ratio: 1: 1; impedance: 600 ohms).

Da für die Mischung im zweiten Mischer 25 des Demodulators 10 mit dem übermittelten unteren Seitenband USB und dem an den übermittelten Hilfsträgerrest HTR phasenstarr gekoppelten, lokal erzeugten Hilfsträger zwei Signalgrössen verwendet werden, die beide der Phasenänderung durch die Zubringerverbindung in gleichem Masse unterliegen, kompensieren sich bei der Mischung diese Phasenänderungen automatisch.Since two signal quantities are used for the mixture in the second mixer 25 of the demodulator 10 with the transmitted lower sideband USB and the locally generated subcarrier coupled to the transmitted subcarrier residue HTR, both of which are subject to the same phase change due to the feeder connection, compensate each other the mix these phase changes automatically.

Durch die bevorzugte Beschränkung des Niederfrequenzbandes auf Frequenzen zwischen 0,3 und 3 kHz und die Auswahl eines Hilfsträgers HT mit 3,3 kHz lässt sich das modifizierte Modulationssignal (unteres Seitenband USB in Kehrlage + Hilfsträgerrest HTR) über jeden international genormten Telefoniekanal übertragen, der eine Mindestbandbreite von 0,3 bis 3,4 kHz besitzt.Due to the preferred limitation of the low frequency band to frequencies between 0.3 and 3 kHz and the selection of an auxiliary carrier HT with 3.3 kHz, the modified modulation signal (lower sideband USB in reverse position + auxiliary carrier rest HTR) can be transmitted via any internationally standardized telephony channel that has one Has a minimum bandwidth of 0.3 to 3.4 kHz.

Insgesamt steht mit dem erfindungsgemässen Verfahren eine Methode zur Verfügung, um bei der Ansteuerung von Basissendern eines Gleichwellen-Funksystems unabhängig von der Art der Zubringerverbindung auf einfache Weise Phasendrehungen des zu übertragenden Modulationssignals auszugleichen.Overall, the method according to the invention provides a method to easily compensate for phase shifts of the modulation signal to be transmitted when controlling base transmitters of a single-wave radio system, regardless of the type of feeder connection.

Claims (9)

1. Method for the phase-locked transmission of a voice-frequency modulation signal from a central signal source via feeder connections to a plurality of spatially distributed base stations of a common-frequency radio system, in which method phase rotations of the modulation signal in the feeder connection are compensated, characterized in that
- an auxiliary carrier (AC) located outside the voice-frequency band (VB) of the modulation signal is generated;
- the auxiliary carrier (AC) is mixed with the modulation signal;
- the lover sideband (LSB) resulting from the mixing, together with a residual auxiliary carrier (RAC), is transmitted to the base stations (B, B1,. .., B3); and
- the original modulation signal is recovered at the base stations (B, B1, ..., B3) from the lower sideband (LSB) by mixing with the aid of the residual auxiliary carrier (RAC) transmitted.
2. Method according to Claim 1, characterized in that the voice frequency band (VB) of the modulation signal and the auxiliary carrier (AC) are located within a telephony channel, the voice frequency band (VB) preferably extending from 0.3 to 3 kHz and the auxiliary carrier (AC) preferably exhibiting a frequency of 3.3 kHz.
3. Method according to Claim 2, characterized in that at the base stations (B, B1, ..., B3), the transmitted residual auxiliary carrier (RAC) is separated from the lover sideband (LSB), and a local auxiliary carrier of the same frequency, which is coupled locked in phase to the residual auxiliary carrier (RAC), is generated and used for mixing with the lower sideband (LSB).
4. Method according to Claim 1, characterized in that the lower sidebands (LSB) of several modulation signals are multiplexed vith the associated auxiliary carriers (AC) in accordance with the carrier frequency method and are transmitted as multiplex signal to the base stations (B, B1, ..., B3), vhere they are demultiplexed before the original modulation signals are recovered.
5. Circuit arrangement for carrying out the method according to Claim 1, characterized in that in each feeder connection from the signal source (1) to a base station (B, B1, ..., B3), a modulator (5) is arranged after the signal source (1) and a demodulator (10) is arranged before the base station (B, B1, ..., B3), in that the modulator (5) contains a local oscillator for generating the auxiliary carrier (AC) and a first mixer (18) for mixing the modulation signal with the auxiliary carrier (AC), and in that the demodulator (10) exhibits a high-pass filter (29) for separating out the transmitted residual auxiliary carrier (RAC), a second mixer (25) for recovering the original modulation signal with the aid of the transmitted residual auxiliary carrier (RAC), and a second sideband filter (26), which is arranged at the output of the second mixer (25), for suppressing the auxiliary carrier (AC) and the upper sideband (USB) produced during the mixing.
6. Circuit arrangement according to Claim 5, characterized in that in the modulator (5) after the output of the first mixer (18), a first sideband filter (19) is provided for suppressing the auxiliary carrier (AC) and the upper sideband (USB) produced during the mixing, and in that the residual auxiliary carrier (RAC), which is taken from the crystal oscillator (20), is added to the remaining lower sideband (LSB) in an adding amplifier (23).
7. Circuit arrangement according to Claim 6, characterized in that the local oscillator is a crystal oscillator (20), oscillates at a frequency which is a multiple of the frequency of the auxiliary carrier (AC), and in that the crystal oscillator (20) is followed by a first frequency divider (21) for generating the auxiliary carrier (AC).
8. Circuit arrangement according to Claim 7, characterized in that in the demodulator (10) following the high-pass filter (29), a carrier signal amplifier (30) and subsequently a PLL (Phase Locked Loop) circuit (31) is arranged which generates a local auxiliary carrier of the same frequency, which is coupled locked in phase to the residual auxiliary carrier (RAC), and forwards it to the second mixer (25).
9. Circuit arrangement according to Claim 8, characterized in that
- the crystal oscillator (20) generates a frequency of 3.3792 MHz,
- the first frequency divider (21) has a dividing ratio of 210 : 1,
- the first and second sideband filter (19, 26) exhibit an upper cut-off frequency of 3 kHz,
- the high-pass filter (29) exhibits a lower cut-off frequency of 3.2 kHz, and
- before the first mixer (18), a band-limiting filter (17) having a band width of 0.3 to 3 kHz is arranged.
EP85107696A 1984-07-20 1985-06-21 Method for the phase-locked transmission of a low-frequency modulation signal and circuit arrangement for performing this method Expired EP0170847B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85107696T ATE43035T1 (en) 1984-07-20 1985-06-21 METHOD FOR PHASE-LOCKED TRANSMISSION OF A LOW-FREQUENCY MODULATION SIGNAL AND CIRCUIT ARRANGEMENT FOR CARRYING OUT THE METHOD.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3543/84 1984-07-20
CH3543/84A CH667169A5 (en) 1984-07-20 1984-07-20 METHOD FOR TRANSMITTING A LOW-FREQUENCY MODULATION SIGNAL AND CIRCUIT ARRANGEMENT FOR IMPLEMENTING THE METHOD.

Publications (2)

Publication Number Publication Date
EP0170847A1 EP0170847A1 (en) 1986-02-12
EP0170847B1 true EP0170847B1 (en) 1989-05-10

Family

ID=4258248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85107696A Expired EP0170847B1 (en) 1984-07-20 1985-06-21 Method for the phase-locked transmission of a low-frequency modulation signal and circuit arrangement for performing this method

Country Status (4)

Country Link
EP (1) EP0170847B1 (en)
AT (1) ATE43035T1 (en)
CH (1) CH667169A5 (en)
DE (1) DE3570166D1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2062153T3 (en) * 1989-04-25 1994-12-16 Sel Alcatel Ag OPTICAL CABLE TELEVISION TRANSMISSION SYSTEM.
FR2688364B1 (en) * 1992-03-06 1995-02-24 Telediffusion Fse METHOD AND SYSTEM FOR OBTAINING A NETWORK OF FM TRANSMITTERS, ESPECIALLY SYNCHRONOUS SINGLE FREQUENCY.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2094113A (en) * 1936-07-10 1937-09-28 American Telephone & Telegraph Wave transmission
DE3044438A1 (en) * 1980-11-26 1982-06-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Data modem baseband converter and monitor - injects control frequency over carrier section to monitor and compensate for frequency deviations etc.

Also Published As

Publication number Publication date
DE3570166D1 (en) 1989-06-15
EP0170847A1 (en) 1986-02-12
ATE43035T1 (en) 1989-05-15
CH667169A5 (en) 1988-09-15

Similar Documents

Publication Publication Date Title
DE69215025T2 (en) System for distributing radio telephone signals over a cable television network
DE69334160T2 (en) Receiver for digital radio reception of two frequency ranges
DE2315247A1 (en) REMOTE SIGNALING SYSTEM
DE2401186A1 (en) MICROWAVE RELAY SYSTEM WITH AUXILIARY SIGNAL TRANSMISSION
DE69023206T2 (en) Relay transmission system.
DE1258925B (en) Arrangement for hiding and / or showing one or more news bands or channels in a radio relay station
DE69930681T2 (en) Tunable demodulator for digitally modulated RF signals
DE69722489T2 (en) Cellular radio system with single-wave transmission of delay-adjustable downward signals to mobile stations through adjacent base stations
DE2335064C3 (en) Station for a synchronized communication system
DE2334650C3 (en) Carrier frequency division multiplex system
DE973863C (en) Multi-channel communication system with time selection, in which one or more branch stations are arranged between two terminals
DE2239096B1 (en) System for the carrier-frequency transmission of electrical signals between a color television camera and the control unit connected to it via a single coaxial cable
DE1512222C2 (en) Television broadcast system
DE2738624C2 (en) System for two-way transmission between a main station and n secondary stations
EP0170847B1 (en) Method for the phase-locked transmission of a low-frequency modulation signal and circuit arrangement for performing this method
DE2355206A1 (en) ARRANGEMENT FOR MAINTAINING THE TRANSMISSION TIME OF SIGNALS BETWEEN A GROUND STATION AND A COMMUNICATION SATELLITE
DE10359649A1 (en) Regenerative-relay-type transmission device for a digital broadcasting system for sound, video or digital data demodulates a digitally modulated received wave so as to reproduce digital data
DE60315384T2 (en) Transmission system with high frequency stability
DE69421648T2 (en) Phase modulating transmitter for video signal distribution systems
DE2454283C3 (en) Frequency converter
DE19653102A1 (en) System for the integrated distribution of switched voice and television signals on coaxial cables with phase distortion correction
DE965909C (en) Circuit arrangement for transmitting two television broadcast programs from a transmitter to a receiver
DE3129124A1 (en) "ARRANGEMENT FOR RECODING AND RETCODING A STANDARD TELEVISION SIGNAL"
DE2241060B2 (en) Two-stage transistor amplifier and transmission method for a cable television system
EP1502371A1 (en) Method and device for producing at least one transponder in the satellite intermediate frequency plane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860627

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19880224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 43035

Country of ref document: AT

Date of ref document: 19890515

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890517

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890522

Year of fee payment: 5

ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890526

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890531

Year of fee payment: 5

REF Corresponds to:

Ref document number: 3570166

Country of ref document: DE

Date of ref document: 19890615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890622

Year of fee payment: 5

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890825

Year of fee payment: 5

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900621

Ref country code: AT

Effective date: 19900621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: BBC BROWN BOVERI A.G.

Effective date: 19900630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85107696.8

Effective date: 19910211