EP0038204A1 - Metal anchor and a structure comprising a metal surface and a plurality of refractory anchors - Google Patents
Metal anchor and a structure comprising a metal surface and a plurality of refractory anchors Download PDFInfo
- Publication number
- EP0038204A1 EP0038204A1 EP81301620A EP81301620A EP0038204A1 EP 0038204 A1 EP0038204 A1 EP 0038204A1 EP 81301620 A EP81301620 A EP 81301620A EP 81301620 A EP81301620 A EP 81301620A EP 0038204 A1 EP0038204 A1 EP 0038204A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refractory
- anchor
- metal
- anchors
- arms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 239000002184 metal Substances 0.000 title claims abstract description 32
- 230000003628 erosive effect Effects 0.000 claims abstract description 23
- 239000011823 monolithic refractory Substances 0.000 claims abstract description 6
- 238000003466 welding Methods 0.000 claims abstract description 6
- 230000004888 barrier function Effects 0.000 claims abstract description 5
- 238000009434 installation Methods 0.000 claims abstract description 4
- 239000000835 fiber Substances 0.000 claims description 8
- 239000004567 concrete Substances 0.000 description 8
- 239000004568 cement Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 238000004873 anchoring Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/14—Supports for linings
- F27D1/141—Anchors therefor
Definitions
- This invention relates to a metal anchor and a structure comprising a metal surface and a plurality of refractory anchors.
- this invention relates to the installation of monolithic refractory linings in process vessels or equipment such as reactors, conduits, furnaces, incineratores and the like and more particularly to an improved anchor which is inexpensive to form and install which not only secures the refractory lining in place but also provides protection of the refractory from mechanical erosion.
- Refractory liners have been used for many years in process vessels, reactors, conduits, furnaces and the like to provide thermal insulation and in environments such as fluidized catalytic reactors or regenerators or stacks to provide resistance to abrasion or erosion.
- Such liners can serve not only to thermally insulate a shell or other surface but also to prolong its service life by shielding it from erosion by abrasion.
- fluid catalytic cracking units for petroleum hydrocarbons quite high fluid velocities which may be on the order of 15.24 to 21.34 m/second occur and the abrasive effect of entrained cracking catalyst is very pronounced.
- the temperature of gases exiting through the cyclones may be on the order of 676°C - 733°C and in the reactor the temperature may be 426°C - 483°C.
- the usual practice has been to line all vessels, conduits and cyclone separators through which fluid with entrained catalyst flows with refractory liner to prevent erosion of the metal surfaces and to provide thermal insulation.
- refractory which may be a refractory cement, a concrete cement- aggregate mixture, a reinforced cement or concrete, various anchoring arrangements have been employed.
- a preferred anchorage arrangement which also provided erosion protection was the use of hexagonal steel grating which was welded to the vessel or conduit wall.
- the grating had the same depth as the refractory liner to be applied and the refractory was deposited in the hexagonal spaces defined by the grating.
- the grating provided the desired erosion resistance for the refractory by projecting to the exposed surface of the refractory.
- the disadvantages of hexagonal grating are its relatively high cost, lack of flexibility which makes it difficult or impossible to apply to curved surfaces, its tendency to separate from the vessel or conduit wall over relatively large areas when welds fail and its unsuitability for use with fiber reinforced refractories or with refractory concretes containing coarse aggregate particles.
- weldable studs such as those described in United States Patent 3,657,851 to Chambers et al and United States Patent 3,336,712 to Bartley have been proposed. Such studs are suitable for use with fiber reinforced refractory or with refractory concrete but do not provide erosion protection for the refractory.
- One object of this invention is to provide an inexpensive anchoring arrangement suitable for use with fiber or needle reinforced refractory cement or concrete and which provides protection of the refractory from erosion.
- a second object is to provide an anchor arrangement which may be utilized on relatively highly curved surfaces such as within cyclones or conduits such as riser reactors or transfer lines.
- a further object is to provide an anchor which is appropriately shaped that it may be installed in an array with other like anchors to provide erosion protection from streams in any direction.
- a metal anchor adapted for installation by welding to a metal surface together with a number of other like anchors to provide anchorage for a monolithic refractory applied to said surface, the anchor being formed from a metal strip having its width substantially equal to the thickness of the refractory to be applied to said surface and its length several times its width and having cut away portions at each end on the side to be welded to the surface to be protected whereby there is provided at each end of said anchor an extending arm, the extending arms together with the intermediate portion of said anchor providing an erosion resistant barrier for the protection of the refractory and the cut away portions adjacent the arms providing room for said refractory to be deposited between said arms and said surface.
- the extended arms are curved in opposite directions away from the plane of the intermediate portion, the shape of the anchor approximating the shape of the letter S.
- the invention also involves the structure which results when a plurality of the above described anchors are installea in the preferred arrangement upon a wall to be protected with a refractory, namely, a structure comprised of a metal surface and a plurality of metal anchors welded to said surface in spaced relationship to each other for providing anchorage for a monolithic refractory to be applied to the surface, each of said anchors being formed from a metal strip having its width substantially equal to the thickness of the refractory to be applied to said surface and its length several times its width and having cut away portions at each end on the side welded to said surface whereby there is provided at each end of the anchor an extending arm, said extending arms together with the intermediate portion of said anchor providing an erosion resistant barrier for the protection of the refractory and the cut away portions adjacent said arms providing room for said refractory to be deposited between said arms and said surface.
- the metal anchors are bent to the approximate shape of the letter S and are arranged in rows on said surface with the anchor
- the preferred embodiment of the anchor 10 is shown in Figures 1 and 2 of the drawings.
- the anchor 10 is preferably stamped from a strip of metal having its width equivalent to the thickness of the refractory liner to be applied. By stamping or otherwise cutting alternate anchors with the extended arms 11 on opposite sides of the strip considerable metal can be saved. This result can be achieved by rotating the strip about its long axis 180 degrees each time an anchor is stamped. At the time of stamping a hole 12 and projecting tab 13 are formed in the central intermediate portion 14 of the strip. If desired no holes or a plurality of holes can be provided and the holes optionally can be with or without tabs. As will be described the holes and tabs perform useful functions in the application of the refractory and in most cases their incorporation in the anchor will be desirable.
- the arms 11 of the anchor 10 may be bent to the curvature illustrated in Figure 1 at the time of stamping or cutting of the anchors or in a subsequent operation depending on the availability of appropriate equipment.
- the size of the anchors can be varied according to the surface to be refractory lined, the thickness and type of refractory to be employed.
- a convenient anchor for securing a refractory one inch thick is made from 16 gauge Type 304 stainless steel strip 2.54 cms wide.
- the length of the anchor prior to bending the arms 11 is approximately 15.24 cms and each arm is bent to a 1.27 cms radius.
- the width of the arms 11 can be 0.635 to 1.27 cms as desired.
- the spacing of the anchors when they are welded to the surface to be refractory coated is a function of the size of the anchors.
- the anchors should be spaced apart over the surface upon 7.62 cms centers. Thus it will be seen that spacing should generally be on centers spaced apart approximately one half the unbent length of the anchor.
- Thicker linings may have anchor spacings of 2 to 3 times the thickness, i.e. the anchor height.
- the anchor 10 is shown welded to a surface 15 with the weld being indicated at 16.
- a similar weld can be utilized on the back side of the anchor.
- Two layers of refractory 17 and 18 are shown.
- the layer 17 next to the surface 15 is preferably of a refractory material having a high insulating value and the other layer 18 has a higher resistance to abrasion and erosion.
- Either or both of these layers can be reinforced by fibers (sometimes referred to as needles) which are preferably formed of stainless steel.
- the fibers will be approximately 1.905 to 3.81 cms in length and about 0.0762 cms in diameter.
- the quantity of fibers usually employed is between about 2 and 6% by weight of the refractory on a dry basis.
- the aggregate can be expanded shale or vermiculite in the layer 17 having high insulating value and tabular alumina in the layer 18 having high resistance to abrasion.
- the projecting tabs 13 can be used as very convenient indicators as to the desired thickness of the insulating layer 17. This ability to conveniently measure the thickness of the applied layer is particularly useful when very thick (up to about 12.7 cms layers of total refractory are involved.
- FIG 4 the preferred composite structure is illustrated.
- the individual anchors 10 are affixed to the surface 15 to be protected by the refractory.
- alternate rows of the anchors are disposed at substantially different angles to each other and because of the curving arms 11 an effective grid of metal is provided over the surface for preventing erosion.
- the preferred angular difference between the anchors of adjacent rows is about 45° or somewhere between about 30° and about 60° for achieving maximum erosion protection with a minimum number of anchors.
- the anchors can be held in the desired position by means of a small bar having a slot in one end to receive the intermediate portion 14 of the anchor and welded to the surface 15 by forming the welding bead 16 on one or both sides.
- the bar is pulled free for use to hold the next anchor.
- multiple tack welding or brazing if appropriate to the metals involved, may be employed.
- the layer or layers of refractory cement, refractory concrete or fiber reinforced refractory can be applied utilizing conventional procedures such as depositing and trowelling or pneumatic application such as the Gunnite procedure.
- Suitable refractories are the hydraulic calcium aluminate cements and the high alumina phosphate bonded materials which are heat setting and have superior erosion resistance.
- hexagonal grating can provide erosion protection but has relatively little holding power to secure the refractory to the surface which is being protected. Moreover, when such gratings separate from the surface large sections are likely to pull loose from the surface. With the anchors of this invention any failures tend to be localized and,may not necessitate shut down of the process unit.
- the array selected may be varied to suit known flow conditions.
- the anchors can be disposed with their long dimensions parallel to the axis of the barrel and thus transverse to the flow pattern. In such cases it is frequently preferable not to curve the ends of the anchors so as to obtain maximum blockage against erosion.
- Figure 5 another embodiment 10a of the anchor of this invention having noncurving.ends lla is shown.
- a pair of anchor members are appropriately slotted as shown at 20 so as to be interlockable in the form of a cross.
- the pair of anchors 10a can be welded to a surface (not shown) to be protected in the same manner as is the anchor shown in Figure 3.
- the anchors 10a shown in Figure 5 may be readily arrayed upon a surface with the arms lla of adjacent assemblies lying in nontouching but overlapping relationship to obtain a very high degree of protection from erosion similar to that obtainable with hexagonal grating but without the disadvantages of continuous gratings.
- the anchors of this invention are particularly useful in effecting repairs or patches in existing units for only affected areas need be patched and the repair consists merely of stripping away damaged refractory to have access to the vessel or conduit surface, welding anchors to the thus exposed surface, and redepositing refractory.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
Description
- This invention relates to a metal anchor and a structure comprising a metal surface and a plurality of refractory anchors.
- More particularly this invention relates to the installation of monolithic refractory linings in process vessels or equipment such as reactors, conduits, furnaces, incineratores and the like and more particularly to an improved anchor which is inexpensive to form and install which not only secures the refractory lining in place but also provides protection of the refractory from mechanical erosion.
- Refractory liners have been used for many years in process vessels, reactors, conduits, furnaces and the like to provide thermal insulation and in environments such as fluidized catalytic reactors or regenerators or stacks to provide resistance to abrasion or erosion. Thus such liners can serve not only to thermally insulate a shell or other surface but also to prolong its service life by shielding it from erosion by abrasion. In fluid catalytic cracking units for petroleum hydrocarbons quite high fluid velocities which may be on the order of 15.24 to 21.34 m/second occur and the abrasive effect of entrained cracking catalyst is very pronounced. Moreover, high temperatures are involved, for example in the regenerator the temperature of gases exiting through the cyclones may be on the order of 676°C - 733°C and in the reactor the temperature may be 426°C - 483°C. Accordingly, the usual practice has been to line all vessels, conduits and cyclone separators through which fluid with entrained catalyst flows with refractory liner to prevent erosion of the metal surfaces and to provide thermal insulation. To retain the refractory which may be a refractory cement, a concrete cement- aggregate mixture, a reinforced cement or concrete, various anchoring arrangements have been employed.
- United States Patent 3,076,481 to Wygant, which is hereby incorporated by reference, contains a description of certain of the problems involved in anchoring refractory concrete linings and of a particular anchorage arrangement.
- Heretofore, a preferred anchorage arrangement which also provided erosion protection was the use of hexagonal steel grating which was welded to the vessel or conduit wall. The grating had the same depth as the refractory liner to be applied and the refractory was deposited in the hexagonal spaces defined by the grating. Thus the grating provided the desired erosion resistance for the refractory by projecting to the exposed surface of the refractory. The disadvantages of hexagonal grating are its relatively high cost, lack of flexibility which makes it difficult or impossible to apply to curved surfaces, its tendency to separate from the vessel or conduit wall over relatively large areas when welds fail and its unsuitability for use with fiber reinforced refractories or with refractory concretes containing coarse aggregate particles.
- In situations where hexagonal grating is not suitable weldable studs such as those described in United States Patent 3,657,851 to Chambers et al and United States Patent 3,336,712 to Bartley have been proposed. Such studs are suitable for use with fiber reinforced refractory or with refractory concrete but do not provide erosion protection for the refractory.
- One object of this invention is to provide an inexpensive anchoring arrangement suitable for use with fiber or needle reinforced refractory cement or concrete and which provides protection of the refractory from erosion.
- A second object is to provide an anchor arrangement which may be utilized on relatively highly curved surfaces such as within cyclones or conduits such as riser reactors or transfer lines.
- A further object is to provide an anchor which is appropriately shaped that it may be installed in an array with other like anchors to provide erosion protection from streams in any direction.
- Other objects and advantages of this invention will become apparent to one skilled in the art based upon the ensuing description.
- A metal anchor adapted for installation by welding to a metal surface together with a number of other like anchors to provide anchorage for a monolithic refractory applied to said surface, the anchor being formed from a metal strip having its width substantially equal to the thickness of the refractory to be applied to said surface and its length several times its width and having cut away portions at each end on the side to be welded to the surface to be protected whereby there is provided at each end of said anchor an extending arm, the extending arms together with the intermediate portion of said anchor providing an erosion resistant barrier for the protection of the refractory and the cut away portions adjacent the arms providing room for said refractory to be deposited between said arms and said surface. In a preferred embodiment the extended arms are curved in opposite directions away from the plane of the intermediate portion, the shape of the anchor approximating the shape of the letter S.
- The invention also involves the structure which results when a plurality of the above described anchors are installea in the preferred arrangement upon a wall to be protected with a refractory, namely, a structure comprised of a metal surface and a plurality of metal anchors welded to said surface in spaced relationship to each other for providing anchorage for a monolithic refractory to be applied to the surface, each of said anchors being formed from a metal strip having its width substantially equal to the thickness of the refractory to be applied to said surface and its length several times its width and having cut away portions at each end on the side welded to said surface whereby there is provided at each end of the anchor an extending arm, said extending arms together with the intermediate portion of said anchor providing an erosion resistant barrier for the protection of the refractory and the cut away portions adjacent said arms providing room for said refractory to be deposited between said arms and said surface. In a preferred embodiment of the structure the metal anchors are bent to the approximate shape of the letter S and are arranged in rows on said surface with the anchors in alternate rows being disposed at substantially different angles.
- With reference to the accompanying drawings,
- Figure 1 is view of the preferred form of the anchor of this invention from the side adapted to be welded to the surface to which the refractory is to oe applied.
- Figure 2 is a side view of the anchor.
- Figure 3 is sectional view showing the anchor welded to the surface with the refractory in place.
- Figure 4 is an isometric view showing the preferred array of the anchors attached to a surface with the refractory in place.
- Figure 5 is an isometric view showing another embodiment of the anchor of this invention.
- The preferred embodiment of the
anchor 10 is shown in Figures 1 and 2 of the drawings. Theanchor 10 is preferably stamped from a strip of metal having its width equivalent to the thickness of the refractory liner to be applied. By stamping or otherwise cutting alternate anchors with the extendedarms 11 on opposite sides of the strip considerable metal can be saved. This result can be achieved by rotating the strip about its long axis 180 degrees each time an anchor is stamped. At the time of stamping ahole 12 and projectingtab 13 are formed in the centralintermediate portion 14 of the strip. If desired no holes or a plurality of holes can be provided and the holes optionally can be with or without tabs. As will be described the holes and tabs perform useful functions in the application of the refractory and in most cases their incorporation in the anchor will be desirable. Thearms 11 of theanchor 10 may be bent to the curvature illustrated in Figure 1 at the time of stamping or cutting of the anchors or in a subsequent operation depending on the availability of appropriate equipment. - The size of the anchors can be varied according to the surface to be refractory lined, the thickness and type of refractory to be employed. A convenient anchor for securing a refractory one inch thick is made from 16 gauge Type 304 stainless steel strip 2.54 cms wide. The length of the anchor prior to bending the
arms 11 is approximately 15.24 cms and each arm is bent to a 1.27 cms radius. The width of thearms 11 can be 0.635 to 1.27 cms as desired. The spacing of the anchors when they are welded to the surface to be refractory coated is a function of the size of the anchors. For the above described size anchor the anchors should be spaced apart over the surface upon 7.62 cms centers. Thus it will be seen that spacing should generally be on centers spaced apart approximately one half the unbent length of the anchor. Thicker linings may have anchor spacings of 2 to 3 times the thickness, i.e. the anchor height. - In Figure 3 the
anchor 10 is shown welded to asurface 15 with the weld being indicated at 16. A similar weld can be utilized on the back side of the anchor. Two layers ofrefractory layer 17 next to thesurface 15 is preferably of a refractory material having a high insulating value and theother layer 18 has a higher resistance to abrasion and erosion. Either or both of these layers can be reinforced by fibers (sometimes referred to as needles) which are preferably formed of stainless steel. Typically the fibers will be approximately 1.905 to 3.81 cms in length and about 0.0762 cms in diameter. The quantity of fibers usually employed is between about 2 and 6% by weight of the refractory on a dry basis. - In cases where it is desired to utilize a refractory concrete the aggregate can be expanded shale or vermiculite in the
layer 17 having high insulating value and tabular alumina in thelayer 18 having high resistance to abrasion. In such cases the projecting tabs 13 (or holes 12) can be used as very convenient indicators as to the desired thickness of theinsulating layer 17. This ability to conveniently measure the thickness of the applied layer is particularly useful when very thick (up to about 12.7 cms layers of total refractory are involved. - In Figure 4 the preferred composite structure is illustrated. Initially the
individual anchors 10 are affixed to thesurface 15 to be protected by the refractory. As shown alternate rows of the anchors are disposed at substantially different angles to each other and because of the curvingarms 11 an effective grid of metal is provided over the surface for preventing erosion. The preferred angular difference between the anchors of adjacent rows is about 45° or somewhere between about 30° and about 60° for achieving maximum erosion protection with a minimum number of anchors. - To effect attachment of the anchors they can be held in the desired position by means of a small bar having a slot in one end to receive the
intermediate portion 14 of the anchor and welded to thesurface 15 by forming thewelding bead 16 on one or both sides. When the weld is completed the bar is pulled free for use to hold the next anchor. Alternatively, multiple tack welding or brazing, if appropriate to the metals involved, may be employed. When the anchors are all attached, the layer or layers of refractory cement, refractory concrete or fiber reinforced refractory can be applied utilizing conventional procedures such as depositing and trowelling or pneumatic application such as the Gunnite procedure. - Suitable refractories are the hydraulic calcium aluminate cements and the high alumina phosphate bonded materials which are heat setting and have superior erosion resistance. Once the refractory layer or layers have been applied and cured they are very effectively held in place by the
anchors 10 of this invention, for the refractory is held against thesurface 15 by thearms 11 and thetabs 13 and is continuous through thehole 12. The fact that theanchors 10 are not interconnected and have relative flexibility in their structure permits thermal expansion and contraction to occur on a localized basis. Moreover, the protective blocking effected by the anchors prevents abrasive erosion especially by streams of particulates such as fluidized catalyst which move transverse to the surface of the refractory. In contrast the use of hexagonal grating can provide erosion protection but has relatively little holding power to secure the refractory to the surface which is being protected. Moreover, when such gratings separate from the surface large sections are likely to pull loose from the surface. With the anchors of this invention any failures tend to be localized and,may not necessitate shut down of the process unit. - Another feature of the anchors of this invention is that the array selected may be varied to suit known flow conditions. For example within cyclones where it is known that the flow pattern will be circular or helical within the barrel the anchors can be disposed with their long dimensions parallel to the axis of the barrel and thus transverse to the flow pattern. In such cases it is frequently preferable not to curve the ends of the anchors so as to obtain maximum blockage against erosion. In Figure 5 another embodiment 10a of the anchor of this invention having noncurving.ends lla is shown. In this embodiment a pair of anchor members are appropriately slotted as shown at 20 so as to be interlockable in the form of a cross. Assembled in this manner the pair of anchors 10a can be welded to a surface (not shown) to be protected in the same manner as is the anchor shown in Figure 3. The anchors 10a shown in Figure 5 may be readily arrayed upon a surface with the arms lla of adjacent assemblies lying in nontouching but overlapping relationship to obtain a very high degree of protection from erosion similar to that obtainable with hexagonal grating but without the disadvantages of continuous gratings.
- The anchors of this invention are particularly useful in effecting repairs or patches in existing units for only affected areas need be patched and the repair consists merely of stripping away damaged refractory to have access to the vessel or conduit surface, welding anchors to the thus exposed surface, and redepositing refractory.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14017480A | 1980-04-14 | 1980-04-14 | |
US140174 | 1980-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0038204A1 true EP0038204A1 (en) | 1981-10-21 |
EP0038204B1 EP0038204B1 (en) | 1984-07-11 |
Family
ID=22490065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81301620A Expired EP0038204B1 (en) | 1980-04-14 | 1981-04-13 | Metal anchor and a structure comprising a metal surface and a plurality of refractory anchors |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0038204B1 (en) |
JP (1) | JPS6045792B2 (en) |
CA (1) | CA1165115A (en) |
DE (1) | DE3164674D1 (en) |
ZA (1) | ZA812304B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180729U (en) * | 1983-05-21 | 1984-12-03 | 東和耐火工業株式会社 | Supporting fittings for wear-resistant fire-resistant linings of internal pressure vessels and valves, etc. |
JPH0133155Y2 (en) * | 1984-11-20 | 1989-10-09 | ||
JPS6198998U (en) * | 1984-12-04 | 1986-06-25 | ||
FR3028307B1 (en) * | 2014-11-07 | 2021-05-21 | Total Raffinage Chimie | ANCHORING ELEMENT OF AN ANTI-EROSION COATING ON AN INTERNAL WALL OF AN FCC UNIT ENCLOSURE. |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1783391A (en) * | 1926-10-30 | 1930-12-02 | Commw Electric Company | Insert |
GB385419A (en) * | 1931-12-09 | 1932-12-29 | Trussed Concrete Steel Co | An improved method of and means for forming a key or holding means on the surface ofconcrete structures |
GB524210A (en) * | 1938-11-07 | 1940-08-01 | Plibrico Jointless Firebrick C | Improvements in and relating to wall anchors for furnace structures |
US2270297A (en) * | 1939-05-05 | 1942-01-20 | Universal Oil Prod Co | Construction of heaters |
US3077058A (en) * | 1957-12-30 | 1963-02-12 | Universal Oil Prod Co | Insulated chamber |
US3361685A (en) * | 1964-12-24 | 1968-01-02 | Agriculture Usa | Fluorinated glycidyl ethers and use thereof |
-
1981
- 1981-04-07 ZA ZA00812304A patent/ZA812304B/en unknown
- 1981-04-08 CA CA000374923A patent/CA1165115A/en not_active Expired
- 1981-04-13 JP JP56054457A patent/JPS6045792B2/en not_active Expired
- 1981-04-13 EP EP81301620A patent/EP0038204B1/en not_active Expired
- 1981-04-13 DE DE8181301620T patent/DE3164674D1/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1783391A (en) * | 1926-10-30 | 1930-12-02 | Commw Electric Company | Insert |
GB385419A (en) * | 1931-12-09 | 1932-12-29 | Trussed Concrete Steel Co | An improved method of and means for forming a key or holding means on the surface ofconcrete structures |
GB524210A (en) * | 1938-11-07 | 1940-08-01 | Plibrico Jointless Firebrick C | Improvements in and relating to wall anchors for furnace structures |
US2270297A (en) * | 1939-05-05 | 1942-01-20 | Universal Oil Prod Co | Construction of heaters |
US3077058A (en) * | 1957-12-30 | 1963-02-12 | Universal Oil Prod Co | Insulated chamber |
US3361685A (en) * | 1964-12-24 | 1968-01-02 | Agriculture Usa | Fluorinated glycidyl ethers and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS56151875A (en) | 1981-11-25 |
CA1165115A (en) | 1984-04-10 |
DE3164674D1 (en) | 1984-08-16 |
EP0038204B1 (en) | 1984-07-11 |
JPS6045792B2 (en) | 1985-10-12 |
ZA812304B (en) | 1982-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4479337A (en) | Refractory anchor | |
US4680908A (en) | Refractory anchor | |
US4581867A (en) | Refractory anchor | |
US3587198A (en) | Heat protected metal wall | |
US4852324A (en) | Variable angle refractory anchor for connecting surfaces | |
US4698948A (en) | Furnace wall construction for industrial use | |
US6143107A (en) | Hard-faced insulating refractory fiber linings | |
JPH0529509B2 (en) | ||
EP0097482A1 (en) | Refractory coverings for application to fluid conveying members | |
EP0038204B1 (en) | Metal anchor and a structure comprising a metal surface and a plurality of refractory anchors | |
EP0273621B1 (en) | Refractory lining anchored to wall of vessel | |
US5010706A (en) | Insulation and the provision thereof | |
US4490333A (en) | Anchor for refractory lining | |
GB2114282A (en) | Cooling device for wall arch structures of industrial furnaces | |
AU767351B2 (en) | Anchoring system for ceramic lining tile | |
US4061162A (en) | High temperature and shock resistant insulated pipe | |
US4063344A (en) | Methods for forming a high temperature and shock resistant insulated pipe | |
US4897977A (en) | S-bar refractory anchors with elliptical tab | |
US4918894A (en) | Refractory supporting anchoring system | |
US4528672A (en) | Weld insert and refractory anchor | |
US5031665A (en) | Curved pipe section having refractory lining and central section of flexible insulating material | |
CA1332220C (en) | Erosion resistant, ceramic fiber lining | |
US4802425A (en) | High temperature fiber system with controlled shrinkage and stress resistance | |
WO2007137189A2 (en) | Refractory tiles for heat exchangers | |
US4984405A (en) | Insulation and the provision thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19820327 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3164674 Country of ref document: DE Date of ref document: 19840816 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: AMOCO CORPORATION TE CHICAGO, ILLINOIS, VER. ST. V |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910325 Year of fee payment: 11 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19910430 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910628 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19921101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19921230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000317 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20010412 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20010412 |