EP0029299B1 - Detergent composition and process for its production - Google Patents
Detergent composition and process for its production Download PDFInfo
- Publication number
- EP0029299B1 EP0029299B1 EP80303673A EP80303673A EP0029299B1 EP 0029299 B1 EP0029299 B1 EP 0029299B1 EP 80303673 A EP80303673 A EP 80303673A EP 80303673 A EP80303673 A EP 80303673A EP 0029299 B1 EP0029299 B1 EP 0029299B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sodium
- weight
- detergent
- composition
- alkalimetal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 109
- 239000003599 detergent Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- -1 alkalimetal bicarbonate Chemical class 0.000 claims abstract description 46
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 40
- 150000001875 compounds Chemical class 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 26
- 235000019832 sodium triphosphate Nutrition 0.000 claims abstract description 22
- 239000004744 fabric Substances 0.000 claims abstract description 18
- UIIMBOGNXHQVGW-UHFFFAOYSA-M sodium bicarbonate Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 32
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 23
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 21
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 21
- 239000004615 ingredient Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000007844 bleaching agent Substances 0.000 claims description 10
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 10
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 10
- 239000011736 potassium bicarbonate Substances 0.000 claims description 10
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 10
- 125000000129 anionic group Chemical group 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000002002 slurry Substances 0.000 claims description 7
- 238000001694 spray drying Methods 0.000 claims description 7
- 235000011180 diphosphates Nutrition 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 5
- 229940071207 sesquicarbonate Drugs 0.000 claims description 5
- 239000004115 Sodium Silicate Substances 0.000 claims description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 4
- 239000000271 synthetic detergent Substances 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- 102000004190 Enzymes Human genes 0.000 claims description 3
- 108090000790 Enzymes Proteins 0.000 claims description 3
- 239000004902 Softening Agent Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims description 3
- 230000002070 germicidal effect Effects 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000002304 perfume Substances 0.000 claims description 3
- 150000004965 peroxy acids Chemical class 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract description 15
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 abstract description 14
- 238000005406 washing Methods 0.000 abstract description 14
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 abstract description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 abstract 1
- 238000004851 dishwashing Methods 0.000 abstract 1
- 239000011734 sodium Substances 0.000 description 14
- 229910052708 sodium Inorganic materials 0.000 description 14
- 229910019142 PO4 Inorganic materials 0.000 description 12
- 235000021317 phosphate Nutrition 0.000 description 12
- 239000000047 product Substances 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 10
- 239000010452 phosphate Substances 0.000 description 10
- 239000000344 soap Substances 0.000 description 9
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000007795 chemical reaction product Substances 0.000 description 6
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 229940001593 sodium carbonate Drugs 0.000 description 5
- 235000017550 sodium carbonate Nutrition 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- 235000011152 sodium sulphate Nutrition 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 159000000011 group IA salts Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 229960001922 sodium perborate Drugs 0.000 description 3
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001253 acrylic acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229940048084 pyrophosphate Drugs 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 229940048086 sodium pyrophosphate Drugs 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- BPSYZMLXRKCSJY-UHFFFAOYSA-N 1,3,2-dioxaphosphepan-2-ium 2-oxide Chemical compound O=[P+]1OCCCCO1 BPSYZMLXRKCSJY-UHFFFAOYSA-N 0.000 description 1
- YRIZYWQGELRKNT-UHFFFAOYSA-N 1,3,5-trichloro-1,3,5-triazinane-2,4,6-trione Chemical compound ClN1C(=O)N(Cl)C(=O)N(Cl)C1=O YRIZYWQGELRKNT-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 244000038022 Chenopodium capitatum Species 0.000 description 1
- 235000004391 Chenopodium capitatum Nutrition 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- SUZRRICLUFMAQD-UHFFFAOYSA-N N-Methyltaurine Chemical compound CNCCS(O)(=O)=O SUZRRICLUFMAQD-UHFFFAOYSA-N 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- JSZVAKSQKFZKNG-UHFFFAOYSA-K P(=O)(O)(O)C(C(C(=O)[O-])(C(=O)[O-])C(=O)[O-])CC.[Na+].[Na+].[Na+] Chemical compound P(=O)(O)(O)C(C(C(=O)[O-])(C(=O)[O-])C(=O)[O-])CC.[Na+].[Na+].[Na+] JSZVAKSQKFZKNG-UHFFFAOYSA-K 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical class ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- BEGBSFPALGFMJI-UHFFFAOYSA-N ethene;sodium Chemical group [Na].C=C BEGBSFPALGFMJI-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000019488 nut oil Nutrition 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical group [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- BTRXYXNWHKNMAB-UHFFFAOYSA-N phosphoric acid;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.OP(O)(O)=O BTRXYXNWHKNMAB-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000013966 potassium salts of fatty acid Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- DZCAZXAJPZCSCU-UHFFFAOYSA-K sodium nitrilotriacetate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O DZCAZXAJPZCSCU-UHFFFAOYSA-K 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 235000013875 sodium salts of fatty acid Nutrition 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229950009390 symclosene Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/08—Silicates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
Definitions
- the invention relates to powdered detergent compositions which are adapted for fabric washing or diswashing.
- wash solutions having a pH in the range of from about 9 to 11, preferably about 9.5 to 10.5.
- alkaline salts may be a bicarbonate in combination with other alkaline material.
- These bicarbonate- containing compositions may be prepared by spray-drying in which event the bicarbonate becomes converted to the corresponding carbonate in the final composition.
- Such composition suffer from the disadvantage outlined above, of a particularly high initial pH.
- a detergent composition containing at least one synthetic detergent active compound and an alkalimetal orthophosphate detergency builder, wherein the composition further contains discrete particles of sodium or potassium bicarbonate having a mean particle size of less than 1000 micrometers and the composition yields an initial pH of not more than 11.0 and an equilibrium pH of between 9.0 and 11.0, preferably 9.5 to 10.5 when dissolved in distilled water at 25°C at a concentration of 1 % by weight.
- the higher levels within this range tend to be of greater value with the compositions likely to be used for fabric washing by hand, for example in the developing countries.
- the bicarbonate may be used partly in the form of a sesquicarbonate, which is a 1 : mixture of bicarbonate and carbonate salts.
- the alkalimetal bicarbonate used is of small particle size so as to facilitate its prompt dissolution in water, i.e. not later than other alkaline detergent ingredients are dissolved.
- an alkalimetal bicarbonate having a mean particle size diameter of less than 1000 micrometers, preferably from 50 to 500 micrometers. Whilst bicarbonate particles of smaller size than 50 micrometers have good dissolution properties, they can cause dustiness during powder handling, and particles over 1000 micrometers can contribute to segregation.
- the benefit of adding the bicarbonate is widely applicable to the detergent compositions comprising an alkalimetal orthophosphate salt, usually at levels between 2% and 30%, especially about 5-20% by weight of the composition.
- the invention is particularly applicable to the compositions described and claimed in our UK patent No. 1 530 799.
- compositions comprise from about 5% to about 30% of a synthetic anionic, nonionic, amphoteric or zwitterionic detergent compound or mixture thereof, and from about 10% to about 30% of mixed sodium tripolyphosphate and alkalimetal orthophosphate in the ratio of from 10:1 to 1:5 parts by weight, wherein the amount of the sodium tripolyphosphate is at least about 5% and the amount of any alkalimetal pyrophosphate is not more than about 5%, all these percentages being expressed by weight of the total detergent composition, and the pH of a 0.1 % aqueous solution of the composition being from 9 to 11.
- Potassium tripolyphosphate could be used instead of sodium tripolyphosphate.
- the ratio of the sodium tripolyphosphate to the alkalimetal orthophosphate can be varied from 10:1 to 1:5 parts by weight, it is preferred to have a ratio of from 8:1 to 1:2, especially with an excess of the sodium tripolyphosphate over the alkalimetal orthophosphate, within the ratio of from 5:1 to 1:1 parts by weight, for example from about 4:1 to about 3:2, and more especially from about 3:1 to about 2:1 parts by weight, respectively.
- These ratios of sodium tripolyphosphate to alkalimetal orthophosphate are especially suitable for detergent compositions used at relative high product concentrations, i.e. about 0.3% to about 0.8% by weight, as is common practice in Europe, especially in front-loading automatic washing machines, and where relatively high levels of phosphates are allowed in the products, i.e. equivalent to about 4% to about 7% P.
- detergent compositions which are to be used at relatively low product concentrations, i.e. from about 0.1% to about 0.3%, as is common practice under North American washing conditions, especially in top-loading automatic washing machines, and where relatively low phosphate levels are permitted in the products, i.e. equivalent to less than about 4% P, it may be desirable to increase the proportion of the alkalimetal orthophosphate in the products.
- the ratio of sodium tripolyphosphate to alkalimetal orthophosphate can then be from 2:1 to 1:5 parts by weight, preferably from 1:1 to 1:5, for example from 1:1 to 1:2 or 1:3 parts by weight, respectively.
- the actual amounts of sodium tripolyphosphate and alkalimetal orthophosphate are chosen according to the overall phosphate detergency builder level which is desired in the detergent compositions or according to the maximum permitted phosphorus content.
- a sodium tripolyphosphate and alkalimetal orthophosphate level of about 10% to about 30% by weight of the product, it is preferable to have a sodium tripolyphosphate content of from about 10% to about 20%, and an alkalimetal orthophosphate content of from about 3% to about 15%, especially about 5% to about 10%, by weight of the product.
- the total amount of sodium tripolyphosphate and alkalimetal orthophosphate is preferably at least about 15%, up to about 25% by weight of the composition.
- the only phosphate detergency builders used to make the compositions of the invention should be alkalimetal orthophosphate and optionally the sodium tripolyphosphate.
- the present of significant levels of the alkalimetal pyrophosphates instead of the sodium tripolyphosphate or alkalimetal orthophosphate leads to lower detergency building capacities within the limited phosphate levels permitted.
- sodium pyrophosphate is produced with a lesser amount of sodium orthophosphate by hydrolysis of sodium tripolyphosphate under the hot alkaline conditions met during spray drying, so low levels, i.e. up to about 5%, of sodium pyrophosphate are unavoidable in spray dried powders.
- the total amount of phosphate materials present in the detergent compositions is not more than about 30% by weight of the compositions. It should be noted that the amounts of the hydratable phosphate salts in the compositions are to be determined on an anhydrous basis.
- the alkalimetal orthophosphate used is potassium or preferably sodium orthophosphate, as the latter is cheaper and more readily available.
- the tri-alkyl metal salts are used, but orthophosphoric acid or the di- or monoalkali metal salts, e.g. disodium hydrogen orthophosphate or monosodium dihydrogen orthophosphate, could be used if desired to form the compositions. In the latter event other more alkaline salts would also be present to maintain a high pH in the end product, with full neutralisation to the trialkali metal orthophosphate salts.
- the use of a mixture of the monosodium and disodium hydrogen orthophosphates in the ratio of about 1:3 to 2:3, especially about 1 :2, is particularly advantageous, as such a mixture is made of a feedstock for the production of sodium tripolyphosphate and is therefore readily available.
- the alkalimetal orthophosphate can be used initially as the hydrated salt, for example as trisodium orthophosphate dodecahydrate, or in anhydrous state in which case hydration normally takes place during detergent powder production.
- the amount of the salt is, however, calculated in anhydrous form.
- alkalimetal hydrogen phosphate such as disodium monohydrogen phosphate
- the use of the alkalimetal hydrogen phosphates has been found to be less effective in controlling the peak pH on initial dissolution of the compositions in water.
- addition of the alkalimetal bicarbonate will tend to decrease the overall pH of the wash liquor, besides decreasing the initial pH peak. It may be desirable therefore to add to the composition an amount of a more alkaline ingredient which does not affect the initial pH appreciably, but which raises the final pH of the wash liquor to the optimum level which would be achieved by the composition but for the addition of the bicarbonate. For example, it has been found that an extra amount of about 3% of sodium alkaline silicate included in the detergent composition compensates in this way for the addition of about 5% of sodium bicarbonate.
- the total amount of sodium silicate used in the compositions for such pH control during the wash, as well as giving improved powder properties and corrosion resistance is about 5% to about 15% by weight of the composition.
- the detergent compositions include about 5% to 40%, especially about 15% to 30% of an anionic, nonionic, amphoteric or zwitterionic detergent compound.
- anionic, nonionic, amphoteric or zwitterionic detergent compound Such compounds are well known in the art and are amply described in the literature, for example in "Surface Active Agents and Detergents” by Schwartz, Perry and Berch, Volumes I and II.
- the preferred detergent compounds which can be used are synthetic anionic and nonionic compounds.
- the former are usually water soluble alkalimetal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C 8 ⁇ C 18 ) alcohols produced for example from tallow or coconut oil; sodium and potassium alkyl (C 9 ⁇ C 20 ) benzene sulphonates, particularly sodium linear secondary alkyl (C 10 ⁇ C 15 ) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty acid monoglyceride sulphate and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (Cg-C, s ) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of
- nonionic detergent compounds examples include in particular the reaction products of alkylene oxides, usually ethylene oxide, with alkyl (C S- C 22 ) phenols, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule; the condensation products of aliphatic (C 8 ⁇ C, s ) primary of secondary linear or branched alcohols with ethylene oxide, generally 6 to 30 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine.
- alkylene oxides usually ethylene oxide
- alkyl (C S- C 22 ) phenols generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule
- the condensation products of aliphatic (C 8 ⁇ C, s ) primary of secondary linear or branched alcohols with ethylene oxide generally 6 to 30 EO
- nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxide
- Mixtures for detergent compounds for example mixed anionic or mixed anionic and nonionic compounds may be used in the detergent compositions, particularly in the latter case to provide controlled low sudsing properties. This is beneficial for compositions intended for use in suds-intolerant automatic washing machines. We have also found that the use of some nonionic detergent compounds in the compositions tends to decrease the tendency of insoluble phosphate salts to deposit on the washed fabrics.
- Amounts of amphoteric or zwitterionic detergent compounds can also be used in the compositions of the invention but this is not normally desired due to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used it is generally in small amounts in compositions based on the much more commonly used synthetic anionic and/or nonionic detergent compounds. For example, mixtures of amine oxides and ethoxylated nonionic detergent compounds can be used.
- Some soaps may also be used in the compositions of the invention, but not as the sole detergent compounds. They are particularly useful at low levels in binary and ternary mixtures together with nonionic or mixed synthetic anionic and nonionic detergent compounds, which have low sudsing properties.
- the soaps which are used are the sodium, or less desirably potassium, salts of C 10 ⁇ C 24 fatty acids. It is particularly preferred that the soaps should be based mainly on the longer-chain fatty acids within this range, that is with at least half of the soap having a carbon chain length of 16 or over.
- soaps from natural sources such as tallow, palm oil or rapeseed oil, which can be hardened if desired, with lesser amounts of other shorter-chain soaps, prepared from nut oils such as coconut oil or palm kernel oil.
- the amount of such soaps can be varied between about 0.5% and about 25% by weight, with lower amounts of about 0.5% to about 5% being generally sufficient for lather control.
- Amounts of soap between about 2% and about 20%, especially between about 5% and about 15%, are preferably used to give a beneficial effect on detergency.
- the detergent compositions of the invention can contain any of the conventional additives in the amounts in which such materials are normally employed in fabric washing detergent compositions.
- these additives include lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids, lather depressants such as alkyl phosphates and silicones, antiredeposition agents such as sodium carboxymethylcellulose and polyvinyl pyrrolidone, oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, per-acid bleach precursors, chlorine-releasing bleaching agents such as trichloroisocyanuric acid and alkalimetal salts of dichloroisocyanuric acid, fabric softening agents, inorganic salts such as sodium sulphate, sodium carbonate and magnesium silicate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as proteases and amylases, germicides and colourants.
- lather boosters such as alkanolamide
- an amount of sodium perborate preferably between about 10% and 40%, for example about 15% to about 30%, by weight.
- any antideposition agent is normally from about 0.1% to about 5% by weight, preferably from about 0.2% to about 2% by weight of the composition.
- the preferred antideposition agents are salts of homo-and co-polymers of acrylic acid or substituted acrylic acids, such as sodium polyacrylate, the sodium salt of copolymethacrylamide/acrylic acid and sodium poly-alphahydroxyacrylate, salts of copolymers of maleic anhydride with ethylene, vinylmethylether or styrene, especially 1:1 copolymers, and optionally with partial esterification of the carboxyl groups especially in the case of the styrene-maleic anhydride copolymers.
- Such copolymers preferably have relatively low molecular weights, e.g. in the range of about 5,000 to 50,000.
- antideposition agents include the sodium salts of polymaleic acid and polyitaconic acid, phosphate esters of ethoxylated aliphatic alcohols, polyethylene glycol phosphate esters, and certain phosphonates such as sodium ethane-l-hydroxy-1, 1-diphosphonate, sodium ethylene diamine tetramethylene phosphonate, and sodium 2-phosphonobutane tricarboxylate. Mixtures of organic phosphonic acids or substituted acrylic acids or their salts with protective colloids such as gelatin as described in our Netherlands application 7602082 may also be used.
- the most preferred antideposition agent is sodium polyacrylate having a MW of about 10,000 to 50,000, for example about 27,000.
- non-phosphate detergency builders which may be either so-called precipitant builders or sequesterant builders.
- other detergency builders are amine carboxylates such as sodium nitrilotriacetate, sodium aluminosilicate ionexchange materials, sodium citrate, sodium carbonate and soap, which can function as a a detergency builder as discussed above.
- compositions according to the invention comprise:-
- compositions of the invention are in particulate form, especially as free-flowing powders or granules, and they can be produced by any of the techniques commonly employed for making such compositions, normally by slurry making and spray drying processes.
- a process for the production of a detergent composition comprising the steps of
- the alkalimetal bicarbonate salts cannot be included in the detergent slurry for normal slurry making and spray drying techniques to make the detergent compositions, as the bicarbonate would then react in the slurry to form sodium carbonate. It follows that the alkalimetal bicarbonate must be admixed as discrete particles with the preformed particulate detergent composition, that is to say the bicarbonate must be present in that partial salt form, or parly as sesquicarbonate, but not otherwise used in the production of the detergent compositions and thereby present in more highly neutralised form.
- the bicarbonate can be added in its powder form as received, it can be treated if desired to reduce dustiness, for example by admixture of a liquid detergent ingredient such as a nonionic detergent compound, which does not delay the dissolution of the bicarbonate salts in the wash liquor.
- a liquid detergent ingredient such as a nonionic detergent compound
- a detergent composition was made to the following formulation:
- the composition was made by slurry making and spray drying all of the ingredients except for the sodium perborate and sodium bicarbonate which were separately added in particulate form to the spray dried base powder.
- the sodium bicarbonate used was a commercially available product having a wide particle size range of from less than 125 micrometers to about 1,4000 micrometers.
- the other ingredients of the composition had a mean particle size between 500 and 550 micrometers.
- compositions according to the invention were found to have good detergency properties when evaluated for fabric washing.
- a powdered detergent composition was prepared to the following formulation by admixing the ingredients:
- the mean particle size of the sodium bicarbonate was about 450 micrometers while the mean particle size of the remaining components was in the order of 500-550 micrometers.
- This composition was found to give an initial pH on addition to water of 10.5, decreasing to 9.6 after 14 minutes, which was acceptable for a product intended for fabric washing by hand.
- the product was also evaluated under typical Far Eastern wash conditions, in cool water and at a low liquor to cloth ratio, when good results were obtained.
- the mean particle size of the sodium bicarbonate was about 450 micrometers while the mean particle size of the remaining components was in the order of 500-550 micrometers.
- Example 3 Each of these formulations was used to wash three different test cloths under the same conditions. The detergency of the formulations was compared by measuring the change in reflectance at 460 j M m (A460 * ) before and after washing. The initial and equilibrium pH of a 1 % by weight solution of each formulation was also measured. The results were as follows: The test cloths used in Example 3 were as follows:
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Medicines Containing Plant Substances (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
Abstract
Description
- The invention relates to powdered detergent compositions which are adapted for fabric washing or diswashing.
- It is common practice for detergent compositions to form fairly alkaline solutions, as this has a significant beneficial effect on detergency by helping to solubilise fatty soils whilst also improving the effect of some ingredients, for example peroxygen bleaching agents. However, the alkalinity should of course not be too high for domestic safety, particularly allowing for conditions of mis-use. In addition, very high alkalinity can cause fabric damage and colour-fading during washing, particularly at high wash temperatures. It is usual therefore to employ wash solutions having a pH in the range of from about 9 to 11, preferably about 9.5 to 10.5.
- The widespread, but often misinformed, criticism of sodium tripolyphosphate as a detergency builder has led to the consideration of several more alkaline materials for its partial or complete replacement, for example sodium carbonate and sodium orthophosphate. The latter, in particular, can act as an efficient detergency builder, especially at high temperatures, whilst it has a relatively low phosphorus content in relation to the amount needed to counteract the calcium ions present in hard water. Although the higher alkalinity of alkali metal orthophosphate salts is not of itself harmful, provided the pH at equilibrium washing conditions is not excessively high, i.e. over about pH 11, we have found that under some circumstances the initial pH on dissolution of such detergent compositions in water can be higher than normally desired, apparently due to the differential rates of solubility of the various detergent ingredients. Thus, depending on the concentration in the solution and temperature, initial pHs of the order of up to 11.5 or even 12 may be observed before the pH then drops to less than 11 for the remainder of the wash cycle.
- It is known, particularly from GB 1 412 401, to include alkaline salts in detergent compositions. The alkaline salts may be a bicarbonate in combination with other alkaline material. These bicarbonate- containing compositions may be prepared by spray-drying in which event the bicarbonate becomes converted to the corresponding carbonate in the final composition. Such composition suffer from the disadvantage outlined above, of a particularly high initial pH.
- We have now found it possible to decrease the initial peak pH on using particulate detergent compositions which contain an alkali metal orthophosphate detergency builder, by including therein a proportion of discrete particles of sodium or potassium bicarbonate. Thus, according to a first aspect of the invention there is provided a detergent composition containing at least one synthetic detergent active compound and an alkalimetal orthophosphate detergency builder, wherein the composition further contains discrete particles of sodium or potassium bicarbonate having a mean particle size of less than 1000 micrometers and the composition yields an initial pH of not more than 11.0 and an equilibrium pH of between 9.0 and 11.0, preferably 9.5 to 10.5 when dissolved in distilled water at 25°C at a concentration of 1 % by weight.
- The amount of the bicarbonate used in normally within the range of 1% to 20%, preferably from about 2% to 15%, especially about 4% to 10%, by weight of the composition. The higher levels within this range tend to be of greater value with the compositions likely to be used for fabric washing by hand, for example in the developing countries. If desired, the bicarbonate may be used partly in the form of a sesquicarbonate, which is a 1 : mixture of bicarbonate and carbonate salts.
- The alkalimetal bicarbonate used is of small particle size so as to facilitate its prompt dissolution in water, i.e. not later than other alkaline detergent ingredients are dissolved. In particular it is essential to use an alkalimetal bicarbonate having a mean particle size diameter of less than 1000 micrometers, preferably from 50 to 500 micrometers. Whilst bicarbonate particles of smaller size than 50 micrometers have good dissolution properties, they can cause dustiness during powder handling, and particles over 1000 micrometers can contribute to segregation.
- The benefit of adding the bicarbonate is widely applicable to the detergent compositions comprising an alkalimetal orthophosphate salt, usually at levels between 2% and 30%, especially about 5-20% by weight of the composition. However, the invention is particularly applicable to the compositions described and claimed in our UK patent No. 1 530 799. Such compositions comprise from about 5% to about 30% of a synthetic anionic, nonionic, amphoteric or zwitterionic detergent compound or mixture thereof, and from about 10% to about 30% of mixed sodium tripolyphosphate and alkalimetal orthophosphate in the ratio of from 10:1 to 1:5 parts by weight, wherein the amount of the sodium tripolyphosphate is at least about 5% and the amount of any alkalimetal pyrophosphate is not more than about 5%, all these percentages being expressed by weight of the total detergent composition, and the pH of a 0.1 % aqueous solution of the composition being from 9 to 11.
- Potassium tripolyphosphate could be used instead of sodium tripolyphosphate.
- Whilst the ratio of the sodium tripolyphosphate to the alkalimetal orthophosphate can be varied from 10:1 to 1:5 parts by weight, it is preferred to have a ratio of from 8:1 to 1:2, especially with an excess of the sodium tripolyphosphate over the alkalimetal orthophosphate, within the ratio of from 5:1 to 1:1 parts by weight, for example from about 4:1 to about 3:2, and more especially from about 3:1 to about 2:1 parts by weight, respectively. These ratios of sodium tripolyphosphate to alkalimetal orthophosphate are especially suitable for detergent compositions used at relative high product concentrations, i.e. about 0.3% to about 0.8% by weight, as is common practice in Europe, especially in front-loading automatic washing machines, and where relatively high levels of phosphates are allowed in the products, i.e. equivalent to about 4% to about 7% P.
- However, for detergent compositions which are to be used at relatively low product concentrations, i.e. from about 0.1% to about 0.3%, as is common practice under North American washing conditions, especially in top-loading automatic washing machines, and where relatively low phosphate levels are permitted in the products, i.e. equivalent to less than about 4% P, it may be desirable to increase the proportion of the alkalimetal orthophosphate in the products. The ratio of sodium tripolyphosphate to alkalimetal orthophosphate can then be from 2:1 to 1:5 parts by weight, preferably from 1:1 to 1:5, for example from 1:1 to 1:2 or 1:3 parts by weight, respectively. Alternatively, when especially low phosphate levels are enforced it may be beneficial to have a supplementary non-phosphate builder, whilst still achieving optimum detergency building from the phosphate builders in the compositions according to the invention.
- It will be appreciated that the actual amounts of sodium tripolyphosphate and alkalimetal orthophosphate are chosen according to the overall phosphate detergency builder level which is desired in the detergent compositions or according to the maximum permitted phosphorus content. Within the requirements of a total sodium tripolyphosphate and alkalimetal orthophosphate level of about 10% to about 30% by weight of the product, it is preferable to have a sodium tripolyphosphate content of from about 10% to about 20%, and an alkalimetal orthophosphate content of from about 3% to about 15%, especially about 5% to about 10%, by weight of the product. The total amount of sodium tripolyphosphate and alkalimetal orthophosphate is preferably at least about 15%, up to about 25% by weight of the composition.
- It is preferable that the only phosphate detergency builders used to make the compositions of the invention should be alkalimetal orthophosphate and optionally the sodium tripolyphosphate. In particular, it is desirable to add no alkalimetal, i.e. sodium or potassium, pyrophosphates to the compositions as they tend to increase inorganic deposition. Moreover, the present of significant levels of the alkalimetal pyrophosphates instead of the sodium tripolyphosphate or alkalimetal orthophosphate leads to lower detergency building capacities within the limited phosphate levels permitted. However, as mentioned earlier, some sodium pyrophosphate is produced with a lesser amount of sodium orthophosphate by hydrolysis of sodium tripolyphosphate under the hot alkaline conditions met during spray drying, so low levels, i.e. up to about 5%, of sodium pyrophosphate are unavoidable in spray dried powders. Preferably the total amount of phosphate materials present in the detergent compositions is not more than about 30% by weight of the compositions. It should be noted that the amounts of the hydratable phosphate salts in the compositions are to be determined on an anhydrous basis.
- Other detergent compositions comprising alkalimetal orthophosphate salts which can benefit by the addition of the sodium bicarbonate include compositions with the orthophosphate as the sole detergency builder or in admixture with other non-phosphate builders such as NTA or sodium carbonate.
- The alkalimetal orthophosphate used is potassium or preferably sodium orthophosphate, as the latter is cheaper and more readily available. Normally the tri-alkyl metal salts are used, but orthophosphoric acid or the di- or monoalkali metal salts, e.g. disodium hydrogen orthophosphate or monosodium dihydrogen orthophosphate, could be used if desired to form the compositions. In the latter event other more alkaline salts would also be present to maintain a high pH in the end product, with full neutralisation to the trialkali metal orthophosphate salts. The use of a mixture of the monosodium and disodium hydrogen orthophosphates in the ratio of about 1:3 to 2:3, especially about 1 :2, is particularly advantageous, as such a mixture is made of a feedstock for the production of sodium tripolyphosphate and is therefore readily available. The alkalimetal orthophosphate can be used initially as the hydrated salt, for example as trisodium orthophosphate dodecahydrate, or in anhydrous state in which case hydration normally takes place during detergent powder production. The amount of the salt is, however, calculated in anhydrous form.
- The use of an alkalimetal hydrogen phosphate such as disodium monohydrogen phosphate, instead of using the fully neutralised alkalimetal orthophosphate salts can help to decrease the alkalinity of the wash solution, assuming of course that the other ingredients are otherwise the same, whilst maintaining the same orthophosphate salt content in solution. However, in compositions which have a sufficient alkaline pH for effective fabric washing, the use of the alkalimetal hydrogen phosphates has been found to be less effective in controlling the peak pH on initial dissolution of the compositions in water.
- It will be appreciated that addition of the alkalimetal bicarbonate will tend to decrease the overall pH of the wash liquor, besides decreasing the initial pH peak. It may be desirable therefore to add to the composition an amount of a more alkaline ingredient which does not affect the initial pH appreciably, but which raises the final pH of the wash liquor to the optimum level which would be achieved by the composition but for the addition of the bicarbonate. For example, it has been found that an extra amount of about 3% of sodium alkaline silicate included in the detergent composition compensates in this way for the addition of about 5% of sodium bicarbonate. The total amount of sodium silicate used in the compositions for such pH control during the wash, as well as giving improved powder properties and corrosion resistance, is about 5% to about 15% by weight of the composition.
- The detergent compositions include about 5% to 40%, especially about 15% to 30% of an anionic, nonionic, amphoteric or zwitterionic detergent compound. Such compounds are well known in the art and are amply described in the literature, for example in "Surface Active Agents and Detergents" by Schwartz, Perry and Berch, Volumes I and II.
- The preferred detergent compounds which can be used are synthetic anionic and nonionic compounds. The former are usually water soluble alkalimetal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher (C8―C18) alcohols produced for example from tallow or coconut oil; sodium and potassium alkyl (C9―C20) benzene sulphonates, particularly sodium linear secondary alkyl (C10―C15) benzene sulphonates; sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum; sodium coconut oil fatty acid monoglyceride sulphate and sulphonates; sodium and potassium salts of sulphuric acid esters of higher (Cg-C,s) fatty alcohol-alkylene oxide, particularly ethylene oxide, reaction products; the reaction products of fatty acids such as coconut fatty acids esterified with isethionic acid and neutralised with sodium hydroxide; sodium and potassium salts of fatty acid amides of methyl taurine; alkane monosulphonates such as those derived by reacting alphaolefins (Cl-C21) with sodium bisulphite and those derived by reacting paraffins with S02 and CI2 and then hydrolysing with a base to produce a random sulphonate; and olefin sulphonates, which term is used to describe the material made by reacting olefins, particularly C10―C20 alpha olefins, with S03 and then neutralising and hydrolysing the reaction product. The preferred anioinc detergent compounds are sodium (C11―C15) alkyl benzene sulphonates and sodium (C16―C18) alkyl sulphates.
- Examples of suitable nonionic detergent compounds which may be used include in particular the reaction products of alkylene oxides, usually ethylene oxide, with alkyl (CS-C22) phenols, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule; the condensation products of aliphatic (C8― C,s) primary of secondary linear or branched alcohols with ethylene oxide, generally 6 to 30 EO, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine. Other so-called nonionic detergent compounds include long chain tertiary amine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides.
- Mixtures for detergent compounds, for example mixed anionic or mixed anionic and nonionic compounds may be used in the detergent compositions, particularly in the latter case to provide controlled low sudsing properties. This is beneficial for compositions intended for use in suds-intolerant automatic washing machines. We have also found that the use of some nonionic detergent compounds in the compositions tends to decrease the tendency of insoluble phosphate salts to deposit on the washed fabrics.
- Amounts of amphoteric or zwitterionic detergent compounds can also be used in the compositions of the invention but this is not normally desired due to their relatively high cost. If any amphoteric or zwitterionic detergent compounds are used it is generally in small amounts in compositions based on the much more commonly used synthetic anionic and/or nonionic detergent compounds. For example, mixtures of amine oxides and ethoxylated nonionic detergent compounds can be used.
- Some soaps may also be used in the compositions of the invention, but not as the sole detergent compounds. They are particularly useful at low levels in binary and ternary mixtures together with nonionic or mixed synthetic anionic and nonionic detergent compounds, which have low sudsing properties. The soaps which are used are the sodium, or less desirably potassium, salts of C10―C24 fatty acids. It is particularly preferred that the soaps should be based mainly on the longer-chain fatty acids within this range, that is with at least half of the soap having a carbon chain length of 16 or over. This is most conveniently accomplished by using soaps from natural sources such as tallow, palm oil or rapeseed oil, which can be hardened if desired, with lesser amounts of other shorter-chain soaps, prepared from nut oils such as coconut oil or palm kernel oil. The amount of such soaps can be varied between about 0.5% and about 25% by weight, with lower amounts of about 0.5% to about 5% being generally sufficient for lather control. Amounts of soap between about 2% and about 20%, especially between about 5% and about 15%, are preferably used to give a beneficial effect on detergency.
- Apart from the detergent compounds and detergency builders, the detergent compositions of the invention can contain any of the conventional additives in the amounts in which such materials are normally employed in fabric washing detergent compositions. Examples of these additives include lather boosters such as alkanolamides, particularly the monoethanolamides derived from palm kernel fatty acids and coconut fatty acids, lather depressants such as alkyl phosphates and silicones, antiredeposition agents such as sodium carboxymethylcellulose and polyvinyl pyrrolidone, oxygen-releasing bleaching agents such as sodium perborate and sodium percarbonate, per-acid bleach precursors, chlorine-releasing bleaching agents such as trichloroisocyanuric acid and alkalimetal salts of dichloroisocyanuric acid, fabric softening agents, inorganic salts such as sodium sulphate, sodium carbonate and magnesium silicate, and, usually present in very minor amounts, fluorescent agents, perfumes, enzymes such as proteases and amylases, germicides and colourants.
- It is particularly beneficial to include in the detergent compositions an amount of sodium perborate, preferably between about 10% and 40%, for example about 15% to about 30%, by weight.
- It is desirable to include one or more antideposition agents in the detergent compositions of the invention, to decrease any tendency to form inorganic deposits on washed fabrics. The amount of any such antideposition agent is normally from about 0.1% to about 5% by weight, preferably from about 0.2% to about 2% by weight of the composition. The preferred antideposition agents are salts of homo-and co-polymers of acrylic acid or substituted acrylic acids, such as sodium polyacrylate, the sodium salt of copolymethacrylamide/acrylic acid and sodium poly-alphahydroxyacrylate, salts of copolymers of maleic anhydride with ethylene, vinylmethylether or styrene, especially 1:1 copolymers, and optionally with partial esterification of the carboxyl groups especially in the case of the styrene-maleic anhydride copolymers. Such copolymers preferably have relatively low molecular weights, e.g. in the range of about 5,000 to 50,000. Other antideposition agents include the sodium salts of polymaleic acid and polyitaconic acid, phosphate esters of ethoxylated aliphatic alcohols, polyethylene glycol phosphate esters, and certain phosphonates such as sodium ethane-l-hydroxy-1, 1-diphosphonate, sodium ethylene diamine tetramethylene phosphonate, and sodium 2-phosphonobutane tricarboxylate. Mixtures of organic phosphonic acids or substituted acrylic acids or their salts with protective colloids such as gelatin as described in our Netherlands application 7602082 may also be used. The most preferred antideposition agent is sodium polyacrylate having a MW of about 10,000 to 50,000, for example about 27,000.
- It is also possible to include in the detergent compositions of the invention minor amounts, preferably not more than about 10% by weight, of other non-phosphate detergency builders, which may be either so-called precipitant builders or sequesterant builders. Examples of such other detergency builders are amine carboxylates such as sodium nitrilotriacetate, sodium aluminosilicate ionexchange materials, sodium citrate, sodium carbonate and soap, which can function as a a detergency builder as discussed above.
- Bearing all the above comments in mind, the preferred compositions according to the invention comprise:-
- from 5% to 30% of a synthetic anionic, nonionic, amphoteric or zwitterionic detergent compound or mixture thereof;
- from 10% to 30% of a mixture of sodium tripolyphosphate and an alkalimetal orthophosphate in the ratio of from 10:1 to 1:5 parts by weight, the amount of sodium tripolyphosphate being at least 5% by weight;
- from 2% to 15% by weight of sodium or potassium bicarbonate particles having a discrete particle size from 50 to 500 microns;
- from 5% to 15% by weight of sodium silicate;
optionally not more than 5% by weight of alkalimetal pyrophosphate; and
at least 5% of one or more further ingredients selected from lather boosters, lather depressants, antiredeposition agents, oxygen-releasing bleaching agents, per-acid bleach precursors, chlorine-releasing bleaching agents, fabric softening agents, inorganic salts, fluorescent agents, perfumes, enzymes, germicides and colourants. - The compositions of the invention are in particulate form, especially as free-flowing powders or granules, and they can be produced by any of the techniques commonly employed for making such compositions, normally by slurry making and spray drying processes. Thus, according to a second aspect of the invention there is provided a process for the production of a detergent composition, comprising the steps of
- (i) spray-drying a slurry containing at least one synthetic detergent active compound and an alkalimetal orthophosphate detergency builder to form a spray-dried base powder;
- (ii) admixing with said spray-dried base powder discrete particles of sodium or potassium bicarbonate thereby to form a composition which yields an initial pH of not more than 11.0 and an equilibrium pH of between 9.0 and 11.0 when dissolved in distilled water at 25°C at a concentration of 1 % by weight.
- The alkalimetal bicarbonate salts cannot be included in the detergent slurry for normal slurry making and spray drying techniques to make the detergent compositions, as the bicarbonate would then react in the slurry to form sodium carbonate. It follows that the alkalimetal bicarbonate must be admixed as discrete particles with the preformed particulate detergent composition, that is to say the bicarbonate must be present in that partial salt form, or parly as sesquicarbonate, but not otherwise used in the production of the detergent compositions and thereby present in more highly neutralised form. Although the bicarbonate can be added in its powder form as received, it can be treated if desired to reduce dustiness, for example by admixture of a liquid detergent ingredient such as a nonionic detergent compound, which does not delay the dissolution of the bicarbonate salts in the wash liquor.
- The invention is illustrated by the following Examples in which parts and percentages are by weight except where otherwise indicated.
-
- The composition was made by slurry making and spray drying all of the ingredients except for the sodium perborate and sodium bicarbonate which were separately added in particulate form to the spray dried base powder. The sodium bicarbonate used was a commercially available product having a wide particle size range of from less than 125 micrometers to about 1,4000 micrometers. The other ingredients of the composition had a mean particle size between 500 and 550 micrometers.
- On addition of the composition to distilled water at 25°C at a concentration of 1 % the initial peak pH reached 10.5 and the final pH after 15 minutes was found to be 10.3. This compares very favourably with the initial pH of 11.5 and a final pH of 10.6 for a similar composition which did not contain the sodium bicarbonate, the balance being made up with additional sodium sulphate.
- In a further test the level of sodium bicarbonate was decreased to 2.5%, with adjustment to the sodium sulphate content in the composition. It was then found that the initial peak pH of this composition was 10.9 dropping to 10.4 at equilibrium.
- The above procedure was repeated except that the particle size range of the sodium bicarbonate was changed and the level of sodium silicate was increased to 13% with consequent adjustment of the sodium sulphate content. The peak and equilibrium pHs were then determined as before with the following results:
- Each of the above compositions according to the invention were found to have good detergency properties when evaluated for fabric washing.
- Further detergent compositions were prepared to the same formulation as above except that the sodium bicarbonate was replaced by 5% and 10% of sodium sesquicarbonate, with consequent reductions to the sodium sulphate contents. The initial peak pHs of these compositions in the 1% concentration at 25°C were found to be 10.9 and 10.7 decreasing respectively to 10.5 and 10.4 at equilibrium. In the absence of the sesquicarbonate the peak pH was 11.5 decreasing to 10.6 at equilibrium, thereby showing a substantial benefit for the addition of the sodium bicarbonate in the form of the sesquicarbonate.
-
- The mean particle size of the sodium bicarbonate was about 450 micrometers while the mean particle size of the remaining components was in the order of 500-550 micrometers.
- This composition was found to give an initial pH on addition to water of 10.5, decreasing to 9.6 after 14 minutes, which was acceptable for a product intended for fabric washing by hand. The product was also evaluated under typical Far Eastern wash conditions, in cool water and at a low liquor to cloth ratio, when good results were obtained.
-
- The mean particle size of the sodium bicarbonate was about 450 micrometers while the mean particle size of the remaining components was in the order of 500-550 micrometers.
- Each of these formulations was used to wash three different test cloths under the same conditions. The detergency of the formulations was compared by measuring the change in reflectance at 460 jMm (A460*) before and after washing. The initial and equilibrium pH of a 1 % by weight solution of each formulation was also measured. The results were as follows:
- Test cloth I - A mixture of sebum fatty acids and carbon black impregnated into cotton poplin.
- Test cloth II - A mixture of bandy black clay, a nonionic detergent and a cationic detergent impregnated into cotton cloth.
- Test cloth III ― A mixture of ground nut oil, Indian ink, casein and iron oxide impregnated into cotton sheeting.
Claims (6)
optionally not more than 5% by weight of alkalimetal pyrophosphate; and
at least 5% of one or more further ingredients selected from lather boosters, lather depressants, antiredeposition agents, oxygen-releasing bleaching agents, per-acid bleach precursors, chlorine-releasing bleaching agents, fabric softening agents, inorganic salts, fluorescent agents, perfumes, enzymes, germicides and colourants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT80303673T ATE5329T1 (en) | 1979-10-19 | 1980-10-17 | DETERGENT COMPOSITION AND PROCESS FOR THEIR PRODUCTION. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7936351 | 1979-10-19 | ||
GB7936351 | 1979-10-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0029299A1 EP0029299A1 (en) | 1981-05-27 |
EP0029299B1 true EP0029299B1 (en) | 1983-11-16 |
Family
ID=10508635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80303673A Expired EP0029299B1 (en) | 1979-10-19 | 1980-10-17 | Detergent composition and process for its production |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0029299B1 (en) |
JP (1) | JPS5665099A (en) |
AT (1) | ATE5329T1 (en) |
AU (1) | AU543358B2 (en) |
BR (1) | BR8006644A (en) |
CA (1) | CA1132878A (en) |
DE (1) | DE3065627D1 (en) |
ES (1) | ES496053A0 (en) |
GR (1) | GR70220B (en) |
PT (1) | PT71934B (en) |
ZA (1) | ZA806368B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2613736A1 (en) * | 1987-04-09 | 1988-10-14 | Sandoz Sa | PROCESS FOR WASHING TEXTILE MATERIALS |
JP2013213185A (en) * | 2012-03-09 | 2013-10-17 | Kao Corp | Powder detergent composition |
JP2013213184A (en) * | 2012-03-09 | 2013-10-17 | Kao Corp | Powder detergent composition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1412401A (en) * | 1971-09-02 | 1975-11-05 | Unilever Ltd | Detergent compositions |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4115307A (en) * | 1974-12-13 | 1978-09-19 | Erco Industries Limited | Phosphate composition |
GB1530799A (en) * | 1975-08-28 | 1978-11-01 | Unilever Ltd | Detergent compositions |
US4187190A (en) * | 1976-11-01 | 1980-02-05 | Desoto, Inc. | Low phosphate content dishwashing detergent |
GB2007704B (en) * | 1977-11-10 | 1982-05-26 | Unilever Ltd | Detergent compositions |
DE2847826A1 (en) * | 1977-11-10 | 1979-05-17 | Unilever Nv | LAUNDRY DETERGENT |
-
1980
- 1980-10-15 AU AU63299/80A patent/AU543358B2/en not_active Ceased
- 1980-10-15 GR GR63163A patent/GR70220B/el unknown
- 1980-10-15 BR BR8006644A patent/BR8006644A/en unknown
- 1980-10-16 ZA ZA00806368A patent/ZA806368B/en unknown
- 1980-10-17 PT PT71934A patent/PT71934B/en unknown
- 1980-10-17 AT AT80303673T patent/ATE5329T1/en not_active IP Right Cessation
- 1980-10-17 EP EP80303673A patent/EP0029299B1/en not_active Expired
- 1980-10-17 JP JP14555380A patent/JPS5665099A/en active Granted
- 1980-10-17 CA CA362,725A patent/CA1132878A/en not_active Expired
- 1980-10-17 ES ES496053A patent/ES496053A0/en active Granted
- 1980-10-17 DE DE8080303673T patent/DE3065627D1/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1412401A (en) * | 1971-09-02 | 1975-11-05 | Unilever Ltd | Detergent compositions |
Non-Patent Citations (3)
Title |
---|
E.W. Taylor "The Examination of Waters & Water Supplies", 7th edition, pages 138,377 J. & A. Churchill Ltd., 1958 * |
Kirk-Othmer, "Encyclopedia of Chemical Technology", 3rd edition, vol. 24, 420-422, Wiley & Sons * |
M.Staquet, E.Piron "Le bicarbonate de sodium", LA TRIBUNE DU CEBEDEAU, MARCH 1972 (Brochure of Solvay et Cie) * |
Also Published As
Publication number | Publication date |
---|---|
AU543358B2 (en) | 1985-04-18 |
JPH0228637B2 (en) | 1990-06-25 |
ZA806368B (en) | 1982-05-26 |
PT71934B (en) | 1982-03-31 |
ATE5329T1 (en) | 1983-12-15 |
GR70220B (en) | 1982-08-31 |
JPS5665099A (en) | 1981-06-02 |
EP0029299A1 (en) | 1981-05-27 |
AU6329980A (en) | 1981-04-30 |
DE3065627D1 (en) | 1983-12-22 |
CA1132878A (en) | 1982-10-05 |
ES8205854A1 (en) | 1982-08-01 |
ES496053A0 (en) | 1982-08-01 |
PT71934A (en) | 1980-11-01 |
BR8006644A (en) | 1981-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0009952B1 (en) | Production of detergent compositions | |
US4695284A (en) | Cool water fabric washing process using a particulate detergent containing a nonionic and a fatty acid builder salt | |
CA1082073A (en) | Detergent compositions | |
US4333844A (en) | Detergent compositions | |
US4325829A (en) | Detergent compositions | |
US4465613A (en) | Alkyl phosphoric salt-hydrocarbon wax lather controlled detergent compositions | |
US4299716A (en) | Detergent compositions | |
US4299717A (en) | Detergent compositions | |
US4362642A (en) | Alkyl phosphoric acid polyvalent salts-mineral oil lather controlled detergent compositions | |
EP0029299B1 (en) | Detergent composition and process for its production | |
GB2060677A (en) | Detergent compositions containing bicarbonate | |
EP0009954B1 (en) | Detergent compositions | |
EP0028143B1 (en) | Fabric washing process and detergent composition for use therein | |
CA1100382A (en) | Liquid detergent compositions | |
EP0009953B1 (en) | Detergent compositions | |
EP0042647A1 (en) | Particulate, soap-containing detergent composition | |
GB2046293A (en) | Detergent composition | |
EP0110592A1 (en) | Granular detergents containing pyrophosphate and tripolyphosphate processing aid | |
GB2046294A (en) | Detergent Composition | |
JPS6116795B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19811005 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 5329 Country of ref document: AT Date of ref document: 19831215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3065627 Country of ref document: DE Date of ref document: 19831222 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19840930 Year of fee payment: 5 Ref country code: BE Payment date: 19840930 Year of fee payment: 5 |
|
26 | Opposition filed |
Opponent name: AKZO N.V. Effective date: 19840810 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19841026 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19841030 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19841130 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19851015 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19861017 |
|
BERE | Be: lapsed |
Owner name: UNILEVER N.V. Effective date: 19861031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19871031 Year of fee payment: 8 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: AKZO N.V. Effective date: 19840810 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19880321 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLR2 | Nl: decision of opposition | ||
EUG | Se: european patent has lapsed |
Ref document number: 80303673.0 |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |