Nothing Special   »   [go: up one dir, main page]

EP0025397A1 - Illuminating means for producing a light beam having adjustable light intensity distribution and image transfer system comprising such a means - Google Patents

Illuminating means for producing a light beam having adjustable light intensity distribution and image transfer system comprising such a means Download PDF

Info

Publication number
EP0025397A1
EP0025397A1 EP80401270A EP80401270A EP0025397A1 EP 0025397 A1 EP0025397 A1 EP 0025397A1 EP 80401270 A EP80401270 A EP 80401270A EP 80401270 A EP80401270 A EP 80401270A EP 0025397 A1 EP0025397 A1 EP 0025397A1
Authority
EP
European Patent Office
Prior art keywords
parts
beams
illuminating device
axis
initial beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80401270A
Other languages
German (de)
French (fr)
Other versions
EP0025397B1 (en
Inventor
Georges Dubroeucq
Michel Lacombat
Michèle Brevignon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0025397A1 publication Critical patent/EP0025397A1/en
Application granted granted Critical
Publication of EP0025397B1 publication Critical patent/EP0025397B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70583Speckle reduction, e.g. coherence control or amplitude/wavefront splitting

Definitions

  • the present invention relates to an illuminating device intended to provide a quasi-coherent illumination beam having a spatial distribution of intensity adjustable at will.
  • a laser beam generally has a Gaussian intensity distribution with circular symmetry along the section due to the fact that only the fundamental mode resonates in the cavity.
  • the beam coming from the laser is widened and made divergent. It retains its Gaussian distribution, so that the center of the object is lit more intensely than the edges.
  • good uniformity of illumination in the plane is required. picture.
  • the thinnest lines have a width of the order of micron.
  • the line width dispersion must be less than 10%, which implies variations in light intensity less than 3%.
  • the present invention makes it possible to obtain uniform illumination within less than 5%, without loss of energy, and with simple optical elements.
  • the device according to the invention makes it possible to adjust the intensity distribution, within certain limits, to obtain non-uniform illuminations, but corresponding to the best illumination of the image plane, as a function of the defects of the optical projection system.
  • the illuminating device comprises means allowing the separation of the initial beam into four parts, in two radial directions perpendicular to each other, means allowing the recombination of the four parts culminating in a predetermined plane (P) partial of the four beams and the means for averaging the the interferences between the four parts so that the average intensity in the plane P is equal to the sum of the average intensities of the four parts.
  • P predetermined plane
  • a laser beam can be used in an illuminating device such as that, shown by way of example in FIG. 2.
  • the beam F delivered by the laser 1 and having the intensity distribution. Represented in FIG. 1, is widened by an expander formed by lenses L 1 and L 2 . It is made divergent by a lens L 3 and condensed by a condenser 3 so as to illuminate an object 4.
  • the intensity distribution in the plane of the object remains Gaussian, so that the edges of the object are less illuminated than the center. However, depending on the applications, it is desired to obtain a predetermined intensity distribution, adapted to the application.
  • FIG. 3 It is a projection device comprising in particular a lens 9 forming the image of the object 4 in a plane 12. To obtain good image quality in all the field of the objective, it is necessary a good uniformity of illumination of the image plane.
  • FIG. 4 shows, in two cases, the intensity distributions obtained in the image plane.
  • the distribution in the object plane, represented in FIG. 4a is uniform.
  • the illumination in the image plane shown in FIG. 4b is non-uniform, more intense in the center and gradually decreasing towards the edge of the lens field. This is due to the light losses in the different lenses which form the objective 9 and which are generally larger at the edges than in the center, because of the spherical shape of the lenses. Consequently, to have uniform illumination in the image plane, as shown in FIG. 4c, less intense in the center than at the edges.
  • the maximum deviation between the intensity at the edge and in the center should be 5% to 10%.
  • FIG. 5 schematically illustrates the method used according to the invention for obtaining an illumination of the type of that of FIG. 4c.
  • the invention also makes it possible to obtain other forms of lighting close to uniform lighting.
  • the original beam F has in any radial direction such that x, a Gaussian intensity distribution shown in FIG. 5a.
  • the invention provides for separating this beam into two half-beams along an axial plane perpendicular to the x axis, then shifting the two beams obtained by the same quantity a, in the opposite direction.
  • the two half-beams are superimposed, as shown in FIG. 5b, and a resulting beam is obtained, the intensity distribution of which is represented in FIG. 3c, provided that the two half-beams are added in intensity, and not in phase. and in amplitude, which can be obtained for example, by rotating the polarization of one of the half-beams by 90 °.
  • the intensity distribution is well defined: weaker in the center, it gradually increases from I 0 to 103% I 0 towards the edge along the x and y axes and from I 0 to 106% I 0 towards the edge along the diagonals. Such a beam therefore provides an illumination close to the ideal illumination, shown in FIG. 4c.
  • FIG. 6 represents an optical assembly ensuring the separation-recombination of a laser beam in two orthogonal directions, for the realization of the invention.
  • the laser beam F delivered by the laser 1 is widened by an expander 2.
  • the separation along an x axis is ensured by a Fresnel biprism 5 suitably oriented and centered with respect to the beam F.
  • the beam F is thus separated into two half bundles F 1 and F 2 .
  • the beams F 1 and F 2 are reflected respectively by two mirrors M x1 and M x2 , so as to make them almost parallel to the axis z.
  • the mirrors M y1 and P y2 are placed so that the respective impact points A, B, C, D of the beams F 12 , F 11 ' F 21' F 22 are seen at the same inclination x relative to the z axis, in the recombination plane P of the beams. It is in this plane that the first lens L 1 of the device can be placed of illumination of FIG. 2. To preserve the overall collimating properties of the two lenses L 1 and L 2 of FIG. 2, the angle x must be very small.
  • the operation of the first separator constituted by the biprism 5 and the mirrors M x1 and M x2 can be explained from the detailed view of FIG. 7.
  • the beams obtained F 1 and F 21 have respectively, along the axes x 1 and x 2 perpendicular to their direction of propagation, intensity distributions in the form of a semi-Gaussian, as illustrated in FIG. 5.
  • FIG. 8 shows the path of the beams F 11 ' F 12' F 21 ' F 22 at the outlet of the second separator, formed for biprism 6 and the mirrors M y1 and My 2 .
  • the four points A, B, C, D form a square with side 2b in an x, y plane perpendicular to the z axis centered on the z axis.
  • the rays of the beams F 11 ' F 21' F 12 ' F 22 coming from the central radius of the initial beam F form the same angle x with the axis Z.
  • These four beams form in the plane P an interference system because the four sources are consistent with each other because of the coherence of the laser.
  • a first electro-optical crystal K is introduced into the path of one of the beams F 11 and F 12 , polarized by an electric field parallel to the direction of polarization common to these two beams and whose value varies in the time, one can introduce an additional phase shift variable in time and one can make so that the average value of cos ⁇ on a duration T low compared to the duration envisaged so that the illumination is null.
  • the calculation shows that the average value of the resulting intensity is equal to the sum of the intensities of each of the two beams.
  • F 21 and F 22 on the other hand add in intensity; because of their perpendicular polarizations, one obtained, not exactly a suppression of the interferences, but an averaging in time, over a sufficiently short duration compared to the duration of illumination or observation so that the illumination can be considered homogeneous, for example as to its effects on the printing of a photosensitive resin.
  • the half-wave plate L and the electro-optical crystals K 1 and K 2 are shown in FIG. 6, as well as the directions of polarization of the beams, symbolized by arrows.
  • the beam F is polarized parallel to the y axis.
  • the half-wave plate L is placed on the path of the beam L in an xy plane. Its neutral lines are oriented at 45 ° from the x, y axes, so that, at the exit of the blade, the polarization of the beam F 2 is parallel to the x axis.
  • the crystal K 1 is placed on the path of the beam F 12 and it is controlled by a field E l parallel to the polarization of this beam, therefore to the y axis.
  • phase shift ⁇ 1 which can for example be equal to
  • the crystal K 2 is placed on the path of the beam F 22 and it is controlled by a field E 2 parallel to the polarization of this beam, therefore to the x axis. It generates a phase shift ⁇ 2 , which can be of the form where ⁇ 0 has any fixed value.
  • FIG. 9 shows the same optical arrangement for separation-recombination of the beam, only the means making it possible to average the interference being different.
  • the beam F being always polarized along the y axis, a phase shifter is introduced into the path of the beam F 2 constituted by an electro-optical crystal K polarized by an electric field E parallel to y, introducing a phase shift ⁇ between the beams F 1 and F 2 of the form
  • the polarization directions of the two beams remain unchanged.
  • a half-wave plate L 1 is introduced on the path of the beam F 12 and a half-wave plate L 2 is introduced on the path of the beam F22 , so that the polarizations of these two beams become parallel to the x axis.
  • the two fringe systems are eliminated.
  • This method is less expensive than the previous one because it uses only one electro-optical phase shifter instead of two.
  • Another possible method for eliminating the effect due to interference consists in placing on the path of the beams, a rotating diffusing element which generates time-varying, spatially random phase shifts.
  • This method will be advantageously used if, instead of making the two separators separately with, for each separator, a biprism and two mirrors, one. performs the separations-recombinations respectively by means of a prism with circular symmetry, having a conical shape and a truncated-conical mirror. This is the generalization of the process which has just been described. At the exit of the conical prism the beam is transformed into an annular beam and recombined by the conical mirror. Such means are illustrated in Figure 11 which will be described later.
  • the use of a birefringent plate is no longer possible unless interposing a polarizer on the path of the beam, which causes a loss of energy of 50 %.
  • One can place on the path of the four beams four electro-optical phase shifters creating respective phase shifts, for example of the form: where T is weak compared to the duration of illumination.
  • FIGS. 10a and 10b the separation and the recombination are illustrated in FIGS. 10a and 10b.
  • the section of the beam F is shown in FIG. 10a.
  • the device according to the invention breaks this beam into four sectors, then performs translations of type ( ⁇ a, ⁇ a).
  • the beam F 11 hatched in the figure is translated according to the vector T (+ a, + a).
  • the four superimposed beams are inscribed in a square with side 2a centered on the axis z.
  • An illuminating device comprising means for uniformizing the beam is applicable in particular to a photorepeater.
  • FIG. 11 represents a photorepeater of the type described in French patent application no. 76.37.327 and published under no. 2 406 236.
  • the beam thus having the desired intensity distribution is returned by a second mirror R 2 to a shutter 14 controlled so that the amount of energy received by the layer of photosensitive resin intended to be impressed corresponds to the best possible sunshine.
  • the control means described in the first cited request are mainly constituted by an integrator 15, an energy quantity selector 17 and a comparator device 16 triggering the opening and closing of the shutter 14. They are then placed on the path of the beam of the means 200 intended to produce a quasi-point source of dimensions such that no disturbing interference patterns occur.
  • the divergent beam 100 from the means 200 illuminates via a condenser 3 the object 4 carried by a holder 8 and whose image is formed by the objective 9 carried by a objective 10 provided with automatic focusing means 11 on the substrate 12 covered with a photosensitive resin and carried by a movable table 13.
  • the illumination obtained thanks to the conical prism C and to the frusto-conical mirror T allows, as has been shown above, to obtain a good quality of image at the level of the photosensitive resin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

L'invention concerne un dispositif illuminateur comprenant une source laser fournissant un faisceau cohérent à distribution d'intensité gaussienne et des moyens de séparation (5,6) du faisceau initial en quatre parties (F11-F22) selon deux directions orthogonales (x, y), des moyens de recombinaison (Mx1 - My2) des quatre parties aboutissant à leur superposition partielle dans un plan prédéterminé (P) et des moyens de moyennage (L, K1, K2) des interférences produites dans le plan (P) par les quatre parties. Application notamment à la photorépétition directe.The invention relates to an illuminating device comprising a laser source providing a coherent beam with Gaussian intensity distribution and means for separating (5,6) the initial beam into four parts (F11-F22) in two orthogonal directions (x, y ), means of recombination (Mx1 - My2) of the four parts leading to their partial superposition in a predetermined plane (P) and means of averaging (L, K1, K2) of the interference produced in the plane (P) by the four parts. Application in particular to direct photo-repetition.

Description

La présente invention concerne un dispositif illuminateur destiné à fournir un faisceau d'éclairement quasi-cohérent ayant une distribution spatiale d'intensité ajustable à volonté.The present invention relates to an illuminating device intended to provide a quasi-coherent illumination beam having a spatial distribution of intensity adjustable at will.

Un faisceau laser présente généralement une distribution d'intensité gaussienne à symétrie circulaire suivant la section due au fait que seul le mode fondamental résonne dans la cavité. Dans un dispositif illuminateur destiné à l'éclairement d'un objet, par exemple dans un système de projection de motifs, le faisceau issu du laser est élargi et rendu divergent. Il conserve sa distribution gaussienne, si bien que le centre de l'objet est éclairé plus intensément que les bords. Or, pour obtenir une bonne qualité d'image et également des largeurs de traits identiques dans tout le champ de l'objectif de projection, notamment lorsque les motifs sont projetés sur une résine photosensible, il faut une bonne uniformité d'éclairement dans le plan image. Ainsi, dans le cas de la réalisation de circuits intégrés par photorépétition directe, qui passe par la formation d'une superposition de niveaux dans un substrat semi-conducteur, avec masquages successifs, les traits les plus fins ont une largeur de l'ordre du micron. La dispersion de largeur de trait doit être inférieur à 10 %, ce qui implique des variations d'intensité d'éclairement inférieures à 3 %.A laser beam generally has a Gaussian intensity distribution with circular symmetry along the section due to the fact that only the fundamental mode resonates in the cavity. In an illuminating device intended for the illumination of an object, for example in a pattern projection system, the beam coming from the laser is widened and made divergent. It retains its Gaussian distribution, so that the center of the object is lit more intensely than the edges. However, to obtain good image quality and also identical line widths throughout the field of the projection objective, in particular when the patterns are projected onto a photosensitive resin, good uniformity of illumination in the plane is required. picture. Thus, in the case of the production of integrated circuits by direct photo-repetition, which involves the formation of a superposition of levels in a semiconductor substrate, with successive masks, the thinnest lines have a width of the order of micron. The line width dispersion must be less than 10%, which implies variations in light intensity less than 3%.

Différentes méthodes ont été proposées pour rendre un éclairement uniforme : la méthode la plus simple consiste à élargir suffisamment le faisceau pour n'utiliser que les rayons du centre. Cette méthode, pour être efficace, a un rendement énergétique de l'ordre de 1 %, ce qui supprime une grande partie de l'intérêt de l'utilisation d'un laser. D'autres méthodes faisant appel généralement à la dispersion ou à l'absorption du faisceau ont également un très faible rendement lumineux. Certaines méthodes ne présentent toutefois pas cet inconvénient. On peut utiliser un hologramme numérique traçé par ordinateur et approximant par une fonction binaire la transformation complexe donnant une répartition spatiale uniforme à partir d'une répartition gaussienne. Cette méthode est complexe et coûteuse à mettre en oeuvre. On peut aussi tenir compte du fait que la répartition gaussienne est due au fait que le laser est monomode, et utiliser pour le laser des miroirs de rayon de courbure plus élevé, ce qui permet à d'autres modes de résonner. On obtient une répartition d'intensité avec un maximum moins accusé, mais on ne peut pas uniformiser suffisamment l'éclairement par ce moyen.Various methods have been proposed for making uniform illumination: the simplest method consists in broadening the beam sufficiently to use only the center spokes. This method, to be effective, has an energy yield of the order of 1%, which removes much of the advantage of using a laser. Other methods generally using beam scattering or absorption also have very low light output. However, some methods do not have this drawback. We can use a digital hologram plotted by computer and approximating by a binary function the complex transformation giving a uniform spatial distribution from a Gaussian distribution. This method is complex and costly to implement. We can also take into account the fact that the Gaussian distribution is due to the fact that the laser is single-mode, and use for the laser mirrors of higher radius of curvature, which allows other modes to resonate. An intensity distribution is obtained with a less pronounced maximum, but the lighting cannot be standardized sufficiently by this means.

La présente invention permet d'obtenir un éclairement uniforme à moins de 5 % près, sans perte d'énergie, et' ayec des éléments optiques simples. De plus, le dispositif selon l'invention permet d'ajuster la distribution d'intensité, dans certaines limites, pour obtenir des éclairements non uniformes, mais correspondant au meilleur éclairement du plan image, en fonction des défauts du système optique de projection.The present invention makes it possible to obtain uniform illumination within less than 5%, without loss of energy, and with simple optical elements. In addition, the device according to the invention makes it possible to adjust the intensity distribution, within certain limits, to obtain non-uniform illuminations, but corresponding to the best illumination of the image plane, as a function of the defects of the optical projection system.

Selon l'invention, le dispositif illuminateur com- rend des moyens permettant la séparation du faisceau initial en quatre parties, selon deux directions radiales perpendiculaires entre elles, des moyens permettant la recombinaison des quatre parties aboutissant dans un plan prédéterminé (P) à une superposition partielle des quatre faisceaux et des moyens permettant de moyenner les les interférences entre les quatre parties de façon que l'intensité moyenne dans le plan P soit égale à la somme des intensités moyennes des quatre parties.According to the invention, the illuminating device comprises means allowing the separation of the initial beam into four parts, in two radial directions perpendicular to each other, means allowing the recombination of the four parts culminating in a predetermined plane (P) partial of the four beams and the means for averaging the the interferences between the four parts so that the average intensity in the plane P is equal to the sum of the average intensities of the four parts.

D'autres caractéristiques et avantages de l'invention apparaîtront clairement à l'aide de la description ci-après et des figures annexées parmi lesquelles :

  • - la figure 1 montre la répartition d'intensité d'un faisceau laser ;
  • - la figure 2 représente schématiquement un dispositif illuminateur ;
  • - la figure 3 représente schématiquement un dispositif de projection de motifs ;
  • - la figure 4 illustre les répartitions d'intensité dans les plans objet et image ;
  • - la figure 5 illustre schématiquement la méthode utilisée selon l'invention ;
  • - la figure 6 représente un mode de réalisation de l'invention ;
  • - les figures 7 et 8 sont des vues partielles détaillées ;
  • - la figure 9 représente une variante de réalisation de l'invention ;
  • - la figure 10 montre le résultat obtenu par le dispositif de la figure 6 ou de la figure 9 :
  • - la figure 11 représente une application de l'invention ;
    La figure 1 montre la répartition d'intensité d'un faisceau laser monomode. Un tel faisceau se caractérise essentiellement par sa très faible divergence (de l'ordre du milliradian) et une répartition d'intensité gaussienne suivant la section du faisceau. Ainsi, les rayons proches du centre du faisceau sont intenses, l'intensité sur l'axe central ayant-une valeur I0; tandis que les rayons des bords du faisceau sont de faible intensité. Les bords du faisceau peuvent être définis par leur distance radiale W, visible sur la figure 1a que l'on appelera rayon du faisceau telle que l'intensité soit égale à 0. La figure 1b montre que la distribution est a symétrie circulaire suivant la section du faisceau, constituée par le plan (x, y).
Other characteristics and advantages of the invention will become clear with the aid of the description below and the appended figures among which:
  • - Figure 1 shows the intensity distribution of a laser beam;
  • - Figure 2 schematically shows an illuminating device;
  • - Figure 3 schematically shows a pattern projection device;
  • - Figure 4 illustrates the intensity distributions in the object and image planes;
  • - Figure 5 schematically illustrates the method used according to the invention;
  • - Figure 6 shows an embodiment of the invention;
  • - Figures 7 and 8 are detailed partial views;
  • - Figure 9 shows an alternative embodiment of the invention;
  • - Figure 10 shows the result obtained by the device of Figure 6 or Figure 9:
  • - Figure 11 shows an application of the invention;
    Figure 1 shows the intensity distribution of a single mode laser beam. Such a beam is essentially characterized by its very small divergence (of the order of a milliradian) and a distribution of Gaussian intensity according to the section of the beam. Thus, the rays close to the center of the beam are intense, the intensity on the central axis having a value I 0 ; while the rays of the edges of the beam are of weak intensity. The edges of the beam can be defined by their radial distance W, visible in FIG. 1a which will be called beam radius such that the intensity is equal to 0 . Figure 1b shows that the distribution is circularly symmetrical along the section of the beam, formed by the plane (x, y).

Un faisceau laser peut être utilisé dans un dispositif illuminateur tel que celui, représenté à titre d'exemple sur la figure 2. Le faisceau F délivré par le laser 1 et ayant la distribution d'intensité.représentée sur la figure 1, est élargi par un expandeur formé de lentilles L1 et L2. Il est rendu divergent par une lentille L3 et condensé par un condenseur 3 de façon à éclairer un objét 4. La distribution d'intensité dans le plan de l'objet reste gaussienne, si bien que les bords de l'objet sont moins éclairés que le centre. Or, suivant les applications, on désire obtenir une répartition d'intensité prédéterminée, adaptée à l'application.A laser beam can be used in an illuminating device such as that, shown by way of example in FIG. 2. The beam F delivered by the laser 1 and having the intensity distribution. Represented in FIG. 1, is widened by an expander formed by lenses L 1 and L 2 . It is made divergent by a lens L 3 and condensed by a condenser 3 so as to illuminate an object 4. The intensity distribution in the plane of the object remains Gaussian, so that the edges of the object are less illuminated than the center. However, depending on the applications, it is desired to obtain a predetermined intensity distribution, adapted to the application.

L'une des applications possibles est représentée sur la figure 3. Il s'agit d'un dispositif de projection comprenant notamment un objectif 9 formant l'image de l'objet 4 dans un plan 12. Pour obtenir une bonne qualité d'image dans tout le champ de l'objectif, il faut une bonne uniformité d'éclairement du plan image.One of the possible applications is represented in FIG. 3. It is a projection device comprising in particular a lens 9 forming the image of the object 4 in a plane 12. To obtain good image quality in all the field of the objective, it is necessary a good uniformity of illumination of the image plane.

La figure 4 montre, dans deux cas, les répartitions d'intensité obtenues dans le plan image. Dans le premier cas, la répartition dans le plan objet, représentée en figure 4a, est uniforme. On constate alors généralement que l'éclairement dans le plan image représenté en figure 4b, est non uniforme, plus intense au centre et diminuant progressivement vers le bord du champ de l'objectif. Ceci est dû aux pertes lumineuses dans les différentes lentilles qui forment l'objectif 9 et qui sont en général plus grandes sur les bords qu'au centre, à cause de la forme sphérique des lentilles. En conséquence, pour avoir dans le plan image un éclairement uniforme, tel que représenté en figure 4c, moins intense au centre que sur les bords. Typiquement, l'écart maximum

Figure imgb0001
entre l'intensité au bord et au centre, doit être de 5 % à 10%.FIG. 4 shows, in two cases, the intensity distributions obtained in the image plane. In the first case, the distribution in the object plane, represented in FIG. 4a, is uniform. It is then generally observed that the illumination in the image plane shown in FIG. 4b is non-uniform, more intense in the center and gradually decreasing towards the edge of the lens field. This is due to the light losses in the different lenses which form the objective 9 and which are generally larger at the edges than in the center, because of the spherical shape of the lenses. Consequently, to have uniform illumination in the image plane, as shown in FIG. 4c, less intense in the center than at the edges. Typically, the maximum deviation
Figure imgb0001
between the intensity at the edge and in the center, should be 5% to 10%.

La figure 5 illustre schématiquement la méthode utilisée selon l'invention pour obtenir un éclairement du type de celui de la figure 4c. On verra par la suite ique l'invention permet en outre d'obtenir d'autres formes d'éclairement voisines de l'éclairement uniforme.FIG. 5 schematically illustrates the method used according to the invention for obtaining an illumination of the type of that of FIG. 4c. We will see below that the invention also makes it possible to obtain other forms of lighting close to uniform lighting.

Le faisceau d'origine F a dans toute direction radiale telle que x, une distribution d'intensité gaussienne représentée en figure 5a. L'invention prévoit de séparer ce faisceau en deux demi-faisceaux selon un plan axial perpendiculaire à l'axe x, puis de décaler les deux faisceaux obtenus d'une même quantité a, en sens inverse. Les deux demi-faisceaux se superposent, comme représenté en figure 5b, et on obtient un faisceau résultant dont la répartition d'intensité est représentée en figure 3c, à condition que les deux demi-faisceaux s'ajoutent en intensités, et non en phase et en amplitude, ce qui peut être obtenu par exemple, en faisant tourner la polarisation de l'un des demi-faisceaux de 90°. On constate que l'on aboutit à une répartition quasi-uniforme suivant la direction x. Les calculs montrent que, pour a = 0,555 W, l'écart maximum d'intensité est de 3 %. Par contre, la répartition reste gaussienne suivant l'axe radial y perpendiculaire à x. Il est possible d'effectuer la même séparation-recombinaison suivant l'axe y, avec la même valeur pour le décalage. En supposant que l'on a fait en sorte que, dans la direction y également, les faisceaux s'ajoutent en intensité (la suite de la description montrera comment cela est possible), on montre que la forme du faisceau approche un carré, ce qui est souvent avantageux car les champs d'éclairement utiles des objets sont souvent carrés, d'où un gain en rendement lumineux. D'autre part, la répartition d'intensité est bien définie : plus faible au centre, elle augmente progressivement de I0 à 103 % I0 vers le bord suivant les axes x et y et de I0 à 106 % I0 vers le bord suivant les diagonales. Un tel faisceau fournit donc un éclairement proche de l'éclairement idéal, représenté sur la figure 4c.The original beam F has in any radial direction such that x, a Gaussian intensity distribution shown in FIG. 5a. The invention provides for separating this beam into two half-beams along an axial plane perpendicular to the x axis, then shifting the two beams obtained by the same quantity a, in the opposite direction. The two half-beams are superimposed, as shown in FIG. 5b, and a resulting beam is obtained, the intensity distribution of which is represented in FIG. 3c, provided that the two half-beams are added in intensity, and not in phase. and in amplitude, which can be obtained for example, by rotating the polarization of one of the half-beams by 90 °. We note that we end up with a quasi-uniform distribution along the direction x. The calculations show that, for a = 0.555 W, the maximum intensity difference is 3%. On the other hand, the distribution remains Gaussian along the radial axis y perpendicular to x. It is possible to perform the same separation-recombination along the y axis, with the same value for the offset. Assuming that we have made the beams add in intensity in the y direction as well (the rest of the description will show how this is possible), we show that the shape of the beam approaches a square, which is often advantageous because the useful lighting fields of objects are often square, hence a gain in light output. On the other hand, the intensity distribution is well defined: weaker in the center, it gradually increases from I 0 to 103% I 0 towards the edge along the x and y axes and from I 0 to 106% I 0 towards the edge along the diagonals. Such a beam therefore provides an illumination close to the ideal illumination, shown in FIG. 4c.

La figure 6 représente un montage optique assurant la séparation-recombinaison d'un faisceau laser selon deux directions orthogonales, pour la réalisation de l'invention. Le faisceau laser F délivré par le laser 1 est élargi par un expandeur 2. La séparation suivant un axe x est assurée par un biprisme de Fresnel 5 convenablement orienté et centré par rapport au faisceau F. Le faisceau F est ainsi séparé en deux demi-faisceaux F1 et F2. Pour alléger la figure, on a représenté seulement les rayons résultant du rayon central du faisceau F, qui forme l'axe optique z du système. Les faisceaux F1 et F2 sont réfléchis respectivement par deux miroirs Mx1 et Mx2, de façon à les rendre quasi-parallèles à l'axe z. Ils traverses alors un deuxième biprisme de Fresnel 6, orienté de façon orthogonale au biprisme 5 et qui assure la séparation de chaque faisceau F1 et F2 suivant l'axe y perpendiculaire à x, formant respectivement les faisceaux F11 et F12' F21 et F22. Les faisceaux F11 et F21 sont réfléchis par un miroir My1 et les faisceaux F12 et F22 sont réfléchis par un miroir My2, de façon à les rendre à nouveau quasi-parallèles à l'axe z. Les miroirs My1 et Py2 sont placés de façon que les points d'impact respectifs A, B, C, D des faisceaux F12, F11' F21' F22 soient vus sous une même inclinaison x par rapport à l'axe z, dans le plan de recombinaison P des faisceaux. C'est dans ce plan que pourra être placée la première lentille L1 du dispositif d'éclairement de la figure 2. Pour conserver les propriétés collimatrices d'ensemble des deux lentilles L1 et L2 de la figure 2, il faut que l'angle x soit très faible.FIG. 6 represents an optical assembly ensuring the separation-recombination of a laser beam in two orthogonal directions, for the realization of the invention. The laser beam F delivered by the laser 1 is widened by an expander 2. The separation along an x axis is ensured by a Fresnel biprism 5 suitably oriented and centered with respect to the beam F. The beam F is thus separated into two half bundles F 1 and F 2 . To simplify the figure, only the rays resulting from the central radius of the beam F, which forms the optical axis z of the system, have been shown. The beams F 1 and F 2 are reflected respectively by two mirrors M x1 and M x2 , so as to make them almost parallel to the axis z. They then cross a second Fresnel biprism 6, oriented orthogonal to biprism 5 and which ensures the separation of each beam F 1 and F 2 along the axis y perpendicular to x, respectively forming the beams F 11 and F 12 ' F 21 and F 22 . The beams F 11 and F 21 are reflected by a mirror M y1 and the beams F1 2 and F 22 are reflected by a mirror M y2 , so as to make them again almost parallel to the axis z. The mirrors M y1 and P y2 are placed so that the respective impact points A, B, C, D of the beams F 12 , F 11 ' F 21' F 22 are seen at the same inclination x relative to the z axis, in the recombination plane P of the beams. It is in this plane that the first lens L 1 of the device can be placed of illumination of FIG. 2. To preserve the overall collimating properties of the two lenses L 1 and L 2 of FIG. 2, the angle x must be very small.

Le fonctionnement du premier séparateur constitué par le biprisme 5 et les miroirs Mx1 et Mx2 peut être expliqué à partir de la vue détaillée de la figure 7. Les faisceaux obtenus F1 et F21 ont respectivement, selon les axes x1 et x2 perpendiculaires à leur direction de propagation, des répartitions d'intensité en forme de demi- gaussienne, telles qu'illustrée sur la figure 5.The operation of the first separator constituted by the biprism 5 and the mirrors M x1 and M x2 can be explained from the detailed view of FIG. 7. The beams obtained F 1 and F 21 have respectively, along the axes x 1 and x 2 perpendicular to their direction of propagation, intensity distributions in the form of a semi-Gaussian, as illustrated in FIG. 5.

La figure 8 montre le trajet des faisceaux F11' F12' F21' F22 à la sortie du deuxième séparateur, constitué pour le biprisme 6 et les miroirs My1 et My2. Les quatre points A, B, C, D forment un carré de côté 2b dans un plan x, y perpendiculaire à l'axe z centré sur l'axe z. Les rayons des faisceaux F11' F21' F12' F22 issus du rayon central du faisceau initial F forment le même angle x avec l'axe Z. Ces quatre faisceaux forment dans le plan P un système d'interférences car les quatre sources sont cohérentes entre elles à cause de la cohérence du laser. Comme les quatre faisceaux ne sont pas parallèles à l'axe optique, on observe des franges orthogonales selon les axes xp et yp du plan P, formant une grille régulière. En agissant sur la polarisation des faisceaux, on peut faire en sorte que l'un des deux systèmes de franges soit supprimé. Par exemple, si l'on interpose une lame demi-onde L sur le trajet de faisceau F21 le faisceau F étant déjà polarisé linéairement, on peut faire en sorte que les faisceaux F22 et F21 d'une part et F11 et F12 d'autre part soient polarisés respectivement selon des directions P2 et P1 perpendiculares entre elles, et donc n'interfèrent plus. Toutefois, ces faisceaux interfèrent entre eux et forment deux systèmes de franges de même direction, indépendants et qui se superposent. Pour ces deux systèmes, il faut connaître les lois de répartition de phase des quatre faisceaux, d'après les lois de phase de différents éléments optiques traversés : la lame demi-onde et les deux biprismes, la réflexion sur les miroirs ne modifiant pas les répartitions de phase, et également, la modification observée dans le plan P due à l'inclinaison x des faisceaux, qui dépend de la valeur de l'angle a, de b et de la distance h entre le plan P et le carré ABCD. On peut alors calculer les déphasages respectifs des quatre faisceaux. Si l'on introduit sur le trajet de l'un des faisceaux F11 et F12 un premier cristal électro-optique K, polarisé par un champ électrique parallèle à la direction de polarisation commune à ces deux faisceaux et dont la valeur varie dans le temps, on peut introduire un déphasage supplémentaire variable dans le temps et on peut faire en sorte que la valeur moyenne de cos ϕ sur une durée T faible devant la durée prévue pour que l'illumination soit nulle. Le calcul montre alors que la valeur moyenne de l'intensité résultante est égale à la somme des intensités de chacun des deux faisceaux. De même, on peut introduire sur le trajet de l'un des deux faisceaux F21 et F22 un deuxième cristal électro-optique K2 polarisé par un champ électrique parallèle à la direction de polarisation commune à ces deux faisceaux et dont la valeur varie dans le temps, on peut faire le même raisonnement et montrer que, quand on consi- dère la valeur moyenne, les deux faisceaux F21 et F22 s'ajoutent en intensité et non en amplitude et phase. Comme les faisceaux F11 et F12 d'une part, F 21 et F 22 d'autre part s'ajoutent en intensité; du fait de leurs- polarisations perpendiculaires, on a obtenu, non pas exactement une suppression des interférences, mais un moyennage dans le temps, sur une durée suffisamment faible par rapport à la durée d'éclairement ou d'observation pour que l'éclairement puisse être considéré comme homogène, par exemple quant à ses effets sur l'impression d'une résine photosensible.FIG. 8 shows the path of the beams F 11 ' F 12' F 21 ' F 22 at the outlet of the second separator, formed for biprism 6 and the mirrors M y1 and My 2 . The four points A, B, C, D form a square with side 2b in an x, y plane perpendicular to the z axis centered on the z axis. The rays of the beams F 11 ' F 21' F 12 ' F 22 coming from the central radius of the initial beam F form the same angle x with the axis Z. These four beams form in the plane P an interference system because the four sources are consistent with each other because of the coherence of the laser. As the four beams are not parallel to the optical axis, orthogonal fringes are observed along the axes x p and y p of the plane P, forming a regular grid. By acting on the polarization of the beams, one can ensure that one of the two fringe systems is eliminated. For example, if a half-wave plate L is interposed on the beam path F 21, the beam F being already linearly polarized, it is possible to ensure that the beams F 22 and F 21 on the one hand and F 11 and F 12 on the other hand are respectively polarized in directions P 2 and P 1 perpendicular to each other, and therefore no longer interfere. However, these beams interfere with each other and form two systems of fringes of the same direction, independent and which overlap. For these two systems, it is necessary to know the laws of phase distribution of the four beams, according to the laws of phase of different optical elements crossed: the half-wave plate and the two biprisms, the reflection on the mirrors not modifying the distributions phase, and also, the modification observed in the plane P due to the inclination x of the beams, which depends on the value of the angle a, of b and on the distance h between the plane P and the square ABCD. We can then calculate the respective phase shifts of the four beams. If a first electro-optical crystal K is introduced into the path of one of the beams F 11 and F 12 , polarized by an electric field parallel to the direction of polarization common to these two beams and whose value varies in the time, one can introduce an additional phase shift variable in time and one can make so that the average value of cos ϕ on a duration T low compared to the duration envisaged so that the illumination is null. The calculation then shows that the average value of the resulting intensity is equal to the sum of the intensities of each of the two beams. Similarly, it is possible to introduce into the path of one of the two beams F 21 and F 22 a second electro-optical crystal K 2 polarized by an electric field parallel to the direction of polarization common to these two beams and the value of which varies in time, can be the same reasoning and show that when the average value of con- era, the two beams F 21 and F 22 are added in intensity and not in amplitude and phase. Like the beams F 11 and F 12 on the one hand, F 21 and F 22 on the other hand add in intensity; because of their perpendicular polarizations, one obtained, not exactly a suppression of the interferences, but an averaging in time, over a sufficiently short duration compared to the duration of illumination or observation so that the illumination can be considered homogeneous, for example as to its effects on the printing of a photosensitive resin.

La lame demi-onde L et les cristaux électro-optiques K1 et K2 sont représentés sur la figure 6, ainsi que les directions de polarisation des faisceaux, symbolisées par des flèches. Le faisceau F est polarisé parallèlement à l'axe y. La lame demi-onde L est placée sur le trajet du faisceau L dans un plan xy. Ses lignes neutres sont orientées à 45° des axes x, y, si bien que, à la sortie de la lame, la polarisation du faisceau F2 est parallèle à l'axe x. Le cristal K1 est placé sur le trajet du faisceau F12 et il est commandé par un champ El parallèle à la polarisation de ce faisceau, donc à l'axe y. Il génère un déphasage φ1, qui peut être par exemple égal à

Figure imgb0002
Le cristal K2 est placé sur le trajet du faisceau F22 et il est commandé par un champ E2 parallèle à la polarisation de ce faisceau, donc à l'axe x. Il génère un déphasage φ2, qui peut être de la forme
Figure imgb0003
où φ0 a une valeur fixe quelconque.The half-wave plate L and the electro-optical crystals K 1 and K 2 are shown in FIG. 6, as well as the directions of polarization of the beams, symbolized by arrows. The beam F is polarized parallel to the y axis. The half-wave plate L is placed on the path of the beam L in an xy plane. Its neutral lines are oriented at 45 ° from the x, y axes, so that, at the exit of the blade, the polarization of the beam F 2 is parallel to the x axis. The crystal K 1 is placed on the path of the beam F 12 and it is controlled by a field E l parallel to the polarization of this beam, therefore to the y axis. It generates a phase shift φ 1 , which can for example be equal to
Figure imgb0002
The crystal K 2 is placed on the path of the beam F 22 and it is controlled by a field E 2 parallel to the polarization of this beam, therefore to the x axis. It generates a phase shift φ 2 , which can be of the form
Figure imgb0003
where φ 0 has any fixed value.

On obtient le même résultat de moyennage des interférences en intervertissant les deux moyens utilisés: lame demi-onde et déphaseurs. La figure 9 représente le, même montage optique de séparation-recombinaison du faisceau, seuls les moyens permettant de moyenner les interférences étant différents. Le faisceau F étant toujours polarisé selon l'axe y, on introduit sur le trajet du faisceau F2 un déphaseur constitué par un cristal électro-optique K polarisé par un champ électrique E parallèle à y, introduisant un déphasage φ entre les faisceaux F1 et F2 de la forme

Figure imgb0004
Les directions de polarisation des deux faisceaux restent inchangés.The same interference averaging result is obtained by reversing the two means used: half-wave plate and phase shifters. FIG. 9 shows the same optical arrangement for separation-recombination of the beam, only the means making it possible to average the interference being different. The beam F being always polarized along the y axis, a phase shifter is introduced into the path of the beam F 2 constituted by an electro-optical crystal K polarized by an electric field E parallel to y, introducing a phase shift φ between the beams F 1 and F 2 of the form
Figure imgb0004
The polarization directions of the two beams remain unchanged.

Une lame demi-onde L1 est introduite sur le trajet du faisceau F12 et une lame demi-onde L2 est introduite sur le trajet du faisceau F22, de façon que les polarisations de ces deux faisceaux deviennent parallèles à l'axe x. Ainsi, dans le plan P, les deux systèmes de franges sont supprimés. Cette méthode est moins onéreuse que la précédente car elle n'utilise qu'un déphaseur électro-optique au lieu de deux.A half-wave plate L 1 is introduced on the path of the beam F 12 and a half-wave plate L 2 is introduced on the path of the beam F22 , so that the polarizations of these two beams become parallel to the x axis. Thus, in plane P, the two fringe systems are eliminated. This method is less expensive than the previous one because it uses only one electro-optical phase shifter instead of two.

Une autre méthode possible pour supprimer l'effet dû aux interférences consiste à placer sur le trajet des faisceaux, un élément diffuseur tournant qui génère des déphasages variables dans le temps, spatialement aléatoire. Cette méthode sera avantageusement utilisés si, au lieu de réaliser séparément les deux séparateurs avec, pour chaque séparateur, un biprisme et deux miroirs, on. réalise les séparations-recombinaisons respectivement au moyen d'un prisme à symétrie circulaire, ayant une forme conique et d'un miroir tronc-conique. Il s'agit de la généralisation du procédé qui vient d'être décrit. A la sortie du prisme conique le faisceau est transformé en un faisceau annulaire et recombiné par le miroir conique. De tels moyens sont illustrés par la figure 11 qui sera décrite ultérieurement.Another possible method for eliminating the effect due to interference consists in placing on the path of the beams, a rotating diffusing element which generates time-varying, spatially random phase shifts. This method will be advantageously used if, instead of making the two separators separately with, for each separator, a biprism and two mirrors, one. performs the separations-recombinations respectively by means of a prism with circular symmetry, having a conical shape and a truncated-conical mirror. This is the generalization of the process which has just been described. At the exit of the conical prism the beam is transformed into an annular beam and recombined by the conical mirror. Such means are illustrated in Figure 11 which will be described later.

Dans le cas où le faisceau laser n'est pas polarisé linéairement, l'utilisation d'une lame biréfringente n'est plus possible à moins d'interposer un polariseur sur le trajet du faisceau, ce qui occasionne une perte d'énergie de 50 %. On peut placer sur le trajet des quatre faisceaux quatre déphaseurs électro-optiques créant des déphasages respectifs, par exemple de la forme :

Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
où T =
Figure imgb0009
est faible devant la durée d'éclairement. In the case where the laser beam is not linearly polarized, the use of a birefringent plate is no longer possible unless interposing a polarizer on the path of the beam, which causes a loss of energy of 50 %. One can place on the path of the four beams four electro-optical phase shifters creating respective phase shifts, for example of the form:
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
where T =
Figure imgb0009
is weak compared to the duration of illumination.

Quels que soient les moyens utilisés d'une part pour assurer la séparation-recombinaison de quatre faisceaux, d'autre part pour supprimer l'effet des interférences entre les quatre faisceaux, la séparation et la recombinaison sont illustrées sur les figures 10a et 10b. La section du faisceau F est représentée sur la figure 10a. Le dispositif selon l'invention décompose ce faisceau en quatre secteurs, puis réalise des translations de type (±a, ±a). Ainsi, le faisceau F11, hachuré sur la figure est translaté selon le vecteur T (+a, +a). Dans le plan P, représenté sur la figure 10b, les quatre faisceaux superposés s'inscrivent dans un carré de côté 2a centrés sur l'axe z.Whatever the means used on the one hand to ensure the separation-recombination of four beams, on the other hand to remove the effect of interference between the four beams, the separation and the recombination are illustrated in FIGS. 10a and 10b. The section of the beam F is shown in FIG. 10a. The device according to the invention breaks this beam into four sectors, then performs translations of type (± a, ± a). Thus, the beam F 11 , hatched in the figure is translated according to the vector T (+ a, + a). In the plane P, represented in FIG. 10b, the four superimposed beams are inscribed in a square with side 2a centered on the axis z.

La valeur de a est déterminée par la distance h. Si le plan P passe par le point de rencontre 0 des quatre rayons issus du rayon central du faisceau F, il n'y a aucune superposition, a = 0 : le faisceau F se reconstitue. Plus la distance h augmente, plus la superposition est importante. Il a été dit précédemment que, lorsque a est de l'ordre de 0,5 W, on obtient une répartition d'intensité sensiblement uniforme. Pour des valeurs de a inférieures, la répartition d'intensité est en forme de "selle de cheval", c'est-à-dire que le faisceau est intense sur les bords et au centre, et moins intense sur des lieux intermédiaires. Pour des valeurs de a supérieurs, la répartition est en forme de cuvette : plus intense sur les bords qu'au centre.The value of a is determined by the distance h. If the plane P passes through the meeting point 0 of the four rays coming from the central radius of the beam F, there is no superposition, a = 0: the beam F is reconstituted. The more the distance h increases, the greater the superposition. It has been said previously that, when a is of the order of 0.5 W, a substantially uniform intensity distribution is obtained. For lower values of a, the intensity distribution is in the form of a "horse saddle", that is to say that the beam is intense on the edges and in the center, and less intense on intermediate places. For higher values of a, the distribution is bowl-shaped: more intense on the edges than in the center.

Un dispositif illuminateur comprenant des moyens d'uniformisation du faisceau est applicable notamment à un photorépéteur.An illuminating device comprising means for uniformizing the beam is applicable in particular to a photorepeater.

La figure 11 représente un photorépéteur du type de celui décrit dans la demande de brevet français n° 76.37.327 et publiée sous le n° 2 406 236. Derrière le laser 1, par exemple un laser Krypton de puissance 1,5 W, sont disposés l'expandeur de faisceau 2, un premier miroir de renvoi R1 et les moyens d'uniformisation, constitués par un prisme conique C, un élément T en forme de tronçon de cone à parois réfléchissantes et un diffuseur tournant D. Le faisceau ayant ainsi la distribution d'intensité désirée est renvoyé par un deuxième miroir R2 vers un obturateur 14 commandé de façon à ce que la quantité d'énergie reçue par la couche de résine photosensible destinée à être impressionnée corresponde à la meilleure insolation possible. Les moyens de commande décrit dans la première demande citée, sont principalement constitués par un intégrateur 15, un sélecteur de quantité d'énergie 17 et un dispositif comparateur 16 déclenchant l'ouverture et la fermeture de l'obturateur 14. Sont disposés ensuite sur le trajet du faisceau des moyens 200 destinés à produire une source quasi-ponctuelle de dimensions telles qu'il ne se produise pas de figures d'interférences gênantes.FIG. 11 represents a photorepeater of the type described in French patent application no. 76.37.327 and published under no. 2 406 236. Behind the laser 1, for example a Krypton laser of power 1.5 W, are arranged the beam expander 2, a first deflection mirror R 1 and the uniformization means, constituted by a conical prism C, a T-shaped element cone section with reflecting walls and a rotating diffuser D. The beam thus having the desired intensity distribution is returned by a second mirror R 2 to a shutter 14 controlled so that the amount of energy received by the layer of photosensitive resin intended to be impressed corresponds to the best possible sunshine. The control means described in the first cited request, are mainly constituted by an integrator 15, an energy quantity selector 17 and a comparator device 16 triggering the opening and closing of the shutter 14. They are then placed on the path of the beam of the means 200 intended to produce a quasi-point source of dimensions such that no disturbing interference patterns occur.

Le faisceau divergent 100 issu des moyens 200 éclaire via un condenseur 3 l'objet 4 porté par un porte-objet 8 et dont l'image est formée par l'objectif 9 porté par un objectif 10 muni de moyens de focalisation automatique 11 sur le substrat 12 recouvert d'une résine photosensible et porté par une table mobile 13. L'éclairement obtenu grâce au prisme conique C et au miroir tronc-conique T permet, comme il a été montré plus haut, d'obtenir une bonne qualité d'image au niveau de la résine photosensible.The divergent beam 100 from the means 200 illuminates via a condenser 3 the object 4 carried by a holder 8 and whose image is formed by the objective 9 carried by a objective 10 provided with automatic focusing means 11 on the substrate 12 covered with a photosensitive resin and carried by a movable table 13. The illumination obtained thanks to the conical prism C and to the frusto-conical mirror T allows, as has been shown above, to obtain a good quality of image at the level of the photosensitive resin.

Claims (9)

1. Dispositif illuminateur destiné à fournir un faisceau d'éclairement cohérent ayant une distribution spatiale d'intensité ajustable, à partir d'une source (1) fournissant un faisceau initial (F) ayant une distribution d'intensité (I) gaussienne, caractérisé en ce qu'il comprend des moyens (5 - 6) permettant la séparation du faisceau initial en quatre parties formant chacune un faisceau (F11 - F22), selon deux directions radiales (x, y) perpendiculaires entre elles, des moyens (Mx1 - My2) permettant la recombinaison des quatre parties aboutissant dans un plan prédéterminé (P) à une superposition partielle des quatre faisceaux (F11 - F22) et des moyens (L, K1 - K2) permettant de moyenner les interférences entre les quatre parties de façon que l'intensité moyenne dans le plan prédéterminé (P) soit égale à la somme des intensités moyennes des quatre parties.1. Illuminating device intended to provide a coherent illumination beam having a spatial distribution of adjustable intensity, from a source (1) providing an initial beam (F) having a Gaussian intensity distribution (I), characterized in that it comprises means (5 - 6) allowing the separation of the initial beam into four parts each forming a beam (F 11 - F22), in two radial directions (x, y) perpendicular to each other, means (M x1 - M y2 ) allowing the recombination of the four parts leading in a predetermined plane (P) to a partial superposition of the four beams (F 11 - F 22 ) and means (L, K 1 - K 2 ) allowing to average the interferences between the four parts so that the average intensity in the predetermined plane (P) is equal to the sum of the average intensities of the four parts. 2. Dispositif illuminateur selon la revendication 1, caractérisé en ce que les moyens de séparation comprennent un premier biprisme (5) centré sur le trajet du faisceau initial (F) et le séparant selon une première direction radiale x en des premier et second demi-faisceaux (F1 - F2) symétriques par rapport à l'axe (z) du faisceau initial (F), et un deuxième biprisme (6) centré sur le trajet des deux demi-faisceaux (F1 - F2) et les séparant respectivement, selon une seconde direction radiale (y) perpendiculaire à la première, en une première et une seconde parties (F11 - F12) symétriques par rapport au premier demi-faisceau (F1) et en une troisième et une quatrième parties (F21 - F22) symétriques par rapport au second demi-faisceau (F2).2. Illuminating device according to claim 1, characterized in that the separation means comprise a first biprism (5) centered on the path of the initial beam (F) and separating it in a first radial direction x into first and second half beams (F 1 - F 2 ) symmetrical with respect to the axis (z) of the initial beam (F), and a second biprism (6) centered on the path of the two half-beams (F 1 - F 2 ) and the dividing respectively, in a second radial direction (y) perpendicular to the first, into first and second parts (F 11 - F 12 ) symmetrical with respect to the first half-beam (F1) and into third and fourth parts ( F 21 - F 22 ) symmetrical with respect to the second half-beam (F 2 ). 3. Dispositif illuminateur selon la revendication 2, caractérisé en ce que les moyens de recombinaison comprennent un premier (Mx1) et un deuxième (Mx2) miroirs réfléchissant respectivement les deux demi-faisceaux (F1- F2) en deux directions symétriques par rapport à l'axe (z) du faisceau initial (F) et convergeant vers le deuxième biprisme (6), et un troisième (My1) et un quatrième (My2) miroirs réfléchissant respectivement les deux premières parties (F11 F21) et les deux dernières parties (F12 - F22) en quatre directions symétriques par rapport à l'axe (z) du faisceau initial (z) et convergeant vers le plan prédéterminé (P).3. Illuminating device according to claim 2, characterized in that the recombination means com take a first (M x1 ) and a second (M x2 ) mirrors respectively reflecting the two half-beams (F 1 - F 2 ) in two directions symmetrical with respect to the axis (z) of the initial beam (F) and converging towards the second biprism (6), and a third (M y1 ) and a fourth (My 2 ) mirrors reflecting respectively the first two parts (F 11 F 21 ) and the last two parts (F 12 - F 22 ) in four directions symmetrical about the axis (z) of the initial beam (z) and converging towards the predetermined plane (P). 4. Dispositif illuminateur selon la revendication 3, caractérisé en ce que, le faisceau initial (F) étant polarisé linéairement, les moyens de moyennage comprennent au moins une lame biréfringente (L) située sur le trajet de l'un des demi-faisceaux (F2) de façon que ces deux demi-faisceaux aient des directions de polarisation perpendiculaires entre elles, et au moins deux éléments déphaseurs électro-optiques (K1 - K2) situés respectivement sur les trajets d'une des deux premières parties (F12) et d'une des deux dernières parties (F21) et introduisant entre les deux premières parties (F11 - F12) d'une part, et entre les deux dernières parties (F21 -F22) d'autre part, des déphasages prédéterminés variable dans le temps, dont les valeurs moyennes, sur des durées faibles par rapport à la durée d'éclairement, sont nulles.4. Illuminating device according to claim 3, characterized in that, the initial beam (F) being linearly polarized, the averaging means comprise at least one birefringent plate (L) located on the path of one of the half-beams ( F 2 ) so that these two half-beams have directions of polarization perpendicular to each other, and at least two electro-optical phase shifting elements (K 1 - K 2 ) located respectively on the paths of one of the first two parts (F 12 ) and one of the last two parts (F2 1 ) and introducing between the first two parts (F 11 - F 12 ) on the one hand, and between the last two parts (F 21 -F 22 ) on the other hand , predetermined phase shifts that vary over time, the average values of which, over short periods of time relative to the duration of illumination, are zero. 5. Dispositif illuminateur selon la revendication 3, caractérisé en ce que, le faisceau initial étant polarisé linéairement, les moyens de moyennage comprennent au moins un élément déphaseur électro-optique (K) situé sur le trajet de l'un des deux demi-faisceaux (F2) introduisant entre eux un déphasage prédéterminé variable dans le temps et dont la valeur moyenne est nulle sur une durée faible par rapport à la durée d'éclairement, et au moins deux lames biréfringentes (L. - L2) situées respectivement sur le trajet d'une des deux premières parties (F12) et d'une des deux dernières parties (F22) et y créant des rotations de polarisation de 90°.5. Illuminating device according to claim 3, characterized in that, the initial beam being linearly polarized, the averaging means comprise at least one electro-optical phase shifter element (K) located on the path of one of the two half-beams (F 2 ) introducing between them a predetermined phase shift that varies over time and whose mean value is zero over a short period of time relative to the lighting duration, and at least two birefringent plates (L. - L 2 ) located respec tively on the path of one of the first two parts (F 12 ) and one of the last two parts (F 22 ) and creating 90 ° polarization rotations there. 6. Dispositif illuminateur destiné à fournir un faisceau d'éclairement cohérent ayant une distribution spatiale d'intensité ajustable, à partir d'une source (1) fournissant un faisceau initial (F) ayant une distribution d'intensité (I) gaussienne, caractérisé en ce qu'il comprend des moyens (5 - 6) permettant la transformation du faisceau initial (F) en un faisceau annulaire, un prisme à symétrie circulaire C, en forme de cône dont l'axe est confondu avec l'axe (z) du faisceau initial (F), des moyens (T) permettant la recombinaison du faisceau ainsi transformé dans un plan prédéterminé et des moyens (D) permettant le moyennage des interférences du faisceau en sortie des moyens de recombinaison.6. Illuminating device intended to provide a coherent illumination beam having a spatial distribution of adjustable intensity, from a source (1) providing an initial beam (F) having a Gaussian intensity distribution (I), characterized in that it comprises means (5 - 6) allowing the transformation of the initial beam (F) into an annular beam, a prism with circular symmetry C, in the shape of a cone whose axis coincides with the axis (z ) of the initial beam (F), means (T) allowing the recombination of the beam thus transformed in a predetermined plane and means (D) allowing the averaging of the beam interference at the output of the recombination means. 7. Dispositif illuminateur selon la revendication 6, caractérisé en ce que les moyens de recombinaison comprennent un miroir concave tronconique (T), dont l'axe est confondu avec l'axe du faisceau initial.7. Illuminating device according to claim 6, characterized in that the recombination means comprise a frustoconical concave mirror (T), the axis of which coincides with the axis of the initial beam. 8. Dispositif illuminateur selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que les moyens de moyennage comprennent un diffuseur tournant (D) placé sur le trajet du faisceau recombiné.8. Illuminator device according to any one of claims 6 or 7, characterized in that the averaging means comprise a rotating diffuser (D) placed on the path of the recombined beam. 9. Système de transfert de motifs permettant de reproduire l'image d'un objet à transparence non uniforme sur un substrat recouvert d'une couche photosensible, ce système comprenant un dispositif illuminateur fournissant un faisceau d'éclairement de l'objet, et un objectif formant l'image de l'objet sur le substrat, le système étant caractérisé en ce que le dispositif illuminateur est selon l'une quelconque des revendications précédentes.9. A pattern transfer system making it possible to reproduce the image of an object with non-uniform transparency on a substrate covered with a photosensitive layer, this system comprising an illuminating device providing a beam of illumination of the object, and a objective forming the image of the object on the substrate, the system being characterized in that the illuminating device is according to any one of the preceding claims.
EP80401270A 1979-09-10 1980-09-05 Illuminating means for producing a light beam having adjustable light intensity distribution and image transfer system comprising such a means Expired EP0025397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7922587 1979-09-10
FR7922587A FR2465241A1 (en) 1979-09-10 1979-09-10 ILLUMINATOR DEVICE FOR PROVIDING AN ADJUSTABLE INTENSITY DISTRIBUTION ILLUMINATION BEAM AND PATTERN TRANSFER SYSTEM COMPRISING SUCH A DEVICE

Publications (2)

Publication Number Publication Date
EP0025397A1 true EP0025397A1 (en) 1981-03-18
EP0025397B1 EP0025397B1 (en) 1983-06-22

Family

ID=9229522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80401270A Expired EP0025397B1 (en) 1979-09-10 1980-09-05 Illuminating means for producing a light beam having adjustable light intensity distribution and image transfer system comprising such a means

Country Status (5)

Country Link
US (1) US4370026A (en)
EP (1) EP0025397B1 (en)
JP (1) JPS5685724A (en)
DE (1) DE3063902D1 (en)
FR (1) FR2465241A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091106A1 (en) * 1982-04-02 1983-10-12 Karl SÀ¼ss KG Präzisionsgeräte für Wissenschaft und Industrie - GmbH & Co. Process for eliminating undesired appearances of diffraction and/or interference, as well as process and apparatus for aligning
DE4132068A1 (en) * 1991-09-26 1993-04-22 Raith Gmbh Optimised lithography for integrated optics - uses rotationally symmetrical write=beam with variable diameter and outwardly increasing intensity

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879216A (en) * 1981-11-06 1983-05-13 Hitachi Ltd Two beam scanning optical system
US4491383A (en) * 1982-09-20 1985-01-01 Centro Ricerche Fiat S.P.A. Device for modifying and uniforming the distribution of the intensity of a power laser beam
JPS59165002A (en) * 1983-03-11 1984-09-18 Canon Inc Optical element and scanning optical system using it
US4523809A (en) * 1983-08-04 1985-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for generating a structured light beam array
JPS6052873A (en) * 1983-09-01 1985-03-26 Canon Inc Light beam recorder
US4793694A (en) * 1986-04-23 1988-12-27 Quantronix Corporation Method and apparatus for laser beam homogenization
US4911711A (en) * 1986-12-05 1990-03-27 Taunton Technologies, Inc. Sculpture apparatus for correcting curvature of the cornea
US4842277A (en) * 1987-05-20 1989-06-27 Lacroix Eugene F Multi-purpose baton
JPH0734069B2 (en) * 1987-07-08 1995-04-12 富士写真フイルム株式会社 Phase-locked semiconductor laser optical system
US4912614A (en) * 1987-12-23 1990-03-27 North American Philips Corporation Light valve projection system with non imaging optics for illumination
US4976520A (en) * 1988-09-09 1990-12-11 Grumman Aerospace Corporation Common path multichannel optical processor
JP2732498B2 (en) * 1988-11-24 1998-03-30 株式会社日立製作所 Reduction projection type exposure method and apparatus
US5253110A (en) * 1988-12-22 1993-10-12 Nikon Corporation Illumination optical arrangement
US5153773A (en) * 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
BR9007619A (en) * 1989-08-21 1992-07-07 Carl R Amos APPLIANCE FOR HANDLING ELECTROMAGNETIC PHENOMENA
US5638211A (en) 1990-08-21 1997-06-10 Nikon Corporation Method and apparatus for increasing the resolution power of projection lithography exposure system
US7656504B1 (en) 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
US5719704A (en) * 1991-09-11 1998-02-17 Nikon Corporation Projection exposure apparatus
US6252647B1 (en) 1990-11-15 2001-06-26 Nikon Corporation Projection exposure apparatus
US6897942B2 (en) * 1990-11-15 2005-05-24 Nikon Corporation Projection exposure apparatus and method
US6885433B2 (en) * 1990-11-15 2005-04-26 Nikon Corporation Projection exposure apparatus and method
US6967710B2 (en) 1990-11-15 2005-11-22 Nikon Corporation Projection exposure apparatus and method
US6710855B2 (en) 1990-11-15 2004-03-23 Nikon Corporation Projection exposure apparatus and method
US5592328A (en) * 1991-04-19 1997-01-07 Edge Scientific Instrument Company Llc Illumination system and method for a high definition light microscope
JP3267414B2 (en) * 1993-11-11 2002-03-18 キヤノン株式会社 Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JPH07226559A (en) * 1994-02-09 1995-08-22 Matsushita Electric Ind Co Ltd Laser irradiation equipment
US5557475A (en) * 1994-07-12 1996-09-17 Coherent, Inc. Optical system for improving the symmetry of the beam emitted from a broad area laser diode
US5699191A (en) * 1996-10-24 1997-12-16 Xerox Corporation Narrow-pitch beam homogenizer
DE69931690T2 (en) * 1998-04-08 2007-06-14 Asml Netherlands B.V. Lithographic apparatus
US6930754B1 (en) * 1998-06-30 2005-08-16 Canon Kabushiki Kaisha Multiple exposure method
DE19829612A1 (en) * 1998-07-02 2000-01-05 Zeiss Carl Fa Microlithography lighting system with depolarizer
US6137631A (en) * 1999-03-12 2000-10-24 Kodak Polychrome Graphics Llc Illumination system and method for spatial modulators
US6542304B2 (en) * 1999-05-17 2003-04-01 Toolz, Ltd. Laser beam device with apertured reflective element
JP2001023918A (en) * 1999-07-08 2001-01-26 Nec Corp Semiconductor thin-film forming apparatus
TW587199B (en) 1999-09-29 2004-05-11 Asml Netherlands Bv Lithographic method and apparatus
US6462883B1 (en) * 2000-08-23 2002-10-08 Apollo Instruments Inc. Optical coupling systems
US6556352B2 (en) * 2000-08-23 2003-04-29 Apollo Instruments Inc. Optical coupling system
WO2004025704A2 (en) * 2002-09-12 2004-03-25 Visotek, Inc. Contact lens package and storage case, holder, and system and method of making and using
EP1612849B1 (en) * 2003-04-09 2012-05-30 Nikon Corporation Exposure method and apparatus, and device manufacturing method
TWI569308B (en) 2003-10-28 2017-02-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TWI385414B (en) 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
EP1716457B9 (en) * 2004-01-16 2012-04-04 Carl Zeiss SMT GmbH Projection system with a polarization-modulating element having a variable thickness profile
US20070019179A1 (en) * 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
TWI366219B (en) 2004-02-06 2012-06-11 Nikon Corp Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
US20050205534A1 (en) * 2004-03-18 2005-09-22 Scott Caldwell Single and dual lensed optical waveguide for uniform welding
TWI423301B (en) * 2005-01-21 2014-01-11 尼康股份有限公司 Illumination optical device, exposure device, exposure method and fabricating method of device
US8330938B2 (en) * 2009-02-27 2012-12-11 Corning Incorporated Solid-state array for lithography illumination
CN107290861A (en) * 2017-08-01 2017-10-24 沈阳雷卓激光医疗器械有限公司 Laser beam homogenization device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584948A (en) * 1968-06-24 1971-06-15 Bell Telephone Labor Inc Apparatus and method for producing multiple images
FR2132043A1 (en) * 1971-04-06 1972-11-17 Ibm
FR2177475A1 (en) * 1972-03-03 1973-11-09 Onera (Off Nat Aerospatiale)
FR2312048A1 (en) * 1975-05-19 1976-12-17 Optical Associates Inc ENERGY SOURCE EXPOSURE APPARATUS SUPPLYING A LAMP EMITTING RAY AND CONTROL DETECTOR OF THE ENERGY SOURCE, ESPECIALLY FOR PHOTORESERVE OPERATIONS
US4023904A (en) * 1974-07-01 1977-05-17 Tamarack Scientific Co. Inc. Optical microcircuit printing process
DE2608176A1 (en) * 1976-02-27 1977-09-01 Inst Zemnogo Magnetizma Ionosf Uniform illumination of object for microscopy etc. - using coherent light split by lens raster to set of parallel beams
FR2406236A1 (en) * 1976-12-10 1979-05-11 Thomson Csf OPTICAL DEVICE WITH COHERENT SOURCE FOR THE QUICK TRANSFER OF PATTERNS ON SUBSTRATES, APPLIED TO THE REALIZATION OF COMPONENTS AND MICROSTRUCTURE CIRCUITS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549613A (en) * 1975-12-23 1979-08-08 Plessey Co Ltd Optical system for producing an area of light of even dispersion of illumination
US4109304A (en) * 1976-02-23 1978-08-22 Khvalovsky Vladimir Vasilievic Device for coherent lighting of objects
CA1090056A (en) * 1976-06-04 1980-11-25 Pierre C.E. Goffinet Textile treating compositions
JPS5945123B2 (en) * 1977-07-08 1984-11-05 富士写真光機株式会社 Linear illumination method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584948A (en) * 1968-06-24 1971-06-15 Bell Telephone Labor Inc Apparatus and method for producing multiple images
FR2132043A1 (en) * 1971-04-06 1972-11-17 Ibm
FR2177475A1 (en) * 1972-03-03 1973-11-09 Onera (Off Nat Aerospatiale)
US4023904A (en) * 1974-07-01 1977-05-17 Tamarack Scientific Co. Inc. Optical microcircuit printing process
FR2312048A1 (en) * 1975-05-19 1976-12-17 Optical Associates Inc ENERGY SOURCE EXPOSURE APPARATUS SUPPLYING A LAMP EMITTING RAY AND CONTROL DETECTOR OF THE ENERGY SOURCE, ESPECIALLY FOR PHOTORESERVE OPERATIONS
DE2608176A1 (en) * 1976-02-27 1977-09-01 Inst Zemnogo Magnetizma Ionosf Uniform illumination of object for microscopy etc. - using coherent light split by lens raster to set of parallel beams
FR2406236A1 (en) * 1976-12-10 1979-05-11 Thomson Csf OPTICAL DEVICE WITH COHERENT SOURCE FOR THE QUICK TRANSFER OF PATTERNS ON SUBSTRATES, APPLIED TO THE REALIZATION OF COMPONENTS AND MICROSTRUCTURE CIRCUITS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0091106A1 (en) * 1982-04-02 1983-10-12 Karl SÀ¼ss KG Präzisionsgeräte für Wissenschaft und Industrie - GmbH & Co. Process for eliminating undesired appearances of diffraction and/or interference, as well as process and apparatus for aligning
DE4132068A1 (en) * 1991-09-26 1993-04-22 Raith Gmbh Optimised lithography for integrated optics - uses rotationally symmetrical write=beam with variable diameter and outwardly increasing intensity

Also Published As

Publication number Publication date
US4370026A (en) 1983-01-25
EP0025397B1 (en) 1983-06-22
FR2465241B1 (en) 1983-08-05
DE3063902D1 (en) 1983-07-28
FR2465241A1 (en) 1981-03-20
JPS5685724A (en) 1981-07-13

Similar Documents

Publication Publication Date Title
EP0025397B1 (en) Illuminating means for producing a light beam having adjustable light intensity distribution and image transfer system comprising such a means
US7969652B2 (en) Microscope device and image processing method
EP0485268B1 (en) Matrix screen image projector with two polarized beams
FR2538580A1 (en) OPTICAL READING DEVICE
EP0095960B1 (en) Device for storing a coherent image in a multimode optical cavity
EP0018249A1 (en) Illumination device for producing from a predetermined surface zone a divergent light bundle, and a motive transfer system comprising such a device
EP0995145B1 (en) Diffractive optics with synthetic aperture and variable focal length and laser cutting device incorporating such an optics
EP3924757A1 (en) Optical metasurfaces, and associated manufacturing methods and systems
EP3571544B1 (en) Device for changing the shape of a light beam
EP3921695B1 (en) Optical device combining a plurality of beams and system using same
EP3376613A1 (en) Lighting device having mobile scanning means and optical fibre
FR2831967A1 (en) APPARATUS AND METHOD FOR EXPOSING AN OBJECT TO LIGHT
EP0740169B1 (en) Illumination device
EP3938836B1 (en) Polarisation separation device, differential interferometer and differential optical contrast microscope comprising such a device
EP3657224B1 (en) Fixed or variable optical delay line device
EP3679424B1 (en) Improved frequency conversion system
Lin et al. Mirror-tunable laser interference lithography system for wafer-scale patterning with flexible periodicity
FR3140451A1 (en) Optical substrate with integrated antennas and spectrometer comprising it
FR2673009A1 (en) Holographic system for duplicating planar objects capable of a very high resolving power
FR2715480A1 (en) Spatial energy distribution of coherent beam
FR2585468A1 (en) Monochromators with aberration-free flat gratings
FR2784469A1 (en) Intensity increasing device for laser diode includes hologram to separate first and second maxima, and mirrors to re-combine two components
FR2491613A1 (en) Optical components surface checking interferometer - has beam splitter, reference surface and lens system forming interference pattern
FR2860606A1 (en) Multimode-monomode converter for laser power source, has beam splitter receiving multimode beam whose fraction is reflected towards filtering device having plate with hole of selective diameter to obtain monomode beam
FR2860304A1 (en) OPTICAL SYSTEM WITH HIGH DIGITAL OPENING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB NL SE

17P Request for examination filed

Effective date: 19810403

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB LI NL SE

REF Corresponds to:

Ref document number: 3063902

Country of ref document: DE

Date of ref document: 19830728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840723

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840813

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840816

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840930

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19850930

Ref country code: CH

Effective date: 19850930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80401270.6

Effective date: 19860729