Nothing Special   »   [go: up one dir, main page]

EP0088756B1 - Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station - Google Patents

Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station Download PDF

Info

Publication number
EP0088756B1
EP0088756B1 EP82900106A EP82900106A EP0088756B1 EP 0088756 B1 EP0088756 B1 EP 0088756B1 EP 82900106 A EP82900106 A EP 82900106A EP 82900106 A EP82900106 A EP 82900106A EP 0088756 B1 EP0088756 B1 EP 0088756B1
Authority
EP
European Patent Office
Prior art keywords
pressure
steam
power plant
pct
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82900106A
Other languages
German (de)
French (fr)
Other versions
EP0088756A1 (en
Inventor
Heinz Spliethoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saarbergwerke AG
Original Assignee
Saarbergwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6142158&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0088756(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saarbergwerke AG filed Critical Saarbergwerke AG
Priority to AT82900106T priority Critical patent/ATE18931T1/en
Publication of EP0088756A1 publication Critical patent/EP0088756A1/en
Application granted granted Critical
Publication of EP0088756B1 publication Critical patent/EP0088756B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/004Accumulation in the liquid branch of the circuit

Definitions

  • the invention relates to a system for reducing the start-up and shutdown losses, for increasing the usable power and for improving the controllability of a thermal power plant using one or more pressurized heat stores, the input side with steam lines for introducing start-up and shutdown steam or excess steam accumulating during operation are connected.
  • start-up and shutdown times are up to 1 hour or more depending on the state of the plant.
  • many conventional power plant units have to be switched off regularly at weekends and at night, so that the amount of heat emitted unused during these start-up and shutdown periods makes up a significant proportion of the total thermal energy converted.
  • the compensation of control deviations of the electrical power of a conventional power plant block from the power setpoint can only be done with the timing of the steam generation and the limited storage capacity of the steam generator, which decisively determines the control capacity of the power plant block.
  • GB-A No. 709888 describes a system in which, in addition to the feed water tank, a second, closed feed water tank is provided, the initially cold condensate filling of which is heated up to operating temperature exclusively during the start-up period by introducing start-up steam while continuously circulating the condensate. After the power plant has started up, the now hot condensate filling of the tank is discharged into the feed water tank and replaced again with cold condensate.
  • the discharge current is returned in the feed water tank, ie at a point with a significantly lower pressure level. This requires a very complex, three-stage relaxation in DE-B No. 1128437. This has poor thermodynamic efficiency.
  • the storage medium is first pressurized and stored, when it is unloaded it is first relaxed again and then has to be pressurized again. This results - in addition to the poor thermodynamic efficiency - for the high-pressure pump, a higher required output with a larger pressure flow quantity.
  • the excess heat extracted from the medium-pressure withdrawals is first transferred from the extraction steam to the condensate in the high-pressure preheaters, which then flows first into the feed water tank and from there through the high-pressure preheater, where it is heated up again against further extraction steam, into the storage tank. This means a further increase in the flow rate for the high-pressure pump and losses due to the double heat exchange.
  • the object of the present invention is to provide a system which avoids these disadvantages and which makes it possible in a simple manner to reduce the start-up and shutdown losses of a thermal power plant and, at the same time, to increase the usable power during operation and to improve the controllability of the thermal power plant.
  • pressure heat accumulators are connected on the water side behind a last medium-pressure low-pressure preheater via a charging line to a condensate line leading to the feed water tank and via a discharge line and a pump to the condensate line or the feed water tank.
  • the pressure level of the heat accumulator can be freely selected within wide limits and only needs to be insignificant Lich above the pressure level of the feed water tank.
  • the high-pressure pump and high-pressure preheater are not touched directly by the storage system. Extraction steam as well as start-up and shutdown steam are immediately, ie. H. Heat and heat transfer medium, introduced into the storage, without intermediate heat exchange.
  • the storage of hot condensate is discharged forward in the direction of flow of the steam cycle and in particular without substantial relaxation and the associated thermodynamic losses.
  • the pressure heat accumulators are charged with start-up steam or shutdown steam of the power plant during the start-up and shutdown processes. During periods of high load or periods of increased power demand, they return their charging energy to the steam cycle of the power plant.
  • control deviations in the electrical power can be compensated, at least in part.
  • the power reserve of a power plant block that is necessarily to be maintained can be reduced by the regulating capacity of the pressure heat accumulator and the nominal block power can be increased accordingly.
  • a pressure relief vessel is advantageously connected between the pressure heat accumulator and the feed water container, in which, if the heat accumulator is operated at a higher pressure than the feed water container, the storage medium is expanded to the pressure of the feed water container and the same thermodynamic states of discharge current and feed water container content are set.
  • the discharge current with the enthalpy of the storage content is introduced directly into the feed water tank or into the condensate line leading to it, then the discharge current and thus the improvement of the control capacity of the power plant are limited due to the different thermodynamic states of the discharge current and the feed water tank content.
  • the steam flows successively through a high-pressure turbine 31, an intermediate superheater 34, a medium-pressure turbine 32 and a double-flow low-pressure turbine 33 passed and from there via a feed water pump 7 back into the steam generator.
  • 3 designates a shunt-type condensate store.
  • a pressure heat accumulator 21 is connected to the condensate system on the water side via lines 23, 26 and a pump 22 in a shunt.
  • a pressure line after the discharge pump 22 opens into a condensate line 30 between the last medium-pressure low-pressure preheater 4n and upstream of the feed water tank 6.
  • the pressure line can, however, also lead directly into the feed water tank 6.
  • the pressure heat accumulator 21 is once via a line 27 with the medium pressure or reheater network of the power plant block and / or with other, economically suitable steam networks and steam systems with a higher steam pressure than that prevailing in the pressure heat accumulator 21, e.g. B. with a removal 28, which also supplies the feed water tank 6 with steam.
  • steam from the medium-pressure reheater network is introduced via line 27, possibly with the interposition of a reducing station, into the pressure heat accumulator 21, which is pre-filled with cold condensate, and the condensate filling is heated.
  • the pressure heat accumulator 21 In the power range, in low or partial load periods, the pressure heat accumulator 21 is charged with hot condensate via the low-pressure medium-pressure preheaters 4a to 4n, and the hot condensate stream from the same withdrawal 28, which also supplies the feed water tank 6 with steam, in a mixed preheating unit, not shown in the figure. and degassing stage immediately before the pressure heat accumulator 21 warmed up.
  • the hot accumulator discharge current in the expansion vessel 24 can be expanded to the pressure in the feed water container 6 and introduced into the condensate line 30.
  • the flash steam is led via a line 35 directly into the feed water tank 6 or into a steam line 25 leading to the feed water tank 6.
  • thermodynamic states of discharge current and feed water tank content are achieved.
  • the expansion vessel 24 and the line 35 can be omitted, and the discharge current can be conducted directly into the condensate line 30 with the enthalpy of the pressure heat storage content.
  • a control safety circuit is therefore necessary which prevents evaporation in the condensate line 30 and at the feed water tank inlet.
  • the lei control operation of the power plant occurring control deviations of the electrical power from the power setpoint in the power control range offered can be easily and quickly corrected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

PCT No. PCT/EP81/00204 Sec. 371 Date May 13, 1983 Sec. 102(e) Date May 13, 1983 PCT Filed Dec. 23, 1981 PCT Pub. No. WO83/01090 PCT Pub. Date Mar. 31, 1983.In a method for reducing the start-up and stabilization period losses, for increasing the usable power and to improve the controllability of a thermal power plant, there are integrated into the power plant's steam cycle pressurized heat storage reservoirs which are charged by feeding them with excess heat produced in the said power plant as, for example, during the start-up and load stabilizing periods or during periods of reduced electrical power production and, when there is an increased demand for heat, the said heat storage reservoirs are discharged by the release of stored heat into the water-steam cycle. Control deviations in the electrical power while the power plant is in full operation are counterbalanced by changes in the charging and discharging streams of the pressurized heat storage reservoirs. In the apparatus for carrying out this method, pressurized heat storage reservoirs are connected, on the water-side, to the condensate system and, on the steam side, to the medium pressure of intermediate superheater network of the steam cycle or also to the power plant's medium pressure or low pressure turbine extraction points.

Description

Die Erfindung betrifft eine Anlage zur Verringerung der An- und Abfahrverluste, zur Erhöhung der nutzbaren Leistung und zur Verbesserung der Regelfähigkeit eines Wärmekraftwerkes unter Verwendung eines oder mehrerer Druckwärmespeicher, die eingangsseitig mit Dampfleitungen zum Einleiten von An- und Abfahrdampf bzw. während des Betriebes anfallendem Überschussdampf verbunden sind.The invention relates to a system for reducing the start-up and shutdown losses, for increasing the usable power and for improving the controllability of a thermal power plant using one or more pressurized heat stores, the input side with steam lines for introducing start-up and shutdown steam or excess steam accumulating during operation are connected.

Bei konventionell betriebenen Wärmekraftwerken müssen während der An- und Abfahrperioden grosse Dampfmengen unter Umgehung der Turbinengruppe über den Kondensator gefahren werden. Über das Kondensatorkühlwasser und den Kühlturm werden dabei enorme Wärmemengen ungenutzt in die Atmosphäre abgegeben.In conventionally operated thermal power plants, large amounts of steam have to be passed over the condenser bypassing the turbine group during the start-up and shutdown periods. Enormous amounts of heat are released unused into the atmosphere via the condenser cooling water and the cooling tower.

Insbesondere bei grossen Kraftwerkseinheiten betragen die An- und Abfahrzeiten abhängig vom Anlagenzustand bis zu 1 h und mehr. Zudem müssen viele konventionelle Kraftwerkseinheiten regelmässig an den Wochenenden und nachts abgeschaltet werden, so dass die während dieser An-und Abfahrperioden ungenutzt abgegebene Wärmemenge einen bedeutenden Anteil der insgesamt umgesetzten Wärmeenergie ausmacht.In the case of large power plant units in particular, the start-up and shutdown times are up to 1 hour or more depending on the state of the plant. In addition, many conventional power plant units have to be switched off regularly at weekends and at night, so that the amount of heat emitted unused during these start-up and shutdown periods makes up a significant proportion of the total thermal energy converted.

Als unbefriedigend wird auch empfunden, dass ein Kraftwerksblock nicht an seiner Leistungsgrenze, insbesondere der zulässigen Feuerwärmeleistung, geregelt betrieben werden kann, da für einen Leistungsregelbetrieb eine gewisse Leistungsregelreserve zum Ausgleich von Leistungsschwankungen vorgehalten werden muss.It is also perceived as unsatisfactory that a power plant block cannot be operated in a controlled manner at its performance limit, in particular the permissible heat output, since a certain power control reserve has to be kept in order to compensate for power fluctuations.

Der Ausgleich von Regelabweichungen der elektrischen Leistung eines konventionellen Kraftwerksblockes vom Leistungssollwert kann nur mit dem Zeitverhalten der Dampferzeugung und der begrenzten Speicherfähigkeit des Dampferzeugers erfolgen, der die Regelfähigkeit des Kraftwerksblockes massgeblich bestimmt.The compensation of control deviations of the electrical power of a conventional power plant block from the power setpoint can only be done with the timing of the steam generation and the limited storage capacity of the steam generator, which decisively determines the control capacity of the power plant block.

Zum Ausgleichen von Lastschwankungen ist es bereits bekannt, zusätzlich zum Speisewasserbehälter einen weiteren Kondensatspeicher vor der Kesselspeisepumpe vorzusehen, wobei der Druck dieser Speicher unter dem Druck des Speisewasserbehälters liegt. Die Kapazität dieser Speicher ist jedoch gering. Die Einleitung von Dampf ist nicht möglich.In order to compensate for load fluctuations, it is already known to provide a further condensate store in front of the boiler feed pump in addition to the feed water tank, the pressure of these stores being below the pressure of the feed water tank. However, the capacity of these memories is low. The introduction of steam is not possible.

In der GB-A Nr. 709888 ist eine Anlage beschrieben, bei der zusätzlich zum Speisewasserbehälter ein zweiter, geschlossener Speisewasserbehälter vorgesehen ist, dessen zunächst kalte Kondensatfüllung ausschliesslich während der Anfahrperiode durch Einleiten von Anfahrdampf unter ständigem Umwälzen des Kondensats auf Betriebstemperatur aufgeheizt wird. Nach dem Anfahren des Kraftwerkes wird die nunmehr heisse Kondensatfüllung des Behälters in den Speisewasserbehälter entladen und wieder durch kaltes Kondensat ersetzt.GB-A No. 709888 describes a system in which, in addition to the feed water tank, a second, closed feed water tank is provided, the initially cold condensate filling of which is heated up to operating temperature exclusively during the start-up period by introducing start-up steam while continuously circulating the condensate. After the power plant has started up, the now hot condensate filling of the tank is discharged into the feed water tank and replaced again with cold condensate.

Bei dieser Anlage kann zwar ein geringer Teil des Anfahrdampfes zur Aufheizung von zusätzlichem Kondensat genutzt werden. Ein Laden und Entladen während des Lastbetriebes und somit eine Verbesserung der Regelfähigkeit ist jedoch nicht möglich.In this system, a small part of the start-up steam can be used to heat additional condensate. However, loading and unloading during load operation and thus an improvement in the control capability is not possible.

Aus der DE-B Nr. 1128437 ist eine Anlage mit einem Druckwärmespeicher zur Speicherung von im Kraftwerk kurzfristig anfallender Überschusswärme bekannt. Der Ladestrom zum Speicher wird entweder hinter den Hochdruckvorwärmern des Wasserdampfkreislaufes des Kraftwerkes, d. h. hinter der Druckstufung durch die Kesselspeisepumpe abgezweigt oder aber gemäss einer weiteren Schaltungsmöglichkeit über getrennte Hochdruckvorwärmer geführt, wobei eine zusätzliche Hochdruckpumpe erforderlich ist. In jedem Falle erfolgt die Speicherung auf höchstem Druck- und Temperaturniveau.From DE-B No. 1128437 a system with a pressure heat accumulator for storing excess heat accumulating in the power plant for a short time is known. The charging current to the storage is either behind the high-pressure preheaters of the steam cycle of the power plant, i.e. H. branched off after the pressure step by the boiler feed pump or, according to a further circuit option, via separate high-pressure preheaters, an additional high-pressure pump being required. In any case, the storage takes place at the highest pressure and temperature level.

Die Rückführung des Entladestromes erfolgt in dem Speisewasserbehälter, an eine Stelle also mit wesentlich niedrigerem Druckniveau. Das erfordert eine sehr aufwendige, in der DE-B Nr. 1128437 dreistufige Entspannung. Diese weist einen schlechten thermodynamischen Wirkungsgrad auf.The discharge current is returned in the feed water tank, ie at a point with a significantly lower pressure level. This requires a very complex, three-stage relaxation in DE-B No. 1128437. This has poor thermodynamic efficiency.

Das Speichermedium wird zunächst auf Druck gebracht und gespeichert, beim Entladen zunächst wieder entspannt und muss dann erneut auf Druck gebracht werden. Daraus ergibt sich - neben dem schlechten thermodynamischen Wirkungsgrad - für die Hochdruckpumpe eine höhere erforderliche Leistung bei grösserer Druckflussmenge. Die aus den Mitteldruckentnahmen entnommene Überschusswärme wird zunächst in den Hochdruckvorwärmern vom Entnahmedampf auf das Kondensat übertragen, dieses fliesst zuerst in den Speisewasserbehälter und von dort erst wieder durch die Hochdruckvorwärmer, wo es gegen weiteren Entnahmedampf wieder aufgeheizt wird, in den Speicher. Dies bedeutet eine weitere Erhöhung des Förderstromes für die Hochdruckpumpe sowie Verluste durch den zweifachen Wärmetausch.The storage medium is first pressurized and stored, when it is unloaded it is first relaxed again and then has to be pressurized again. This results - in addition to the poor thermodynamic efficiency - for the high-pressure pump, a higher required output with a larger pressure flow quantity. The excess heat extracted from the medium-pressure withdrawals is first transferred from the extraction steam to the condensate in the high-pressure preheaters, which then flows first into the feed water tank and from there through the high-pressure preheater, where it is heated up again against further extraction steam, into the storage tank. This means a further increase in the flow rate for the high-pressure pump and losses due to the double heat exchange.

Die Einleitung unmittelbar von Dampf zum Laden des Speichers ist bei der Anlage der DE-B Nr. 1128437 nicht vorgesehen.The introduction of steam directly to load the store is not provided for in the installation of DE-B No. 1128437.

Aufgabe der vorliegenden Erfindung ist es, eine Anlage bereitzustellen, die diese Nachteilevermeidet und die es in einfacher Weise ermöglicht, die An- und Abfahrverluste eines Wärmekraftwerkes zu verringern und gleichzeitig während des Betriebes die nutzbare Leistung zu erhöhen sowie die Regelfähigkeit des Wärmekraftwerkes zu verbessern.The object of the present invention is to provide a system which avoids these disadvantages and which makes it possible in a simple manner to reduce the start-up and shutdown losses of a thermal power plant and, at the same time, to increase the usable power during operation and to improve the controllability of the thermal power plant.

Diese Aufgabe wird bei einer Anlage der eingangs genannten Art erfindungsgemäss dadurch gelöst, dass die Druckwärmespeicher wasserseitig hinter einem letzten Mitteldruck-Niederdruckvorwärmer über eine Ladeleitung mit einer zum Speisewasserbehälter führenden Kondensatleitung und über eine Entladeleitung und eine Pumpe mit der Kondensatleitung bzw. dem Speisewasserbehälter verbunden sind.This object is achieved according to the invention in a system of the type mentioned at the outset in that the pressure heat accumulators are connected on the water side behind a last medium-pressure low-pressure preheater via a charging line to a condensate line leading to the feed water tank and via a discharge line and a pump to the condensate line or the feed water tank.

Durch den Anschluss der wasserseitigen Ladeleitung hinter dem letzten Mitteldruck-Niederdruckvorwärmer, also vor der Druckstufung, ist das Druckniveau des Wärmespeichers in weiten Grenzen frei wählbar und braucht nur unwesentlich über dem Druckniveau des Speisewasserbehälters zu liegen.By connecting the water-side charging line behind the last medium-pressure low-pressure preheater, i.e. before the pressure step, the pressure level of the heat accumulator can be freely selected within wide limits and only needs to be insignificant Lich above the pressure level of the feed water tank.

Hochdruckpumpe und Hochdruckvorwärmer werden durch den Speicherbetrieb nicht unmittelbar berührt. Entnahmedampf sowie An- und Abfahrdampf werden unmittelbar, d. h. Wärme und Wärmeträger, in den Speicher eingeleitet, ohne zwischengeschalteten Wärmetausch.The high-pressure pump and high-pressure preheater are not touched directly by the storage system. Extraction steam as well as start-up and shutdown steam are immediately, ie. H. Heat and heat transfer medium, introduced into the storage, without intermediate heat exchange.

Das Entladen des Speichers mit heissem Kondensat erfolgt in Fliessrichtung des Wasserdampfkreislaufes gesehen nach vorne und insbesondere ohne wesentliche Entspannung und die damit verbundenen thermodynamischen Verluste.The storage of hot condensate is discharged forward in the direction of flow of the steam cycle and in particular without substantial relaxation and the associated thermodynamic losses.

Die Druckwärmespeicher werden während der An- und Abfahrvorgänge mit Anfahrdampf bzw. Abfahrdampf des Kraftwerkes aufgeladen. Während Hochlastperioden oder Perioden erhöhter Leistungsanforderung geben sie ihre Ladeenergie in den Wasserdampfkreislauf des Kraftwerkes zurück.The pressure heat accumulators are charged with start-up steam or shutdown steam of the power plant during the start-up and shutdown processes. During periods of high load or periods of increased power demand, they return their charging energy to the steam cycle of the power plant.

Durch Änderung des Be- und Entladestromes der Druckwärmespeicher können Regelabweichungen der elektrischen Leistung, zumindestteilweise, ausgeglichen werden. Dadurch kann auch die notwendigerweise vorzuhaltende Leistungsreserve eines Kraftwerksblockes um das Regelvermögen der Druckwärmespeicher verringert und die Blocknennleistung entsprechend erhöht werden.By changing the charging and discharging current of the pressure heat accumulator, control deviations in the electrical power can be compensated, at least in part. As a result, the power reserve of a power plant block that is necessarily to be maintained can be reduced by the regulating capacity of the pressure heat accumulator and the nominal block power can be increased accordingly.

Vorteilhafterweise ist zwischen Druckwärmespeicher und Speisewasserbehälter ein Entspannungsgefäss geschaltet, in dem, sofern der Wärmespeicher mit gegenüber dem Speisewasserbehälter erhöhtem Druck betrieben wird, das Speichermedium auf den Druck des Speisewasserbehälters entspannt und gleiche thermodynämische Zustände von Entladestrom und Speisewasserbehälterinhalt eingestellt werden.A pressure relief vessel is advantageously connected between the pressure heat accumulator and the feed water container, in which, if the heat accumulator is operated at a higher pressure than the feed water container, the storage medium is expanded to the pressure of the feed water container and the same thermodynamic states of discharge current and feed water container content are set.

Wird der Entladestrom mit der Enthalpie des Speicherinhaltes unmittelbar in den Speisewasserbehälter bzw. in die zu diesem führende Kondensatleitung eingeleitet, dann sind wegen der unterschiedlichen thermodynamischen Zustände von Entladestrom und Speisewasserbehälterinhalt der Entladestrom und somit die Verbesserung der Regelfähigkeit des Kraftwerkes begrenzt.If the discharge current with the enthalpy of the storage content is introduced directly into the feed water tank or into the condensate line leading to it, then the discharge current and thus the improvement of the control capacity of the power plant are limited due to the different thermodynamic states of the discharge current and the feed water tank content.

Weitere Erläuterungen zu der Erfindung sind dem in der Figur schematisch dargestellten Ausführungsbeispiel zu entnehmen. Im in der Figur beispielhaft dargestellten Kraftwerksblock durchströmt der Dampf nacheinander eine Hochdruckturbine 31, einen Zwischenüberhitzer 34, eine Mitteldruckturbine 32 sowie eine doppelflutige Niederdruckturbine 33. Das in einem Kondensator 1 anfallende Kondensat wird über Kondensatpumpen 2 und Niederdruck-Mitteldruckvorwärmer 4a bis 4n in einen Speisewasserbehälter 6 geleitet und gelangt von dort über eine Speisewasserpumpe 7 wieder in den Dampferzeuger. Mit 3 ist ein Nebenschluss-Kondensatspeicher bezeichnet. Ein Druckwärmespeicher 21 ist wasserseitig über Leitungen 23, 26 und eine Pumpe 22 im Nebenschluss mit dem Kondensatsystem verbunden. Im gezeichneten Beispiel mündet eine Druckleitung nach der Entladepumpe 22 zwischen dem letzten Mitteldruck-Niederdruckvorwärmer 4n und vor dem Speisewasserbehälter 6 in eine Kondensatleitung 30. Die Druckleitung kann jedoch auch unmittelbar in den Speisewasserbehälter 6 führen.Further explanations of the invention can be found in the exemplary embodiment shown schematically in the figure. In the power plant block shown by way of example in the figure, the steam flows successively through a high-pressure turbine 31, an intermediate superheater 34, a medium-pressure turbine 32 and a double-flow low-pressure turbine 33 passed and from there via a feed water pump 7 back into the steam generator. 3 designates a shunt-type condensate store. A pressure heat accumulator 21 is connected to the condensate system on the water side via lines 23, 26 and a pump 22 in a shunt. In the example shown, a pressure line after the discharge pump 22 opens into a condensate line 30 between the last medium-pressure low-pressure preheater 4n and upstream of the feed water tank 6. The pressure line can, however, also lead directly into the feed water tank 6.

Dampfseitig ist der Druckwärmespeicher 21 einmal über eine Leitung 27 mit dem Mitteldruck- bzw. Zwischenüberhitzernetz des Kraftwerksblokkes und/oder mit anderen, wirtschaftlich geeigneten Dampfnetzen und Dampfsystemen mit höherem Dampfdruck, als er im Druckwärmespeicher 21 herrscht, z. B. mit einer Entnahme 28, die auch den Speisewasserbehälter 6 mit Dampf versorgt, verbunden. Zum Aufladen des Druckwärmespeichers 21 während einer An- oder Abfahrt wird Dampf aus dem Mitteldruck-Zwischenüberhitzernetz über die Leitung 27, ggf. unter Zwischenschaltung einer Reduzierstation, in den mit kaltem Kondensat vorgefüllten Druckwärmespeicher 21 eingeleitet und die Kondensatfüllung erhitzt.On the steam side, the pressure heat accumulator 21 is once via a line 27 with the medium pressure or reheater network of the power plant block and / or with other, economically suitable steam networks and steam systems with a higher steam pressure than that prevailing in the pressure heat accumulator 21, e.g. B. with a removal 28, which also supplies the feed water tank 6 with steam. To charge the pressure heat accumulator 21 during arrival or departure, steam from the medium-pressure reheater network is introduced via line 27, possibly with the interposition of a reducing station, into the pressure heat accumulator 21, which is pre-filled with cold condensate, and the condensate filling is heated.

Im Leistungsbereich wird in Schwach- oder Teillastperioden der Druckwärmespeicher 21 über die Niederdruck-Mitteldruckvorwärmer 4a bis 4n mit heissem Kondensat geladen und der Heisskondensatstrom aus der gleichen Entnahme 28, die auch den Speisewasserbehälter 6 mit Dampf versorgt, in einer in der Figur nicht gezeichneten Mischvorwärm- und Entgasungsstufe unmittelbar vor dem Druckwärmespeicher 21 weiter aufgewärmt.In the power range, in low or partial load periods, the pressure heat accumulator 21 is charged with hot condensate via the low-pressure medium-pressure preheaters 4a to 4n, and the hot condensate stream from the same withdrawal 28, which also supplies the feed water tank 6 with steam, in a mixed preheating unit, not shown in the figure. and degassing stage immediately before the pressure heat accumulator 21 warmed up.

Zur Entladung wird heisses Kondensat aus dem Druckwärmespeicher 21 über die Leitung 26, das Entspannungsgefäss 24 und die Entladepumpe 22 dem in der Leitung 30 zum Speisewasserbehälter 6 fliessenden Kondensat zugemischt.To discharge, hot condensate from the pressure heat accumulator 21 is mixed via the line 26, the expansion vessel 24 and the discharge pump 22 with the condensate flowing in the line 30 to the feed water tank 6.

Wird der Druckwärmespeicher 21 zeitweise mit erhöhtem Druck gegenüber dem Speisewasserbehälter 6 betrieben, so kann der heisse Speicherentladestrom in dem Entspannungsgefäss 24 auf den Druck im Speisewasserbehälter 6 entspannt und in die Kondensatleitung 30 eingeleitet werden.If the pressure heat accumulator 21 is operated at times with increased pressure relative to the feed water container 6, the hot accumulator discharge current in the expansion vessel 24 can be expanded to the pressure in the feed water container 6 and introduced into the condensate line 30.

Der Entspannungsdampfstrom wird über eine Leitung 35 unmittelbar in den Speisewasserbehälter 6 bzw. in eine zum Speisewasserbehälter 6 führende Dampfleitung 25 geführt.The flash steam is led via a line 35 directly into the feed water tank 6 or into a steam line 25 leading to the feed water tank 6.

Damit werden gleiche thermodynamische Zustände von Entladestrom und Speisewasserbehälterinhalt erreicht.In this way, the same thermodynamic states of discharge current and feed water tank content are achieved.

In einer vereinfachten Schaltung können das Entspannungsgefäss 24 und die Leitung 35 entfallen, und der Entladestrom kann mit der Enthalpie des Druckwärmespeicherinhaltes direkt in die Kondensatleitung 30 geführt werden. Damit ist allerdings eine Begrenzung des Entladestromes im unteren Lastbereich verbunden, da der Druck im Druckwärmespeicher 21 grösser ist als im Speisewasserbehälter 6. In dieser vereinfachten wärmetechnischen Schaltung wird daher eine Regelsicherheitsschaltung notwendig, die eine Ausdampfung in der Kondensatleitung 30 und am Speisewasserbehältereintritt verhindert.In a simplified circuit, the expansion vessel 24 and the line 35 can be omitted, and the discharge current can be conducted directly into the condensate line 30 with the enthalpy of the pressure heat storage content. However, this limits the discharge current in the lower load range, since the pressure in the pressure heat accumulator 21 is greater than in the feed water tank 6. In this simplified thermal circuit, a control safety circuit is therefore necessary which prevents evaporation in the condensate line 30 and at the feed water tank inlet.

Durch den Einsatz der Be- und Entladeströme des Druckwärmespeichers 21 als Stellströme in einer Leistungsregelung können während des Leistungsbetriebes des Kraftwerkes auftretende Regelabweichungen der elektrischen Leistung vom Leistungssollwert im gebotenen Leistungsregelbereich einfach und schnell ausgeregelt werden.Through the use of the loading and unloading currents of the pressure heat accumulator 21 as control currents in a power control, the lei control operation of the power plant occurring control deviations of the electrical power from the power setpoint in the power control range offered can be easily and quickly corrected.

Claims (2)

1. An installation for decreasing the losses when starting and shutting down a thermal power station and for increasing the power available and improving the control capacity of a thermal power station, using one or more pressure heat regenerators, which at the input end are connected to steam pipes for the introduction of starting and shutting- down steam or surplus steam occurring during operation, characterised in that at the water side, following a final intermediate pressure/low-pressure preheater (4n), the pressure heat regenerators (21) are connected to a condensate pipe (30) leading to the feedwater tank (6) through a charging pipe (23) and are connected to the condensate pipe (30), or the feedwater tank (6), through a discharge pipe (26) and a pump (22).
2. An installation as claimed in Claim 1, characterised in that an expansion tank (24) is inserted into the discharge pipe (26) and in that, at the steam side, the expansion tank is connected to the vapour space of the feedwater tank (6), or to a vapour connection pipe (25) which leads to the feedwater tank (6).
EP82900106A 1981-09-19 1981-12-23 Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station Expired EP0088756B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82900106T ATE18931T1 (en) 1981-09-19 1981-12-23 PROCESS AND PLANT FOR REDUCING START-UP AND SHUT-DOWN LOSSES, INCREASING THE USABLE PERFORMANCE AND IMPROVING THE CONTROL ABILITY OF A THERMAL POWER PLANT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3137371A DE3137371C2 (en) 1981-09-19 1981-09-19 System to reduce start-up and shutdown losses, to increase the usable power and to improve the controllability of a thermal power plant
DE3137371 1981-09-19

Publications (2)

Publication Number Publication Date
EP0088756A1 EP0088756A1 (en) 1983-09-21
EP0088756B1 true EP0088756B1 (en) 1986-04-02

Family

ID=6142158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82900106A Expired EP0088756B1 (en) 1981-09-19 1981-12-23 Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station

Country Status (6)

Country Link
US (1) US4549401A (en)
EP (1) EP0088756B1 (en)
JP (1) JPS58501473A (en)
AT (1) ATE18931T1 (en)
DE (1) DE3137371C2 (en)
WO (1) WO1983001090A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159553B2 (en) 2008-01-29 2018-12-25 Insightra Medical, Inc. Fortified mesh for tissue repair

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124678A1 (en) * 1990-08-21 1992-02-27 Abb Patent Gmbh METHOD AND DEVICE FOR RESTORING THE TURBINE CONTROL RESERVE AFTER REGULATING A PERFORMANCE SETPOINT CHANGE IN A STEAM POWER PLANT
JP2006233931A (en) * 2005-02-28 2006-09-07 Miura Co Ltd Boiler drive electric power supply system
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
US9014791B2 (en) 2009-04-17 2015-04-21 Echogen Power Systems, Llc System and method for managing thermal issues in gas turbine engines
BRPI1011938B1 (en) 2009-06-22 2020-12-01 Echogen Power Systems, Inc system and method for managing thermal problems in one or more industrial processes.
WO2011017476A1 (en) 2009-08-04 2011-02-10 Echogen Power Systems Inc. Heat pump with integral solar collector
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
EP2589761B1 (en) * 2011-11-03 2017-05-10 General Electric Technology GmbH Steam power plant with heat reservoir and method for operating a steam power plant
JP6069359B2 (en) 2012-01-19 2017-02-01 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Auxiliary steam generator system for power plant
CA2882290A1 (en) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Supercritical working fluid circuit with a turbo pump and a start pump in series configuration
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9322295B2 (en) 2012-10-17 2016-04-26 General Electric Company Thermal energy storage unit with steam and gas turbine system
US9376962B2 (en) 2012-12-14 2016-06-28 General Electric Company Fuel gas heating with thermal energy storage
CA2899163C (en) 2013-01-28 2021-08-10 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
WO2014117068A1 (en) 2013-01-28 2014-07-31 Echogen Power Systems, L.L.C. Methods for reducing wear on components of a heat engine system at startup
BR112015021396A2 (en) 2013-03-04 2017-08-22 Echogen Power Systems Llc HEAT ENGINE SYSTEMS WITH HIGH USEFUL POWER SUPERCRITICAL CARBON DIOXIDE CIRCUITS
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
AU2021397292A1 (en) 2020-12-09 2023-07-06 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1770256A (en) * 1924-12-31 1930-07-08 Smekal Josef Steam-accumulator plant
DE628717C (en) * 1926-10-13 1936-04-15 Christian Christians Steam system to compensate for fluctuations
GB446061A (en) * 1935-08-22 1936-04-23 Ruths Arca Accumulators Ltd Improvements in or relating to steam plants including hot-water accumulators
CH204975A (en) * 1938-01-21 1939-05-31 Sulzer Ag Method and device for operating a high-pressure steam power plant.
NL78792C (en) * 1952-01-05
GB887274A (en) * 1957-03-02 1962-01-17 Siemens Schuckertwerkd Ag A steam boiler and turbine installation
DE1128437B (en) * 1960-05-13 1962-04-26 Siemens Ag Steam power plant, in particular block plant with once-through boiler
US3564677A (en) * 1967-11-06 1971-02-23 Johnson & Johnson Method and apparatus of treating material to change its configuration
JPS4711600U (en) * 1971-03-01 1972-10-11
DE2609622A1 (en) * 1976-03-09 1977-09-15 Babcock Ag METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS
DE2620023A1 (en) * 1976-05-06 1977-11-17 Babcock Ag METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS
DE2907068C2 (en) * 1978-05-09 1983-09-15 BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau Steam power plant for base load operation with equipment to cover load peaks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159553B2 (en) 2008-01-29 2018-12-25 Insightra Medical, Inc. Fortified mesh for tissue repair

Also Published As

Publication number Publication date
EP0088756A1 (en) 1983-09-21
DE3137371C2 (en) 1984-06-20
ATE18931T1 (en) 1986-04-15
DE3137371A1 (en) 1983-04-14
JPS58501473A (en) 1983-09-01
US4549401A (en) 1985-10-29
WO1983001090A1 (en) 1983-03-31

Similar Documents

Publication Publication Date Title
EP0088756B1 (en) Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station
EP2812542B1 (en) Energy storage power plant and method for operating such a power plant
US4164848A (en) Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants
EP0819209B1 (en) Method of operating a waste-heat steam generator, and a waste-heat steam generator operated by this method
DE2632777C2 (en) Steam power plant with equipment to cover peak loads
EP3025031B1 (en) Method of operating a steam turbine plant
EP0778397A2 (en) Method of operating a combined power plant with a waste heat boiler and a steam user
DE2824321A1 (en) COMBINED GAS / STEAM TURBINE POWER PLANT WITH COUNTERPRESSURE TURBINE, ESPECIALLY FOR INDUSTRIAL PURPOSES
DE2907068C2 (en) Steam power plant for base load operation with equipment to cover load peaks
EP3269948B1 (en) Method for the adaptation of the performance of a steam turbine power plant installation and steam turbine power plant installation
DE2620023A1 (en) METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS
DE4447044C1 (en) Method reducing start=up losses in a power plant
DE10155508C2 (en) Method and device for generating electrical energy
EP3080407B1 (en) Steam accumulator comprising a latent heat accumulator and a steam thermocompressor
EP0067841B1 (en) Method for supplying a heat distribution network at a long distance with the heat from a thermal power station
EP1584798B1 (en) Method and apparatus for generating power and heat
EP3511534A1 (en) Steam power-plant and method for operating same
DE1214701B (en) Arrangement of a steam power plant
EP1801363A1 (en) Power plant
DE1288614B (en) Method and device for breaking down steam peaks from process waste heat recyclers with variable steam generation
DE488158C (en) Steam power plant with heating steam utilization and equipment for balancing the fluctuations in power output and heating steam consumption
EP3467378B1 (en) Waste heat installation for hot water generation and method for operating same
AT377577B (en) DEVICE FOR GENERATING TOP LOAD OR OVERLOAD FROM A STEAM POWER PLANT
AT234730B (en) Method and device for breaking down steam peaks from process waste heat utilizers with variable steam generation
DE1196668B (en) Steam power plant with forced flow boiler and reheater for operation with steep load cycles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830510

AK Designated contracting states

Designated state(s): AT BE CH FR GB LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 18931

Country of ref document: AT

Date of ref document: 19860415

Kind code of ref document: T

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861231

Year of fee payment: 6

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE.

Effective date: 19861227

NLR1 Nl: opposition has been filed with the epo

Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE

BERE Be: lapsed

Owner name: SAARBERGWERKE A.G.

Effective date: 19861231

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19871004

NLR2 Nl: decision of opposition
GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: GB

Ref legal event code: 7102

EUG Se: european patent has lapsed

Ref document number: 82900106.4

Effective date: 19880913