EP0088756B1 - Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station - Google Patents
Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station Download PDFInfo
- Publication number
- EP0088756B1 EP0088756B1 EP82900106A EP82900106A EP0088756B1 EP 0088756 B1 EP0088756 B1 EP 0088756B1 EP 82900106 A EP82900106 A EP 82900106A EP 82900106 A EP82900106 A EP 82900106A EP 0088756 B1 EP0088756 B1 EP 0088756B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- steam
- power plant
- pct
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/004—Accumulation in the liquid branch of the circuit
Definitions
- the invention relates to a system for reducing the start-up and shutdown losses, for increasing the usable power and for improving the controllability of a thermal power plant using one or more pressurized heat stores, the input side with steam lines for introducing start-up and shutdown steam or excess steam accumulating during operation are connected.
- start-up and shutdown times are up to 1 hour or more depending on the state of the plant.
- many conventional power plant units have to be switched off regularly at weekends and at night, so that the amount of heat emitted unused during these start-up and shutdown periods makes up a significant proportion of the total thermal energy converted.
- the compensation of control deviations of the electrical power of a conventional power plant block from the power setpoint can only be done with the timing of the steam generation and the limited storage capacity of the steam generator, which decisively determines the control capacity of the power plant block.
- GB-A No. 709888 describes a system in which, in addition to the feed water tank, a second, closed feed water tank is provided, the initially cold condensate filling of which is heated up to operating temperature exclusively during the start-up period by introducing start-up steam while continuously circulating the condensate. After the power plant has started up, the now hot condensate filling of the tank is discharged into the feed water tank and replaced again with cold condensate.
- the discharge current is returned in the feed water tank, ie at a point with a significantly lower pressure level. This requires a very complex, three-stage relaxation in DE-B No. 1128437. This has poor thermodynamic efficiency.
- the storage medium is first pressurized and stored, when it is unloaded it is first relaxed again and then has to be pressurized again. This results - in addition to the poor thermodynamic efficiency - for the high-pressure pump, a higher required output with a larger pressure flow quantity.
- the excess heat extracted from the medium-pressure withdrawals is first transferred from the extraction steam to the condensate in the high-pressure preheaters, which then flows first into the feed water tank and from there through the high-pressure preheater, where it is heated up again against further extraction steam, into the storage tank. This means a further increase in the flow rate for the high-pressure pump and losses due to the double heat exchange.
- the object of the present invention is to provide a system which avoids these disadvantages and which makes it possible in a simple manner to reduce the start-up and shutdown losses of a thermal power plant and, at the same time, to increase the usable power during operation and to improve the controllability of the thermal power plant.
- pressure heat accumulators are connected on the water side behind a last medium-pressure low-pressure preheater via a charging line to a condensate line leading to the feed water tank and via a discharge line and a pump to the condensate line or the feed water tank.
- the pressure level of the heat accumulator can be freely selected within wide limits and only needs to be insignificant Lich above the pressure level of the feed water tank.
- the high-pressure pump and high-pressure preheater are not touched directly by the storage system. Extraction steam as well as start-up and shutdown steam are immediately, ie. H. Heat and heat transfer medium, introduced into the storage, without intermediate heat exchange.
- the storage of hot condensate is discharged forward in the direction of flow of the steam cycle and in particular without substantial relaxation and the associated thermodynamic losses.
- the pressure heat accumulators are charged with start-up steam or shutdown steam of the power plant during the start-up and shutdown processes. During periods of high load or periods of increased power demand, they return their charging energy to the steam cycle of the power plant.
- control deviations in the electrical power can be compensated, at least in part.
- the power reserve of a power plant block that is necessarily to be maintained can be reduced by the regulating capacity of the pressure heat accumulator and the nominal block power can be increased accordingly.
- a pressure relief vessel is advantageously connected between the pressure heat accumulator and the feed water container, in which, if the heat accumulator is operated at a higher pressure than the feed water container, the storage medium is expanded to the pressure of the feed water container and the same thermodynamic states of discharge current and feed water container content are set.
- the discharge current with the enthalpy of the storage content is introduced directly into the feed water tank or into the condensate line leading to it, then the discharge current and thus the improvement of the control capacity of the power plant are limited due to the different thermodynamic states of the discharge current and the feed water tank content.
- the steam flows successively through a high-pressure turbine 31, an intermediate superheater 34, a medium-pressure turbine 32 and a double-flow low-pressure turbine 33 passed and from there via a feed water pump 7 back into the steam generator.
- 3 designates a shunt-type condensate store.
- a pressure heat accumulator 21 is connected to the condensate system on the water side via lines 23, 26 and a pump 22 in a shunt.
- a pressure line after the discharge pump 22 opens into a condensate line 30 between the last medium-pressure low-pressure preheater 4n and upstream of the feed water tank 6.
- the pressure line can, however, also lead directly into the feed water tank 6.
- the pressure heat accumulator 21 is once via a line 27 with the medium pressure or reheater network of the power plant block and / or with other, economically suitable steam networks and steam systems with a higher steam pressure than that prevailing in the pressure heat accumulator 21, e.g. B. with a removal 28, which also supplies the feed water tank 6 with steam.
- steam from the medium-pressure reheater network is introduced via line 27, possibly with the interposition of a reducing station, into the pressure heat accumulator 21, which is pre-filled with cold condensate, and the condensate filling is heated.
- the pressure heat accumulator 21 In the power range, in low or partial load periods, the pressure heat accumulator 21 is charged with hot condensate via the low-pressure medium-pressure preheaters 4a to 4n, and the hot condensate stream from the same withdrawal 28, which also supplies the feed water tank 6 with steam, in a mixed preheating unit, not shown in the figure. and degassing stage immediately before the pressure heat accumulator 21 warmed up.
- the hot accumulator discharge current in the expansion vessel 24 can be expanded to the pressure in the feed water container 6 and introduced into the condensate line 30.
- the flash steam is led via a line 35 directly into the feed water tank 6 or into a steam line 25 leading to the feed water tank 6.
- thermodynamic states of discharge current and feed water tank content are achieved.
- the expansion vessel 24 and the line 35 can be omitted, and the discharge current can be conducted directly into the condensate line 30 with the enthalpy of the pressure heat storage content.
- a control safety circuit is therefore necessary which prevents evaporation in the condensate line 30 and at the feed water tank inlet.
- the lei control operation of the power plant occurring control deviations of the electrical power from the power setpoint in the power control range offered can be easily and quickly corrected.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Die Erfindung betrifft eine Anlage zur Verringerung der An- und Abfahrverluste, zur Erhöhung der nutzbaren Leistung und zur Verbesserung der Regelfähigkeit eines Wärmekraftwerkes unter Verwendung eines oder mehrerer Druckwärmespeicher, die eingangsseitig mit Dampfleitungen zum Einleiten von An- und Abfahrdampf bzw. während des Betriebes anfallendem Überschussdampf verbunden sind.The invention relates to a system for reducing the start-up and shutdown losses, for increasing the usable power and for improving the controllability of a thermal power plant using one or more pressurized heat stores, the input side with steam lines for introducing start-up and shutdown steam or excess steam accumulating during operation are connected.
Bei konventionell betriebenen Wärmekraftwerken müssen während der An- und Abfahrperioden grosse Dampfmengen unter Umgehung der Turbinengruppe über den Kondensator gefahren werden. Über das Kondensatorkühlwasser und den Kühlturm werden dabei enorme Wärmemengen ungenutzt in die Atmosphäre abgegeben.In conventionally operated thermal power plants, large amounts of steam have to be passed over the condenser bypassing the turbine group during the start-up and shutdown periods. Enormous amounts of heat are released unused into the atmosphere via the condenser cooling water and the cooling tower.
Insbesondere bei grossen Kraftwerkseinheiten betragen die An- und Abfahrzeiten abhängig vom Anlagenzustand bis zu 1 h und mehr. Zudem müssen viele konventionelle Kraftwerkseinheiten regelmässig an den Wochenenden und nachts abgeschaltet werden, so dass die während dieser An-und Abfahrperioden ungenutzt abgegebene Wärmemenge einen bedeutenden Anteil der insgesamt umgesetzten Wärmeenergie ausmacht.In the case of large power plant units in particular, the start-up and shutdown times are up to 1 hour or more depending on the state of the plant. In addition, many conventional power plant units have to be switched off regularly at weekends and at night, so that the amount of heat emitted unused during these start-up and shutdown periods makes up a significant proportion of the total thermal energy converted.
Als unbefriedigend wird auch empfunden, dass ein Kraftwerksblock nicht an seiner Leistungsgrenze, insbesondere der zulässigen Feuerwärmeleistung, geregelt betrieben werden kann, da für einen Leistungsregelbetrieb eine gewisse Leistungsregelreserve zum Ausgleich von Leistungsschwankungen vorgehalten werden muss.It is also perceived as unsatisfactory that a power plant block cannot be operated in a controlled manner at its performance limit, in particular the permissible heat output, since a certain power control reserve has to be kept in order to compensate for power fluctuations.
Der Ausgleich von Regelabweichungen der elektrischen Leistung eines konventionellen Kraftwerksblockes vom Leistungssollwert kann nur mit dem Zeitverhalten der Dampferzeugung und der begrenzten Speicherfähigkeit des Dampferzeugers erfolgen, der die Regelfähigkeit des Kraftwerksblockes massgeblich bestimmt.The compensation of control deviations of the electrical power of a conventional power plant block from the power setpoint can only be done with the timing of the steam generation and the limited storage capacity of the steam generator, which decisively determines the control capacity of the power plant block.
Zum Ausgleichen von Lastschwankungen ist es bereits bekannt, zusätzlich zum Speisewasserbehälter einen weiteren Kondensatspeicher vor der Kesselspeisepumpe vorzusehen, wobei der Druck dieser Speicher unter dem Druck des Speisewasserbehälters liegt. Die Kapazität dieser Speicher ist jedoch gering. Die Einleitung von Dampf ist nicht möglich.In order to compensate for load fluctuations, it is already known to provide a further condensate store in front of the boiler feed pump in addition to the feed water tank, the pressure of these stores being below the pressure of the feed water tank. However, the capacity of these memories is low. The introduction of steam is not possible.
In der GB-A Nr. 709888 ist eine Anlage beschrieben, bei der zusätzlich zum Speisewasserbehälter ein zweiter, geschlossener Speisewasserbehälter vorgesehen ist, dessen zunächst kalte Kondensatfüllung ausschliesslich während der Anfahrperiode durch Einleiten von Anfahrdampf unter ständigem Umwälzen des Kondensats auf Betriebstemperatur aufgeheizt wird. Nach dem Anfahren des Kraftwerkes wird die nunmehr heisse Kondensatfüllung des Behälters in den Speisewasserbehälter entladen und wieder durch kaltes Kondensat ersetzt.GB-A No. 709888 describes a system in which, in addition to the feed water tank, a second, closed feed water tank is provided, the initially cold condensate filling of which is heated up to operating temperature exclusively during the start-up period by introducing start-up steam while continuously circulating the condensate. After the power plant has started up, the now hot condensate filling of the tank is discharged into the feed water tank and replaced again with cold condensate.
Bei dieser Anlage kann zwar ein geringer Teil des Anfahrdampfes zur Aufheizung von zusätzlichem Kondensat genutzt werden. Ein Laden und Entladen während des Lastbetriebes und somit eine Verbesserung der Regelfähigkeit ist jedoch nicht möglich.In this system, a small part of the start-up steam can be used to heat additional condensate. However, loading and unloading during load operation and thus an improvement in the control capability is not possible.
Aus der DE-B Nr. 1128437 ist eine Anlage mit einem Druckwärmespeicher zur Speicherung von im Kraftwerk kurzfristig anfallender Überschusswärme bekannt. Der Ladestrom zum Speicher wird entweder hinter den Hochdruckvorwärmern des Wasserdampfkreislaufes des Kraftwerkes, d. h. hinter der Druckstufung durch die Kesselspeisepumpe abgezweigt oder aber gemäss einer weiteren Schaltungsmöglichkeit über getrennte Hochdruckvorwärmer geführt, wobei eine zusätzliche Hochdruckpumpe erforderlich ist. In jedem Falle erfolgt die Speicherung auf höchstem Druck- und Temperaturniveau.From DE-B No. 1128437 a system with a pressure heat accumulator for storing excess heat accumulating in the power plant for a short time is known. The charging current to the storage is either behind the high-pressure preheaters of the steam cycle of the power plant, i.e. H. branched off after the pressure step by the boiler feed pump or, according to a further circuit option, via separate high-pressure preheaters, an additional high-pressure pump being required. In any case, the storage takes place at the highest pressure and temperature level.
Die Rückführung des Entladestromes erfolgt in dem Speisewasserbehälter, an eine Stelle also mit wesentlich niedrigerem Druckniveau. Das erfordert eine sehr aufwendige, in der DE-B Nr. 1128437 dreistufige Entspannung. Diese weist einen schlechten thermodynamischen Wirkungsgrad auf.The discharge current is returned in the feed water tank, ie at a point with a significantly lower pressure level. This requires a very complex, three-stage relaxation in DE-B No. 1128437. This has poor thermodynamic efficiency.
Das Speichermedium wird zunächst auf Druck gebracht und gespeichert, beim Entladen zunächst wieder entspannt und muss dann erneut auf Druck gebracht werden. Daraus ergibt sich - neben dem schlechten thermodynamischen Wirkungsgrad - für die Hochdruckpumpe eine höhere erforderliche Leistung bei grösserer Druckflussmenge. Die aus den Mitteldruckentnahmen entnommene Überschusswärme wird zunächst in den Hochdruckvorwärmern vom Entnahmedampf auf das Kondensat übertragen, dieses fliesst zuerst in den Speisewasserbehälter und von dort erst wieder durch die Hochdruckvorwärmer, wo es gegen weiteren Entnahmedampf wieder aufgeheizt wird, in den Speicher. Dies bedeutet eine weitere Erhöhung des Förderstromes für die Hochdruckpumpe sowie Verluste durch den zweifachen Wärmetausch.The storage medium is first pressurized and stored, when it is unloaded it is first relaxed again and then has to be pressurized again. This results - in addition to the poor thermodynamic efficiency - for the high-pressure pump, a higher required output with a larger pressure flow quantity. The excess heat extracted from the medium-pressure withdrawals is first transferred from the extraction steam to the condensate in the high-pressure preheaters, which then flows first into the feed water tank and from there through the high-pressure preheater, where it is heated up again against further extraction steam, into the storage tank. This means a further increase in the flow rate for the high-pressure pump and losses due to the double heat exchange.
Die Einleitung unmittelbar von Dampf zum Laden des Speichers ist bei der Anlage der DE-B Nr. 1128437 nicht vorgesehen.The introduction of steam directly to load the store is not provided for in the installation of DE-B No. 1128437.
Aufgabe der vorliegenden Erfindung ist es, eine Anlage bereitzustellen, die diese Nachteilevermeidet und die es in einfacher Weise ermöglicht, die An- und Abfahrverluste eines Wärmekraftwerkes zu verringern und gleichzeitig während des Betriebes die nutzbare Leistung zu erhöhen sowie die Regelfähigkeit des Wärmekraftwerkes zu verbessern.The object of the present invention is to provide a system which avoids these disadvantages and which makes it possible in a simple manner to reduce the start-up and shutdown losses of a thermal power plant and, at the same time, to increase the usable power during operation and to improve the controllability of the thermal power plant.
Diese Aufgabe wird bei einer Anlage der eingangs genannten Art erfindungsgemäss dadurch gelöst, dass die Druckwärmespeicher wasserseitig hinter einem letzten Mitteldruck-Niederdruckvorwärmer über eine Ladeleitung mit einer zum Speisewasserbehälter führenden Kondensatleitung und über eine Entladeleitung und eine Pumpe mit der Kondensatleitung bzw. dem Speisewasserbehälter verbunden sind.This object is achieved according to the invention in a system of the type mentioned at the outset in that the pressure heat accumulators are connected on the water side behind a last medium-pressure low-pressure preheater via a charging line to a condensate line leading to the feed water tank and via a discharge line and a pump to the condensate line or the feed water tank.
Durch den Anschluss der wasserseitigen Ladeleitung hinter dem letzten Mitteldruck-Niederdruckvorwärmer, also vor der Druckstufung, ist das Druckniveau des Wärmespeichers in weiten Grenzen frei wählbar und braucht nur unwesentlich über dem Druckniveau des Speisewasserbehälters zu liegen.By connecting the water-side charging line behind the last medium-pressure low-pressure preheater, i.e. before the pressure step, the pressure level of the heat accumulator can be freely selected within wide limits and only needs to be insignificant Lich above the pressure level of the feed water tank.
Hochdruckpumpe und Hochdruckvorwärmer werden durch den Speicherbetrieb nicht unmittelbar berührt. Entnahmedampf sowie An- und Abfahrdampf werden unmittelbar, d. h. Wärme und Wärmeträger, in den Speicher eingeleitet, ohne zwischengeschalteten Wärmetausch.The high-pressure pump and high-pressure preheater are not touched directly by the storage system. Extraction steam as well as start-up and shutdown steam are immediately, ie. H. Heat and heat transfer medium, introduced into the storage, without intermediate heat exchange.
Das Entladen des Speichers mit heissem Kondensat erfolgt in Fliessrichtung des Wasserdampfkreislaufes gesehen nach vorne und insbesondere ohne wesentliche Entspannung und die damit verbundenen thermodynamischen Verluste.The storage of hot condensate is discharged forward in the direction of flow of the steam cycle and in particular without substantial relaxation and the associated thermodynamic losses.
Die Druckwärmespeicher werden während der An- und Abfahrvorgänge mit Anfahrdampf bzw. Abfahrdampf des Kraftwerkes aufgeladen. Während Hochlastperioden oder Perioden erhöhter Leistungsanforderung geben sie ihre Ladeenergie in den Wasserdampfkreislauf des Kraftwerkes zurück.The pressure heat accumulators are charged with start-up steam or shutdown steam of the power plant during the start-up and shutdown processes. During periods of high load or periods of increased power demand, they return their charging energy to the steam cycle of the power plant.
Durch Änderung des Be- und Entladestromes der Druckwärmespeicher können Regelabweichungen der elektrischen Leistung, zumindestteilweise, ausgeglichen werden. Dadurch kann auch die notwendigerweise vorzuhaltende Leistungsreserve eines Kraftwerksblockes um das Regelvermögen der Druckwärmespeicher verringert und die Blocknennleistung entsprechend erhöht werden.By changing the charging and discharging current of the pressure heat accumulator, control deviations in the electrical power can be compensated, at least in part. As a result, the power reserve of a power plant block that is necessarily to be maintained can be reduced by the regulating capacity of the pressure heat accumulator and the nominal block power can be increased accordingly.
Vorteilhafterweise ist zwischen Druckwärmespeicher und Speisewasserbehälter ein Entspannungsgefäss geschaltet, in dem, sofern der Wärmespeicher mit gegenüber dem Speisewasserbehälter erhöhtem Druck betrieben wird, das Speichermedium auf den Druck des Speisewasserbehälters entspannt und gleiche thermodynämische Zustände von Entladestrom und Speisewasserbehälterinhalt eingestellt werden.A pressure relief vessel is advantageously connected between the pressure heat accumulator and the feed water container, in which, if the heat accumulator is operated at a higher pressure than the feed water container, the storage medium is expanded to the pressure of the feed water container and the same thermodynamic states of discharge current and feed water container content are set.
Wird der Entladestrom mit der Enthalpie des Speicherinhaltes unmittelbar in den Speisewasserbehälter bzw. in die zu diesem führende Kondensatleitung eingeleitet, dann sind wegen der unterschiedlichen thermodynamischen Zustände von Entladestrom und Speisewasserbehälterinhalt der Entladestrom und somit die Verbesserung der Regelfähigkeit des Kraftwerkes begrenzt.If the discharge current with the enthalpy of the storage content is introduced directly into the feed water tank or into the condensate line leading to it, then the discharge current and thus the improvement of the control capacity of the power plant are limited due to the different thermodynamic states of the discharge current and the feed water tank content.
Weitere Erläuterungen zu der Erfindung sind dem in der Figur schematisch dargestellten Ausführungsbeispiel zu entnehmen. Im in der Figur beispielhaft dargestellten Kraftwerksblock durchströmt der Dampf nacheinander eine Hochdruckturbine 31, einen Zwischenüberhitzer 34, eine Mitteldruckturbine 32 sowie eine doppelflutige Niederdruckturbine 33. Das in einem Kondensator 1 anfallende Kondensat wird über Kondensatpumpen 2 und Niederdruck-Mitteldruckvorwärmer 4a bis 4n in einen Speisewasserbehälter 6 geleitet und gelangt von dort über eine Speisewasserpumpe 7 wieder in den Dampferzeuger. Mit 3 ist ein Nebenschluss-Kondensatspeicher bezeichnet. Ein Druckwärmespeicher 21 ist wasserseitig über Leitungen 23, 26 und eine Pumpe 22 im Nebenschluss mit dem Kondensatsystem verbunden. Im gezeichneten Beispiel mündet eine Druckleitung nach der Entladepumpe 22 zwischen dem letzten Mitteldruck-Niederdruckvorwärmer 4n und vor dem Speisewasserbehälter 6 in eine Kondensatleitung 30. Die Druckleitung kann jedoch auch unmittelbar in den Speisewasserbehälter 6 führen.Further explanations of the invention can be found in the exemplary embodiment shown schematically in the figure. In the power plant block shown by way of example in the figure, the steam flows successively through a high-
Dampfseitig ist der Druckwärmespeicher 21 einmal über eine Leitung 27 mit dem Mitteldruck- bzw. Zwischenüberhitzernetz des Kraftwerksblokkes und/oder mit anderen, wirtschaftlich geeigneten Dampfnetzen und Dampfsystemen mit höherem Dampfdruck, als er im Druckwärmespeicher 21 herrscht, z. B. mit einer Entnahme 28, die auch den Speisewasserbehälter 6 mit Dampf versorgt, verbunden. Zum Aufladen des Druckwärmespeichers 21 während einer An- oder Abfahrt wird Dampf aus dem Mitteldruck-Zwischenüberhitzernetz über die Leitung 27, ggf. unter Zwischenschaltung einer Reduzierstation, in den mit kaltem Kondensat vorgefüllten Druckwärmespeicher 21 eingeleitet und die Kondensatfüllung erhitzt.On the steam side, the pressure heat accumulator 21 is once via a
Im Leistungsbereich wird in Schwach- oder Teillastperioden der Druckwärmespeicher 21 über die Niederdruck-Mitteldruckvorwärmer 4a bis 4n mit heissem Kondensat geladen und der Heisskondensatstrom aus der gleichen Entnahme 28, die auch den Speisewasserbehälter 6 mit Dampf versorgt, in einer in der Figur nicht gezeichneten Mischvorwärm- und Entgasungsstufe unmittelbar vor dem Druckwärmespeicher 21 weiter aufgewärmt.In the power range, in low or partial load periods, the pressure heat accumulator 21 is charged with hot condensate via the low-pressure medium-pressure preheaters 4a to 4n, and the hot condensate stream from the
Zur Entladung wird heisses Kondensat aus dem Druckwärmespeicher 21 über die Leitung 26, das Entspannungsgefäss 24 und die Entladepumpe 22 dem in der Leitung 30 zum Speisewasserbehälter 6 fliessenden Kondensat zugemischt.To discharge, hot condensate from the pressure heat accumulator 21 is mixed via the
Wird der Druckwärmespeicher 21 zeitweise mit erhöhtem Druck gegenüber dem Speisewasserbehälter 6 betrieben, so kann der heisse Speicherentladestrom in dem Entspannungsgefäss 24 auf den Druck im Speisewasserbehälter 6 entspannt und in die Kondensatleitung 30 eingeleitet werden.If the pressure heat accumulator 21 is operated at times with increased pressure relative to the feed water container 6, the hot accumulator discharge current in the
Der Entspannungsdampfstrom wird über eine Leitung 35 unmittelbar in den Speisewasserbehälter 6 bzw. in eine zum Speisewasserbehälter 6 führende Dampfleitung 25 geführt.The flash steam is led via a
Damit werden gleiche thermodynamische Zustände von Entladestrom und Speisewasserbehälterinhalt erreicht.In this way, the same thermodynamic states of discharge current and feed water tank content are achieved.
In einer vereinfachten Schaltung können das Entspannungsgefäss 24 und die Leitung 35 entfallen, und der Entladestrom kann mit der Enthalpie des Druckwärmespeicherinhaltes direkt in die Kondensatleitung 30 geführt werden. Damit ist allerdings eine Begrenzung des Entladestromes im unteren Lastbereich verbunden, da der Druck im Druckwärmespeicher 21 grösser ist als im Speisewasserbehälter 6. In dieser vereinfachten wärmetechnischen Schaltung wird daher eine Regelsicherheitsschaltung notwendig, die eine Ausdampfung in der Kondensatleitung 30 und am Speisewasserbehältereintritt verhindert.In a simplified circuit, the
Durch den Einsatz der Be- und Entladeströme des Druckwärmespeichers 21 als Stellströme in einer Leistungsregelung können während des Leistungsbetriebes des Kraftwerkes auftretende Regelabweichungen der elektrischen Leistung vom Leistungssollwert im gebotenen Leistungsregelbereich einfach und schnell ausgeregelt werden.Through the use of the loading and unloading currents of the pressure heat accumulator 21 as control currents in a power control, the lei control operation of the power plant occurring control deviations of the electrical power from the power setpoint in the power control range offered can be easily and quickly corrected.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT82900106T ATE18931T1 (en) | 1981-09-19 | 1981-12-23 | PROCESS AND PLANT FOR REDUCING START-UP AND SHUT-DOWN LOSSES, INCREASING THE USABLE PERFORMANCE AND IMPROVING THE CONTROL ABILITY OF A THERMAL POWER PLANT. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3137371A DE3137371C2 (en) | 1981-09-19 | 1981-09-19 | System to reduce start-up and shutdown losses, to increase the usable power and to improve the controllability of a thermal power plant |
DE3137371 | 1981-09-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0088756A1 EP0088756A1 (en) | 1983-09-21 |
EP0088756B1 true EP0088756B1 (en) | 1986-04-02 |
Family
ID=6142158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82900106A Expired EP0088756B1 (en) | 1981-09-19 | 1981-12-23 | Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station |
Country Status (6)
Country | Link |
---|---|
US (1) | US4549401A (en) |
EP (1) | EP0088756B1 (en) |
JP (1) | JPS58501473A (en) |
AT (1) | ATE18931T1 (en) |
DE (1) | DE3137371C2 (en) |
WO (1) | WO1983001090A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10159553B2 (en) | 2008-01-29 | 2018-12-25 | Insightra Medical, Inc. | Fortified mesh for tissue repair |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4124678A1 (en) * | 1990-08-21 | 1992-02-27 | Abb Patent Gmbh | METHOD AND DEVICE FOR RESTORING THE TURBINE CONTROL RESERVE AFTER REGULATING A PERFORMANCE SETPOINT CHANGE IN A STEAM POWER PLANT |
JP2006233931A (en) * | 2005-02-28 | 2006-09-07 | Miura Co Ltd | Boiler drive electric power supply system |
US8616323B1 (en) | 2009-03-11 | 2013-12-31 | Echogen Power Systems | Hybrid power systems |
US9014791B2 (en) | 2009-04-17 | 2015-04-21 | Echogen Power Systems, Llc | System and method for managing thermal issues in gas turbine engines |
BRPI1011938B1 (en) | 2009-06-22 | 2020-12-01 | Echogen Power Systems, Inc | system and method for managing thermal problems in one or more industrial processes. |
WO2011017476A1 (en) | 2009-08-04 | 2011-02-10 | Echogen Power Systems Inc. | Heat pump with integral solar collector |
US8813497B2 (en) | 2009-09-17 | 2014-08-26 | Echogen Power Systems, Llc | Automated mass management control |
US8613195B2 (en) | 2009-09-17 | 2013-12-24 | Echogen Power Systems, Llc | Heat engine and heat to electricity systems and methods with working fluid mass management control |
US8096128B2 (en) | 2009-09-17 | 2012-01-17 | Echogen Power Systems | Heat engine and heat to electricity systems and methods |
US8869531B2 (en) | 2009-09-17 | 2014-10-28 | Echogen Power Systems, Llc | Heat engines with cascade cycles |
US8857186B2 (en) | 2010-11-29 | 2014-10-14 | Echogen Power Systems, L.L.C. | Heat engine cycles for high ambient conditions |
US8616001B2 (en) | 2010-11-29 | 2013-12-31 | Echogen Power Systems, Llc | Driven starter pump and start sequence |
US8783034B2 (en) | 2011-11-07 | 2014-07-22 | Echogen Power Systems, Llc | Hot day cycle |
US9062898B2 (en) | 2011-10-03 | 2015-06-23 | Echogen Power Systems, Llc | Carbon dioxide refrigeration cycle |
EP2589761B1 (en) * | 2011-11-03 | 2017-05-10 | General Electric Technology GmbH | Steam power plant with heat reservoir and method for operating a steam power plant |
JP6069359B2 (en) | 2012-01-19 | 2017-02-01 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | Auxiliary steam generator system for power plant |
CA2882290A1 (en) | 2012-08-20 | 2014-02-27 | Echogen Power Systems, L.L.C. | Supercritical working fluid circuit with a turbo pump and a start pump in series configuration |
US9118226B2 (en) | 2012-10-12 | 2015-08-25 | Echogen Power Systems, Llc | Heat engine system with a supercritical working fluid and processes thereof |
US9341084B2 (en) | 2012-10-12 | 2016-05-17 | Echogen Power Systems, Llc | Supercritical carbon dioxide power cycle for waste heat recovery |
US9322295B2 (en) | 2012-10-17 | 2016-04-26 | General Electric Company | Thermal energy storage unit with steam and gas turbine system |
US9376962B2 (en) | 2012-12-14 | 2016-06-28 | General Electric Company | Fuel gas heating with thermal energy storage |
CA2899163C (en) | 2013-01-28 | 2021-08-10 | Echogen Power Systems, L.L.C. | Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle |
WO2014117068A1 (en) | 2013-01-28 | 2014-07-31 | Echogen Power Systems, L.L.C. | Methods for reducing wear on components of a heat engine system at startup |
BR112015021396A2 (en) | 2013-03-04 | 2017-08-22 | Echogen Power Systems Llc | HEAT ENGINE SYSTEMS WITH HIGH USEFUL POWER SUPERCRITICAL CARBON DIOXIDE CIRCUITS |
US10570777B2 (en) | 2014-11-03 | 2020-02-25 | Echogen Power Systems, Llc | Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system |
US11187112B2 (en) | 2018-06-27 | 2021-11-30 | Echogen Power Systems Llc | Systems and methods for generating electricity via a pumped thermal energy storage system |
US11435120B2 (en) | 2020-05-05 | 2022-09-06 | Echogen Power Systems (Delaware), Inc. | Split expansion heat pump cycle |
AU2021397292A1 (en) | 2020-12-09 | 2023-07-06 | Supercritical Storage Company, Inc. | Three reservoir electric thermal energy storage system |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1770256A (en) * | 1924-12-31 | 1930-07-08 | Smekal Josef | Steam-accumulator plant |
DE628717C (en) * | 1926-10-13 | 1936-04-15 | Christian Christians | Steam system to compensate for fluctuations |
GB446061A (en) * | 1935-08-22 | 1936-04-23 | Ruths Arca Accumulators Ltd | Improvements in or relating to steam plants including hot-water accumulators |
CH204975A (en) * | 1938-01-21 | 1939-05-31 | Sulzer Ag | Method and device for operating a high-pressure steam power plant. |
NL78792C (en) * | 1952-01-05 | |||
GB887274A (en) * | 1957-03-02 | 1962-01-17 | Siemens Schuckertwerkd Ag | A steam boiler and turbine installation |
DE1128437B (en) * | 1960-05-13 | 1962-04-26 | Siemens Ag | Steam power plant, in particular block plant with once-through boiler |
US3564677A (en) * | 1967-11-06 | 1971-02-23 | Johnson & Johnson | Method and apparatus of treating material to change its configuration |
JPS4711600U (en) * | 1971-03-01 | 1972-10-11 | ||
DE2609622A1 (en) * | 1976-03-09 | 1977-09-15 | Babcock Ag | METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS |
DE2620023A1 (en) * | 1976-05-06 | 1977-11-17 | Babcock Ag | METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS |
DE2907068C2 (en) * | 1978-05-09 | 1983-09-15 | BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau | Steam power plant for base load operation with equipment to cover load peaks |
-
1981
- 1981-09-19 DE DE3137371A patent/DE3137371C2/en not_active Expired
- 1981-12-23 WO PCT/EP1981/000204 patent/WO1983001090A1/en not_active Application Discontinuation
- 1981-12-23 JP JP57500196A patent/JPS58501473A/en active Pending
- 1981-12-23 AT AT82900106T patent/ATE18931T1/en not_active IP Right Cessation
- 1981-12-23 EP EP82900106A patent/EP0088756B1/en not_active Expired
- 1981-12-23 US US06/494,765 patent/US4549401A/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10159553B2 (en) | 2008-01-29 | 2018-12-25 | Insightra Medical, Inc. | Fortified mesh for tissue repair |
Also Published As
Publication number | Publication date |
---|---|
EP0088756A1 (en) | 1983-09-21 |
DE3137371C2 (en) | 1984-06-20 |
ATE18931T1 (en) | 1986-04-15 |
DE3137371A1 (en) | 1983-04-14 |
JPS58501473A (en) | 1983-09-01 |
US4549401A (en) | 1985-10-29 |
WO1983001090A1 (en) | 1983-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0088756B1 (en) | Method and installation for decreasing the losses when starting and shutting off a thermal station, and to increase the power available and to improve the control capacity in a thermal station | |
EP2812542B1 (en) | Energy storage power plant and method for operating such a power plant | |
US4164848A (en) | Method and apparatus for peak-load coverage and stop-gap reserve in steam power plants | |
EP0819209B1 (en) | Method of operating a waste-heat steam generator, and a waste-heat steam generator operated by this method | |
DE2632777C2 (en) | Steam power plant with equipment to cover peak loads | |
EP3025031B1 (en) | Method of operating a steam turbine plant | |
EP0778397A2 (en) | Method of operating a combined power plant with a waste heat boiler and a steam user | |
DE2824321A1 (en) | COMBINED GAS / STEAM TURBINE POWER PLANT WITH COUNTERPRESSURE TURBINE, ESPECIALLY FOR INDUSTRIAL PURPOSES | |
DE2907068C2 (en) | Steam power plant for base load operation with equipment to cover load peaks | |
EP3269948B1 (en) | Method for the adaptation of the performance of a steam turbine power plant installation and steam turbine power plant installation | |
DE2620023A1 (en) | METHOD AND DEVICE FOR STORAGE OF ENERGY IN POWER PLANTS | |
DE4447044C1 (en) | Method reducing start=up losses in a power plant | |
DE10155508C2 (en) | Method and device for generating electrical energy | |
EP3080407B1 (en) | Steam accumulator comprising a latent heat accumulator and a steam thermocompressor | |
EP0067841B1 (en) | Method for supplying a heat distribution network at a long distance with the heat from a thermal power station | |
EP1584798B1 (en) | Method and apparatus for generating power and heat | |
EP3511534A1 (en) | Steam power-plant and method for operating same | |
DE1214701B (en) | Arrangement of a steam power plant | |
EP1801363A1 (en) | Power plant | |
DE1288614B (en) | Method and device for breaking down steam peaks from process waste heat recyclers with variable steam generation | |
DE488158C (en) | Steam power plant with heating steam utilization and equipment for balancing the fluctuations in power output and heating steam consumption | |
EP3467378B1 (en) | Waste heat installation for hot water generation and method for operating same | |
AT377577B (en) | DEVICE FOR GENERATING TOP LOAD OR OVERLOAD FROM A STEAM POWER PLANT | |
AT234730B (en) | Method and device for breaking down steam peaks from process waste heat utilizers with variable steam generation | |
DE1196668B (en) | Steam power plant with forced flow boiler and reheater for operation with steep load cycles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19830510 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB LI NL SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH FR GB LI NL SE |
|
REF | Corresponds to: |
Ref document number: 18931 Country of ref document: AT Date of ref document: 19860415 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19861022 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19861231 Year of fee payment: 6 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE. Effective date: 19861227 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BBC AKTIENGESELLSCHAFT BROWN,BOVERI & CIE |
|
BERE | Be: lapsed |
Owner name: SAARBERGWERKE A.G. Effective date: 19861231 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 19871004 |
|
NLR2 | Nl: decision of opposition | ||
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 7102 |
|
EUG | Se: european patent has lapsed |
Ref document number: 82900106.4 Effective date: 19880913 |