EP0064089B1 - Device for the coal dust pressure-gasification - Google Patents
Device for the coal dust pressure-gasification Download PDFInfo
- Publication number
- EP0064089B1 EP0064089B1 EP81103343A EP81103343A EP0064089B1 EP 0064089 B1 EP0064089 B1 EP 0064089B1 EP 81103343 A EP81103343 A EP 81103343A EP 81103343 A EP81103343 A EP 81103343A EP 0064089 B1 EP0064089 B1 EP 0064089B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- coal dust
- gasification
- slag
- coal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002817 coal dust Substances 0.000 title claims abstract description 29
- 238000002309 gasification Methods 0.000 title claims abstract description 25
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000002253 acid Substances 0.000 claims abstract 3
- 239000002826 coolant Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000002893 slag Substances 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 5
- 239000007900 aqueous suspension Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/485—Entrained flow gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/52—Ash-removing devices
- C10J3/526—Ash-removing devices for entrained flow gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/74—Construction of shells or jackets
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/74—Construction of shells or jackets
- C10J3/76—Water jackets; Steam boiler-jackets
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/78—High-pressure apparatus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
Definitions
- the invention relates to a device for coal dust pressure gasification in which the coal dust and / or a coal dust / liquid mixture is blown into a reactor and gasified in the presence of steam and oxygen to form a CO and H 2 -containing gas, and at least at the discharge end of the reactor a slag film is generated.
- Gasification in the slag bath is known.
- the coal dust with the gasification agent is blown obliquely from above onto a liquid slag melt.
- the solid particles which are specifically lighter than the slag, are deposited on the surface of the bath and float on the surface until only the molten ash portion remains.
- the slag is drawn down over an overflow of the bath. The gas leaves the reactor upwards.
- the very long residence time of the solid ensures almost complete carbon conversion. Lower degrees of fineness of the carbon carrier are sufficient for this and an exactly constant dosage is not necessary.
- the reactor temperature should be set so that the flow behavior of the slag allows turbulent movement of the slag bath.
- the simple structure of the reactor ensures trouble-free operation, but in order to achieve constant operating conditions, an absolutely constant use of coal and gasification agent is required. In order to reduce the necessary dwell time of the solid particles, very fine grinding of the coal is also imperative.
- the present invention has for its object to improve the carbon conversion in coal dust gasification while maintaining or increasing the economy.
- the invention is based on the fact that the residence time of the solid should be independent of the residence time of the gas, as is the case in the slag bath generator. At the same time, however, the simple operation of the entrained-flow gasifier should be retained as far as possible.
- a sufficient residence time is achieved without the disadvantages of DE-B-1 091 268 in that the usual routing of the coal dust / liquid / gas mixture is maintained and the reactor is provided at the discharge end with a flow control device which is table-shaped.
- a burner 1 turns a rotationally symmetrical reactor space 2 into a solid carbon carrier, e.g. Coal dust, supplied in dry or suspended form.
- the necessary gasification agent e.g. Oxygen and water vapor into the reactor interior 2.
- the reactor interior is surrounded by a refractory lining 3, which, as shown in FIG. 1, is only cooled by the heat given off by a steel jacket 4, or has forced cooling, not shown, within the steel jacket 4 .
- the oxygen portion of the gasification agent converts with the combustible portions of the gas atmosphere in the reactor interior 2 in a flame.
- the coal dust is brought to the reaction temperature by absorbing heat from the environment, the mean temperature of which is above the slag flow point, that is, depending on the type of coal, above approximately 1350 ° C.
- the coal dust is introduced in the form e.g. a coal-water suspension, the suspension drops produced on the burner 1 by atomization are still dried before heating to the reaction temperature.
- the temperature difference between the carbon particles and the surrounding gas atmosphere is large, so that the heat flow necessary for the gasification reactions is guaranteed.
- the temperature difference becomes smaller because the surrounding gas atmosphere changes in accordance with the heat cooling consumption of the reaction.
- the carbon conversion rates per unit of time become lower and lower the further the reaction progresses, since the partial pressure reduction in the gasification agent also has the same effect.
- a built-in flow guide device 5 has the effect that some of the coal dust particles settle directly on the surface of this flow guide device and the remaining coal dust particles are separated on the refractory lining 3 by sharp deflection of the gas flow.
- a built-in flow guide device 5 has the effect that some of the coal dust particles settle directly on the surface of this flow guide device and the remaining coal dust particles are separated on the refractory lining 3 by sharp deflection of the gas flows.
- the flow guide device 5 is designed here in the form of a round table.
- the table top consists of several spirally wound, pinned tubes 6, which are clad with a refractory mass.
- a cooling medium flows through the tubes 6, which enters at 7 and exits at 8.
- the four feed and discharge pipes 9, 10 in total also pinned and clad with a fire-resistant mass. They also serve as a supporting structure for the table top.
- the resulting slag film runs on the wall of the reactor neck 11 and arrives in a water bath (not shown), where the slag is granulated and discharged via a lock device.
- the gas generated also leaves the reactor through the reactor neck 11 and is subsequently cleaned or fed to any use.
- the slag film reactor according to the invention according to FIG. 2 is particularly suitable for the gasification of coal dust which is introduced into the reactor as a coal-water suspension. This prevents the drying and heating of the coal dust particles in the area of the highest temperature within the gasification reactor, namely in the area of gas combustion with the oxygen, while the gasification reaction takes place in the coldest part of the reactor. Rather, the gasification reaction in the high temperature region of the reactor is initiated with the advantage of a particularly intensive reaction, while the drying and heating of the carbon particles takes place at low but sufficient temperatures.
- the reactor parts which are identical in FIG. 2 to FIG. 1 have the same designations.
- a pumpable coal-water suspension enters the reactor interior 2.
- the pressure of the suspension is destroyed.
- This atomization is optionally carried out by additional atomizing medium, e.g. Steam, supported.
- the suspension drops are first dried and preheated by heat transfer from the backflow of hot gas from the gasification zone before they reach the actual reaction zone at the highest temperature.
- the reaction zone is located in the lower reactor area, in which a flow control device 12 similar to the flow control device 5 is located.
- the flow guide device 12 is designed in the same way as the flow guide device 5 in the form of a round, centrally arranged table which is provided with tubes 6 and is held by the feed lines 9 and discharge lines 10.
- a line 14 for oxygen or air is passed through one of the supply lines 9.
- the line 14 is connected to an air or oxygen supply line via a connecting piece 13 and leads to a nozzle 15 at the other end.
- the nozzle 15 projects centrally through the flow guide device 12 into the reactor interior 2. It is equipped with a cap 18 to prevent clogging by slag particles protected.
- the line 14 is cooled by the cooling medium flowing into the tubes 6.
- the oxygen entering the reactor interior 2 through the nozzle 15 reacts in a flame with combustible gas formed in the reactor and with dried and preheated coal dust. This results in a particularly high and advantageous reaction temperature in the area of the flow guide device 12 in the lower reactor part.
- the remaining reaction sequences are the same as those described in the description of FIG. 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Industrial Gases (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Kohlenstaub-Druckvergasung bei der der Kohlenstaub und/ oder ein Kohlenstaub/Flüssigkeitsgemisch in einen Reaktor geblasen und in Anwesenheit von Dampf-und Sauerstoff zu einem CO und H2-haltigen Gas vergast wird und wobei zumindest am Austragende des Reaktors ein Schlackefilm erzeugt wird.The invention relates to a device for coal dust pressure gasification in which the coal dust and / or a coal dust / liquid mixture is blown into a reactor and gasified in the presence of steam and oxygen to form a CO and H 2 -containing gas, and at least at the discharge end of the reactor a slag film is generated.
Bekannt ist eine Vergasung im Schlackenbad. Dabei wird der Kohlenstaub mit dem Vergasungsmittel schräg von oben auf eine flüssige Schlackenschmelze geblasen. Die Feststoffteilchen, die spezifisch leichter als die Schlacke sind, werden an der Badoberfläche abgeschieden und schwimmen auf der Oberfläche, bis nur noch der geschmolzene Ascheanteil übrigbleibt. Die Schlacke wird über einen Überlauf des Bades nach unten abgezogen. Das Gas verlässt den Reaktor nach oben.Gasification in the slag bath is known. The coal dust with the gasification agent is blown obliquely from above onto a liquid slag melt. The solid particles, which are specifically lighter than the slag, are deposited on the surface of the bath and float on the surface until only the molten ash portion remains. The slag is drawn down over an overflow of the bath. The gas leaves the reactor upwards.
Eine derartige Vorgehensweise hat mehrere Vorteile. Durch sehr lange Verweilzeit des Feststoffes ist ein nahezu vollständiger Kohlenstoffumsatz gewährleistet. Dazu sind geringere Feinheitsgrade des Kohlenstoffträgers ausreichendlund eine exakt konstante Dosierung ist nicht erforderlich. Die Reaktortemperatur ist so einzustellen, dass das Fliessverhalten der Schlacke eine Turbulentbewegung des Schlackenbades ermöglicht.Such an approach has several advantages. The very long residence time of the solid ensures almost complete carbon conversion. Lower degrees of fineness of the carbon carrier are sufficient for this and an exactly constant dosage is not necessary. The reactor temperature should be set so that the flow behavior of the slag allows turbulent movement of the slag bath.
Der Nachteil des Schlackenbad-Reaktors liegt in den Schwierigkeiten der Handhabung der flüssigen Schlacke. Insgesamt ist eine ausserordentlich aufwendige Konstruktion erforderlich. Diese Nachteile standen bisher einer grosstechnischen Realisierung des Verfahrens im Wege.The disadvantage of the slag bath reactor is the difficulty in handling the liquid slag. Overall, an extremely complex construction is required. These disadvantages have hitherto stood in the way of implementing the method on an industrial scale.
Bei einem Kohlevergasungsverfahren der «neuen Generation» erfolgt die Vergasung in einer Flugstaubwolke, die durch Einblasen des sehr feinkörnig gemahlenen Vergasungsmittels in einen Rekator entsteht. Der Reaktor kann ohne besondere Einbauten betrieben werden. Die Strömungsführung wird durch den Brenner, mit dem das Vergasungsmittel eingeblasen wird, und die Reaktorgeometrie bestimmt. Aufgrund der relativ kurzen Verweilzeit von wenigen Sekunden ist eine hohe Reaktortemperatur erforderlich, um hohe Kohlenstoffumsätze zu erreichen. Ein vollständiger Kohlenstoffumsatz ist dabei unter Berücksichtigung der Gesamtenergiebilanz des Prozesses teilweise nicht wirtschaftlich.In a “new generation” coal gasification process, gasification takes place in a cloud of airborne dust that is created by blowing the very fine-grained gasification agent into a recator. The reactor can be operated without special installations. The flow control is determined by the burner with which the gasification agent is blown in and the reactor geometry. Due to the relatively short residence time of a few seconds, a high reactor temperature is required to achieve high carbon conversions. A complete carbon turnover is sometimes not economical considering the total energy balance of the process.
Der einfache Aufbau des Reaktors gewährleistet zwar einen störungsfreien Betrieb, jedoch ist zur Erzielung gleichbleibender Betriebsbedingungen ein zeitlich absolut konstanter Einsatz von Kohle und Vergasungsmittel erforderlich. Zur Verringerung der notwendigen Verweilzeit der Feststoffpartikel ist darüber hinaus eine sehr feine Aufmahlung der Kohle zwingend.The simple structure of the reactor ensures trouble-free operation, but in order to achieve constant operating conditions, an absolutely constant use of coal and gasification agent is required. In order to reduce the necessary dwell time of the solid particles, very fine grinding of the coal is also imperative.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, den Kohlenstoffumsatz bei Kohlenstaub-Vergasung unter gleichzeitiger Beibehaltung bzw. Erhöhung der Wirtschaftlichkeit zu verbessern. Dabei geht die Erfindung davon aus, dass die Verweilzeit des Feststoffes von der Verweilzeit des Gases unabhängig sein soll, wie das im Schlackenbadgenerator der Fall ist. Gleichzeitig soll aber die einfache Arbeitsweise des Flugstromvergasers möglichst beibehalten werden.The present invention has for its object to improve the carbon conversion in coal dust gasification while maintaining or increasing the economy. The invention is based on the fact that the residence time of the solid should be independent of the residence time of the gas, as is the case in the slag bath generator. At the same time, however, the simple operation of the entrained-flow gasifier should be retained as far as possible.
Zwar ist aus der DE-C-885 766 sowie aus der FR-A-2 369 502 bekannt, im Rahmen einer Kohlenstaubdruckvergasung den Kohlenstaub an die Reaktorinnenwand zu lenken und dort einen Schlackefilm zu erzeugen. Diese Lösung ist jedoch noch unbefriedigend, weil ein Grossteil der Kohlenstaub-Partikel die Schlacke der tragenden Reaktorinnenwände nicht berührt. Diesem Nachteil würde der Lösungsvorschlag nach der DE-B-1 091 268 abhelfen. Dafür entständen aber andere Nachteile. Die Ursachen wären der gegen die Reaktorinnenwand gerichtete Eintrag der Kohlenstaubpartikel und die so verursachte GasströmungIt is known from DE-C-885 766 and from FR-A-2 369 502 to direct the coal dust to the inside of the reactor as part of a coal dust pressure gasification and to produce a slag film there. However, this solution is still unsatisfactory because a large part of the coal dust particles does not touch the slag of the supporting reactor inner walls. The proposed solution according to DE-B-1 091 268 would remedy this disadvantage. But there would be other disadvantages. The causes would be the entry of the coal dust particles against the inner wall of the reactor and the gas flow caused in this way
Nach der Erfindung wird eine ausreichende Verweilzeit ohne die Nachteile der DE-B-1 091 268 dadurch erreicht, dass an der üblichen Führung des Kohlenstaub/Flüssigkeits/Gasgemisches festgehalten wird und der Reaktor am Austragende mit einer Strömungsleiteinrichtung versehen ist, die tischförmig ist.According to the invention, a sufficient residence time is achieved without the disadvantages of DE-B-1 091 268 in that the usual routing of the coal dust / liquid / gas mixture is maintained and the reactor is provided at the discharge end with a flow control device which is table-shaped.
In den Zeichnungen sind zwei Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
- Fig. 1 einen besonders für die Vergasung von Kohlenstaub in trockener oder suspendierter Form geeigneten Reaktor,
- Fig. 2 einen insbesondere zur Vergasung einer Kohle-Wasser-Suspension geeigneten Reaktor.
- 1 a reactor particularly suitable for the gasification of coal dust in dry or suspended form,
- Fig. 2 shows a reactor particularly suitable for gasifying a coal-water suspension.
Durch einen Brenner 1 werden einem rotationssymmetrischen Reaktorraum 2 ein fester Kohlenstoffträger, z.B. Kohlenstaub, in trockener oder suspendierter Form zugeführt. Durch den gleichen Brenner 1 gelangt auch das notwendige Vergasungsmittel, z.B. Sauerstoff und Wasserdampf, in den Reaktorinnenraum 2. Der Reaktorinnenraum ist von einer feuerfesten Ausmauerung 3 umgeben, die, wie in Fig. 1 dargestellt, nur über die Wärmeabgabe eines Stahlmantels 4 gekühlt wird, oder aber über eine nicht dargestellte Zwangskühlung innerhalb des Stahlmantels 4 verfügt.A burner 1 turns a rotationally
Der Sauerstoffanteil des Vergasungsmittels setzt sich mit den brennbaren Anteilen der Gasatmosphäre im Reaktorinnenraum 2 in einer Flamme um. Der Kohlenstaub wird durch Wärmeaufnahme aus der Umgebung, deren mittlere Temperatur oberhalb des Schlackefliesspunktes liegt, also abhängig von der Kohleart oberhalb ca. 1350°C, auf Reaktionstemperatur gebracht. Bei Einbringen des Kohlenstaubes in Form z.B. einer Kohle-Wasser-Suspension findet vor der Aufwärmung auf Reaktionstemperatur noch eine Trocknung der am Brenner 1 durch Zerstäubung erzeugten Suspensionstropfen statt.The oxygen portion of the gasification agent converts with the combustible portions of the gas atmosphere in the
Mit zunehmender Temperatur der Kohlenstoffpartikel setzt die Kohlenstoff-Vergasung ein, die der Wärmezufuhr aus der Umgebung bedarf, da es sich dabei ausschliesslich um endotherme Reaktionen handelt.With increasing temperature of the carbon particles, carbon gasification begins, which requires the supply of heat from the environment, since these are exclusively endothermic reactions.
Zu Beginn der Vergasung ist die Temperaturdifferenz zwischen den Kohlepartikeln und der umgebenden Gasatmosphäre gross, so dass der für die Vergasungsreaktionen notwendige Wärmefluss gewährleistet ist. Mit fortschreitender Reaktion wird die Temperaturdifferenz jedoch geringer, da die umgebende Gasatmosphäre sich entsprechend dem Wärmeverbrauch der Reaktion abkühlt. Die Kohlenstoffumsatzraten pro Zeiteinheit werden dadurch immer geringer, je weiter die Reaktion fortschreitet, da auch die Teildruckerniedrigung des Vergasungsmittels im gleichen Sinne wirkt.At the start of gasification, the temperature difference between the carbon particles and the surrounding gas atmosphere is large, so that the heat flow necessary for the gasification reactions is guaranteed. As the reaction progresses, however, the temperature difference becomes smaller because the surrounding gas atmosphere changes in accordance with the heat cooling consumption of the reaction. As a result, the carbon conversion rates per unit of time become lower and lower the further the reaction progresses, since the partial pressure reduction in the gasification agent also has the same effect.
Durch eine eingebaute Strömungsleiteinrichtung 5 wird bewirkt, dass ein Teil der Kohlenstaubpartikel sich unmittelbar auf der Oberfläche dieser Strömungsleiteinrichtung absetzt und die restlichen Kohlenstaubpartikel durch scharfe Umlenkung der Gasströmung an der feuerfesten Ausmauerung 3 abgeschieden werden.A built-in
Durch eine eingebaute Strömungsleiteinrichtung 5 wird bewirkt, dass ein Teil der Kohlenstaubpartikel sich unmittelbar auf der Oberfläche dieser Strömungsleiteinrichtung absetzt und die restlichen Kohlenstaubpartikel durch scharfe Umlenkung der Gasströme an der feuerfesten Ausmauerung 3 abgeschieden werden.A built-in
Die Strömungsleiteinrichtung 5 ist hier in Form eines rundes Tisches gestaltet. Die Tischplatte besteht aus mehreren spiral-gewickelten, bestifteten Rohren 6, die mit einer feuerfesten Masse verkleidet sind. Die Rohre 6 werden von einem Kühlmedium durchströmt, das bei 7 eintritt und bei 8 austritt. Insgesamt gibt es vier gleichmässig am Reaktorumfang verteilte Eintritte 7 und Austritte 8. Von den Kühlmedieneintritten 7 führen Zuführungsleitungen 9 zu den Rohren 6. Von den Rohren 6 führen Abführungsleitungen 10 zu den Austritten 8. Die insgesamt vier Zu- bzw. Abführungsleitungen 9, 10 sind ebenfalls bestiftet und mit einer feuerfesten Masse verkleidet. Sie dienen gleichzeitig als Tragkonstruktion für die Tischplatte.The
Die entweder auf der Strömungsleiteinrichtung 5 oder an der Ausmauerung 3 abgeschiedenen, bereits teilvergasten Kohlepartikel sind nun so lange den Reaktionsbedingungen ausgesetzt, bis der Kohlenstoff praktisch vollständig mit Vergasungsmittel umgesetzt ist. Erst dann wird die mineralische Substanz des Einsatzgutes fliessfähig und läuft als Schlackefilm an der Ausmauerung 3 bzw. an der Kante der Strömungsleiteinrichtung 5 ab.The already partially gasified carbon particles either deposited on the
Durch die Tatsache, dass ein Fliessen der Schlacke erst bei sehr niedrigen Kohlenstoffgehalten in der Grössenordnung von einem Prozent eintritt, ist gewährleistet, dass die Verweilzeit der Kohlenstaub- partikel unter Reaktionsbedingungen in jedem Fall eine praktisch vollständige Umsetzung des Kohlenstoffes ausreicht.The fact that the slag only flows at very low carbon contents of the order of one percent ensures that the residence time of the coal dust particles under reaction conditions is sufficient for the carbon to be converted practically completely.
Der entstehende Schlackefilm läuft an der Wand des Reaktorhalses 11 weiter ab und gelangt in ein nicht dargestelltes Wasserbad, wo die Schlacke granuliert wird und über eine Schleusenvorrichtung ausgetragen wird.The resulting slag film runs on the wall of the
Das erzeugte Gas verlässt den Reaktor ebenfalls durch den Reaktorhals 11 und wird anschliessend gereinigt bzw. beliebiger Verwendung zugeführt.The gas generated also leaves the reactor through the
Der erfindungsgemässe Schlackefilmreaktor nach Fig. 2 eignet sich insbesondere für die Vergasung von Kohlenstaub, der als Kohle-Wasser-Suspension in den Reaktor eingetragen wird. Dabei wird vermieden, dass im Bereich der höchsten Temperatur innerhalb des Vergasungsreaktors, nämlich im Bereich der Gasverbrennung mit dem Sauerstoff, die Trocknung und Aufheizung der Kohlenstaubpartikel abläuft, während die Vergasungsreaktion im kältesten Teil des Reaktors stattfindet. Vielmehr wird die Vergasungsreaktion im Hochtemperaturbereich des Reaktors mit dem Vorteil besonders intensiver Reaktion veranlasst, während die Trocknung und Aufheizung der Kohlepartikel bei niedrigen, aber ausreichenden Temperaturen erfolgt.The slag film reactor according to the invention according to FIG. 2 is particularly suitable for the gasification of coal dust which is introduced into the reactor as a coal-water suspension. This prevents the drying and heating of the coal dust particles in the area of the highest temperature within the gasification reactor, namely in the area of gas combustion with the oxygen, while the gasification reaction takes place in the coldest part of the reactor. Rather, the gasification reaction in the high temperature region of the reactor is initiated with the advantage of a particularly intensive reaction, while the drying and heating of the carbon particles takes place at low but sufficient temperatures.
Die in Fig. 2 mit Fig. 1 identischen Reaktorteile tragen gleiche Bezeichnungen. Durch den Brenner 1 tritt eine pumpfähige Kohle-Wasser-Suspension in den Reaktorinnenraum 2. An dem Austrittsende des Brenners 1 findet eine Druckzerstörung der Suspension statt. Diese Zerstäubung wird gegebenenfalls durch zusätzliches Zerstäubungsmedium, z.B. Wasserdampf, unterstützt.The reactor parts which are identical in FIG. 2 to FIG. 1 have the same designations. Through the burner 1, a pumpable coal-water suspension enters the
Die Suspensionstropfen werden zunächst durch Wärmeübertragung aus der sich einstellenden Rückströmung heissen Gases aus der Vergasungszone getrocknet und vorgewärmt, ehe sie in die eigentliche Reaktionszone mit höchster Temperatur gelangen. Die Reaktionszone befindet sich im unteren Reaktorbereich, in dem sich eine der Strömungsleiteinrichtung 5 ähnliche Strömungsleiteinrichtung 12 befindet. Die Strömungsleiteinrichtung 12 ist in gleicher Weise wie die Strömungsleiteinrichtung 5 in Form eines runden, zentrisch angeordneten Tisches gestaltet, der mit Rohren 6 versehen ist und durch die Zuführungsleitungen 9 und Abführungsleitungen 10 gehalten wird.The suspension drops are first dried and preheated by heat transfer from the backflow of hot gas from the gasification zone before they reach the actual reaction zone at the highest temperature. The reaction zone is located in the lower reactor area, in which a
Durch eine der Zuführungsleitungen 9 ist eine Leitung 14 für Sauerstoff oder Luft hindurchgeführt. Die Leitung 14 ist über einen Anschlussstutzen 13 an eine Luft- bzw. Sauerstoffversorgungsleitung angeschlossen und führt am anderen Ende zu einer Düse 15. Die Düse 15 ragt mittig durch die Strömungsleiteinrichtung 12 in den Reaktorinnenraum 2. Sie ist mit einer Kappe 18 gegen Verstopfung durch Schlakkenteilchen geschützt. Die Leitung 14 wird durch das den Rohren 6 zuströmende Kühlmedium gekühlt.A
Der durch die Düse 15 in den Reaktorinnenraum 2 eintretende Sauerstoff setzt sich mit im Reaktor gebildeten brennbarem Gas sowie mit getrocknetem und vorgewärmtem Kohlenstaub in einer Flamme um. Dadurch entsteht im Bereich der Strömungsleiteinrichtung 12 im unteren Reaktorteil eine besonders hohe und vorteilhafte Reaktionstemperatur. Die übrigen Reaktionsabläufe sind gleich denen in der Beschreibung zu Fig. 1 ausgeführten.The oxygen entering the
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81103343T ATE10645T1 (en) | 1981-05-04 | 1981-05-04 | DEVICE FOR DUST COAL PRESSURE GASIFICATION. |
EP81103343A EP0064089B1 (en) | 1981-05-04 | 1981-05-04 | Device for the coal dust pressure-gasification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP81103343A EP0064089B1 (en) | 1981-05-04 | 1981-05-04 | Device for the coal dust pressure-gasification |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0064089A1 EP0064089A1 (en) | 1982-11-10 |
EP0064089B1 true EP0064089B1 (en) | 1984-12-05 |
Family
ID=8187696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81103343A Expired EP0064089B1 (en) | 1981-05-04 | 1981-05-04 | Device for the coal dust pressure-gasification |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0064089B1 (en) |
AT (1) | ATE10645T1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8828339D0 (en) * | 1988-12-05 | 1989-01-05 | Shell Int Research | Constant volume tubular reactor |
CN107033972A (en) * | 2017-05-09 | 2017-08-11 | 哈尔滨工业大学 | A kind of dry coal powder airflow bed gasification furnace burner with purging gas shielded |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1250046B (en) * | 1967-09-14 | |||
DE885766C (en) * | 1942-01-18 | 1953-08-06 | Koppers Gmbh Heinrich | Device for gasifying dust-like or fine-grain fuels |
US2681852A (en) * | 1948-05-28 | 1954-06-22 | Texas Co | Method for partial combustion of carbonaceous materials |
DE1091268B (en) * | 1953-09-29 | 1960-10-20 | Texaco Development Corp | Device for generating a fuel gas by gasifying a solid, finely divided fuel |
FR1207478A (en) * | 1958-06-20 | 1960-02-17 | Sumitomo Chemical Co | Pulverized coal gasification process |
FR1314303A (en) * | 1962-02-09 | 1963-01-04 | Koppers Gmbh Heinrich | Method and device for the gasification of suspended coal dust |
US3607156A (en) * | 1968-12-26 | 1971-09-21 | Texaco Inc | Hydrogen and carbon monoxide from slurries of solid carboniferous fuels |
DE2044310C3 (en) * | 1970-09-08 | 1974-01-31 | Texaco Development Corp., New York, N.Y. (V.St.A.) | Process for the production of carbon monoxide and hydrogen from solid fuel |
DE2411086A1 (en) * | 1974-03-08 | 1975-09-18 | Koppers Gmbh Heinrich | Fluidised bed coal dust gasification - in reactor with secondary gasifying medium admission nozzles for carbon on slag |
US3988123A (en) * | 1975-08-15 | 1976-10-26 | The United States Of America As Represented By The United States Energy Research And Development Administration | Gasification of carbonaceous solids |
FR2369502A1 (en) * | 1976-11-01 | 1978-05-26 | Inex Resources Inc | Pulverised carbonaceous solid combustion - mixed with alkali compound under air deficiency to fix sulphur in fused slag |
-
1981
- 1981-05-04 AT AT81103343T patent/ATE10645T1/en not_active IP Right Cessation
- 1981-05-04 EP EP81103343A patent/EP0064089B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
ATE10645T1 (en) | 1984-12-15 |
EP0064089A1 (en) | 1982-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102011088628B4 (en) | Method and apparatus for entrained flow gasification of solid fuels under pressure | |
EP0616023B1 (en) | Gasification apparatus for gasification under pressure of fine particulate fuels | |
EP1027407B1 (en) | Method and device for producing combustible gas, synthesis gas and reducing gas from solid fuels | |
DE112015000112B4 (en) | Gasification device for coal powder with multi-stage supply of gasification agent and strong turbulence as well as corresponding gasification process | |
DE69627475T2 (en) | BURNER FOR PARTIAL OXIDATION WITH A RECESSED MOUTHPIECE AND WITH A PRESSURE GAS SUPPLY | |
DE3019937C2 (en) | ||
DE19643258B4 (en) | Air flow gasifier for the gasification of carbonaceous and ash-containing fuels, residues and waste | |
DE2918859A1 (en) | PLANT FOR DEGASSING AND / OR GASIFYING COAL | |
DE3741181C2 (en) | ||
DE3628866C2 (en) | ||
DE19806823C2 (en) | Device and method for the combustion of fuels containing vanadium | |
EP0064089B1 (en) | Device for the coal dust pressure-gasification | |
DE2935752C2 (en) | Device for gasifying fuels containing ash | |
DE3537758C2 (en) | ||
DE1771299B1 (en) | Plant for melting glass | |
PL163597B1 (en) | Gasifying burner for reactor-type fossile fuel gasification plants | |
EP0533733B1 (en) | Process for the partial combustion of cellulose spent liquor ii | |
US3994244A (en) | Fluidized waste incinerator and method | |
DE919004C (en) | Method and device for gasifying solid fuels | |
DE3017229A1 (en) | Coal dust gasification under pressure - with flow deflector near reactor discharge end | |
DE4202980A1 (en) | METHOD AND DEVICE FOR THE GASIFICATION OF FLAMMABLE MATERIALS | |
DE2751911A1 (en) | Coal dust gasification - by injecting with oxygen and steam in fluidised carbonaceous bed | |
DE2736493A1 (en) | Powdered coal burning arrangement - uses pyrolyser bed with spout followed by fluidised char burner and cyclone separators connected to gas burner | |
DE3120238A1 (en) | Reactor for flight stream gasification | |
AT219633B (en) | Methods and devices for smelting iron ores in the fluidized furnace of a steam generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19811203 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LU NL SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19841205 |
|
REF | Corresponds to: |
Ref document number: 10645 Country of ref document: AT Date of ref document: 19841215 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19850531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19900328 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900420 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19900430 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900509 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19900522 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900531 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900607 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19910504 Ref country code: AT Effective date: 19910504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19910531 Ref country code: CH Effective date: 19910531 Ref country code: BE Effective date: 19910531 |
|
BERE | Be: lapsed |
Owner name: RUHRKOHLE A.G. Effective date: 19910531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19911201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19920131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EAL | Se: european patent in force in sweden |
Ref document number: 81103343.0 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950428 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960505 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81103343.0 |