Nothing Special   »   [go: up one dir, main page]

EP0042984A1 - Electrode free from noble metals and process for its manufacture - Google Patents

Electrode free from noble metals and process for its manufacture Download PDF

Info

Publication number
EP0042984A1
EP0042984A1 EP81104207A EP81104207A EP0042984A1 EP 0042984 A1 EP0042984 A1 EP 0042984A1 EP 81104207 A EP81104207 A EP 81104207A EP 81104207 A EP81104207 A EP 81104207A EP 0042984 A1 EP0042984 A1 EP 0042984A1
Authority
EP
European Patent Office
Prior art keywords
spinel
spinels
cobalt
iron
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81104207A
Other languages
German (de)
French (fr)
Other versions
EP0042984B1 (en
Inventor
Hans Dr. Roos
Hugo Boehn
Knut Dr. Bittler
Volker Dr. Kiener
Gerd Dr. Wunsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0042984A1 publication Critical patent/EP0042984A1/en
Application granted granted Critical
Publication of EP0042984B1 publication Critical patent/EP0042984B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • titanium anodes with active metal-containing active layers or graphite electrodes are generally used today. These so-called dimensionally stable titanium anodes have the advantage over the graphite electrodes that the external dimensions do not change during operation.
  • the disadvantage of these anodes is the relatively high production costs due to the use of noble metal in the active layer.
  • magnetite can be used as an anode material for the separation of chlorine, but this material has a very high overvoltage with regard to chlorine, so that its use has been discontinued for a long time due to the high energy consumption.
  • an electrode consisting predominantly of trivalent iron oxide with additions of one or more metal oxides is described.
  • an oxide mixture is obtained from an iron salt solution via a carrier precipitation, which is then pressed and sintered in an oxygen-containing atmosphere.
  • Titanium dioxide, zirconium dioxide and / or tin dioxide are mentioned as additional oxides.
  • this electrode has a deposition potential for Chlorine of 1.65 V GKE (measured against saturated K alomel electrodes), at a current density of 1 kA / m 2 , which corresponds to a chlorine separation voltage of 1.9 V based on the normal hydrogen potential. With increasing current density, the deposition potential increases considerably, so that this electrode achieves an impermissibly high deposition potential at the current densities of 1.5 to 2.0 kA / m 2 that are currently used in technical systems.
  • DE-OS 23 20 883 describes anodes which consist of sintered bodies with a spinel structure of the general formula MxFe3-x04 and are said to be suitable as chlorine anodes.
  • M means a metal from the group consisting of manganese, nickel, cobalt, magnesium, copper, zinc and / or cadmium and x stands for 0.05 to 0.4.
  • the present invention had for its object to provide the electrol, whose electrochemically active layer contains spinels, which are particularly suitable as anodes for the separation of chlorine in electrolysis cells and which, in addition to good corrosion resistance to the electrolyte and the electrolysis products, are associated with a high level Service life, have a low separation voltage for chlorine.
  • the electrode according to the invention contains the two spinels as individual spinels and that they do not form a mixed spinel.
  • the presence of the two substances next to one another can be proven in a known manner by means of an X-ray fine structure analysis.
  • the active layer preferably has the two spinels in a weight ratio of Fe 3 O 4 : CO 3 O 4 of 40:60 to 70:30.
  • the active layer can be on an electrically conductive support, e.g. a valve metal, graphite, magnetite.
  • an electrically conductive support e.g. a valve metal, graphite, magnetite.
  • the electrodes according to the invention are produced under conditions such that mixed spinel formation cannot take place, special conditions having to be observed since CO 3 O 4 tends to easily separate into two finished cobalt oxide and vice versa Fe 3 O 4 has the tendency to easily transition into trivalent iron oxide, with the formation of a cobalt-iron mixing spinel.
  • a suitable method to achieve this goal is the plasma spraying process.
  • the two powdered spinels are mixed thoroughly before processing. They should be useful grain sizes of 10 to 200 / um, to which preferably of ⁇ 125 /.
  • the mixture is then placed in the storage container of a plasma spray gun, taking care to ensure that no segregation occurs both during metering and during transport.
  • a conventional plasma spraying system can be used for the coating, with either argon alone or argon in a mixture with up to 10% by volume of hydrogen being considered as carrier gas. It is also essential that the plasma spraying system is operated in a low energy range, ie that values of 30 kW are not exceeded, with a minimum amount of 6 kW being adhered to for design reasons.
  • the body to be coated should be degreased beforehand in a known manner and then the surface should be prepared by sandblasting, pickling and the like.
  • the distance between the plasma flame and the body to be coated should suitably be 7 to 12 cm.
  • the plasma flame is moved back and forth in front of the body to be coated until the spray layer has reached the desired thickness.
  • the active layer is effective even with a relatively small thickness of 20 to 30 ⁇ m, although of course much thicker layers are permissible, up to electrodes which consist exclusively of the electrochemically active material.
  • a powder of a valve metal can also be added to the spinel mixture to be sprayed.
  • other substances can also be added if special properties are desired and if these other substances do not impair the electrochemical activity of the spinel layer.
  • the electrodes according to the invention when used as anodes in the electrolysis of aqueous alkali metal chloride solutions, have a chlorine separation potential of 1395 mV at current densities of 0.15 kA / m 2 , based on the normal H2 electrode, ie the overvoltage is only approx . 35 mV. But even with the higher current densities of 1.5 kA / m 2 to 6 kA / m 2 , which are of particular technical interest, the electrodes are characterized by a low overvoltage, with the deposition potential at 1.5 kA / m 2 depending on the substrate between approx 1450 and a maximum of about 1600 mV.
  • the electrodes according to the invention are notable for good chemical and mechanical resistance, and even if graphite is used as the substrate, practically no erosion can be ascertained even with longer standing times.
  • the anodes produced in this way are subjected to a voltage test under the operating conditions of chlor-alkali electrolysis.
  • the following deposition potentials are measured (against normal H 2 electrodes):
  • An active layer of Fe 3 0 4 : C 03 0 4 (weight ratio 70:30) is applied to a base body made of electrographite with the dimensions of the electrode area of 20 x 15 x 10 mm.
  • Argon serves as the carrier gas, the injection energy is 18 kW and the distance of the plasma flame from the electrographite base body is 9 cm.
  • a comparison of these deposition voltages measured at 1.5 kA / m 2 with the Ab measured in Examples 1 to 4 cutting voltages in the electrodes according to the invention shows a difference of more than 250 mV.
  • This electrode also has a deposition potential increased by approximately 200 mV at 1.5 kA / m 2 compared to the electrodes according to the invention .
  • the anode is produced as described in Example 1, argon being used as the plasma gas at an injection energy of 32 kW.
  • the weight ratio Fe 3 O 4 : CO 3 O 4 (grain size ⁇ 125 ⁇ m) is 70:30.
  • the deposition potential is determined under the same conditions as in Examples 1 to 4. The following values are determined:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Bei einer Elektrode, die für die Elektrolyse wässeriger Natrium- bzw. Kaliumchloridlösungen geeignet ist, enthält zumindest die äußere Schicht Spinelle. Die Spinele bestehen aus einem Gemisch der Einzelspineile des Eisens und Kobalts, mit der Maßgabe, daß das Gewichtsverhältnis Eisenspinelle : Kobalt-Spinelle 30 : 70 bis 90 : 10 beträgt. Die Elektroden werden dadurch hergestellt, daß man eine pulverförmige Mischung von Eisenspinell und Kobalt-Spinell mittels des Plasmaspitzverfahrens auf ein Substrat aufbringt, wobei Argon als Plasmagas verwendet wird und die Spritzenergie 6 bis 30 kW beträgt.In the case of an electrode which is suitable for the electrolysis of aqueous sodium or potassium chloride solutions, at least the outer layer contains spinels. The spinels consist of a mixture of the individual spin parts of iron and cobalt, with the proviso that the weight ratio of iron spinels: cobalt spinels is 30:70 to 90:10. The electrodes are produced by applying a powdery mixture of iron spinel and cobalt spinel to a substrate by means of the plasma spiking process, argon being used as the plasma gas and the injection energy being 6 to 30 kW.

Description

Bei der Herstellung von Chlor oder Chlorverbindungen durch Elektrolyse wäßriger Natrium- bzw. Kaliumchloridlösungen werden heute im allgemeinen Titananoden mit edelmetallhaltigen Aktivschichten oder Graphitelektroden eingesetzt. Diese sogenannten dimensionsstabilen Titananoden haben gegenüber den Graphitelektroden den Vorteil, daß sich die äußeren Abmessungen während des Betriebs nicht ändern. Der Nachteil dieser Anoden liegt in den relativ hohen Herstellungskosten, bedingt durch die Verwendung von Edelmetall in der Aktivschicht.In the manufacture of chlorine or chlorine compounds by electrolysis of aqueous sodium or potassium chloride solutions, titanium anodes with active metal-containing active layers or graphite electrodes are generally used today. These so-called dimensionally stable titanium anodes have the advantage over the graphite electrodes that the external dimensions do not change during operation. The disadvantage of these anodes is the relatively high production costs due to the use of noble metal in the active layer.

Es ist auch bekannt, daß man Magnetit als Anodenmaterial zur Abscheidung von Chlor einsetzen kann, jedoch besitzt dieses Material bezüglich Chlor eine sehr hohe Überspannung, so daß seine Verwendung aufgrund des hohen Energieverbrauchs bereits seit längerer Zeit eingestellt wurde.It is also known that magnetite can be used as an anode material for the separation of chlorine, but this material has a very high overvoltage with regard to chlorine, so that its use has been discontinued for a long time due to the high energy consumption.

Es hat jedoch nicht an Versuchen gefehlt, auf der Basis des wesentlich preiswerteren Eisenoxids edelmetallfreie Elektroden bereitzustellen, die einerseits eine technisch und wirtschaftlich befriedigende niedrige Abscheidespannung aufweisen und andererseits gleichzeitig eine für Chlor ausreichende chemische Beständigkeit aufweisen.However, there has been no shortage of attempts to provide non-precious metal electrodes on the basis of the much cheaper iron oxide, which on the one hand have a technically and economically satisfactory low deposition voltage and on the other hand have sufficient chemical resistance for chlorine.

So wird in der DDR Patentschrift 98 838 eine vorwiegend aus dreiwertigem Eisenoxid mit Zusätzen von einem oder mehreren Metalloxiden bestehende Elektrode beschrieben. Zur Herstellung dieser Elektrode wird aus einer Eisensalzlösung über eine Trägerfällung ein Oxidgemisch erhalten, das anschließend verpreßt und in sauerstoffhaltiger Atmosphäre gesintert wird. Als Zusatzoxide werden Titandioxid, Zirkondioxid und/oder Zinndioxid genannt. Diese Elektrode besitzt jedoch ein Abscheidepotential für Chlor von 1,65 V GKE (Gemessen gegen gesättigte Kalomel Elektrode), bei einer Stromdichte von 1 kA/m2, was bezogen auf das Wasserstoffnormalpotential einer Chlorabscheidespannung von 1,9 V entspricht. Mit zunehmender Stromdichte erhöht sich das Abscheidepotential beträchtlich, so daß diese Elektrode bei den in technischen Anlagen derzeit üblicherweise angewandten Stromdichten von 1,5 bis 2,0 kA/m2 ein unzuläßig hohes Abscheidepotential erreicht.Thus, in the GDR patent 98 838 an electrode consisting predominantly of trivalent iron oxide with additions of one or more metal oxides is described. To produce this electrode, an oxide mixture is obtained from an iron salt solution via a carrier precipitation, which is then pressed and sintered in an oxygen-containing atmosphere. Titanium dioxide, zirconium dioxide and / or tin dioxide are mentioned as additional oxides. However, this electrode has a deposition potential for Chlorine of 1.65 V GKE (measured against saturated K alomel electrodes), at a current density of 1 kA / m 2 , which corresponds to a chlorine separation voltage of 1.9 V based on the normal hydrogen potential. With increasing current density, the deposition potential increases considerably, so that this electrode achieves an impermissibly high deposition potential at the current densities of 1.5 to 2.0 kA / m 2 that are currently used in technical systems.

In der DE-OS 23 20 883 werden Anoden beschrieben, die aus gesinterten Körpern mit Spinellstruktur der allgemeinen Formel MxFe3-x04 bestehen und als Chloranoden geeignet sein sollen. In dieser Formel bedeutet M ein Metall aus der Gruppe Mangan, Nickel, Kobalt, Magnesium, Kupfer, Zink und/oder Cadmium und x steht für 0,05 bis 0,4. Bei diesen Elektroden wird besonders auf die verbesserte Korrosionsbeständigkeit im Vergleich zu herkömmlichen Magnetitelektroden hingewiesen, während auf die für die Beurteilung einer Elektrode wesentlichen Abscheidepotentiale nicht abgehoben wird. Wie eigene Untersuchungen (vgl. Vergleichsbeispiel 1) gezeigt haben, liegen diese Abscheidepotentiale bei technisch gebräuchlichen Stromdichten von 1,5 kA/m2, bei 1750 mV bis 2000 mV (gemessen gegen H2-Nor- malelektrode).DE-OS 23 20 883 describes anodes which consist of sintered bodies with a spinel structure of the general formula MxFe3-x04 and are said to be suitable as chlorine anodes. In this formula, M means a metal from the group consisting of manganese, nickel, cobalt, magnesium, copper, zinc and / or cadmium and x stands for 0.05 to 0.4. With these electrodes, particular reference is made to the improved corrosion resistance compared to conventional magnetite electrodes, while the deposition potentials which are essential for the assessment of an electrode are not emphasized. As our own investigations (cf. Comparative Example 1) have shown, these separation potentials are at technically customary current densities of 1.5 kA / m 2 , at 1750 mV to 2000 mV (measured against H 2 normal electrode).

In den US-PSen 3 977 958 und 4 142 005 werden Elektroden beschrieben, die aus einem elektrisch leitenden Substrat bestehen, auf das ein Einzelmetall - spinell der Formel Co304 als elektrochemisch aktive Substanz aufgebracht ist, der zusätzlich modifizierende Oxide der Gruppen IIIB-VIIB, IIIA-VA, sowie der Lanthaniden oder Actiniden enthalten kann. Aber auch die Abscheidepotentiale dieser Elektroden genügen nicht den technischen Anforderungen.In US Pat. Nos. 3,977,958 and 4,142,005 electrodes are described which consist of an electrically conductive substrate to which a single metal spinel of the formula Co 3 0 4 is applied as an electrochemically active substance, and additionally modifying oxides of groups IIIB -VIIB, IIIA-VA, and may contain lanthanides or actinides. However, the deposition potential of these electrodes also does not meet the technical requirements.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, Elektrol den bereitzustellen, deren elektrochemisch aktive Schicht Spinelle enthält, die vor allem als Anoden für die Abscheidung von Chlor in Elektrolysezellen geeignet sind und die neben einer guten Korrosionsbeständigkeit gegenüber dem Elektrolyten und den Elektrolyseprodukten, verbunden mit einer hohen Standdauer, eine niedrige Abscheidespannung für Chlor aufweisen.The present invention had for its object to provide the electrol, whose electrochemically active layer contains spinels, which are particularly suitable as anodes for the separation of chlorine in electrolysis cells and which, in addition to good corrosion resistance to the electrolyte and the electrolysis products, are associated with a high level Service life, have a low separation voltage for chlorine.

Es wurde gefunden, daß diese Aufgabe durch eine spinellhaltige Elektrode gelöst wird, bei der die Spinelle aus einem Gemisch der Einzelspinelle des Eisens und Kobalts bestehen mit der Maßgabe, daß das Gewichtsverhältnis Eisenspinell Kobaltspinell von 30 : 70 bis 90 : 10 beträgt.It has been found that this object is achieved by an electrode containing spinel, in which the spinels consist of a mixture of the individual spinels of iron and cobalt, with the proviso that the weight ratio of iron spinel to cobalt spinel is from 30:70 to 90:10.

Wesentlich ist, daß die erfindungsgemäße Elektrode die beiden Spinelle als Einzelspinelle enthält und diese keinen Mischspinell bilden. Das Vorliegen der beiden Substanzen nebeneinander kann auf bekannte Weise durch eine Röntgenfeinstrukturanalyse nachgewiesen werden.It is essential that the electrode according to the invention contains the two spinels as individual spinels and that they do not form a mixed spinel. The presence of the two substances next to one another can be proven in a known manner by means of an X-ray fine structure analysis.

Vorzugsweise weist die aktive Schicht die beiden Spinelle in einem Gewichtsverhältnis von Fe3O4 : CO3O4 von 40 : 60 bis 70 : 30 auf.The active layer preferably has the two spinels in a weight ratio of Fe 3 O 4 : CO 3 O 4 of 40:60 to 70:30.

Die Aktivschicht kann auf einen elektrisch leitenden Träger, z.B. einem Ventilmetall, Graphit, Magnetit, aufgebracht sein. Es ist aber auch möglich, auf dieses Substrat ganz zu verzichten, d.h. daß die Elektrode in ihrer gesamten Stärke aus der Aktivschicht besteht.The active layer can be on an electrically conductive support, e.g. a valve metal, graphite, magnetite. However, it is also possible to dispense with this substrate entirely, i.e. that the entire thickness of the electrode consists of the active layer.

Die Herstellung der erfindungsgemäßen Elektroden erfolgt unter solchen Bedingungen, daß eine Mischspinellbildung nicht stattfinden kann, wobei besondere Bedingungen zu beachten sind, da CO3O4 die Tendenz hat, leicht in zwei- fertiges Kobaltoxid und umgekehrt Fe3O4 die Tendenz hat, leicht in dreiwertiges Eisenoxid, unter Bildung eines Kobalt-Eisen-Mischspinells überzugehen.The electrodes according to the invention are produced under conditions such that mixed spinel formation cannot take place, special conditions having to be observed since CO 3 O 4 tends to easily separate into two finished cobalt oxide and vice versa Fe 3 O 4 has the tendency to easily transition into trivalent iron oxide, with the formation of a cobalt-iron mixing spinel.

Ein geeignetes Verfahren, um dieses Ziel zu erreichen, ist das Plasma-Spritzverfahren. Hierzu werden die beiden in Pulverform vorliegenden Spinelle vor der Verarbeitung gründlich gemischt. Sie sollten zweckmäßig Korngrößen von 10 bis 200/um, vorzugsweise von <125/um aufweisen. Die Mischung wird dann in den Vorratsbehälter einer Plasma-Spritzpistole eingegeben, wobei darauf zu achten ist, daß sowohl bei der Eindosierung als auch beim Transport keine Entmischung eintritt. Für die Beschichtung kann eine übliche Plasma-Spritzanlage verwendet werden, wobei als Trägergas entweder Argon allein oder Argon im Gemisch mit bis zu 10 Vol.-% Wasserstoff in Betracht kommen. Wesentlich ist ferner, daß die Plasma-Spritzanlage in einem niederen Energiebereich betrieben wird, d.h. daß Werte von 30 kW nicht überschritten werden, wobei aus konstruktiven Gründen ein Mindestbetrag von 6 kW eingehalten werden sollte.A suitable method to achieve this goal is the plasma spraying process. To do this, the two powdered spinels are mixed thoroughly before processing. They should be useful grain sizes of 10 to 200 / um, to which preferably of <125 /. The mixture is then placed in the storage container of a plasma spray gun, taking care to ensure that no segregation occurs both during metering and during transport. A conventional plasma spraying system can be used for the coating, with either argon alone or argon in a mixture with up to 10% by volume of hydrogen being considered as carrier gas. It is also essential that the plasma spraying system is operated in a low energy range, ie that values of 30 kW are not exceeded, with a minimum amount of 6 kW being adhered to for design reasons.

Der zu beschichtende Körper sollte in bekannter Weise vorher entfettet und anschließend die Oberfläche durch Sandstrahlen, Beizen und dgl. vorbereitet werden.The body to be coated should be degreased beforehand in a known manner and then the surface should be prepared by sandblasting, pickling and the like.

Der Abstand zwischen Plasmaflamme und zu beschichtendem Körper sollte zweckmäßig 7 bis 12 cm betragen. Die Plasmaflamme wird vor dem zu beschichtenden Körper so lange hin und her bewegt, bis die Spritzschicht die gewünschte Dicke erreicht hat. Die Aktivschicht ist bereits bei einer relativ geringen Dicke von 20 bis 30 µm wirksam, wobei selbstverständlich auch wesentlich dickere Schichten zulässig sind, bis zu Elektroden die ausschließlich aus dem elektrochemisch aktiven Material bestehen.The distance between the plasma flame and the body to be coated should suitably be 7 to 12 cm. The plasma flame is moved back and forth in front of the body to be coated until the spray layer has reached the desired thickness. The active layer is effective even with a relatively small thickness of 20 to 30 µm, although of course much thicker layers are permissible, up to electrodes which consist exclusively of the electrochemically active material.

Zur Erhöhung der Auftragsleistung der Plasma-Spritzanlage kann man dem zu verspritzenden Spinell-Gemisch auch ein Pulver eines Ventilmetall zusetzen. Selbstverständlich können auch andere Substanzen zugesetzt werden, sofern besondere Eigenschaften gewünscht werden und sofern diese anderen Substanzen die elektrochemische Aktivität der Spinellschicht nicht beeinträchtigen.To increase the application rate of the plasma spraying system, a powder of a valve metal can also be added to the spinel mixture to be sprayed. Of course, other substances can also be added if special properties are desired and if these other substances do not impair the electrochemical activity of the spinel layer.

Die erfindungsgemäßen Elektroden zeigen, als Anoden bei der Elektrolyse von wäßrigen Alkalimetall-Chlorid-Lösungen eingesetzt, bei Stromdichten von 0,15 kA/m2 ein Chlorabscheidepotential von 1395 mV, bezogen auf die H2-Normal- elektrode, d.h. die Überspannung beträgt nur ca. 35 mV. Aber auch bei den technisch vor allem interessierenden höheren Stromdichten von 1,5 kA/m2 bis 6 kA/m2, sind die Elektroden durch eine niedrige Überspannung gekennzeichnet, wobei bei 1,5 kA/m2 die Abscheidepotentiale je nach Substrat zwischen ca. 1450 und maximal etwa 1600 mV liegen. Demgegenüber werden in der oben bereits zitierten DDR-Patentschrift 98 838 bei niedrigeren Stromdichten von 1,0 kA/m2 Abscheidepotentiale von 1650 bis 1730 mV, gemessen gegen Kalomel-Elektrode, genannt, was einem Potential gegen die H2-Normalelektrode von ca. 1900 bis 1980 mV entspricht.The electrodes according to the invention, when used as anodes in the electrolysis of aqueous alkali metal chloride solutions, have a chlorine separation potential of 1395 mV at current densities of 0.15 kA / m 2 , based on the normal H2 electrode, ie the overvoltage is only approx . 35 mV. But even with the higher current densities of 1.5 kA / m 2 to 6 kA / m 2 , which are of particular technical interest, the electrodes are characterized by a low overvoltage, with the deposition potential at 1.5 kA / m 2 depending on the substrate between approx 1450 and a maximum of about 1600 mV. In contrast, in the GDR patent 98 838 already cited above, at lower current densities of 1.0 k A / m 2, deposition potentials of 1650 to 1730 mV, measured against a calomel electrode, are mentioned, which means a potential against the normal H 2 electrode of approx Corresponds to 1900 to 1980 mV.

Zudem zeichnen sich die erfindungsgemäßen Elektroden durch eine gute chemische und mechanische Widerstandsfähigkeit aus und sogar bei Verwendung von Graphit als Substrat kann auch bei längeren Standzeiten praktisch kein Abtrag festgestellt werden.In addition, the electrodes according to the invention are notable for good chemical and mechanical resistance, and even if graphite is used as the substrate, practically no erosion can be ascertained even with longer standing times.

Beispiel 1example 1

  • a) Auf ein Titan-Streckmetallgitter (11 x 6 x 2 x 1,5 mm) mit der geometrischen Fläche von ca. 20 cm2, welches mit einer zentralen elektrischen Ableitung aus Titan versehen ist, wird mit Hilfe eines Plasmabrenners ein Gemenge von Fe3O4 und CO3O4 im Gewichtsverhältnis 70 : 30 aufgebracht. Zur Verwendung kommen Pulver mit einer Korngröße im Bereich von <125 µm und Argon als Trägergas bei einer Spritzenergie von 18 kW. Nach Durchführung von 3 Spritzzyklen pro Seite im Abstand von 90 mm beträgt die Schichtdicke 30,um.a) On a titanium expanded metal grid (11 x 6 x 2 x 1.5 mm) with the geometric area of about 20 cm 2 , which is provided with a central electrical lead made of titanium, a mixture of Fe is using a plasma torch 3 O 4 and CO 3 O 4 applied in a weight ratio of 70:30. Powders with a grain size in the range of <125 µm and argon as carrier gas with an injection energy of 18 kW are used. After 3 spraying cycles per side at a distance of 90 mm, the layer thickness is 30 μm.
  • b) Unter sonst gleichen Bedingungen wird ein Gemenge von Fe3O4 und CO3O4 im Gewichtsverhältnis von 50 : 50 undb) Under otherwise identical conditions, a mixture of Fe 3 O 4 and CO 3 O 4 in a weight ratio of 50: 5 0 and
  • c) im Molgewichtsverhältnis von 30 : 70 aufgebracht.c) applied in a molecular weight ratio of 30:70.

Die auf diese Weise hergestellten Anoden werden unter den Betriebsbedingungen der Chloralkalielektrolyse einem Stromspannungstest unterzogen. Dabei werden folgende Abscheidepotentiale gemessen (gegen H2-Normalelektrode):

Figure imgb0001
The anodes produced in this way are subjected to a voltage test under the operating conditions of chlor-alkali electrolysis. The following deposition potentials are measured (against normal H 2 electrodes):
Figure imgb0001

Beispiel 2Example 2

  • a) Die Anode wird wie in Beispiel 1 beschrieben hergestellt, wobei als Plasmagas ein Gemisch aus 90 Vol.% Ar, 10 Vol.-% H2 bei einer Spritzenergie von 17,2 kW verwendet wird. Das Gewichtsverhältnis Fe3O4 : CO3O4 (Korngröße <125/um) beträgt 90 : 10. Der Strom-Spannungstest zeigt folgende Ergebnisse:
    Figure imgb0002
    a) The anode is produced as described in Example 1, a mixture of 90% by volume Ar as the plasma gas, 10 vol .-% H 2 is used with an injection energy of 17.2 kW. The weight ratio Fe 3 O 4 : CO 3 O 4 (grain size <125 / um) is 90:10. The current-voltage test shows the following results:
    Figure imgb0002
  • b) Bei Verwendung eines Plasmagases aus reinem Argon und einer Spritzenergie von 19,2 kW werden Anoden erhalten die folgende Potentiale zeigen:
    Figure imgb0003
    b) When using a plasma gas made of pure argon and an injection energy of 19.2 kW, anodes are obtained which show the following potentials:
    Figure imgb0003
Beispiel 3Example 3

Auf einen Grundkörper aus Elektrographit mit den Abmessungen der Elektrodenfläche von 20 x 15 x 10 mm wird eine Aktivschicht aus Fe304 : C0304 (Gewichtsverhältnis 70:30) aufgebracht. Als Trägergas dient Argon, die Spritzenergie beträgt 18 kW und der Abstand der Plasmaflamme von dem Elektrographitgrundkörper 9 cm.An active layer of Fe 3 0 4 : C 03 0 4 (weight ratio 70:30) is applied to a base body made of electrographite with the dimensions of the electrode area of 20 x 15 x 10 mm. Argon serves as the carrier gas, the injection energy is 18 kW and the distance of the plasma flame from the electrographite base body is 9 cm.

Die Bestimmung des Abscheidepotentials ergibt:

Figure imgb0004
The determination of the separation potential results in:
Figure imgb0004

Werte des unter gleichen Bedingungen gemessenen Grundkörpers ohne Aktivierung:

Figure imgb0005
Values of the base body measured under the same conditions without activation:
Figure imgb0005

Beispiel 4Example 4

Auf ein Aluminiumblech der Größe 20 x 15 x 1,5 mm wird mit Hilfe einer Plasmaflamme mit Argon als Trägergas bei einer Spritzenergie von 17 kW, bei einem Abstand Plasmaflamme/ Grundkörper 10 cm eine Pulvermischung aus Fe3O4 : CO3O4 im Gewichtsverhältnis 66 2/3 : 33 1/3, der 70 Gew.-% Titanpulver zugesetzt war, aufgespritzt. Nach Erreichen einer Schichtdicke von 1,5 mm wird der Beschichtungsvorgang abgebrochen, die aufgespritzte Schicht vom Aluminium abgelöst und die so hergestellte Negativform als Elektrode vermessen. Dabei werden folgende Abscheidepotentiale festgestellt:

Figure imgb0006
A powder mixture of Fe 3 O 4 : CO 3 O 4 im Weight ratio 66 2/3: 33 1/3, which was added 70 wt .-% titanium powder, sprayed. After a layer thickness of 1.5 mm has been reached, the coating process is stopped, the sprayed-on layer is detached from the aluminum and the negative mold thus produced is measured as an electrode. The following separation potentials are determined:
Figure imgb0006

Vergleichsbeispiel 1Comparative Example 1

Verbindungen des Typs MxFe3xO4 (A=CO0.3Fe2.7O4 und B = CO0.4Fe2.6O4, entsprechend der DE-OS 23 20 883) werden analog Beispiel 1 mit Hilfe einer Plasmaspritzpistole auf einen entsprechenden Anodengrundkörper aus Titan aufgetragen und unter den gleichen Bedingungen wie in Beispiel 1 bis 4 beschrieben die Abscheidepotentiale bestimmt.Compounds of the type M x Fe 3x O 4 (A = CO 0.3 Fe 2.7 O 4 and B = CO 0.4 Fe 2.6 O 4 , according to DE-OS 23 20 883) are applied analogously to Example 1 with the aid of a plasma spray gun onto a corresponding anode base body Titanium applied and the deposition potentials determined under the same conditions as described in Examples 1 to 4.

Dabei werden folgende Werte ermittelt:

Figure imgb0007
The following values are determined:
Figure imgb0007

Ein Vergleich dieser bei 1,5 kA/m2 gemessenen Abscheidespannungen mit den in Beispielen 1 bis 4 gemessenen Abscheidespannungen bei den erfindungsgemäßen Elektroden zeigt eine Differenz von mehr als 250 mV.A comparison of these deposition voltages measured at 1.5 kA / m 2 with the Ab measured in Examples 1 to 4 cutting voltages in the electrodes according to the invention shows a difference of more than 250 mV.

Vergleichsbeispiel 2Comparative Example 2

Wie in Beispiel 1 beschrieben, wird eine Elektrode hergestellt unter Verwendung von reinem Co304 (entsprechend US-PS 3 977 958). Der Stromspannungstest zeigt folgende Ergebnisse:

Figure imgb0008
As described in Example 1, an electrode is made using pure Co 3 0 4 (corresponding to US Pat. No. 3,977,958). The voltage test shows the following results:
Figure imgb0008

Auch diese Elektrode zeigt gegenüber den erfindungsgemäßen Elektroden ein um ca. 200 mV erhöhtes Abscheidepotential bei 1,5 kA/m 2 . This electrode also has a deposition potential increased by approximately 200 mV at 1.5 kA / m 2 compared to the electrodes according to the invention .

Vergleichsbeispiel 3Comparative Example 3

Die Anode wird wie in Beispiel 1 beschrieben hergestellt, wobei als Plasmagas Argon bei einer Spritzenergie von 32 kW verwendet wird. Das Gewichtsverhältnis Fe3O4 : CO3O4 (Korngröße < 125 µm) beträgt 70 : 30. Die Bestimmung des Abscheidepotentials erfolgt unter den gleichen Bedingungen wie in Beispiel 1 bis 4. Dabei werden folgende Werte ermittelt:

Figure imgb0009
The anode is produced as described in Example 1, argon being used as the plasma gas at an injection energy of 32 kW. The weight ratio Fe 3 O 4 : CO 3 O 4 (grain size <125 µm) is 70:30. The deposition potential is determined under the same conditions as in Examples 1 to 4. The following values are determined:
Figure imgb0009

Ein Vergleich dieser Abscheidepotentiale mit den Abscheidepotentialen der Elektrode gemäß Beispiel 1a, deren aktive Schicht mit einer Spritzenergie von 18 kW hergestellt worden ist, ergibt, daß letztere ein um 90 bis 170 mV niedrigeres Abscheidepotential besitzt.A comparison of these deposition potentials with the deposition potentials of the electrode according to Example 1a, the active layer of which was produced with an injection energy of 18 kW, shows that the latter has a deposition potential which is 90 to 170 mV lower.

Claims (6)

1. Elektrode, bei der zumindest die äußere elektrochemisch aktive Schicht Spinelle enthält, dadurch gekennzeichnet, daß die Spinelle aus einem Gemisch der Einzelspinelle des Eisens und Kobalts bestehen, mit der Maßgabe, daß das Gewichtsverhältnis Eisenspinell : Kobaltspinell von 30 : 70 bis 90 : 10 beträgt.1. Electrode in which at least the outer electrochemically active layer contains spinels, characterized in that the spinels consist of a mixture of the individual spinels of iron and cobalt, with the proviso that the weight ratio of iron spinel: cobalt spinel from 30:70 to 90:10 is. 2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß das Gewichtsverhältnis Eisenspinell : Kobaltspinell von 40 : 60 bis 70 : 30 beträgt.2. Electrode according to claim 1, characterized in that the weight ratio of iron spinel: cobalt spinel is from 40:60 to 70:30. 3. Verfahren zur Herstellung der Elektroden nach Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß man eine homogene, pulverförmige Mischung von Eisenspinell und Kobaltspinell mittels des Plasmaspritzverfahrens auf ein Substrat aufbringt, wobei man Argon als Plasmagas verwendet und die Spritzenergie 6 bis 30 kW beträgt.3. A process for producing the electrodes according to claims 1 to 2, characterized in that a homogeneous, powdery mixture of iron spinel and cobalt spinel is applied to a substrate by means of the plasma spraying process, argon being used as the plasma gas and the injection energy being 6 to 30 kW. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Plasmagas bis zu 10 Vol.-% Wasserstoff enthält.4. The method according to claim 3, characterized in that the plasma gas contains up to 10 vol .-% hydrogen. 5. Verfahren nach Ansprüchen 3 bis 4, dadurch gekennzeichnet, daß der Abstand Plasmaflamme/Substrat 7 bis 12 cm beträgt.5. The method according to claims 3 to 4, characterized in that the distance plasma flame / substrate is 7 to 12 cm. 6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man das Substrat nach Aufbringen der Spinellschicht ablöst.6. Process according to Claims 1 to 5, characterized in that the substrate is removed after the spinel layer has been applied.
EP81104207A 1980-06-28 1981-06-02 Electrode free from noble metals and process for its manufacture Expired EP0042984B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803024611 DE3024611A1 (en) 1980-06-28 1980-06-28 NON-METAL ELECTRODE
DE3024611 1980-06-28

Publications (2)

Publication Number Publication Date
EP0042984A1 true EP0042984A1 (en) 1982-01-06
EP0042984B1 EP0042984B1 (en) 1983-08-17

Family

ID=6105944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104207A Expired EP0042984B1 (en) 1980-06-28 1981-06-02 Electrode free from noble metals and process for its manufacture

Country Status (4)

Country Link
US (1) US4411761A (en)
EP (1) EP0042984B1 (en)
JP (1) JPS5739184A (en)
DE (2) DE3024611A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001816A1 (en) 2014-02-13 2015-08-13 Jenabatteries GmbH Redox flow cell for storing electrical energy and its use
DE102015010083A1 (en) 2015-08-07 2017-02-09 Friedrich-Schiller-Universität Jena Redox flow cell for storing electrical energy and its use
DE102015014828A1 (en) 2015-11-18 2017-05-18 Friedrich-Schiller-Universität Jena Hybrid flow cell for storing electrical energy and its use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546058A (en) * 1984-12-12 1985-10-08 Energy Research Corporation Nickel electrode for alkaline batteries
US5356674A (en) * 1989-05-04 1994-10-18 Deutsche Forschungsanstalt Fuer Luft-Raumfahrt E.V. Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element
US7247229B2 (en) * 1999-06-28 2007-07-24 Eltech Systems Corporation Coatings for the inhibition of undesirable oxidation in an electrochemical cell
US7235161B2 (en) * 2003-11-19 2007-06-26 Alcoa Inc. Stable anodes including iron oxide and use of such anodes in metal production cells
TWI433964B (en) 2010-10-08 2014-04-11 Water Star Inc Multi-layer mixed metal oxide electrode and method for making same
US11668017B2 (en) 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210043A1 (en) * 1970-11-02 1972-09-14 Ppg Industries Inc Electrode and method for making it
DE2729272A1 (en) * 1976-07-02 1978-02-09 Dow Chemical Co ANODE MATERIAL FOR ELECTROLYTIC CELLS AND METHOD FOR PRODUCING ANODES
GB1533758A (en) * 1975-09-15 1978-11-29 Diamond Shamrock Corp Electrolysis cathodes
DE2137632B2 (en) * 1970-07-31 1979-05-10 Ppg Industries Inc Method of handling electrodes
GB1552721A (en) * 1976-08-06 1979-09-19 Israel Mini Comm & Ind Electrocatalyst
GB1568894A (en) * 1976-11-17 1980-06-11 Uranit Gmbh Method for forming an anti-corrosive oxide layer on steels

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD98838A1 (en) 1972-01-06 1973-07-12
GB1433805A (en) 1972-04-29 1976-04-28 Tdk Electronics Co Ltd Methods of electrolysis using complex iron oxide electrodes
IT978528B (en) * 1973-01-26 1974-09-20 Oronzio De Nora Impianti METALLIC ELECTRODES AND PROCEDURE FOR THEIR ACTIVATION
US3977958A (en) * 1973-12-17 1976-08-31 The Dow Chemical Company Insoluble electrode for electrolysis
US4169028A (en) * 1974-10-23 1979-09-25 Tdk Electronics Co., Ltd. Cathodic protection
JPS5541815Y2 (en) * 1975-02-18 1980-09-30
US4142005A (en) * 1976-02-27 1979-02-27 The Dow Chemical Company Process for preparing an electrode for electrolytic cell having a coating of a single metal spinel, Co3 O4
FR2434213A1 (en) * 1978-08-24 1980-03-21 Solvay PROCESS FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN IN AN ALKALINE MEDIUM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2137632B2 (en) * 1970-07-31 1979-05-10 Ppg Industries Inc Method of handling electrodes
DE2210043A1 (en) * 1970-11-02 1972-09-14 Ppg Industries Inc Electrode and method for making it
GB1533758A (en) * 1975-09-15 1978-11-29 Diamond Shamrock Corp Electrolysis cathodes
DE2729272A1 (en) * 1976-07-02 1978-02-09 Dow Chemical Co ANODE MATERIAL FOR ELECTROLYTIC CELLS AND METHOD FOR PRODUCING ANODES
GB1552721A (en) * 1976-08-06 1979-09-19 Israel Mini Comm & Ind Electrocatalyst
GB1568894A (en) * 1976-11-17 1980-06-11 Uranit Gmbh Method for forming an anti-corrosive oxide layer on steels

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001816A1 (en) 2014-02-13 2015-08-13 Jenabatteries GmbH Redox flow cell for storing electrical energy and its use
WO2015120971A1 (en) 2014-02-13 2015-08-20 Jenabatteries GmbH Redox flow cell for storing electrical energy and use thereof
DE102015010083A1 (en) 2015-08-07 2017-02-09 Friedrich-Schiller-Universität Jena Redox flow cell for storing electrical energy and its use
US11515557B2 (en) 2015-08-07 2022-11-29 Jenabatteries GmbH Redox flow cell for storing electrical energy and use thereof
DE102015014828A1 (en) 2015-11-18 2017-05-18 Friedrich-Schiller-Universität Jena Hybrid flow cell for storing electrical energy and its use
US11283077B2 (en) 2015-11-18 2022-03-22 Jena Batteries, Gmbh Hybrid flow battery for storing electrical energy and use thereof

Also Published As

Publication number Publication date
DE3160766D1 (en) 1983-09-22
EP0042984B1 (en) 1983-08-17
JPS5739184A (en) 1982-03-04
US4411761A (en) 1983-10-25
DE3024611A1 (en) 1982-01-28

Similar Documents

Publication Publication Date Title
DE2300422A1 (en) LONG-TERM ELECTRODE FOR ELECTROLYTIC PROCESSES
DE2630398A1 (en) A CATHODE FOR ELECTROLYSIS IN ALKALINE MEDIUM
DE3507071C2 (en) Electrode for electrolysis and process for its manufacture
DE2752875C2 (en) Electrode for electrochemical processes and processes for their production
EP0121694B1 (en) Catalyst for the coating of anodes, and its manufacturing process
EP0042984B1 (en) Electrode free from noble metals and process for its manufacture
DE2113676C2 (en) Electrode for electrochemical processes
DE3047636A1 (en) CATHODE, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AND ELECTROLYSIS CELL
DE2723406C2 (en) Titanium anode for the electrolytic production of manganese dioxide and process for its production
DE3322125C2 (en) Cathode for the electrolysis of acid solutions and process for their manufacture
DE3004080C2 (en) Method for coating a porous electrode
DE3780075T2 (en) LOW-VOLTAGE ELECTRODES FOR ALKALINE ELECTROLYTE.
DE2150039A1 (en) CORROSION- AND DIMENSION-RESISTANT ELECTRODE FOR ELECTROCHEMICAL PROCESSES
DE2852136A1 (en) METHOD OF MANUFACTURING AN INSOLUBLE ELECTRODE
DE2844558A1 (en) ELECTRODE FOR USE IN AN ELECTROLYTIC METHOD
EP0080064B1 (en) Galvanic primary element with a negative electroless zinc-plated electrode collector
EP0245201B1 (en) Anode for electrolyses
DE3515742C2 (en)
DE2714605A1 (en) Lead di:oxide electrode having sub:oxide-coated titanium support - used in fuel and galvanic cells, for electrochemical reactions and for anticorrosion purposes
EP0148439B1 (en) Activated metal anodes and process for their manufacture
EP0001778A2 (en) Electrodes for electrolytic purposes
EP0133468B1 (en) Method of making a surface coating for reducing the overvoltage of an electrode of an electrochemical cell.
DE2233485B2 (en) Coating electrode
DE2623739B2 (en) Electrode for electrolysis
EP3222757A1 (en) Method and device for loosening zinc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811021

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 3160766

Country of ref document: DE

Date of ref document: 19830922

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910515

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910516

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910603

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910619

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: BASF A.G.

Effective date: 19920630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81104207.6

Effective date: 19930109