Nothing Special   »   [go: up one dir, main page]

EA202090714A2 - Способ скринингового определения вероятности наличия рака мочевого пузыря - Google Patents

Способ скринингового определения вероятности наличия рака мочевого пузыря

Info

Publication number
EA202090714A2
EA202090714A2 EA202090714A EA202090714A EA202090714A2 EA 202090714 A2 EA202090714 A2 EA 202090714A2 EA 202090714 A EA202090714 A EA 202090714A EA 202090714 A EA202090714 A EA 202090714A EA 202090714 A2 EA202090714 A2 EA 202090714A2
Authority
EA
Eurasian Patent Office
Prior art keywords
bladder cancer
probability
screening
determining
likelihood
Prior art date
Application number
EA202090714A
Other languages
English (en)
Other versions
EA202090714A3 (ru
Inventor
Петр Витальевич Глыбочко
Андрей Алексеевич Свистунов
Виктор Викторович Фомин
Филипп Юрьевич Копылов
Марина Игоревна Секачева
Дмитрий Викторович Еникеев
Евгений Павлович Гитель
Алигейдар Алекперович Рагимов
Елена Владимировна Поддубская
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет) (ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет) (ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Се filed Critical федеральное государственное автономное образовательное учреждение высшего образования Первый Московский государственный медицинский университет имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет) (ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Се
Publication of EA202090714A2 publication Critical patent/EA202090714A2/ru
Publication of EA202090714A3 publication Critical patent/EA202090714A3/ru

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия РМП или выявления данного онкологического заболевания на ранней стадии. Скрининговое определение вероятности наличия РМП основано на измерении уровня биомаркеров в образце биологической жидкости, полученном у субъекта: sVCAM.1, ApoA1, CA19.9, ApoA2, CYFRA.21.1, Ddimer, ApoB, hsCRP, TTR, B2M, и информации о поле пациента, с последующей обработкой совокупности полученных данных с использованием по меньшей мере одной классификационной модели, обученной для определения вероятности наличия РМП.
EA202090714A 2019-04-12 2020-04-10 Способ скринингового определения вероятности наличия рака мочевого пузыря EA202090714A3 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111091A RU2718284C1 (ru) 2019-04-12 2019-04-12 Способ скринингового определения вероятности наличия рака мочевого пузыря

Publications (2)

Publication Number Publication Date
EA202090714A2 true EA202090714A2 (ru) 2020-10-30
EA202090714A3 EA202090714A3 (ru) 2021-01-29

Family

ID=70156405

Family Applications (1)

Application Number Title Priority Date Filing Date
EA202090714A EA202090714A3 (ru) 2019-04-12 2020-04-10 Способ скринингового определения вероятности наличия рака мочевого пузыря

Country Status (2)

Country Link
EA (1) EA202090714A3 (ru)
RU (1) RU2718284C1 (ru)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006304764A1 (en) * 2005-10-21 2007-04-26 Bayer Healthcare Llc Methods for prediction and prognosis of cancer, and monitoring cancer therapy
AU2009269541A1 (en) * 2008-07-09 2010-01-14 Decode Genetics Ehf Genetic variants as markers for use in urinary bladder cancer risk assessment, diagnosis, prognosis and treatment
GB201218570D0 (en) * 2012-10-16 2012-11-28 Randox Lab Ltd Method
WO2017079763A1 (en) * 2015-11-06 2017-05-11 Ventana Medical Systems, Inc. Representative diagnostics
RU2681754C1 (ru) * 2018-02-15 2019-03-12 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Способ диагностики клинически значимого рака предстательной железы

Also Published As

Publication number Publication date
RU2718284C1 (ru) 2020-04-01
EA202090714A3 (ru) 2021-01-29

Similar Documents

Publication Publication Date Title
Khosravi et al. A deep learning approach to diagnostic classification of prostate cancer using pathology–radiology fusion
US20220156930A1 (en) Cancer risk stratification based on histopathological tissue slide analysis
Hilty et al. MicroTools enables automated quantification of capillary density and red blood cell velocity in handheld vital microscopy
Wang et al. High-throughput optical sensing immunoassays on smartphone
US20170270346A1 (en) Systems and methods for generating fields of view
Kumar et al. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers
Kwak et al. Artificial intelligence‐based measurement outperforms current methods for colorectal polyp size measurement
RU2019104870A (ru) Комбинированный тест на наличие колоректального рака
CY1119797T1 (el) Λακτοφερινη για χρηση στη διαγνωση και προγνωση της νοσου alzheimer
EA201900375A1 (ru) Способ и система для скринингового определения вероятности наличия рака легкого
Şerbănescu et al. Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks
Sobhy et al. Significance of biglycan and osteopontin as non-invasive markers of liver fibrosis in patients with chronic hepatitis B virus and chronic hepatitis C virus
Wei et al. Multi-scale sequential feature selection for disease classification using Raman spectroscopy data
EA202090714A2 (ru) Способ скринингового определения вероятности наличия рака мочевого пузыря
Nwafor et al. The Role of Biomarkers in the Diagnosis and Prognosis of Different Stages of Melanoma
Schaumburg et al. Coupling ELISA to smartphones for POCT of chronic and congenital Chagas disease
EA202090713A2 (ru) Способ скринингового определения вероятности наличия рака молочной железы
Pires et al. Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care
RU2010149267A (ru) Улучшенные способы иммуноанализа
Macotpet et al. Attenuated total reflection Fourier transform infrared as a primary screening method for cancer in canine serum
Fano et al. Longitudinal assessment of two Mycoplasma hyopneumoniae enzyme-linked immunosorbent assays in challenged and contact-exposed pigs
EA201900374A2 (ru) Способ и система для скринингового определения вероятности наличия колоректального рака
Taccioli et al. Semi-quantitative determination of thiocyanate in saliva through colorimetric assays: design of CNN architecture via input-aware NAS
JP5133842B2 (ja) 癌が疑われる患者または癌患者由来の組織の癌部と非癌部との判別方法およびそれに用いる判別試薬
Heindl et al. Automated REcognition of Tissue‐associated Erythrocytes (ARETE)—a new tool in tissue cytometry