EA202090714A2 - Способ скринингового определения вероятности наличия рака мочевого пузыря - Google Patents
Способ скринингового определения вероятности наличия рака мочевого пузыряInfo
- Publication number
- EA202090714A2 EA202090714A2 EA202090714A EA202090714A EA202090714A2 EA 202090714 A2 EA202090714 A2 EA 202090714A2 EA 202090714 A EA202090714 A EA 202090714A EA 202090714 A EA202090714 A EA 202090714A EA 202090714 A2 EA202090714 A2 EA 202090714A2
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- bladder cancer
- probability
- screening
- determining
- likelihood
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/40—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия РМП или выявления данного онкологического заболевания на ранней стадии. Скрининговое определение вероятности наличия РМП основано на измерении уровня биомаркеров в образце биологической жидкости, полученном у субъекта: sVCAM.1, ApoA1, CA19.9, ApoA2, CYFRA.21.1, Ddimer, ApoB, hsCRP, TTR, B2M, и информации о поле пациента, с последующей обработкой совокупности полученных данных с использованием по меньшей мере одной классификационной модели, обученной для определения вероятности наличия РМП.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019111091A RU2718284C1 (ru) | 2019-04-12 | 2019-04-12 | Способ скринингового определения вероятности наличия рака мочевого пузыря |
Publications (2)
Publication Number | Publication Date |
---|---|
EA202090714A2 true EA202090714A2 (ru) | 2020-10-30 |
EA202090714A3 EA202090714A3 (ru) | 2021-01-29 |
Family
ID=70156405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA202090714A EA202090714A3 (ru) | 2019-04-12 | 2020-04-10 | Способ скринингового определения вероятности наличия рака мочевого пузыря |
Country Status (2)
Country | Link |
---|---|
EA (1) | EA202090714A3 (ru) |
RU (1) | RU2718284C1 (ru) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006304764A1 (en) * | 2005-10-21 | 2007-04-26 | Bayer Healthcare Llc | Methods for prediction and prognosis of cancer, and monitoring cancer therapy |
AU2009269541A1 (en) * | 2008-07-09 | 2010-01-14 | Decode Genetics Ehf | Genetic variants as markers for use in urinary bladder cancer risk assessment, diagnosis, prognosis and treatment |
GB201218570D0 (en) * | 2012-10-16 | 2012-11-28 | Randox Lab Ltd | Method |
WO2017079763A1 (en) * | 2015-11-06 | 2017-05-11 | Ventana Medical Systems, Inc. | Representative diagnostics |
RU2681754C1 (ru) * | 2018-02-15 | 2019-03-12 | Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации | Способ диагностики клинически значимого рака предстательной железы |
-
2019
- 2019-04-12 RU RU2019111091A patent/RU2718284C1/ru active
-
2020
- 2020-04-10 EA EA202090714A patent/EA202090714A3/ru unknown
Also Published As
Publication number | Publication date |
---|---|
RU2718284C1 (ru) | 2020-04-01 |
EA202090714A3 (ru) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Khosravi et al. | A deep learning approach to diagnostic classification of prostate cancer using pathology–radiology fusion | |
US20220156930A1 (en) | Cancer risk stratification based on histopathological tissue slide analysis | |
Hilty et al. | MicroTools enables automated quantification of capillary density and red blood cell velocity in handheld vital microscopy | |
Wang et al. | High-throughput optical sensing immunoassays on smartphone | |
US20170270346A1 (en) | Systems and methods for generating fields of view | |
Kumar et al. | Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers | |
Kwak et al. | Artificial intelligence‐based measurement outperforms current methods for colorectal polyp size measurement | |
RU2019104870A (ru) | Комбинированный тест на наличие колоректального рака | |
CY1119797T1 (el) | Λακτοφερινη για χρηση στη διαγνωση και προγνωση της νοσου alzheimer | |
EA201900375A1 (ru) | Способ и система для скринингового определения вероятности наличия рака легкого | |
Şerbănescu et al. | Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks | |
Sobhy et al. | Significance of biglycan and osteopontin as non-invasive markers of liver fibrosis in patients with chronic hepatitis B virus and chronic hepatitis C virus | |
Wei et al. | Multi-scale sequential feature selection for disease classification using Raman spectroscopy data | |
EA202090714A2 (ru) | Способ скринингового определения вероятности наличия рака мочевого пузыря | |
Nwafor et al. | The Role of Biomarkers in the Diagnosis and Prognosis of Different Stages of Melanoma | |
Schaumburg et al. | Coupling ELISA to smartphones for POCT of chronic and congenital Chagas disease | |
EA202090713A2 (ru) | Способ скринингового определения вероятности наличия рака молочной железы | |
Pires et al. | Automated multi-lesion detection for referable diabetic retinopathy in indigenous health care | |
RU2010149267A (ru) | Улучшенные способы иммуноанализа | |
Macotpet et al. | Attenuated total reflection Fourier transform infrared as a primary screening method for cancer in canine serum | |
Fano et al. | Longitudinal assessment of two Mycoplasma hyopneumoniae enzyme-linked immunosorbent assays in challenged and contact-exposed pigs | |
EA201900374A2 (ru) | Способ и система для скринингового определения вероятности наличия колоректального рака | |
Taccioli et al. | Semi-quantitative determination of thiocyanate in saliva through colorimetric assays: design of CNN architecture via input-aware NAS | |
JP5133842B2 (ja) | 癌が疑われる患者または癌患者由来の組織の癌部と非癌部との判別方法およびそれに用いる判別試薬 | |
Heindl et al. | Automated REcognition of Tissue‐associated Erythrocytes (ARETE)—a new tool in tissue cytometry |