DK173763B1 - Vector for expression in yeast with a PyK promoter, and a process for synthesizing hepatitis B virus surface antigen with the aid of this vector - Google Patents
Vector for expression in yeast with a PyK promoter, and a process for synthesizing hepatitis B virus surface antigen with the aid of this vector Download PDFInfo
- Publication number
- DK173763B1 DK173763B1 DK199301074A DK107493A DK173763B1 DK 173763 B1 DK173763 B1 DK 173763B1 DK 199301074 A DK199301074 A DK 199301074A DK 107493 A DK107493 A DK 107493A DK 173763 B1 DK173763 B1 DK 173763B1
- Authority
- DK
- Denmark
- Prior art keywords
- yeast
- dna
- promoter
- segment
- vector
- Prior art date
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
i DK 173763 B1 5 For maksimal udtrykkelse af fremmede gener i mikrobiologiske systemer er det sædvanligvis hensigtsmæssigt at anvende homologe reguleringselementer inden for udtrykkel-sesvektoren. Effektiviteten af udtrykkeisen (produktdannelsen) antages at være en funktion af og proportional 10 med styrken af den anvendte promotor. Endvidere vil regulering af gen-udtrykkelsen ved hjælp af ernæringsfaktorer under kontrol af forsøgsudøveren tilvejebringe endnu et velegnet manipulatorisk værktøj. De glycolytiske enzymgener for gær, dvs. sådanne som koder for pyrodruesyre-15 kinase (PyK) , besidder de ovennævnte værdifulde egenskaber, dvs. høj grad af udtrykkelse (og er således ved interferens meget effektive promotorer) og susceptibilitet til regulering ved komponenter af vækstmediet.in DK 173763 B1 5 For maximal expression of foreign genes in microbiological systems, it is usually appropriate to use homologous regulatory elements within the expression vector. The efficiency of the expression ice (product formation) is assumed to be a function of and proportional to the strength of the promoter used. Furthermore, regulation of gene expression by nutritional factors under the control of the experimenter will provide yet another suitable manipulative tool. The glycolytic enzyme genes for yeast, i.e. those which encode pyruvic acid kinase (PyK) possess the above-mentioned valuable properties, viz. high expression (and thus, by interference, are very effective promoters) and susceptibility to regulation by components of the growth medium.
20 Opfindelsen vedrører således isolation, produkter og anvendelsen af gærudtrykkelses-plasmider af DNA-fragmenter, svarende til de 5'-ikke-kodende regioner af de regulerbare gener PyK i gær. Disse fragmenter, som indeholder DNA-sekvenser med stærk transscriptionspromoverende aktivi-25 tet, kaldes "promotorer". Disse er ideelle komponenter af DNA-vektorer til teknisk fremstilling af store mængder proteiner, kodet af fremmede gener under deres trans-scriptionelle kontrol. Det fremmede gen er hepatitis B overfladeantigen eller dele deraf.The invention thus relates to the isolation, products, and the use of yeast expression plasmids of DNA fragments corresponding to the 5 'non-coding regions of the regulated genes PyK in yeast. These fragments, which contain DNA sequences with strong transcriptional promoter activity, are called "promoters". These are ideal components of DNA vectors for the technical production of large amounts of proteins encoded by foreign genes under their transcriptional control. The foreign gene is hepatitis B surface antigen or parts thereof.
3030
Endvidere angår opfindelsen gær-udtrykkelsesplasmider, som omfatter en egnet terminator til at danne en "kassette" af promotor-fremmed gen-terminator. Tilstedeværelse af terminatoren forøger udtrykkeisen af det fremmede DNA.Furthermore, the invention relates to yeast expression plasmids which comprise a suitable terminator for forming a "cassette" of promoter-foreign gene terminator. The presence of the terminator increases the expression of the foreign DNA.
DK 173763 B1 2DK 173763 B1 2
Et tidligt forsøg på at udtrykke fremmed DNA i gær er svigtet (Beggs, J.D. et al., Nature (1980) 283:285) . IAn early attempt to express foreign DNA in yeast has failed (Beggs, J.D. et al., Nature (1980) 283: 285). IN
denne rapport blev haemoglobin DNA (indført sammen med sin egen promotor) transscriberet, men der~var"iliké-"spTéjset 5 RNA. En række forklaringer for dette resultat er mulige, f.eks. en ukorrekt beliggenhed for initiering af transscription og/eller en dårlig evne får gærcellerne til at udføre splejsning af berørte sekvenser (introner).this report, the haemoglobin DNA (introduced together with its own promoter) was transcribed, but there was "similar" spotted 5 RNA. A number of explanations for this result are possible, e.g. an incorrect location for initiating transcription and / or poor ability causes the yeast cells to perform splicing of affected sequences (introns).
10 PyK-genet er blevet klonet, men kun ved genetisk komple-mentering (ingen strukturstudier er udført) (Kawasaki, G. and Fraenel, D.G., Biochem. Biophys. Res. Comm. (1982) 108:1107). Andre gærpromotorer, f.eks. for alkohol-dehy-drogenase I (Valenzuela, P. et al., Nature (1982) 298:347 15 og Hitzeman, R.A. et al., Nature (1981) 293:717) og phos-phoglycerat-kinase (Tuite, M.F. et al., EMBO J. (1982) 1_: 603 og Hitzeman, R.A. et al., Science (1983) 219:620) er blevet knyttet til fremmede gener til fremstilling af gærudtrykkelse, men der har ikke været anvendt terminato-20 rer. Ved den foreliggende opfindelse tilvejebringes hidtil ukendte promotorer for gær-udtrykkelsessystemer, hvorved der opnås fordele ved højt udtrykkelige promotorer, kombineret med forbedret udtrykkelse, som er fundet med passende ligerede terminatorer.The PyK gene has been cloned but only by genetic complementation (no structural studies have been performed) (Kawasaki, G. and Fraenel, D.G., Biochem. Biophys. Res. Comm. (1982) 108: 1107). Other yeast promoters, e.g. for alcohol dehydrogenase I (Valenzuela, P. et al., Nature (1982) 298: 347 and Hitzeman, RA et al., Nature (1981) 293: 717) and phosphoglycerate kinase (Tuite, MF et al., EMBO J. (1982) 1: 603 and Hitzeman, RA et al., Science (1983) 219: 620) have been linked to foreign genes for the production of yeast expression, but no terminators have been used. . The present invention provides novel promoters for yeast expression systems, thereby providing the benefits of highly express promoters, combined with improved expression found with appropriately ligated terminators.
2525
Publiceret europæisk patentansøgning (EP 072 318) offentliggør konstruktionen af et gær-udtrykkelsessystem som, ved induktion, udtrykker hepatitis B virus overfladeantigen (HBsAG) S-protein under kontrol af gær 30 alkohol dehydrogenase I (ADH-I) promotoren.Published European Patent Application (EP 072 318) discloses the construction of a yeast expression system which, upon induction, expresses hepatitis B virus surface antigen (HBsAG) S protein under the control of the yeast 30 alcohol dehydrogenase I (ADH-I) promoter.
Den foreliggende opfindelse angår således en vektor for udtrykkelse i gær og af den i indledningen til krav 1 angivne art.Thus, the present invention relates to a vector for expression in yeast and of the kind set forth in the preamble of claim 1.
DK 173763 B1 3DK 173763 B1 3
Vektoren er ejendommelig ved det i den kendetegnende del af krav 1 anførte. Vektoren koder for hepatitis B virus (HBV) overfladeantigen (HBsAg), der er under trans-5 scriptionel kontrol af en gær-PyK-promotor. Terminatorer kan også være tilknyttet på passende måde. Udtrykkel-sesvektoren har typisk en gær-replikationsoprindelse og en bakteriel replikationsoprindelse og er i stand til at replicere i begge celletyper. Udtrykkelsesvektoren, an-10 vendt til at transformere gærceller, vil give væsentlige mængder af proteinet, der er kodet af segmentet af fremmed DNA. Udtrykkelse af HBsAg under kontrol af gær-PyK-promotor giver overraskende højt udbytte, jvnf. eksempel 4 og tabel 1.The vector is peculiar to that of the characterizing part of claim 1. The vector encodes hepatitis B virus (HBV) surface antigen (HBsAg) under the transcriptional control of a yeast PyK promoter. Terminators may also be appropriately attached. The expression vector typically has a yeast replication origin and a bacterial replication origin and is capable of replication in both cell types. The expression vector, used to transform yeast cells, will yield substantial amounts of the protein encoded by the foreign DNA segment. Expression of HBsAg under the control of yeast PyK promoter gives surprisingly high yield, cf. Example 4 and Table 1.
1515
Opfindelsen skal forklares ved hjælp af tegningen, hvor fig. 1 nucleotid-sekvens af pyrodruesyre-kinase (PyK)-gen, og 20 fig. 2 strukturen for gær-udtrykkelsesplasmid indeholdende PyK-promotor-region.The invention will be explained by means of the drawing, in which fig. 1 nucleotide sequence of pyruvic acid kinase (PyK) gene, and 20 fig. 2 shows the structure of yeast expression plasmid containing PyK promoter region.
I princippet har gær-udtrykkelsesplasmider særlige forde-25 le, herunder de i det efterfølgende angivne. Gær kan dyrkes i stor målestok ved velkendte produktionsbetingelser. Derimod er bakterier, dyrket som kultur i stor målestok, udsat for det hyppigt forekomne problem med "phage-out".In principle, yeast expression plasmids have particular advantages, including those set forth below. Yeast can be grown on a large scale under well-known production conditions. By contrast, bacteria, grown as a large-scale culture, are exposed to the frequent "phage-out" problem.
Gær synes også at have samme evne som animalske eller hu-30 mane celler at kunne tilføre carbonhydratgrupper til nylig syntetiserede proteiner, en evne bakterier ikke er i besiddelse af. Da cDNA-sekvenser er let tilgængelige, kan problemet med udtrykning af gener, der har introner, let undgår.Yeast also appears to have the same ability as animal or human cells to supply carbohydrate groups to newly synthesized proteins, an ability of bacteria not to possess. Since cDNA sequences are readily available, the problem of expression of genes having introns can be easily avoided.
DK 173763 B1 4DK 173763 B1 4
Endvidere angår opfindelsen en fremgangsmåde til udtryk-kelse af det i vektoren indeholdte DNA-kodningssegment i gær, hvilken fremgangsmåde er ejendommelig ved det i den 5 kendetegnende del af krav 6 anførte.Furthermore, the invention relates to a method for expressing the yeast DNA coding segment contained in the vector, which method is characterized by the characterizing part of claim 6.
Den omhandlede vektor omfatter promotorer med usædvanlig høj effektivitet. En promotor er heri defineret som et DNA-segment, der kan fungere ved at indlede transscripti-10 on af et tilsluttet DNA-segment. Transscription er syntesen af RNA (her defineret som messenger RNA eller mRNA), der er komplementært til den ene streng af det i promotor-regionen tilsluttede DNA. I eukaryoter katalyseres messenger RNA-syntese ved et enzym betegnet RNA-polymera-15 se II. De minimale essentielle elementer af promotorfunktionen er følgende: for at tilvejebringe et udgangspunkt for initieringen af transscription og danne et bindingssæde for at gøre det muligt at udvælge den aktuelle streng af DNA som en støbeform for messenger RNA-syntese.The vector in question comprises promoters with exceptionally high efficiency. A promoter is herein defined as a DNA segment which can function by initiating transcription of a connected DNA segment. Transcription is the synthesis of RNA (herein defined as messenger RNA or mRNA) that is complementary to one strand of the DNA attached to the promoter region. In eukaryotes, messenger RNA synthesis is catalyzed by an enzyme termed RNA polymerase II. The minimal essential elements of the promoter function are as follows: to provide a starting point for the initiation of transcription and to form a binding site to enable the current strand of DNA to be selected as a mold for messenger RNA synthesis.
20 Endvidere fungerer en eukaryotisk promotor til at regulere den relative effektivitet af transscription af kodningssegmenter under kontrol heraf. En aktiv promotor er en, som frembringer syntese af forholdsvis store mængder mRNA, der er komplementært med en streng af det tilslut-25 tede DNA-kodningssegment.Furthermore, a eukaryotic promoter functions to regulate the relative efficiency of transcription of coding segments under its control. An active promoter is one that produces synthesis of relatively large amounts of mRNA complementary to a strand of the associated DNA coding segment.
De strukturmæssige korrelationer for promotor-funktion er endnu ikke tydeligt opklaret. Et promotor-segment kan sædvanligvis identificeres som en region, der ligger nær 30 ved 5'-enden af et givet strukturelt gen. (Referencerne til 5'- og 3'-enderne af et gen vil forstås til at injicere de tilsvarende respektive ender af mRNA, der er transscriberet derfra, og disse korrelerer med henholdsvis NHc- og -COOH-endegrupperne i det kodede protein).The structural correlations for promoter function have not yet been clearly established. A promoter segment can usually be identified as a region close to 30 at the 5 'end of a given structural gene. (The references to the 5 'and 3' ends of a gene will be understood to inject the corresponding respective ends of mRNA transcribed therefrom and these correlate with the NHc and -COOH end groups, respectively, of the encoded protein).
DK 173763 B1 5DK 173763 B1 5
Sammenligninger af nucleotid-sekvenserne for promotorer for forskellige gener fra forskellige arter har kun afsløret nogle få korte regioner af nucleotidsekvens med stor indbyrdes lighed. Mest bemærkelsesværdig for disse 5 er "TATA Box", der er et segment på 5-10 nucleotider, anbragt generelt ca. 70-230 nucleotider i retning fra sædet fra transscription-initiering, og med en sekvens generelt lignende TATAA. En oversigt af strukturmæssig sammenligning fremgår af Breathnach, R. og Chambon, P., Ann. Rev.Comparisons of the nucleotide sequences of promoters for different genes from different species have revealed only a few short regions of highly similar nucleotide sequence. Most notable for these 5 is the "TATA Box", which is a 5-10 nucleotide segment, generally located approx. 70-230 nucleotides in the direction of the site from transcription initiation, and with a sequence generally similar to TATAA. An overview of structural comparison appears in Breathnach, R. and Chambon, P., Ann. Rev.
10 of Biochem. (1981) 50:349. TATA Box antages at fungere ved initiering af transscription.Or Biochem. (1981) 50: 349. The TATA Box is believed to work when initiating transcription.
Det fremmede gen vil være frit for eller i det væsentlige frit for codoner fra det normale strukturelle gen, knyt-15 tet til promotoren. Sædvanligvis vil det fremmede gen være sluttet til en ikke-kodende 3'-ende af den regulerende region, der omfatter promotoren, og således være fri for de aminosyrer ved N-terminus af endogent gen, der naturligt er associeret med den regulatoriske region.The foreign gene will be free of or substantially free of codons from the normal structural gene attached to the promoter. Usually, the foreign gene will be attached to a non-coding 3 'end of the regulatory region comprising the promoter, and thus be free of the amino acids at the N-terminus of endogenous gene naturally associated with the regulatory region.
20 Dvs. at færre end 3 codoner (9 nucleotider) vil være tilbageholdt med den regulatoriske region, når den er sluttet til det fremmede gen.Ie. that fewer than 3 codons (9 nucleotides) will be retained with the regulatory region when attached to the foreign gene.
Tilstedeværelsen af terminator-sekvensen ved 3’-enden af 25 kodningssegmentet forhøjer udtrykkeisen. Effekten er i almindelighed tilsvarende tilsætning af rho-faktoren til prokaryotiske transscriptionssystemer, hvori hastigheden af frigivelsen af RNA-polymerase er forøget til at producere en forøgelse af hastigheden af reinitieringen af 30 transscription. Det vil forstås, at medens terminator-sekvenserne ikke kræves til påviselig udtrykkelse af fremmede DNA-segmenter, foretrækkes det på passende måde at knytte dem til forhøjet udtrykkelse. Terminatorregion- DK 173763 B1 6 en kan være naturligt associeret med det samme eller forskellige strukturelle gener som promotor-regionen.The presence of the terminator sequence at the 3 'end of the 25 coding segment enhances the expression ice. The effect is generally similar to the addition of the rho factor to prokaryotic transcription systems, in which the rate of RNA polymerase release is increased to produce an increase in the rate of reinitialization of transcription. It will be appreciated that while the terminator sequences are not required for detectable expression of foreign DNA segments, it is preferable to associate them with elevated expression. The terminator region may be naturally associated with the same or different structural genes as the promoter region.
Den mest velegnede DNA-vektor for PyK-konstruktion ifølge 5 opfindelsen er en skyttel-vektor. Disse vektorer kan veksle som en skyttel mellem en bakteriestamme, f.eks. E. coli, og gær, fordi de har en bakteriel replikationsop-rindelse og en gær-replikationsoprindelse, se f.eks. Ammerer, G. et al., Recombinant DNA, Proc. Third Cleveland 10 Symposium Macromolecules (Walton, A.G., ed.), p. 195,The most suitable DNA vector for PyK construction according to the invention is a shuttle vector. These vectors may alternate as a shuttle between a bacterial strain, e.g. E. coli, and yeast, because they have a bacterial replication origin and a yeast replication origin, see e.g. Ammerer, G. et al., Recombinant DNA, Proc. Third Cleveland 10 Symposium Macromolecules (Walton, A.G., ed.), P. 195,
Elsevier, Amsterdam (1981). En typisk bakteriel replika-tionsoprindelse er f.eks. afledt af pBR322. Den mest egnede gær-replikationsoprindelse er fundet i det ekstra-chromosomale genetiske element, der er kendt som 2 mi-15 cron-cirkel. I laboratoriestammer har 2 mikroplasmid DNA vist sig at være til stede i tilnærmelsesvis 50 kopier pr. celle og opretholdes stabilt. En oversigt heraf fremgår f.eks. af Curr. Topics Micro. Imm. (1982) 96:119.Elsevier, Amsterdam (1981). A typical bacterial replication origin is e.g. derived from pBR322. The most suitable yeast replication origin is found in the extra-chromosomal genetic element known as the 2 mi-15 cron circle. In laboratory strains, 2 microplasmid DNA have been found to be present in approximately 50 copies per cell and maintained stable. An overview of this can be seen, for example. by Curr. Topics Micro. Imm. (1982) 96: 119.
Dette gærplasmid er også blevet bestemt (Hartley, J.L. et 20 al., Nature (1980) 286:860).This yeast plasmid has also been determined (Hartley, J.L. et al., Nature (1980) 286: 860).
Repræsentative prøver af plasmiderne og værtscellerne, der anvendes ved strukturen ifølge opfindelsen, er deponeret hos American Type Culture Collection, 12301 Park-25 lawn Drive, Rockville, Maryland. Plasmid pPyK 9.1.1 og gærcelletransformanter 2150-2-3/pHBS-56 og 2150-2-3/pHBS56PyK blev deponeret 18. februar 1983 og har fået ATCC-registreringsnumrene 40061 og 20666.Representative samples of the plasmids and host cells used in the structure of the invention are deposited with the American Type Culture Collection, 12301 Park-25 lawn Drive, Rockville, Maryland. Plasmid pPyK 9.1.1 and yeast cell transformants 2150-2-3 / pHBS-56 and 2150-2-3 / pHBS56PyK were deposited on February 18, 1983 and have been assigned ATCC registration numbers 40061 and 20666.
30 Mange af de i de efterfølgende eksempler omtalte teknikker, reaktioner og adskillelsesprocedurer er i og for sig velkendte. Alle enzymer, med mindre andet er angivet, kan tilvejebringes fra en eller flere kommercielle kilder, såsom New England Biolabs, Beverly, Massachusetts; Colla- DK 173763 B1 7 borative Research, Waltham, Massachusetts; Miles Laboratories, Elkhart, Indiana; Boehringer Biochemicals, Inc., Indianapolis, Indiana og Bethesda Research Laboratories, Rockville, Maryland. Puffere og reaktionsbetingelser for 5 enzymprocesser blev valgt efter anbefaling fra leverandøren af hvert enkelt enzym, med mindre andet er angivet. Standardmetoder for andre enzymreaktioner, gel-elektrofo-rese-separationer og E. coli transformation er beskrevet i Methods in Enzymology, (1979) 6j3. Transformation af 10 gærprotoplaster kan udføres som beskrevet af Beggs, Nature (1978) 275:104.Many of the techniques, reactions and separation procedures mentioned in the following examples are well known in the art. All enzymes, unless otherwise stated, can be obtained from one or more commercial sources, such as New England Biolabs, Beverly, Massachusetts; Colla- DK 173763 B1 7 Borative Research, Waltham, Massachusetts; Miles Laboratories, Elkhart, Indiana; Boehringer Biochemicals, Inc., Indianapolis, Indiana and Bethesda Research Laboratories, Rockville, Maryland. Buffers and reaction conditions for 5 enzyme processes were selected on the recommendation of the supplier of each enzyme, unless otherwise indicated. Standard methods for other enzyme reactions, gel electrophoresis separations and E. coli transformation are described in Methods in Enzymology, (1979) 6j3. Transformation of 10 yeast protoplasts can be performed as described by Beggs, Nature (1978) 275: 104.
Stammen af E. coli, der egner sig til transformation, omfatter X1776; K12-stammen 294 (ATCC no. 31446); RR.1 og 15 HB101. Gærstammer XV610-8c med genotypen (a ade2 ade6 leu2 lysi trpl canl) og GM-3C-2, genotype: (Leu2 TrplThe strain of E. coli suitable for transformation includes X1776; K12 strains 294 (ATCC no. 31446); RR.1 and 15 HB101. Yeast strains XV610-8c with genotype (a ade2 ade6 leu2 lysi trpl canl) and GM-3C-2, genotype: (Leu2 Trpl
His4 CYC1-1CYP3-1) (Faye, G. et al., Proc. Natl. Acad.His4 CYC1-1CYP3-1) (Faye, G. et al., Proc. Natl. Acad.
Sci. (1981) 78:2258) kan typisk anvendes til gærtransfor-mationer. Det vil dog forstås, at praktisk taget enhver 20 gærart er velegnet til transformation. Bakterie kan dyrkes og udvælges i overensstemmelse med en procedure, som er beskrevet af Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1972) . Gær kan dyrkes på følgende medier: 25 YEPD med 1% (w/v) gærekstrakt, 2% (w/v) pepton og (w/v) glucose; og, i tilfælde af plademedium, 3% (w/v) agar.Sci. (1981) 78: 2258) can typically be used for yeast transformations. However, it will be appreciated that virtually any 20 yeast species is suitable for transformation. Bacteria can be grown and selected according to a procedure described by Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1972). Yeast can be grown on the following media: 25 YEPD with 1% (w / v) yeast extract, 2% (w / v) peptone and (w / v) glucose; and, in the case of plate medium, 3% (w / v) agar.
YNB plus CAA indeholder 6,7 g gærnitrogenbase (Difco Laboratories, Minneapolis, Minnesota), 10 mg adenin, 10 mg uracil, 5 g casaminosyrer (CCA) (Difco), 20 g glucose; og 30 i tilfælde af plademedier, 30 g agar pr. liter. Udvælgelse af tryptophanprototrofi kan ske på plader indeholdende 6,7 g gærnitrogenbase (mangel-aminosyre), supplementær med alle vækstbetingelser for den stamme, der skal transformeres, med undtagelse af tryptophan.YNB plus CAA contains 6.7 g of yeast nitrogen base (Difco Laboratories, Minneapolis, Minnesota), 10 mg of adenine, 10 mg of uracil, 5 g of casamic acids (CCA) (Difco), 20 g of glucose; and 30 in the case of plate media, 30 g agar per ml. liter. Selection of tryptophan prototrophy may be performed on plates containing 6.7 g of yeast nitrogen base (deficiency amino acid), supplementary with all growth conditions of the strain to be transformed, with the exception of tryptophan.
DK 173763 B1 8 EKSEMPEL 1Example 17
Kloning af gær-pyrodruesyre-kinase-gen 5Cloning of yeast pyruvic acid kinase gene 5
Pyrodruesyre-kinase-genet blev klonet ved komplemente-ring. En gær-pyrodruesyre-kinase minus mutant blev transformeret med en portion rekombinant YEp24 plasmider indeholdende gær-genomisk DNA. Gærstammerne S288C {genotype: 10 SUC2, mal, ga!2, CUP1) og PyK 1-5 (genotype a, adel, leul, met!4, ura3, pykl-5) blev leveret fra Yeast Genetic Stock Center, Department of Biophysics, University of California, Berkeley. Den anvendte gær-genombank består af et partielt Sau3A præparat af total DNA fra stammen S288C 15 klonet i BamHI-sædet af "skyttel"-vektor YEp24. Vektoren YEp24 indeholder pBR322-sekvenser til udvælgelse og vækst i bakterier, gær URA3-genet til udvælgelse i gær og et EcoRI-fragment af gær 2 μ cirkel til sikring af plasmid-replikation og segregering i gær. Portionen omfatter til-20 strækkeligt uafhængige rekombinant-plasmider til at repræsentere hele gær-genomet.The pyruvic acid kinase gene was cloned by complementation. A yeast pyruvic acid kinase minus mutant was transformed with a portion of recombinant YEp24 plasmids containing yeast genomic DNA. Yeast strains S288C {genotype: 10 SUC2, mal, ga! 2, CUP1) and PyK 1-5 (genotype a, noble, leul, met! 4, ura3, pykl-5) were provided from the Yeast Genetic Stock Center, Department of Biophysics , University of California, Berkeley. The yeast genome bank used consists of a partial Sau3A preparation of total DNA from the strain S288C cloned into the BamHI site of "shuttle" vector YEp24. The vector YEp24 contains pBR322 sequences for selection and growth of bacteria, the yeast URA3 gene for selection in yeast, and an EcoRI fragment of yeast 2 μ circle to assure plasmid replication and segregation in yeast. The portion comprises sufficiently independent recombinant plasmids to represent the entire yeast genome.
Stammen pykl-5 er ikke i stand til at gro på medium indeholdende glucose eller manglende uracil på grund af muta-25 tioner i denne stamme ved henholdsvis PyKl og URA3-sæder-ne. Transformation af denne stamme med YEp24 genomisk bibliotek og udvælgelse for transformanter, der kan gro på et medium, som mangler uracil og indeholder glucose, udvælger sådanne celler, som har erhvervet YEp24, indehol-30 dende pyrodruesyre-kinase-genet. Transformation af 3,5 x 109 pykl-5 gærceller med 10 ug YEp24 rekombinant-plasmid-DNA gav 5 uafhængige transformanter, som voksede i fraværelse af uracil og i nærværelse af glucose.The pykl-5 strain is unable to grow on medium containing glucose or lack of uracil due to mutations in this strain at the PyK1 and URA3 sites, respectively. Transformation of this strain with YEp24 genomic library and selection for transformants capable of growing on a medium lacking uracil and containing glucose selects such cells that have acquired YEp24 containing the pyruvic acid kinase gene. Transformation of 3.5 x 10 9 pykl-5 yeast cells with 10 µg of YEp24 recombinant plasmid DNA yielded 5 independent transformants which grew in the absence of uracil and in the presence of glucose.
DK 173763 B1 9DK 173763 B1 9
Karakterisation af det indsatte DNA i disse transforman-ter ved restriktionsenzym-analyse angav, at de indeholdt overlappende DNA-indsætninger. Der er fokuseret på en enkelt transformant, pPyK 9,1, som indeholdt en 7,0 kb ind-5 sats. Pyrodruesyre-kinase-genet blev lokaliseret inden for denne indsætning ved bestemmelse hvilken indsætningsspecifik restriktions-fragmenter, som hybridiserede til et mRNA på ca. 1,7 kb, hvilket er forventet for pyrodrue-syre-kinase-mRNA. Lokalisering af PyK-genet blev bekræf-10 tet ved underkloning af passende regioner af det indsatte DNA og iagttagelse af komplementering af funktion i pykl- 5-mutant. En underklon pPyK 9.1.1, som indeholdt PyK-ge-net på en 4,4 kb indsætning blev rækkebestemt og anvendt til udtrykkelse af plasmidstrukturer.Characterization of the inserted DNA in these transformants by restriction enzyme analysis indicated that they contained overlapping DNA inserts. The focus is on a single transformant, pPyK 9.1, which contained a 7.0 kb insert. The pyruvic acid kinase gene was localized within this insert by determining which insert-specific restriction fragments hybridized to an mRNA of ca. 1.7 kb, which is expected for pyruvic acid kinase mRNA. Localization of the PyK gene was confirmed by subcloning appropriate regions of the inserted DNA and observing complementation of function in pykl-5 mutant. A subclone pPyK 9.1.1 containing PyK gene on a 4.4 kb insert was sequenced and used to express plasmid structures.
15 EKSEMPEL 2EXAMPLE 2
Sekvens af gær-pyrodruesyre-kinase-gen 20Sequence of yeast pyruvic acid kinase gene 20
Ialt 2885 nucleotider af PyK-genet er blevet rækkebestemt, omfattende 1497 nucleotider i en enkelt åben kæde, 911 nucleotider af 5'-ikke-translaterede region og 477 nucleotider af 3'-ikke-translaterede region (se fig. 4) .A total of 2885 nucleotides of the PyK gene have been sequenced, comprising 1497 single open chain nucleotides, 911 nucleotides of the 5 'untranslated region and 477 nucleotides of the 3' untranslated region (see Fig. 4).
25 Genet forkoder for et polypeptid med 499 aminosyrer til opnåelse af en monomer molekylvægt på 54,608 dalton, hvilket er i god overensstemmelse med den ventede værdi for gær-PyK. Aminosyrekompositionen, afledt fra nucleo-tidsekvensen svarer også nøje til den, som er målt for 30 det isolerede gær-protein. Nucleotidsekvensen forudsiger en carboxy-terminalvalin, som er fundet for gær-pyrodrue-syre-kinase.The gene encodes a polypeptide of 499 amino acids to give a monomeric molecular weight of 54,608 daltons, which is in good agreement with the expected value for yeast PyK. The amino acid composition derived from the nucleotide sequence also corresponds closely to that measured for the isolated yeast protein. The nucleotide sequence predicts a carboxy-terminal valine found for yeast pyruvic acid kinase.
DK 173763 B1 10 EKSEMPEL 3Example 17
Struktur for gær-udtrykkelses-plasmider under anvendelse af pyrodruesyre-kinase-promotor-region 5Yeast Expression Plasmid Structure Using Pyruvic Acid Kinase Promoter Region 5
To forskellige strukturer blev fremstillet: pHBS16 PyK og pHBS56 PyK. Proceduren er den i fig. 5 illustrerede.Two different structures were prepared: pHBS16 PyK and pHBS56 PyK. The procedure is that of FIG. 5 illustrated.
Plasmidet pPyK 9.1.1, som indeholder gær-PyK-genet klonet 10 i pBR322 blev omsat med Xbal, og de udragende ender blev fyldt op med deoxynucleotider ved hjælp af DNA-polymerase I. Produktet blev omsat med BamHI for endeligt at isolere et 912 bp BamHI-afstumpet fragment, indeholdende PyK-pro-motor og 8 baser fra PyK-kodningsregion. Dette fragment 15 blev legeret til plasmid-pHBS-6 (indeholder HBsAg-genet/ hvori den 5'-ikke-kodende region er blevet fjernet, klonet i pBR322), forud omsat med Ncol, fyldt ind ved hjælp af DNA-polymerase og omsat med BamHI. Efter transformation af E. coli blev pHBS-6PyK isoleret. Dette plasmid in-20 deholder PyK-promotor med codoner for 3 ekstra aminosyrer, smeltet i fase med HBsAg-kodningssekvens, ATGTCTAG CATG .Plasmid pPyK 9.1.1, which contains the yeast PyK gene cloned 10 in pBR322, was reacted with XbaI and the protruding ends were filled with deoxynucleotides by DNA polymerase I. The product was reacted with BamHI to finally isolate a 912 bp BamHI blunt fragment containing PyK promoter and 8 bases from PyK coding region. This fragment 15 was alloyed to plasmid pHBS-6 (contains the HBsAg gene / in which the 5 'non-coding region has been removed, cloned into pBR322), pre-digested with NcoI, filled in by DNA polymerase and reacted with BamHI. After transformation of E. coli, pHBS-6PyK was isolated. This plasmid contains PyK promoter with codons for 3 extra amino acids, fused in phase with HBsAg coding sequence, ATGTCTAG CATG.
I_I 1_II_I 1_I
25 pHBS-6PyK blev omsat med BamHI til afslutning og delvis reageret med EcoRI til isolering af 1750 bp BamHI-EcoRI-fragment, indeholdende PyK-promotor, smeltet til HBsAg-genet. Dette 1750 bp-fragment blev ligeret til det store 30 fragment, som er opnået efter omsætning af pHBS-16 (ATCC register No. 40043, plasmid, beskrevet i USA patentansøgning nr. 442 687, med benævnelsen "Adenovirus Promotor in Yeast", med BamHI og EcoRI og anvendt til transformering af E. coli. Der opnåedes gær-udtrykkelsesplasmidet pHBS- DK 173763 B1 11 16PyK. Dette pHBS-16PyK blev omsat til afslutning med Sphl og Xbal, og et 1200 bp SphI-Xbal-fragment (indeholdende 200 bp af pBR322, PyK-promotoren og 100 bp af 5f-region af HBsAg-genet) blev isoleret. Dette 1200 bp Sphl-5 Xbal-fragment blev ligeret til et 1070 bp Xbal-Sphl-frag-ment (isoleret fra pHBS-56) indeholdende 3’-enden af HBsAg-genet og ADH-l-terminatoren. Efter omsætning med Sphl isoleredes et SphI-Sphl 2300 bp-fragment (kassette) indeholdende PyK-promotor, HBsAg-gen og ADH-l-terminator.25 pHBS-6PyK was reacted with BamHI for completion and partially reacted with EcoRI to isolate the 1750 bp BamHI-EcoRI fragment containing PyK promoter fused to the HBsAg gene. This 1750 bp fragment was ligated to the large 30 fragment obtained after reaction of pHBS-16 (ATCC register No. 40043, plasmid, described in U.S. Patent Application No. 442,687, entitled "Adenovirus Promotor in Yeast", with Bam HI and Eco RI and used to transform E. coli, the yeast expression plasmid pHBS-DK 173763 B1 11 was obtained 16 PyK. This pHBS-16PyK was digested with Sphl and Xba bp of pBR322, the PyK promoter, and 100 bp of the 5f region of the HBsAg gene) were isolated This 1200 bp Sphl-5 XbaI fragment was ligated to a 1070 bp XbaI-Sphl fragment (isolated from pHBS-56 ) containing the 3 'end of the HBsAg gene and the ADH-1 terminator. After reaction with Sphl, a SphI-Sphl 2300 bp fragment (cassette) containing PyK promoter, HBsAg gene and ADH-1 terminator was isolated.
10 Dette kassette-fragment blev klonet i pHBS-56, som forud var omsat med Sphl. Gær-udtrykkelsesplasmid pHBS-56 PyK blev opnået. Dette plasmid blev anvendt til at transformere gærstammen AB102 (se eksempel 2) eller stammen 2150- 2-3 (se eksempel 2).This cassette fragment was cloned into pHBS-56, which was previously reacted with SphI. Yeast expression plasmid pHBS-56 PyK was obtained. This plasmid was used to transform the yeast strain AB102 (see Example 2) or the strain 2150-3 (see Example 2).
15 EKSEMPEL 4EXAMPLE 4
Syntese af HBsAg i gær under PyK-promotor-kontrol 20 100 ml Kulturer af stammen AB102, indeholdende plasmid pHBS-56 PyK blev dyrket til optisk tæthed ved 650 nm af 1-2. Cellefrit lysat blev fremstillet ved omrøring med glaskugler og fjernelse af celle-debris ved centrifugering. HBsAg blev målt ved Abbott Ausriall radioimmunoprø-25 ver, og protein-koncentrationen blev bestemt ved Coomas-sie-blåt-bindingsmetoden. Resultaterne fremgår af tabel 2. De viser, at PyK-promotor er mindst to gange mere effektiv end ADH-1-promotor for udtrykkelse af proteinproduktet i gær.Synthesis of HBsAg in Yeast under PyK Promoter Control 20 100 ml Cultures of strain AB102 containing plasmid pHBS-56 PyK were grown to optical density at 650 nm of 1-2. Cell-free lysate was prepared by stirring with glass beads and removing cell debris by centrifugation. HBsAg was measured by Abbott Ausriall radioimmunoassay and the protein concentration was determined by the Coomasse blue binding method. The results are shown in Table 2. They show that PyK promoter is at least twice more effective than ADH-1 promoter for expressing the protein product in yeast.
3030
Tilsvarende resultater blev opnået ved at benytte gærstammen 2150-2-3 i stedet for stammen ABI02 og i øvrigt gentage eksempel 4.Similar results were obtained by using the yeast strain 2150-2-3 instead of the strain AB102 and repeating Example 4.
DK 173763 B1 12DK 173763 B1 12
I- II- I
5 I TABEL 1: Syntese af HBsAG i gær | I-15 IN TABLE 1: Synthesis of HBsAG in yeast | I-1
j (a) fra pHBS-56 (kontrol, ADH-I promotor) Jj (a) from pHBS-56 (control, ADH-I promoter) J
I Spec. IIn Spec. IN
IExp# sAq protein aktivitet | 10 I (pg/ml) (mg/ml) (pgsAg/mg protein) |IExp # sAq protein activity | 10 I (pg / ml) (mg / ml) (pgsAg / mg protein) |
I II I
I 1 8, 2 24 0, 34 | I 2 7, 2 24 0, 32 |I 1 8, 2 24 0, 34 | I 2 7, 2 24 0, 32 |
1 3 4, 7 27 0,23 I1 3 4, 7 27 0.23 I
15 I I15 I I
I (b) fra pHBS-56 PyK (PyK-promotor) | I Spec. [In (b) from pHBS-56 PyK (PyK promoter) | In Spec. [
[Exp# sAg protein aktivitet I[Exp # sAg Protein Activity I
I (pg/ml) (mg/ml) (pgsAg/mg protein) |I (pg / ml) (mg / ml) (pgsAg / mg protein) |
20 I I20 I I
j 1 18 2,5 0, 68 Ij 1 18 2.5 0, 68 I
] 2 10, 6 22 0, 48 I] 2 10, 6 22 0, 48 I
j 3 15, 2 27 0, 56 | i__________i 25j 3 15, 2 27 0, 56 | i__________i 25
Tilsvarende resultater blev opnået ved at benytte gær stammen 2150-2-3 i stedet for stammen AB102 og i øvrigt gentage eksempel 4.Similar results were obtained by using the yeast strain 2150-2-3 instead of strain AB102 and repeating Example 4.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK199301074A DK173763B1 (en) | 1983-02-22 | 1993-09-23 | Vector for expression in yeast with a PyK promoter, and a process for synthesizing hepatitis B virus surface antigen with the aid of this vector |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46858983A | 1983-02-22 | 1983-02-22 | |
US46858983 | 1983-02-22 | ||
DK577783 | 1983-12-15 | ||
DK198305777A DK173604B1 (en) | 1983-02-22 | 1983-12-15 | Yeast expression vector, comprising a foreign DNA coding segment and a method for expressing the DNA coding segment in yeast by such a vector |
DK199301074A DK173763B1 (en) | 1983-02-22 | 1993-09-23 | Vector for expression in yeast with a PyK promoter, and a process for synthesizing hepatitis B virus surface antigen with the aid of this vector |
DK107493 | 1993-09-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK107493A DK107493A (en) | 1993-09-23 |
DK107493D0 DK107493D0 (en) | 1993-09-23 |
DK173763B1 true DK173763B1 (en) | 2001-09-17 |
Family
ID=26067980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK199301074A DK173763B1 (en) | 1983-02-22 | 1993-09-23 | Vector for expression in yeast with a PyK promoter, and a process for synthesizing hepatitis B virus surface antigen with the aid of this vector |
Country Status (1)
Country | Link |
---|---|
DK (1) | DK173763B1 (en) |
-
1993
- 1993-09-23 DK DK199301074A patent/DK173763B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DK107493A (en) | 1993-09-23 |
DK107493D0 (en) | 1993-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1341302C (en) | Yeast expression systems with vectors having gapdh or pyk promoters and synthesis of foreign protein | |
FI101232B (en) | DNA constructs containing an alpha factor leader sequence of Kluyvero myces to control secretion of heterologous polypeptides | |
JP3072993B2 (en) | DNA molecule | |
JP2509163B2 (en) | Expression vector and yeast cell containing the expression vector | |
EP0073657A1 (en) | Preparation of hepatitis B surface antigen in yeast | |
EP0123294A1 (en) | Yeast cell transformation vectors | |
JPH07222595A (en) | Preparation of heterogeneously originated protein by host using substituted promoter | |
US5646012A (en) | Yeast promoter and use thereof | |
WO1988009795A1 (en) | Yeast expression vector | |
EP0329684A4 (en) | Composite yeast vectors. | |
CA1313634C (en) | Strains of yeast for the expression of heterologous genes | |
USRE40940E1 (en) | Yeast promoter and use thereof | |
DK173763B1 (en) | Vector for expression in yeast with a PyK promoter, and a process for synthesizing hepatitis B virus surface antigen with the aid of this vector | |
WO1990002810A1 (en) | Production of interleukin-2 polypeptides in pichia pastoris yeast cells | |
JPH11503318A (en) | Novel promoter for expressing proteins of interest in yeast | |
EP0234871A2 (en) | Regulatable expression of recombinant proteins in yeast | |
US5541084A (en) | Hybrid yeast promoter comprising an ENO2 UAS and TATA region and an additional UAS located between said ENO2 UAS and TATA region | |
WO1986000637A1 (en) | Yeast cloning vehicle | |
Bermejo et al. | Heterologous expression of the highly conserved acidic ribosomal phosphoproteins from Dictyostelium discoideum in Saccharomyces cerevisiae | |
EP0216117A2 (en) | Novel DNA and use thereof | |
WO1986000638A1 (en) | Yeast cloning vehicle | |
JPH062063B2 (en) | Novel DNA and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A0 | Application filed | ||
B1 | Patent granted (law 1993) | ||
PUP | Patent expired |