-
Technisches Gebiet
-
Die vorliegende Erfindung betrifft ein Verfahren zur enantioselektiven Synthese der einzelnen Enantiomere substituierter Sulfoxide oder dieser Verbindungen in enantiomerenangereicherter Form. Derartige substituierte Sulfoxide, die nach dem neuen Verfahren hergestellt werden können, sind beispielsweise die einzelnen Enantiomere von Omeprazol sowie die einzelnen Enantiomere anderer strukturverwandter Sulfoxide. Die erhaltenen Produkte können danach nach üblichen Verfahren in pharmazeutisch unbedenkliche Salze davon umgewandelt werden.
-
Hintergrund der Erfindung und Stand der Technik
-
In einer großen Zahl von Patentschriften und Patentanmeldungen werden verschieden substituierte 2-(2-Pyridinylmethylsulfinyl)-1
H-benzimidazole beschrieben. Diese Verbindungen eignen sich aufgrund der Eigenschaften dieser Verbindungsklasse zur Verwendung als Inhibitoren der Magensäuresekretion. So eignet sich beispielsweise die Verbindung (5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1
H-benzimidazol) mit dem Freinamen Omeprazol, die z. B. in der
EP 5129 beschrieben wird, zur Verwendung als Antiulcusmittel. Andere Verbindungen von Interesse sind beispielsweise die Verbindungen mit den Freinamen Lansoprazol, Pantoprazol, Pariprazol und Leminoprazol.
-
Diese Verbindungen und strukturverwandte Sulfoxide weisen am Schwefelatom ein stereogenes Zentrum auf und existieren daher in Form von zwei optischen Isomeren, d. h. Enantiomeren. Ist im Molekül noch ein anderes stereogenes Zentrum vorhanden, so können diese Verbindungen als Enantiomerenpaare existieren. Die entsprechenden Sulfide derartiger Verbindungen, die bereits ein stereogenes Zentrum enthalten, sind nicht prochiral, sondern chiral. Da jedoch das Schwefelatom in diesen Verbindungen keine Asymmetrie aufweist, werden sie im Rahmen der vorliegenden Verbindung als prochirale Sulfide bezeichnet.
-
Wenngleich diese Klasse chiraler Sulfoxide in der wissenschaftlichen Literatur schon seit den späten siebziger Jahren diskutiert worden ist, ist bisher noch kein wirksames asymmetrisches Verfahren zur Synthese der einzelnen Enantiomere davon beschrieben worden. Die einzelnen Enantiomere pharmakologisch wirksamer Verbindungen sind in den letzten Jahren wegen verbesserter pharmakokinetischer und biologischer Eigenschaften auf erhöhtes Interesse gestoßen. Daher besteht Bedarf an einem enantioselektiven Verfahren, daß im großen Maßstab zur Herstellung der einzelnen Enantiomere pharmakologisch wirksamer Verbindungen, wie beispielsweise optisch reinen, substituieren 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazolen, verwendet werden kann.
-
Im Stand der Technik werden Verfahren zur Trennung verschieden substituierter 2-(2-Pyridinylmethylsulfinyl)-1
H-benzimidazole beschrieben. Derartige Trennverfahren werden beispielsweise in der
DE 4035455 und der
WO 94/27988 beschrieben. Bei diesen Verfahren werden Syntheseschritte durchgeführt, in denen aus dem Racemat der entsprechenden substituierten 2-(2-Pyridinylmethylsulfinyl)-1
H-benzimidazole ein Diastereomerengemisch synthetisiert wird. Dann trennt man die Diastereomere und wandelt schließlich eines der getrennten Diastereomere in einem Hydrolyseschritt in das optisch reine Sulfoxid um.
-
Diese Trennverfahren mit diastereomeren Zwischenprodukten sind mit mindestens drei grundlegenden Nachteilen behaftet, nämlich:
- 1) Das substituierte 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazol als racemisches Zwischenprodukt muß in ein paar Reaktionsschritten weiterverarbeitet werden, bevor die einzelnen Enantiomere erhalten werden können.
- 2) Die beschriebenen Trennverfahren beinhalten komplizierte Trennschritte.
- 3) Bei der Abtrennung und Verwerfung des unerwünschten Stereoisomers in Form des anderen Diastereomers wird eine große Menge an hochgereinigter Substanz vergeudet.
-
Desweiteren wird im Stand der Technik beispielsweise die enantioselektive Synthese der einzelnen Enantiomere des Sulfoxids mittels Ro 18-5364, (5,7-Dihydro-2-[[(4-methoxy-3-methyl-2-pyridinyl)methyl]sulfinyl]-5,5,7,7-tetramethylindeno-[5,6-d]-imidazol-6-(1H)-on) beschrieben, siehe Euro. J. Biochem. 166 (1987) 453. Das beschriebene Verfahren beruht auf einer enantioselektiven Oxidation des entsprechenden prochiralen Sulfids zu dem Sulfoxid. Die bei der Oxidation verwendeten Versuchsbedingungen sollen dem von Kagan und Mitarbeitern entwickelten asymmetrischen Sulfidoxidationsverfahren (Pitchen, P.; Deshmukh, M.; Dunach, E.; Kagan, H. B.; J. Am. Chem. Soc. 106 (1984), 8188) entsprechen. Die Autoren berichten, daß das erhaltene Rohprodukt des Sulfoxids mit einem Enantiomerenüberschuß (e. e.) von etwa 30% durch einige Kristallisationsschritte zu einem im wesentlichen optisch reinen Sulfoxid [(e. e.) > 95%] gereinigt werden kann. Die Ausbeuten und die Zahl der Kristallisationsschritte werden jedoch nicht angegeben.
-
Interessanterweise lieferten eigene Versuche zur Wiederholung der beschriebenen und oben angegebenen Versuchsbedingungen bei der Herstellung der einzelnen Enantiomere von Ro 18-5364 rohes Sulfoxid mit einem Enantiomerenüberschuß von nur 16%.
-
Bei eigenen Versuchen zur Herstellung der optisch reinen 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazole von Interesse, z. B. eines der einzelnen Enantiomere von Omeprazol, wurden mit dem oben beschriebenen Verfahren rohe Sulfoxide mit einem typischen Enantiomerenüberschuß von etwa 5% oder noch weniger erhalten; siehe nachstehendes Referenzbeispiel A.
-
Bei den oben beschriebenen, von Kagan und Mitarbeitern entwickelten Verfahren zur asymmetrischen Oxidation von Sulfiden zu Sulfoxiden (J. Am. Chem. Soc. (1984), oben zitiert) wird die Oxidation unter Verwendung von tert.-Butylhydroperoxid als Oxidationsmittel in Gegenwart von einem Äquivalent eines aus Ti(OiPr)4/(+)- oder (–)-Weinsäurediethylester/Wasser im Molverhältnis 1:2:1 erhaltenen chiralen Komplexes durchgeführt.
-
Gemäß Kagan und Mitarbeitern waren bei der asymmetrischen Oxidation von Sulfiden mit zwei Substituenten sehr verschiedener Größe Sulfoxidprodukte mit der höchsten Enantioselektivität erhältlich. So konnten beispielsweise bei der Oxidation von Arylmethylsulfiden die Arylmethylsulfoxide in einem Enantiomerenüberschuß (e. e.) von mehr als 90% erhalten werden.
-
Wenn die an das Schwefelatom des prochiralen Sulfids gebundenen Substituenten jedoch eine ähnlichere Größe aufwiesen, wurde eine mäßige oder schlechte Enantioselektivität erhalten. So findet man beispielsweise bei der Oxidation von Benzyl-p-tolylsulfid unter den von Kagan und Mitarbeitern vorgeschlagenen Bedingungen einen e. e. von nur 7%.
-
Es ist auch schon versucht worden, die Bedingungen für die asymmetrische Oxidation von Sulfiden zu verbessern. So fanden beispielsweise Kagan und Mitarbeiter (Zhao, S.; Samuel, O.; Kagan, H. B.; Tetrahedron (1987), 43, 5135), daß im allgemeinen eine höhere Enantioselektivität erhalten werden konnte, wenn bei der Oxidation des Sulfids das tert.-Butylhydroperoxid in dem oben diskutierten System durch Cumolhydroperoxid ersetzt wurde. So konnte beispielsweise bei der asymmetrischen Oxidation von Methyl-p-tolylsulfid ein Enantiomerenüberschuß von 96% erhalten werden.
-
So schlug Kagan ein Verfahren zur asymmetrischen Oxidation von Sulfiden unter Verwendung von Cumolhydroperoxid mit dem System Ti(OiPr)4/Weinsäurediethylester/Wasser (1:2:1) in Methylenchlorid bei –23°C vor. Die Autoren berichteten über eine verminderte Enantioselektivität, wenn die Menge an Titanreagens unter 0,5 Äquivalenten lag (siehe Tetrahedron (1987), oben zitiert).
-
Bei eigenen Versuchen zur Herstellung der optisch reinen 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazole, eines der einzelnen Enantiomere von Omeprazol, nach diesem verbesserten asymmetrischen Oxidationsverfahren mit einem Äquivalent Titanreagens, wurde ein typischer Enantiomerenüberschuß von etwa 10% erhalten. Siehe nachstehendes Referenzbeispiel B.
-
Die Reaktionsbedingungen und ihre Bedeutung in bezug auf den für chirale Sulfoxide im allgemeinen erhaltenen Enantiomerenüberschuß sind ebenfalls von Kagan und Mitarbeitern diskutiert worden, siehe Synlett (1990), 643. So wurde beispielsweise gefunden, daß für eine hohe Enantioselektivität eine Temperatur von –20° erforderlich war, und in einigen Fällen arbeiteten Kagan und Mitarbeiter zur Erzielung der höchsten Enantioselektivität bei einer Temperatur von nur –40°C. Des weiteren geben die Autoren an, daß die Enantioselektivität abnimmt, wenn man von den bei der Oxidation als organisches Lösungsmittel verwendeten Methylenchlorid beispielsweise auf Toluol umschaltet. Als bevorzugte Lösungsmittel für die Oxidation werden Methylenchlorid und 1,2-Dichlorethan diskutiert. Es sei hervorgehoben, daß aus technischer Sicht weder die tiefen Temperaturen noch die vorgeschlagenen Lösungsmittel zufriedenstellend sind.
-
Unlängst wurde von Pitchen und Mitarbeitern eine großmaßstäbliche asymmetrische Synthese eines Acylcholesterinacyltransferase-Inhibitors (ACAT-Inhibitor) entwickelt (Pitchen, P.; France, C. J.; McFarlane, I. M.; Newton, C. G.; Thompson, D. M.; Tetrahedron Letters (1994), 35, 485). Bei dem allgemein als „Verbindung RP 73163” diskutierten ACAT-Inhibitor handelt es sich um ein chirales Sulfoxid mit einer 4,5-Diphenyl-2-imidazolylgruppe und einer 5-(3,5-Dimethyl-1-pyrazolyl)-1-pentylgruppe am stereogenen Zentrum, d. h. dem Schwefelatom. Die Verbindung, bei der es sich nicht um eine substituierte 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazol-Verbindung gemäß der vorliegenden Erfindung handelt, weist jedoch genau wie die bei der vorliegenden Erfindung erhaltenen Verbindungen zwei an das stereogene Zentrum gebundene große Substituentengruppen auf.
-
Anfänglich wurde das entsprechende prochirale Sulfid von RP 73163, das diese beiden großen Substituenten am Schwefelatom trägt, nach dem oben aufgeführten asymmetrischen Oxidationsverfahren von Kagan (siehe Tetrahedron (1987), oben zitiert) oxidiert. Das hergestellte Sulfoxid soll in guter chemischer Ausbeute erhältlich sein, jedoch betrug der Enantiomerenüberschuß des Sulfoxids 0% (racemisches Gemisch). Diese entmutigenden Ergebnisse kommen jedoch für den Chemiker nicht überraschend, da in der Literatur über die höchsten Enantioselektivitäten für die titantartratvermittelten Reaktionen immer im Fall der Oxidation von starren (z. B. cyclischen) Sulfiden oder Sulfiden mit zwei Substituenten sehr verschiedener Größe berichtet wurde. Die Autoren kommen zu dem Schluß, daß die Enantioselektivität für diese Art von Oxidationen hauptsächlich durch sterische Effekte bestimmt wird.
-
Unter Berücksichtigung der Informationen aus der veröffentlichten Literatur und um über ein geeignetes prochirales Substrat für eine asymmetrische Oxidation zu verfügen, entschieden sich Pitchen und Mitarbeiter (siehe Tetrahedron Letters (1994), oben zitiert) dazu, die Größe eines der im Sulfid an das Schwefelatom gebundenen Substituenten zu verringern. Ein Zwischenprodukt der Wahl für ein derartiges Verfahren kann ein N-geschütztes 4,5-Diphenyl-2-imidazolylmethylsulfid sein, das nach Oxidation als das entsprechende Sulfoxid erhalten wird. Der Enantiomerenüberschuß der gebildeten Sulfoxide liegt im Bereich von 98–99%. Die Syntheseroute wird jedoch bei Verwendung eines Zwischenprodukts komplizierter als das ursprünglich für die asymmetrische Oxidation von 2-[5-(3,5-Dimethylpyrazol-1-yl)pentylthio]-4,5-diphenylimidazol vorgeschlagene Verfahren. Ausgehend von 4,5-Diphenyl-2-imidazolthiol muß die Syntheseroute die folgenden Syntheseschritte enthalten:
- 1) Methylierung der Mercaptogruppe.
- 2) Anknüpfung einer Schutzgruppe an eines der Stickstoffatome in der Imidazolgruppierung.
- 3) Asymmetrische Oxidation des Sulfids zu einem Sulfoxid.
- 4) Umsetzung des erhaltenen Methylsulfoxidderivats mit einer starken Base, wie z. B. Lithiumdiisopropylamid (LDA) zur Abspaltung eines Protons von der Methylgruppe.
- 5) Alkylierung des Lithiumsalzes des Methylsulfoxidderivats mit 4-Chlor-1-Iodbutan zu einem 5-Chlorpentylsulfoxidderivat.
- 6) Anknüpfung der Pyrazolylgruppe an die n-Pentylkette.
- 7) Abspaltung der Schutzgruppe.
-
Es liegt auf der Hand, daß der vorgeschlagene komplizierte Ansatz durch Optimierung der Größe der Substituenten für die Herstellung, insbesondere in großem Maßstab, ungeeignet ist.
-
Es sei hervorgehoben, daß man bei Anwendung des erfindungsgemäßen Verfahrens auf das prochirale Sulfid von RP 73163 überraschenderweise RP 73163 in einem Enantiomerenüberschuß von > 85–90% erhält, siehe nachstehendes Referenzbeispiel E und F.
-
In der dem Stand der Technik entsprechenden Literatur wird kein geeignetes enantioselektives Verfahren beschrieben oder nahegelegt, das in großem Maßstab zur Herstellung der einzelnen Enantiomere von 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazolen angewandt werden kann. Daher besteht nach wie vor ein Bedarf an einem derartigen enantioselektiven Verfahren zur Herstellung von substituierten optisch reinen 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazolen sowie anderen strukturverwandten Sulfoxiden.
-
Kurze Beschreibung der Erfindung
-
Die Erfindung stellt ein neues Verfahren zur enantioselektiven Synthese der einzelnen Enantiomere von Omeprazol, anderen optisch reinen substituierten 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazolen sowie anderen strukturverwandten Sulfoxiden bereit, bei dem eine überraschend hohe Enantioselektivität erhalten wird. Das neue Verfahren ist dadurch gekennzeichnet, daß man ein prochirales Sulfid asymmetrisch zu einem einzelnen Enantiomer oder einer enantiomerenangereicherten Form des entsprechenden Sulfoxids oxidiert. Diese neue asymmetrische Oxidation ermöglicht es überraschenderweise, die interessierenden Verbindungen mit einem extrem hohen Enantiomerenüberschuß zu erhalten, selbst wenn das entsprechende prochirale Sulfid am Schwefelatom Substituenten von ungefähr gleicher Größe aufweist. Da das Verfahren mit einem Reaktionsschritt einfach ist, eignet es sich zur großmaßstäblichen Herstellung von Enantiomerenverbindungen in hoher Ausbeute und mit hohem Enantiomerenüberschuß.
-
Die Ausdrücke „prochirales Sulfid” bzw. „prochirale Sulfide” werden für die Sulfide der entsprechenden Sulfoxide verwendet, die nach dem neuen erfindungsgemäßen Verfahren hergestellt werden können. Wenn das entsprechende Sulfid bereits ein stereogenes Zentrum im Molekül enthält, so ist ein derartiges Sulfid nicht prochiral, sondern chiral. Da das Schwefelatom der Sulfide keine Asymmetrie aufweist, wird eine derartige Verbindung in der vorliegenden Beschreibung und den beigefügten Ansprüchen als prochirales Sulfid bezeichnet.
-
Die vorliegende Erfindung stellt auch nach dem beanspruchten Verfahren hergestellte optisch reine Verbindungen und einige neue einzelenantiomere Verbindungen bereit.
-
Das erfindungsgemäße Verfahren wird in Anspruch 1 definiert, und einige alternative Verfahren werden in den unabhängigen Ansprüchen 2–4 beschrieben. Die Unteransprüche 5–25 definieren einige bevorzugte Ausführungsformen der Erfindung.
-
Nähere Beschreibung der Erfindung
-
Gegenstand der vorliegenden Erfindung ist ein neues Verfahren zur Herstellung eines Sulfoxids der Formel I in Form eines einzelnen Enantiomers oder in enantiomerenangereicherter Form:
worin
Het
1 für
steht,
Het
2 für
steht
und X für
steht,
wobei
N im Benzolring der Benzimidazolgruppierung bedeutet, daß eines der durch R
6–R
9 substituierten Kohlenstoffatome gegebenenfalls durch ein Stickstoffatom ohne Substituenten ersetzt sein kann;
R
1, R
2 und R
3 gleich oder verschieden sind und unter Wasserstoff, Alkyl, Alkylthio, gegebenenfalls durch Fluor substituiertem Alkoxy, Alkoxyalkoxy, Dialkylamino, Piperidino, Morpholino, Halogen, Phenylalkyl und Phenylalkoxy ausgewählt sind;
R
4 und R
5 gleich oder verschieden sind und unter Wasserstoff, Alkyl und Aralkyl ausgewählt sind;
R
6' für Wasserstoff, Halogen, Trifluormethyl, Alkyl und Alkoxy steht;
R
6–R
9 gleich oder verschieden sind und unter Wasserstoff, Alkyl, Alkoxy, Halogen, Halogenalkoxy, Alkylcarbonyl, Alkoxycarbonyl, Oxazolyl, Trifluoralkyl ausgewählt sind oder benachbarte Gruppen R
6–R
9 gegebenenfalls weiter substituierte Ringstrukturen bilden;
R
10 für Wasserstoff steht oder gemeinsam mit R
3 eine Alkylenkette bildet;
R
11 und R
12 gleich oder verschieden sind und unter Wasserstoff, Halogen oder Alkyl ausgewählt sind.
-
In den obigen Definitionen können Alkylgruppen, Alkoxygruppen und Teilstrukturen davon verzweigte oder geradkettige C1-C9-Ketten sein oder cyclische Alkylgruppen, beispielsweise Cycloalkylalkyl, enthalten.
-
Vorzugsweise handelt es sich bei den nach dem neuen Verfahren hergestellten Sulfoxiden um Sulfoxide der Formel I' in Form eines einzelnen Enantiomers oder in enantiomerenangereicherter Form:
worin
Ar für
steht
und R
1–R
10 die oben in Verbindung mit Formel I angegebene Bedeutung besitzen.
-
Ganz besonders bevorzugt handelt es sich bei den nach dem neuen Verfahren hergestellten Sulfoxiden um Sulfoxid gemäß einer der Formeln Ia bis Ih in Form eines einzelnen Enantiomers oder in enantiomerenangereicherter Form:
-
Die durch die obigen Formeln I, I' und Ia–Ih definierten Verbindungen können nach üblichen Verfahren in pharmazeutisch unbedenkliche Salze davon umgewandelt werden.
-
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man ein prochirales Sulfid der Formel II Het1-X-S-Het2 II worin Het1 und Het2 die oben angegebene Bedeutung besitzen,
in einem organischen Lösungsmittel mit einem Oxidationsmittel und einem chiralen Titankomplex gegebenenfalls in Gegenwart einer Base asymmetrisch oxidiert.
-
Gemäß einer Ausgestaltung der Erfindung führt man die asymmetrische Oxidation in Gegenwart einer Base durch.
-
Alternativ dazu kann man die Oxidation auch in Abwesenheit einer Base durchführen, wenn man den chiralen Titankomplex auf spezielle Art und Weise in bezug auf die Zugabereihenfolge, Herstellungstemperatur und/oder Herstellungszeit herstellt.
-
So stellt man nach einer bevorzugten Ausgestaltung der Erfindung den chiralen Titankomplex in Gegenwart des prochiralen Sulfids her, d. h. man trägt das prochirale Sulfid in das Reaktionsgefäß ein, bevor man die zur Herstellung des chiralen Titankomplexes verwendeten Komponenten einträgt.
-
Gemäß einer anderen bevorzugten Ausgestaltung der Erfindung stellt man den chiralen Titankomplex bei erhöhter Temperatur und über eine längere Herstellungszeit her.
-
Gemäß noch einer anderen bevorzugten Ausgestaltung der Erfindung stellt man den chiralen Titankomplex bei erhöhter Temperatur und/oder über eine längere Herstellungszeit und in Gegenwart des prochiralen Sulfids her.
-
Nach der am meisten bevorzugten Ausgestaltung der Erfindung führt man die asymmetrische Oxidation in Gegenwart einer Base durch und stellt den chiralen Titankomplex bei erhöhter Temperatur und/oder über eine längere Herstellungszeit und in Gegenwart des prochiralen Sulfids her.
-
Die Oxidation wird in einem organischen Lösungsmittel durchgeführt. Überraschenderweise ist das Lösungsmittel für die Enantioselektivität der Oxidation nicht so wesentlich wie von Kagan und Mitarbeitern angegeben. Das Lösungsmittel kann unter Berücksichtigung von aus technischer Sicht geeigneten Bedingungen sowie Umweltschutzaspekten ausgewählt werden. Beispiele für geeignete organische Lösungsmittel sind Toluol, Essigsäureethylester, Methylethylketon, Methylisobutylketon, Diethylcarbonat, tert.-Butylmethylether, Tetrahydrofuran, Methylenchlorid und dergleichen. Aus umwelttechnischer Sicht sind nichtchlorierte Lösungsmittel bevorzugt.
-
Die Oxidation wird vorzugsweise in einem organischen Lösungsmittel bei Raumtemperatur oder etwas oberhalb von Raumtemperatur, z. B. zwischen 20 und 40°C, durchgeführt. Überraschenderweise erfordert das Verfahren keine Temperatur unter –20°C, wie sie von Kagan und Mitarbeitern als für eine gute Enantioselektivität wesentlich beschrieben wurde. Eine so niedrige Temperatur führt zu langen Reaktionszeiten. Bei Variation der Reaktionszeit kann man jedoch auch eine sowohl unter als auch über den bevorzugten Temperaturen von 20–40°C liegende Reaktionstemperatur wählen. Ein geeigneter Temperaturbereich ist nur in Abhängigkeit von der Zersetzung der Verbindungen und dadurch, daß die Reaktionszeit bei Raumtemperatur sehr viel kürzer ist als bei –20°C, da die interessierenden Sulfide bei einer derartigen Temperatur nur sehr langsam oxidiert werden, begrenzt.
-
Als Oxidationsmittel für die neue asymmetrische Oxidation eignet sich u. a. ein Hydroperoxid, wie beispielsweise tert.-Butylhydroperoxid oder Cumolhydroperoxid, vorzugsweise letzteres.
-
Der für die Katalyse des erfindungsgemäßen Verfahrens geeignete Titankomplex wird aus einem chiralen Liganden und einer Titan(IV)-Verbindung, wie vorzugsweise Titan(IV)-alkoxid, und gegebenenfalls in Gegenwart von Wasser hergestellt. Ein besonders bevorzugtes Titan(IV)-alkoxid ist Titan(IV)-isopropoxid oder -propoxid. Die Menge des chiralen Titankomplexes ist nicht kritisch. Bevorzugt ist eine Menge von weniger als ungefähr 0,50 Äquivalenten, und eine besonders bevorzugte Menge beträgt 0,05–0,30 Äquivalente. Überraschenderweise kann man bei dem erfindungsgemäßen Verfahren selbst sehr geringe Komplexmengen, wie beispielsweise 0,04 Äquivalente, mit ausgezeichnetem Ergebnis verwenden.
-
Der Titankomplex kann auch durch Umsetzung von Titantetrachlorid mit einem chiralen Liganden in Gegenwart einer Base hergestellt werden.
-
Bei dem bei der Herstellung des Titankomplexes verwendeten chiralen Liganden handelt es sich vorzugsweise um einen chiralen Alkohol, wie ein chirales Diol. Bei dem Diol kann es sich um ein verzweigtes oder unverzweigtes Alkyldiol oder ein aromatisches Diol handeln. Bevorzugte chirale Diole sind Ester der Weinsäure, insbesondere L(+)-Weinsäurediethylester oder D(–)-Weinsäurediethylester. Wie oben und in ausführlicherer Form unten diskutiert, kann man den chiralen Titankomplex in Gegenwart des prochiralen Sulfids oder vor dem Eintragen des prochiralen Sulfids in das Reaktionsgefäß herstellen.
-
Wie oben erwähnt, wird die Oxidation gemäß einer Ausgestaltung der Erfindung in Gegenwart einer Base durchgeführt. Bei Vorhandensein einer Base während der Oxidation wird eine überraschend hohe Enantioselektivität beobachtet. Diese bemerkenswerte hohe Enantioselektivität wird beobachtet, obwohl es sich bei den Substraten um prochirale Sulfide handelt, die am Schwefelatom Substituenten ungefähr gleicher Größe aufweisen.
-
Bei der Base kann es sich um eine anorganische oder organische Base handeln, beispielsweise ein Hydrogencarbonat, ein Amid oder ein Amin. Zu den Aminen gehören auch Guanidine oder Amidine.
-
Organische Basen sind bevorzugt, und besonders gut geeignete Basen sind Amine, vorzugsweise Triethylamin oder N,N-Diisopropylethylamin. Die zu der Reaktionsmischung gegebene Basenmenge ist nicht kritisch, sollte aber unter Berücksichtigung der Reaktionsmischung eingestellt werden.
-
Dieses spezielle Merkmal der Zugabe einer Base zur Reaktionsmischung zur Erhöhung der Enantioselektivität der Oxidation wird am Beispiel von zwei Versuchen belegt, bei denen als prochirales Sulfid für die Reaktion 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]thio]-1H-benzimidazol verwendet wird. Siehe Referenzbeispiele D und E. Die Reaktionsbedingungen sind in beiden Versuchen gleich, jedoch wird bei einem der Versuche die Reaktionsmischung mit einer Base versetzt. Referenzbeispiel D wird gemäß Anspruch 1 der vorliegenden Erfindung durchgeführt, d. h. die asymmetrische Oxidation wird in Gegenwart einer Base durchgeführt. Referenzbeispiel C wird ohne Änderung der Verfahrensparameter ohne Base durchgeführt. Die Ergebnisse zeigen, daß die Oxidation ohne Zugabe einer Base gemäß Referenzbeispiel C ein Sulfoxidprodukt mit einem Enantiomerenüberschuß (e. e.) von 23% liefert, wohingegen die Oxidation in Gegenwart einer Base, wie Diisopropylethylamin, gemäß Referenzbeispiel D ein Sulfoxidprodukt mit einem Enantiomerenüberschuß von 78% liefert.
-
Alternativ dazu kann man das erfindungsgemäße Verfahren ohne Base durchführen. Unter derartigen Bedingungen sind die Verfahren zur Herstellung des chiralen Titankomplexes wesentlich.
-
Die Herstellung des chiralen Titankomplexes erfolgt vorzugsweise in Gegenwart des prochiralen Sulfids. Durch Änderung der Zugabereihenfolge gegenüber den im Stand der Technik beschriebenen Verfahren wird überraschenderweise die Enantioselektivität der Oxidation erhöht.
-
Andere wesentliche Merkmale bei der Herstellung des chiralen Titankomplexes bestehen darin, daß man den Titankomplex bei erhöhter Temperatur und über eine längere Herstellungszeit herstellt. Unter einer erhöhten Temperatur ist eine Temperatur wie 30–70°C, vorzugsweise 40–60°C, zu verstehen. Unter einer längeren Herstellungszeit ist ein Zeitraum von 1–5 Stunden zu verstehen. Ein geeigneter Zeitraum für den Herstellungsschritt hängt von der Herstellungstemperatur und von dem prochiralen Sulfid, das gegebenenfalls bei der Herstellung des chiralen Titankomplexes zugegen ist, ab.
-
Die bei der Oxidationsreaktion anfallenden Produkte können mit einer wäßrigen Lösung von Ammoniak oder einer anderen N-haltigen Base extrahiert werden, damit keine unlöslichen Titansalze ausfallen und/oder gebildet werden. Die wäßrige Phase wird von der organische Phase der erhaltenen Mischung abgetrennt, wonach die isolierte wäßrige Phase durch Zugabe eines Neutralisationsmittels neutralisiert wird, wodurch das optisch aktive Sulfoxid protoniert wird.
-
Somit besteht ein anderes bevorzugtes Merkmal des erfindungsgemäßen Verfahrens darin, daß die Titansalze, die sich bei dem Verfahren gebildet haben können, durch Zugabe einer wäßrigen Ammoniaklösung in Lösung gehalten werden können. Bei der in der Literatur zum Auswaschen von Titansalzen beschriebenen herkömmlichen Verfahrensweise behandelt man die Reaktionsmischung mit Wasser oder Natronlaugelösungen, was zur Bildung eines sehr schwer abzufiltrierenden Gels führt. Bei einer anderen, im Stand der Technik beschriebenen Verfahrensweise zum Auswaschen der Titansalze verwendet man beispielsweise 1 M HCl, wie in der Arbeit von Pitchen und Mitarbeitern vorgeschlagen wird (Tetrahedron Letters (1994), oben zitiert). Diese Vorgehensweise kommt für säurelabile Produkte, wie beispielsweise 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazole, die in sauren Lösungen praktisch sofort zerstört werden, nicht in Betracht.
-
Das erhaltene Rohprodukt kann in einem organischen Lösungsmittel extrahiert werden. Es kann auch in einem organischen oder wäßrigen Lösungsmittel kristallisiert werden, was zu einem optisch reinen Produkt führt, wie beispielsweise einem der einzelnen Enantiomere eines 2-(2-Pyridinylmethylsulfinyl)-1H-benzimidazols in neutraler Form. Man kann das saure Proton der Benzimidazolgruppierung durch Behandlung des Rohprodukts mit einer Base, wie NaOH, abstrahieren und das gebildete Salz danach in einem Lösungsmittel kristallisieren, was möglicherweise zu einem Produkt mit verbesserter optischer Reinheit führt.
-
Die Erfindung wird nun anhand der folgenden Beispiele näher erläutert.
-
BEISPIELE
-
Beispiel 1.
-
Asymmetrische Synthese von (–)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methyl]sulfinyl]-1H-benzimidazol-Natriumsalz, (–)-(ia)-Na
-
59 g (180 mmol) 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in 200 ml Essigsäureethylester gelöst. Die Lösung wurde mit 0,3 ml (17 mmol) Wasser versetzt. Dann wurde die Mischung bei Raumtemperatur mit 37 g (180 mmol) L(+)-Weinsäurediethylester, 25 g (90 mmol) Titan(IV)-isopropoxid und 16 ml (90 mmol) Diisopropylethylamin versetzt. Danach wurden über einen Zeitraum von 90 Minuten bei 34°C 30 ml (160 mmol) Cumolhydroperoxid (80%) zugegeben. Nach 120 Minuten Abkühlen auf Raumtemperatur wurde eine kleine Probe der Mischung für chirale und achirale chromatographische Analysen entnommen. Die Mischung bestand aus 82% Sulfoxid mit einem Enantiomerenüberschuß (e. e) von 87%. Die Mischung wurde mit 60 ml Isooctan und 40 ml Essigsäureethylester verdünnt, wonach das Produkt dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 480 ml extrahiert wurde. Die vereinigten wäßrigen Phasen wurden durch Zugabe von 50 ml konzentrierter Essigsäure neutralisiert. Danach wurden durch Aufarbeitung mittels Extraktion, Verdampfung, Natriumhydroxidzugabe und Kristallisation 32,7 g der Titelverbindung mit einer Reinheit von 95,2% (achirale Analyse) und einem Enantiomerenüberschuß (e. e.) von 99,8% (chirale Analyse) erhalten. Die Gesamtausbeute betrug 47,2%.
-
Beispiel 2.
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ia)
-
Titan(IV)-isopropoxid (1,3 ml, 4,5 mmol) und Wasser (41 μl, 2,3 mmol) wurden unter Rühren zu einer Lösung von L(+)-Weinsäurediethylester (1,5 ml, 9,0 mmol) in Toluol (10 ml) gegeben. Die Mischung wurde 20 Minuten bei Raumtemperatur gerührt und dann mit 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (3,0 g, 9 mmol) und Diisopropylamin (0,45 ml, 2,6 mmol) versetzt. Bei 30°C wurde Cumolhydroperoxid (technisch, 80%, 1,8 ml, 9,9 mmol) zugegeben. Nach 3 h bei 30°C bestand die Mischung aus 2,1% Sulfid, 8,8% Sulfon und 86,8% Sulfoxid mit einem Enantiomerenüberschuß von 74%.
-
Beispiel 3
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ia)
-
Eine Mischung von L(+)-Weinsäurediethylester (4,2 g 20 mmol), Titan(IV)-isopropoxid (2,9 g, 10 mmol) und Essigsäureethylester wurde mit Wasser (0,18 ml, 10 mmol) versetzt. Die Lösung wurde 20 Minuten gerührt und dann mit 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (3,4 g, 10 mmol) zusammen mit KHCO3 (0,31 g, 3,1 mmol) und Cumolhydroperoxid (1,8 ml, 10 mmol) versetzt. Die Zugabe wurde bei Raumtemperatur durchgeführt. Nach 1,5 Stunden wurde eine HPLC-Analyse durchgeführt, die 63,3% Sulfoxid mit einem Enantiomerenüberschuß von 38,9% zeigte.
-
Beispiel 4.
-
Asymmetrische Synthese von (–)5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Natriumsalz, (–)-(Ia)-Na
-
Eine Lösung von L(+)-Weinsäurediethylester (8,5 ml, 50 mmol) und Titan(IV)-isopropoxid (7,4 ml, 25 mmol) in 250 ml Methylenchlorid wurde bei Raumtemperatur mit Wasser (0,45 ml, 25 mmol) versetzt. Nach 20 Minuten wurden 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (8,2 g, 25 mmol) und Diisopropylethylamin (1,3 ml, 7 mmol) zugegeben, wonach die Lösung auf –20°C abgekühlt wurde. Nach Zugabe von Cumolhydroperoxid (5,1 ml, 80%ige Lösung, 28 mmol) wurde die Reaktionsmischung 66 h bei +2°C gehalten. Nach Aufarbeitung durch Zugabe von 2 × 125 ml Natriumhydroxidlösung wurde die wäßrige Phase mit Ammoniumchlorid neutralisiert. Danach wurde durch Aufarbeitung mittels Extraktion, Verdampfung, Flashchromatographie, Natriumhydroxidzugabe und Kristallisation 1,23 g (13,4%) der Titelverbindung mit einem Enantiomerenüberschuß (e. e.) von 99,8% (chirale Analyse) erhalten.
-
Beispiel 5.
-
Asymmetrische Synthese von (–)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (–)-(Ia)
-
5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (4,0 g, 12,1 mmol) wurde in Toluol (12 ml) suspendiert. Dann wurden unter Rühren bei 50°C D(–)-Weinsäurediethylester (0,17 ml, 1,0 mmol) und Titan(IV)-isopropoxid (0,15 ml, 0,50 mmol) zugegeben. Die Mischung wurde 50 Minuten bei 50°C gerührt und dann bei circa 30°C mit N,N-Diisopropylethylamin (0,085 ml, 0,50 mmol) versetzt. Dann wurde Cumolhydroperoxid (83%ig, 2,1 ml, 11,9 mmol) zugegeben und die Mischung 15 Minuten bei 30°C gerührt. Die Rohmischung bestand aus 3,6% Sulfid, 2,7% Sulfon und 93% Sulfoxid mit einer optischen Reinheit von 91% e. e. Das Produkt wurde nicht isoliert.
-
Beispiel 6.
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ia)
-
L(+)-Weinsäurediethylester (1,71 ml, 10 mmol) und Titan(IV)-isopropoxid (1,5 ml, 5 mmol) wurden in Methylenchlorid (50 ml) gelöst. Nach Zugabe von Wasser (90 μl, 5 mmol) unter Rühren wurde die erhaltene Mischung eine Stunde unter Rückfluß erhitzt und dann auf Raumtemperatur abgekühlt. Danach wurden bei Raumtemperatur 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (1,65 g, 5 mmol) und Cumolhydroperoxid (80%ig, 1,05 g, 5,5 mmol) zugegeben. Die Lösung wurde 90 Minuten bei Raumtemperatur gerührt. Die Rohmischung bestand aus 42,8% Sulfid, 4,1% Sulfon und 48,3% Sulfoxid mit einer optischen Reinheit von 43% e. e. Das Produkt wurde nicht isoliert.
-
Beispiel 7.
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ia)
-
5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (1,65 g, 5 mmol) wurde in Methylenchlorid (50 ml) gelöst. Unter Rühren wurden L(+)-Weinsäurediethylester (1,71 ml, 10 mmol), Titan(IV)-isopropoxid (1,5 ml, 5 mmol) und Wasser (90 μl, 5 mmol) zugegeben. Die erhaltene Mischung wurde 20 Minuten bei Raumtemperatur gerührt. Dann wurde bei Raumtemperatur Cumolhydroperoxid (80%ig, 1,05 g, 5,5 mmol) zugegeben und die Lösung 90 Minuten bei Raumtemperatur gerührt. Die Rohmischung bestand aus 38,9% Sulfid, 8,4% Sulfon und 47,6% Sulfoxid mit einer optischen Reinheit von 32% e. e. Das Produkt wurde nicht isoliert.
-
Beispiel 8.
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ia)
-
5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (0,5 g, 1,5 mmol) wurde in Toluol (2,5 ml) suspendiert. Dann wurden bei 50°C Wasser 9,2 μl (0,5 mmol), L(+)-Weinsäurediethylester (0,39 ml, 2,3 mmol) und Titan(IV)-isopropoxid (0,27 ml, 0,91 mmol) zugegeben. Die Mischung wurde 90 Minuten auf 50°C erwärmt, wonach 0,25 ml der Lösung in ein Reagenzglas überführt wurden. In dieses Reagenzglas wurden dann 25 μl Cumolhydroperoxid (80%ig) gegeben und praktisch sofort danach bestand diese Mischung aus 41% gewünschtem Sulfoxid mit einer optischen Reinheit von 69,5% e. e. Das Produkt wurde nicht isoliert.
-
Beispiel 9.
-
Asymmetrische Synthese von (–)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Natriumsalz, (–)-(Ia)-Na
-
1,6 kg (5,0 mol) 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in 7,5 l Essigsäureethylester gelöst. Die Lösung wurde mit 31 ml (1,7 mol) Wasser versetzt. Die Mischung wurde bei Raumtemperatur mit 860 ml (5,0 mmol) L(+)-Weinsäurediethylester, 740 ml (2,5 mol) Titan(IV)-isopropoxid und 430 ml (2,5 mol) Diisopropylethylamin versetzt. Dann wurden über einen Zeitraum von 50 Minuten bei 30°C 830 ml (4,5 mol) Cumolhydroperoxid (80%ig) zugegeben. Nach einer weiteren Stunde bei 30°C war die Reaktion vollständig. Gemäß chiraler und achiraler chromatographischer Analyse besteht die Mischung aus 75% Sulfoxid mit einem Enantiomerenüberschuß (e. e.) von 80%, 19% nicht umgesetztem Sulfid und 3,8% Sulfon. Die Mischung wurde auf 10°C abgekühlt, und nach Zugabe von 1,5 l Isooctan und 0,5 l Essigsäureethylester wurde das Produkt dreimal mit einer wäßrigen Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 14 l extrahiert. Die vereinigten wäßrigen Phasen wurden durch Zugabe von 1,5 l konzentrierter Essigsäure neutralisiert. Danach wurde durch Aufarbeitung mittels Extraktion, Eindampfen, Natriumhydroxidzugabe und Kristallisation 0,80 kg der Titelverbindung mit einer Reinheit von 99,3% (achirale Analyse) und einem Enantiomerenüberschuß (e. e.) von 99,8% (chirale Analyse) erhalten. Die Gesamtausbeute betrug 44%.
-
Beispiel 10.
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Natriumsalz, (+)-(Ia)-Na
-
1,6 kg (5,0 mol) 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in 6,1 l Essigsäureethylester gelöst. Die Lösung wurde mit 31 ml (1,7 mol) Wasser versetzt. Dann wurde die Mischung bei Raumtemperatur mit 860 ml (5,0 mol) D(–)-Weinsäurediethylester, 740 ml (2,5 mol) Titan(IV)-isopropoxid und 430 ml (2,5 mol) Diisopropylethylamin versetzt. Dann wurden über einen Zeitraum von 25 Minuten bei 30°C 830 ml (4,5 mol) Cumolhydroperoxid (80%ig) zugegeben. Nach weiteren 30 Minuten bei 30°C war die Reaktion vollständig. Gemäß chiraler und achiraler chromatographischer Analyse besteht die Mischung aus 71% Sulfoxid mit einem Enantiomerenüberschuß (e. e.) von 73%. Die Mischung wurde auf 10°C abgekühlt, und nach Zugabe von 1,71 l Isooctan wurde das Produkt dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 14 l extrahiert. Die vereinigten wäßrigen Phasen wurden durch Zugabe von 1,5 l konzentrierte Essigsäure neutralisiert. Danach wurden durch Aufarbeitung mittels Extraktion, Eindampfung, Natriumhydroxidzugabe und Kristallisation 0,45 kg der Titelverbindung mit einer Reinheit von 99,9% (achirale Analyse) und einem Enantiomerenüberschuß (e. e.) von 99,8% (chirale Analyse) erhalten. Die Gesamtausbeute betrug 24,6%.
-
Beispiel 11.
-
Asymmetrische Synthese von (+)-5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol-Natriumsalz, (+)-(Ia)
-
6,2 kg (18,8 mol) Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in Toluolsuspension (25 l) auf 54°C erhitzt. Nach Zugabe von Wasser (44 ml, 2,4 mol), D(–)-Weinsäurediethylester (2,35 kg, 11,4 mol) und Titan(IV)-isopropoxid (1,60 kg, 5,6 mol) unter Rühren wurde die Mischung 50 Minuten bei 54°C gerührt. Nach Einstellung der Temperatur auf 30°C wurde die Lösung mit N,N-Diisopropylethylamin (720 g, 5,6 mol) versetzt. Dann wurde Cumolhydroperoxid (83,5%ig, 3,30 kg, 18,2 mol) zugegeben und die Mischung eine Stunde bei 30°C gerührt. Die Rohmischung bestand aus 7% Sulfid, 1,2% Sulfon und 90,6% Sulfoxid mit einer optischen Reinheit von 94,3% e. e. Nach Zugabe von wäßrigem Ammoniak (12,5%ig, 20 l) wurde die Lösung dreimal mit wäßrigem Ammoniak (3 × 20 l) extrahiert. Die vereinigten wäßrigen Schichten wurden mit Methylisobutylketon (9 l) versetzt. Nach Einstellung des pH-Werts der wäßrigen Schicht mit Essigsäure wurden die Schichten getrennt. Die wäßrige Schicht wurde mit einer weiteren Portion Methylisobutylketon (9 l) extrahiert. Zur Herstellung des Natriumsalzes wurde die Lösung mit einer wäßrigen Lösung von NaOH (49,6%ig, 1,07 kg, 13,2 mol) und Acetonitril (70 l) versetzt. Die Lösung wurde aufkonzentriert, wonach das Produkt auszukristallisieren begann. Es wurden 3,83 kg des (+)-Enantiomers des Natriumsalzes von Omeprazol mit einer optischen Reinheit von 99,6% e. e. isoliert.
-
Beispiel 12.
-
Asymmetrische Synthese von (+)-5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ib)
-
Eine Mischung von L(+)-Weinsäurediethylester (10,3 ml, 60 mmol) und Methylenchlorid (60 ml) wurde unter Rühren mit Titan(IV)-isopropoxid (8,9 ml, 30 mmol) und Wasser (0,54 ml, 30 mmol) versetzt. Nach 30 Minuten Rühren bei Raumtemperatur wurde die Lösung mit 5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methylthio]-1H-benzimidazol (9,9 g, 30 mmol) und Diisopropylethylamin (1,50 ml, 8,7 mmol) versetzt. Dann wurde bei Raumtemperatur Cumolhydroperoxid (technisch, 80%ig, 6,0 ml, 33 mmol) zugegeben. Nach 3 h bei Raumtemperatur bestand die Mischung aus einem rohen Sulfoxid mit einem Enantiomerenüberschuß (e. e.) von 60%. Nach Reinigung an Kieselgel mit Methanol/Methylenchlorid als Elutionsmittel gefolgt von wiederholten Kristallisationen aus Ethanol wurden 1,1 g (11%) der Titelverbindung mit einem Enantiomerenüberschuß von 98,6% erhalten.
-
Beispiel 13.
-
Asymmetrische Synthese von (–)-5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (–)-(Ib)
-
5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol (15,0 g, 45 mmol) wurde in Toluol (60 ml) suspendiert. Dann wurden bei 50°C unter Rühren Wasser (34 μl, 1,9 mmol), D(–)-Weinsäurediethylester (1,60 ml, 9,3 mmol) und Titan(IV)-isopropoxid (1,3 ml, 4,5 mmol) zugegeben. Die Mischung wurde 50 Minuten bei 40°C gerührt und dann mit N,N-Diisopropylethylamin (0,79 ml, 4,5 mmol) versetzt. Nach Einstellung der Temperatur auf 35°C wurde Cumolhydroperoxid (83%ig, 8,1 ml, 45 mmol) zugegeben.
-
Die Mischung wurde 30 Minuten bei 35°C gerührt. Die Rohmischung bestand aus 6,5% Sulfid, 2,7% Sulfon und 90% Sulfoxid mit einer optischen Reinheit von 87,7% e. e. Das Produkt begann während der Oxidation auszukristallisieren und wurde aus der Reaktionsmischung abfiltriert. Es wurden 11,7 g des gewünschten Produkts mit einer optischen Reinheit von 98,8% e. e. erhalten. Die Substanz enthielt außerdem 2,2% Sulfid und 0,9% Sulfon. Ausbeute: 71,2%.
-
Beispiel 14
-
Asymmetrische Synthese von (–)-5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (–)-(Ib).
-
5,0 g (15 mmol) 5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden mit Toluol (30 ml) vermischt. Die Mischung wurde mit 32 μl (1,8 mmol) Wasser, 1,3 ml (7,6 mmol) D(–)-Weinsäurediethylester und 0,90 ml (3,0 mmol) Titan(IV)-isopropoxid versetzt. Nach 60 Minuten Rühren bei 50°C wurde die Mischung auf 30°C abgekühlt. Danach wurde die Lösung mit 2,8 ml (15 mmol) Cumolhydroperoxid (80%ig) versetzt. Die Mischung wurde eine Stunde bei 30°C gerührt und dann auf 0°C abgekühlt. Dann wurde die Mischung mit Essigsäureethylester (20 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%) mit einem Gesamtvolumen von 60 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von 17 ml konzentrierter Essigsäure neutralisiert und danach mit Essigsäureethylester (4 × 60 ml) extrahiert. Die organische Schicht wurde über Magnesiumsulfat getrocknet und dann abgezogen, was ein Rohprodukt mit einer optischen Reinheit von 59% e. e. ergab. Der Rückstand in Form eines Öls (3,2 g) wurde in Aceton (8 ml) gelöst. Ein gebildeter Niederschlag wurde abfiltriert. Es wurden 1,6 g eines Rohprodukts der gewünschten Verbindung in Form eines weißen Feststoffs erhalten. Die optische Reinheit betrug 87% e. e.
-
Beispiel 15.
-
Asymmetrische Synthese von (+)-5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ib).
-
Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol (3,6 kg, 10,9 mol) wurde in Toluol (15 l) suspendiert. Dann wurden unter Rühren bei 40°C Wasser (8,9 ml, 0,49 mol), L(+)-Weinsäurediethylester (460 g, 22 mol) und Titan(IV)-isopropoxid (310 g, 1,09 mol) zugegeben. Die Mischung wurde 50 Minuten bei 40°C gerührt und dann mit N,N-Diisopropylethylamin (190 ml, 1,09 mol) versetzt. Nach Einstellung der Temperatur auf 30°C wurde Cumolhydroperoxid (83%ig, 2,0 kg, 11 mol) zugegeben, und die Oxidation war innerhalb von 30 Minuten abgeschlossen. Die Rohmischung bestand aus 8,9% Sulfid, 3,3% Sulfon und 87% Sulfoxid mit einer optischen Reinheit von 86% e. e. Das Produkt begann während der Oxidation auszukristallisieren und wurde aus der Reaktionsmischung abfiltriert. Es wurden 2,68 kg des Produkts mit einer optischen Reinheit von 96% e. e. erhalten. Die Substanz enthielt außerdem 2,3 Sulfid und 1,7% Sulfon. Das Produkt wurde in Methanol/Toluol umkristallisiert. Es wurden 1,66 kg (Ausbeute: 44%) des gewünschten Produkts mit einer optischen Reinheit von 99,7% erhalten. Der Gehalt an Sulfid und Sulfon betrug weniger als 0,1% bzw. 0,3%.
-
Beispiel 16.
-
Asymmetrische Synthese von (–)-5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (–)-(Ib).
-
5-Fluor-2-[[(4-cyclopropylmethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol (3,6 kg, 10,9 mol) wurde in Toluol (14,4 l) suspendiert. Dann wurden unter Rühren bei 40°C Wasser (10 ml, 0,55 mol), D(–)-Weinsäurediethylester (460 g, 2,2 mol) und Titan(IV)-isopropoxid (310 g, 1,10 mol) zugegeben. Die Mischung wurde 50 Minuten bei 40°C gerührt und dann mit N,N-Diisopropylethylamin (190 ml, 1,1 mol) versetzt. Nach Einstellung der Temperatur auf 35°C wurde Cumolhydroperoxid (83%ig, 2,0 kg, 11 mol) zugegeben. Die Mischung wurde eine Stunde bei 35°C gerührt. Die Rohmischung bestand aus 8,7% Sulfid, 4,8% Sulfon und 85% Sulfoxid mit einer optischen Reinheit von 78% e. e. Das Produkt begann während der Oxidation auszukristallisieren und wurde aus der Reaktionsmischung abfiltriert. Es wurden 2,78 kg des Produkts mit einer optischen Reinheit von 97% e. e. erhalten. Die Substanz enthielt außerdem 1,9% Sulfid und 2,5% Sulfon. Das Produkt wurde in Methanol/Toluol umkristallisiert. Es wurden 1,67 kg (Ausbeute: 44%) der gewünschten Verbindung in Form von gebrochen weißen Kristallen erhalten, 99,8% (e. e.). Der Gehalt an Sulfid und Sulfon betrug weniger als 0,1% bzw. 0,6%.
-
Beispiel 17.
-
Asymmetrische Synthese von (+)-5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ic).
-
3,4 g (9,1 mmol) 5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in Toluol (20 ml) suspendiert. Die Mischung wurde mit 41 μl (2,3 mmol) Wasser, 1,7 ml (10 mmol) L(+)-Weinsäurediethylester und 1,3 g (4,6 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt und dann mit 0,78 ml (4,5 mmol) N,N-Diisopropylethylamin versetzt. Dann wurde die Mischung auf 30°C abgekühlt und mit Toluol (10 ml) versetzt. Danach wurde die Mischung mit 1,7 ml (80%ig, 9,2 mmol) Cumolhydroperoxid versetzt. Nach einigen Minuten wurde weiteres Toluol (70 ml) zugegeben, und nach einer Stunde bei 30°C bestand die Mischung aus 12,5% Sulfid, 3,5% Sulfon und 84% Sulfoxid mit einer optischen Reinheit von 95,6% e. e. Die Mischung wurde auf Raumtemperatur abgekühlt und ein gebildeter Niederschlag wurde abfiltriert. Es wurden 2,5 g eines Rohprodukt der gewünschten Verbindung in Form eines Feststoffs mit einer optischen Reinheit von 98,2% e. e. erhalten.
-
Beispiel 18.
-
Asymmetrische Synthese von (–)-5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (–)-(Ic).
-
Eine Mischung von D(–)-Weinsäurediethylester (8,6 ml, 50 mmol) und Methylenchlorid (50 ml) wurde unter Rühren mit Titan(IV)-isopropoxid (7,5 ml, 25 mmol) und Wasser (0,45 ml, 25 mmol) versetzt. Die Lösung wurde 30 Minuten bei Raumtemperatur gerührt und dann mit 5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol (9,3 g, 25 mmol) und Diisopropylethylamin (1,25 ml, 7,2 mmol) versetzt. Dann wurde bei Raumtemperatur Cumolhydroperoxid (technisch, 80%ig, 5,1 ml, 27 mmol) zugegeben und in 3 h bei Raumtemperatur umgesetzt. Das Rohprodukt bestand aus einem rohen Sulfoxid mit einem Enantiomerenüberschuß e. e. von 71%. Nach Reinigung an Kieselgel mit Methanol/Methylenchlorid als Elutionsmittel gefolgt von wiederholten Kristallisationen aus Ethanol wurden 2,9 g (30%) der Titelverbindung mit einem Enantiomerenüberschuß von 99,4% erhalten.
-
Beispiel 19.
-
Asymmetrische Synthese von (–)-5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (–)-(Ic).
-
4,7 g (12,5 mmol) 5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in Methylenchlorid (100 ml) gelöst. Die Lösung wurde mit 80 μl (4,5 mmol) Wasser, 3,2 ml (19 mmol) D(–)-Weinsäurediethylester und 2,2 ml (7,5 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten unter Rückfluß gerührt und dann auf Raumtemperatur abgekühlt. Nach Zugabe von 0,88 ml (5,0 mmol) N,N-Diisopropylethylamin wurde die Mischung 30 Minuten gerührt. Dann wurden 2,15 ml (12 mmol) Cumolhydroperoxid (80%ig) zugegeben, und nach 2 h bei Raumtemperatur bestand die Mischung aus 23% Sulfid und 72% Sulfoxid mit einer optischen Reinheit von 88% e. e. Die Mischung wurde mit Methylenchlorid (100 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 300 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von 50 ml konzentrierter Essigsäure neutralisiert, wonach weiße Kristalle auszufallen begannen. Die Kristalle wurden abfiltriert, mit Diethylether gewaschen und getrocknet, was 2,34 g (48%) weiße Kristalle der Titelverbindung ergab, die 1,5% Sulfid und 1,8% Sulfon enthielten und eine optische Reinheit von 92% e. e. besaßen.
-
Beispiel 20.
-
Asymmetrische Synthese von (+)-5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]sulfinyl]-1H-benzimidazol, (+)-(Ic).
-
4,7 g (12,5 mmol) 5-Carbomethoxy-6-methyl-2-[[(3,4-dimethoxy-2-pyridinyl)methyl]thio]-1H-benzimidazol wurden in Methylenchlorid (100 ml) gelöst. Die Lösung wurde mit 80 μl (4,5 mmol) Wasser, 3,2 ml (19 mmol) L(+)-Weinsäurediethylester und 2,2 ml (7,5 mmol) Titan(IV)-isopropoxid versetzt. Dann wurde die Mischung 60 Minuten unter Rückfluß gerührt und dann auf Raumtemperatur abgekühlt. Nach Zugabe von 1,1 ml (6,3 mmol) N,N-Diisopropylethylamin wurde die Mischung 30 Minuten bei Raumtemperatur gerührt. Dann wurden 2,15 ml (12 mmol) Cumolhydroperoxid (80%ig) zugegeben, und nach 2 h bei Raumtemperatur bestand die Mischung aus 19% Sulfid und 77% Sulfoxid mit einer optischen Reinheit von 90% e. e. Die Mischung wurde mit Methylenchlorid (100 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 300 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von konzentrierter Essigsäure (50 ml) neutralisiert, was weiße Kristalle lieferte. Die Kristalle wurden abfiltriert, mit Diethylether gewaschen und getrocknet, was 3,29 g (68%) weiße Kristalle der Titelverbindung mit einer optischen Reinheit von 93% e. e. ergab. Die Substanz enthielt außerdem 2,2% Sulfid und 0,9% Sulfon.
-
Beispiel 21.
-
Asymmetrische Synthese von (–)-2-[[[3-Methyl-4-(2,2,2-trifluorethoxy)-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazol, (–)-(Id).
-
2,1 g (6,0 mmol) 2-[[[3-Methyl-4-(2,2,2-trifluorethoxy)-2-pyridinyl]methyl]thio]-1H-benzimidazol wurden in Toluol (50 ml) gelöst. Die Lösung wurde mit 65 μl (3,6 mmol) Wasser, 2,6 ml (15,0 mmol) D(–)-Weinsäurediethylester und 1,8 ml (6,0 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt und dann auf Raumtemperatur abgekühlt. Dann wurden 1,05 ml (6,0 mmol) N,N-Diisopropylethylamin und 1,1 ml (6,0 mmol) Cumolhydroperoxid (80%) zugegeben. Nach 16 h Rühren bei Raumtemperatur bestand die Mischung gemäß achiraler HPLC aus 11% Sulfid, 7% Sulfon und 78% Sulfoxid. Die Mischung wurde mit 50 ml Toluol versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 150 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von konzentrierter Essigsäure (30 ml) neutralisiert. Danach wurden durch Aufarbeitung mittels Extraktion, Eindampfen und Flashchromatographie 1,2 g der Titelverbindung mit einer Reinheit von 99,9% (achirale Analyse) und einem Enantiomerenüberschuß (e. e.) von 55% (chiraler Analyse) erhalten. Nach Behandeln des Rückstands mit Acetonitril wurde ein Niederschlag erhalten, der abfiltriert wurde. Eindampfen des Filtrats lieferte ein Öl mit erhöhter optischer Reinheit. Durch zweimalige Wiederholung dieser Vorgehensweise wurden 0,63 g (29%) der gewünschten Verbindung in Form eines Öls mit einer optischen Reinheit von 99,5% e. e. erhalten.
-
Beispiel 22.
-
Asymmetrische Synthese von (+)-2-[[[3-Methyl-4-(2,2,2-trifluorethoxy)-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazol, (+)-(Id).
-
2,1 g (6,0 mmol) 2-[[[3-Methyl-4-(2,2,2-trifluorethoxy)-2-pyridinyl]methyl]thio]-1H-benzimidazol wurden in 50 ml Toluol gelöst. Die Lösung wurde mit 65 μl (3,6 mmol) Wasser, 2,6 ml (15,0 mmol) L(+)-Weinsäurediethylester und 1,8 ml (6,0 mmol) Titan(IV)-Isopropoxy versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt und dann auf Raumtemperatur abgekühlt. Dann wurden 1,05 ml (6,0 mmol) N,N-Diisopropylethylamin und 1,1 ml (6,0 mmol) Cumolhydroperoxid (80%ig) zugegeben. Nach 16 h bei Raumtemperatur bestand die Mischung gemäß achiraler HPLC aus 13% Sulfid, 8% Sulfon und 76% Sulfoxid. Die Mischung wurde mit Toluol (50 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 150 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von konzentrierter Essigsäure (30 ml) neutralisiert. Danach wurden durch Aufarbeitung mittels Extraktion, Eindampfen und Flashchromatographie 0,85 g der Titelverbindung mit einer Reinheit von 99,9% (achirale Analyse) und einem Enantiomerenüberschuß (e. e.) von 46% (chirale Analyse) erhalten. Nach Behandeln des Rückstandes mit Acetonitril wurde ein Niederschlag erhalten, der abfiltriert wurde. Eindampfen des Filtrats lieferte ein Öl mit erhöhter optischer Reinheit. Durch zweimalige Wiederholung dieser Vorgehensweise wurden 0,31 g (14%) der gewünschten Verbindung in Form eines Öls mit einer optischen Reinheit von 99,6% e. e. erhalten.
-
Beispiel 23.
-
Asymmetrische Synthese von (–)-5-Difluormethoxy-2-[[(3,4-dimethoxy-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazol, (–)-(Ie).
-
1,1 g (3,0 mmol) 5-Difluormethoxy-2-[[(3,4-dimethoxy-2-pyridinyl]methyl]thio]-1H-benzimidazol wurden in Methylenchlorid (25 ml) gelöst. Die Lösung wurde mit 20 μl (1,1 mmol) Wasser, 0,81 ml (4,7 mmol) D(–)-Weinsäurediethylester und 0,56 ml (1,9 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten unter Rückfluß gerührt und dann auf Raumtemperatur abgekühlt. Danach wurden 0,22 ml (1,3 mmol) N,N-Diisopropylethylamin gefolgt von 0,57 ml (80%ig, 3,1 mmol) Cumolhydroperoxid (80%ig) zugegeben. Nach 21 h bei Raumtemperatur bestand die Mischung aus 10% Sulfid und 89% Sulfoxid mit einer optischen Reinheit von 86% e. e. Die Mischung wurde mit Methylenchlorid (25 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 300 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von 25 ml konzentrierter Essigsäure neutralisiert und danach mit Methylenchlorid (3 × 100 ml) extrahiert. Der Rückstand in Form eines Öls (1,16 g) wurde im heißen Acetonitril (20 ml) gelöst. Beim Abkühlen der Lösung auf Raumtemperatur bildete sich ein weißer Niederschlag, und durch Filtration wurden 0,35 g (29%) der gewünschten Verbindung erhalten. Außerdem wurden aus dem Filtrat durch Eindampfen 0,71 g der gewünschten Verbindung mit geringerer optischer Reinheit erhalten. Die optische Reinheit der Kristalle und des Filtrats betrug 97,4% e. e. bzw. 75% ee.
-
Beispiel 24.
-
Asymmetrische Synthese von (+)-5-Difluormethoxy-2-[[(3,4-dimethoxy-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazol, (+)-(Ie).
-
1,1 g (3,0 mmol) 5-Difluormethoxy-2-[[(3,4-dimethoxy-2-pyridinyl]methyl]thio]-1H-benzimidazol wurden in Methylenchlorid (25 ml) gelöst. Die Lösung wurde mit 20 μl (1,1 mmol) Wasser, 0,81 ml (4,7 mmol) L(+)-Weinsäurediethylester und 0,56 ml (1,9 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten unter Rückfluß gerührt und dann auf Raumtemperatur abgekühlt. Danach wurden 0,22 ml (1,3 mmol) N,N-Diisopropylethylamin gefolgt von 0,57 ml (80%ig, 3,1 mmol) Cumolhydroperoxid (80%ig) zugegeben. Nach 21 h bei Raumtemperatur bestand die Mischung aus 8% Sulfid und 92% Sulfoxid mit einer optischen Reinheit von 87% e. e. Die Mischung wurde mit Methylenchlorid (25 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 300 ml extrahiert wurde. Die vereinigten Schichten wurden durch Zugabe von 25 ml konzentrierter Essigsäure neutralisiert und danach mit Methylenchlorid (3 × 100 ml) gelöst. Der nach Abziehen des Lösungsmittels verbleibende Rückstand in Form eines Öls (0,86 g) wurde in heißem Acetonitril (20 ml) gelöst. Beim Abkühlen der Lösung auf Raumtemperatur bildete sich ein weißer Niederschlag, und durch Abfiltrieren wurden 0,36 g (30%) der gewünschten Verbindung erhalten. Außerdem wurden aus dem Filtrat durch Eindampfen 0,48 g der gewünschten Verbindung mit geringerer optischer Reinheit erhalten. Die optische Reinheit der Kristalle und des Filtrats betrug 97,4% e. e. bzw. 78% ee.
-
Beispiel 25.
-
Asymmetrische Synthese von (–)-2-[[[4-(3-Methoxypropoxy)-3-methyl-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazol, (–)-(If).
-
2,1 g (6,3 mmol) 2-[[[4-(3-Methoxypropoxy)-3-methyl-2-pyridinyl]methyl]thio]-1H-benzimidazol wurden in 50 ml Toluol gelöst. Die Lösung wurde mit 40 μl (2,2 mmol) Wasser, 1,6 ml (9,4 mmol) D(–)-Weinsäurediethylester und 1,1 ml (3,8 mmol) Titan(IV)-Isopropoxy versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt und dann auf Raumtemperatur abgekühlt. Dann wurden 0,44 ml (2,6 mmol) N,N-Diisopropylethylamin und 1,1 ml (6,0 mmol) Cumolhydroperoxid (80%ig) zugegeben. Nach 2 h Rühren bei Raumtemperatur bestand die Mischung gemäß achiraler HPLC aus 9% Sulfid, 4% Sulfon und 86% Sulfoxid. Die Mischung wurde mit Toluol (50 ml) versetzt, wonach die erhaltene Lösung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 150 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von konzentrierter Essigsäure (30 ml) neutralisiert. Danach wurden durch Aufarbeitung mittels Extraktion, Eindampfen und Flashchromatographie 1,62 g der Titelverbindung mit einer Reinheit von 99,9% (achirale Analyse) und einem Enantiomerenüberschuß (e. e.) von 90% (chirale Analyse) erhalten. Nach Behandlung des Materials mit Acetonitril wurde ein Niederschlag erhalten, der abfiltriert werden konnte. Aufkonzentrieren des Filtrats lieferte 1,36 g (60%) der Titelverbindung in Form eines Öls mit einer optischen Reinheit von 91,5% e. e.
-
Beispiel 26.
-
Asymmetrische Synthese von (+)-2-[[[4-(3-Methoxypropoxy)-3-methyl-2-pyridinyl]methyl]sulfinyl]-1H-benzimidazol, (+)-(If).
-
2,1 g (6,3 mmol) 2-[[[4-(3-Methoxypropoxy)-3-methyl-2-pyridinyl]methyl]thio]-1H-benzimidazol wurden in 50 ml Toluol gelöst. Die Lösung wurde mit 40 μl (2,2 mmol) Wasser, 1,6 ml (9,4 mmol) L(+)-Weinsäurediethylester und 1,1 ml (3,8 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt und dann auf Raumtemperatur abgekühlt. Dann wurde die Lösung mit 0,44 ml (2,6 mmol) N,N-Diisopropylethylamin und 1,1 ml (6,0 mmol) Cumolhydroperoxid (80%ig) versetzt. Nach 2 h Rühren bei Raumtemperatur bestand die Mischung gemäß HPLC aus 9% Sulfid, 4% Sulfon und 85% Sulfoxid. Die Mischung wurde mit Toluol (50 ml) versetzt, wonach die erhaltene Mischung dreimal mit wäßriger Ammoniaklösung (12%ig) mit einem Gesamtvolumen von 150 ml extrahiert wurde. Die vereinigten wäßrigen Schichten wurden durch Zugabe von konzentrierter Essigsäure (30 ml) neutralisiert. Danach wurden durch Aufarbeitung mittels Extraktion, Eindampfen und Flashchromatographie 1,63 g der Titelverbindung mit einer Reinheit von 99,9% (achirale Analyse) und einem Enantiomerenüberschuß (e. e) von 91% (chirale Analyse) erhalten. Nach Behandlung des Materials mit Acetonitril wurde ein Niederschlag erhalten, der abfiltriert werden konnte. Aufkonzentrieren des Filtrats lieferte 1,1 g (49%) der Titelverbindung in Form eines Öls mit einer optischen Reinheit von 96,0% e. e.
-
Beispiel 27.
-
Asymmetrische Synthese von (–)-2-(2-(N-Isobutyl-N-methylamino)benzylsulfinyl]benzimidazol, (–)-(Ig).
-
2,0 g (6,1 mmol) 2-(2-(N-Isobutyl-N-methylamino)benzylthio]benzimidazol wurden in Toluol (6 ml) gelöst. Unter Rühren wurden bei 50°C 40 μl (2,2 mol) Wasser, 1,6 mol (9,3 mmol) L(+)-Weinsäurediethylester und 1,1 ml (3,7 mmol) Titan(IV)-isopropoxid zugegeben. Die erhaltene Mischung wurde 1 Stunde bei 50°C gerührt und dann mit 0,53 ml (3,0 mmol) N,N-Diisopropylethylamin versetzt. Die Reaktionsmischung wurde dann auf 30°C abgekühlt und danach mit 1,1 ml (6,1 mmol) Cumolhydroperoxid (80%ig) versetzt. Die Mischung wurde 50 min bei 30°C gerührt. Die Analyse der Reaktionsmischung zeigte, daß die optische Reinheit des gebildeten Sulfoxids 92% e. e. betrug. Die Mischung wurde auf Raumtemperatur abgekühlt und mit einer kleinen Menge Methylenchlorid verdünnt. Durch Säulenchromatographie [Kieselgel, eluiert mit 4% MeOH/CH2Cl2 (NH3-gesättigt)] wurde ein Öl erhalten, das erneut chromatographiert wurde (Kieselgel, eluiert mit 20% EtOAc/Hexan). Das erhaltene Rohprodukt (1,6 g) in Form eines Öls wurde mit einer kleinen Menge Acetonitril behandelt, um die optische Reinheit zu erhöhen. Ein gebildeter Niederschlag (270 mg) wurde abfiltriert. Durch Abziehen des Lösungsmittels vom Filtrat wurden 1,2 g der gewünschten Verbindung in Form eines Öls erhalten. Die optische Reinheit der Substanz betrug 96% e. e.
-
Beispiel 28.
-
Asymmetrische Synthese von (+)-2-[2-(N-Isobutyl-N-methylamino)benzylsulfinyl]benzimidazol, (+)-(Ig).
-
2,0 g (6,1 mmol) 2-[2-(N-Isobutyl-N-methylamino)benzylthio]benzimidazol wurden in Toluol (6 ml) gelöst. Unter Rühren wurden bei 50°C 40 μl (2,2 mmol) Wasser, 1,6 ml (9,3 mmol) D(–)-Weinsäurediethylester und 1,1 ml (3,7 mmol) Titan(IV)-isopropoxid zugegeben. Die erhaltene Mischung wurde eine Stunde bei 50°C gerührt und dann mit 0,53 ml (3,0 mmol) N,N-Diisopropylethylamin versetzt. Dann wurde die Reaktionsmischung auf 30°C abgekühlt und danach mit 1,1 ml (6,1 mmol) Cumolhydroperoxid (80%ig) versetzt. Die Mischung wurde 50 min bei 30°C gerührt. Die Analyse der Reaktionsmischung zeigte, daß die optische Reinheit des gebildeten Sulfoxids 91% e. e. betrug. Die Mischung wurde auf Raumtemperatur abgekühlt und mit einer kleinen Menge Methylenchlorid verdünnt. Durch Säulenchromatographie [Kieselgel, eluiert mit 4% MeOH/CH2Cl2 (NH3-gesättigt)] wurde Rohprodukt in Form eines Öls erhalten. Diese Substanz wurde mit einem Gemisch von Essigsäureethylester und Hexan (10% EtOAc) behandelt. Ein gebildeter Niederschlag (140 mg) wurde abfiltriert. Durch Abziehen des Lösungsmittels vom Filtrat wurden 0,95 g der gewünschten Verbindung in Form eines Öls erhalten. Die optische Reinheit der Substanz betrug 96% e. e.
-
Beispiel 29.
-
Asymmetrische Synthese von zwei der Stereoisomere von 2-[(4-Methoxy-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-9-yl)sulfinyl]-1H-benzimidazol (1h).
-
Im folgenden Beispiel wird das erste Diastereomer der Titelverbindung, das an gerader Phase (Kieselgel) eluiert wird, als Diastereomer A und das zweite als Diastereomer B bezeichnet.
-
Synthese: 0,51 g (1,57 mmol) des Racemats von 2-[(4-Methoxy-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-9-yl)thio]-1H-benzimidazol wurden in 20 ml Toluol gelöst. Unter Rühren bei Raumtemperatur wurden 0,34 g (1,6 mmol) L(+)-Weinsäurediethylester, 7 μl (0,4 mmol) Wasser und 0,22 g (0,78 mmol) Titan(IV)-isopropoxid zugegeben. Die Mischung wurde 50 Minuten bei 50°C gerührt und dann bei Raumtemperatur mit 100 mg (0,78 mmol) N,N-Diisopropylethylamin versetzt. Dann wurden über einen Zeitraum von 5 Minuten bei Raumtemperatur 0,33 g (160 mmol) Cumolhydroperoxid (80%ig) zugegeben, wonach die Lösung 24 Stunden bei Raumtemperatur gerührt wurde. Die Stereoisomerenzusammensetzung der Titelverbindung in der Rohmischung war folgendermaßen: Das Diastereomerenverhältnis betrug 4:3 zugunsten von Diastereomer A. Die optische Reinheit des (–)-Enantiomers von Diastereomer A betrug 76% e. e., und die optische Reinheit des (+)-Enantiomers von Diastereomer B betrug 68% e. e. Die Produktmischung wurde mit Wasser (3 × 25 ml) gewaschen, über Na2SO4 getrocknet und vom Lösungsmittel befreit. Durch Flashchromatographie des Rückstands (Methanol/Methylenchlorid 0 bis 5%) wurden 0,25 g (47%) des enantiomerenangereicherten diastereomeren Sulfoxids in Form eines Sirups erhalten.
-
Trennung der Diastereomere. Eine wiederholte chromatographische Präparation (Methanol/Methylenchlorid 0 bis 5%) führte zu einer Trennung der beiden Diastereomere. So wurde das (–)-Enantiomer von Diastereomer A in Form eines Sirups (0,14 g) mit einer optischen Reinheit von 77% e. e. erhalten. Auch das (+)-Enantiomer von Diastereomer B wurde in Form eines Sirups (0,085 g) mit einer optischen Reinheit von 68% e. e. erhalten, jedoch war Diastereomer B mit circa 10% Diastereomer A verunreinigt.
-
Optische Reinigung: Zur Verbesserung der optischen Reinheit des (–)-Enantiomers von Diastereomer A wurde die enantiomerenangereicherte Präparation von Diastereomer A (0,14 g) mit circa 2 ml Acetonitril versetzt. Nach Rühren über Nacht wurde der gebildete Niederschlag (fast racemisches Diastereomer A) abfiltriert und das Filtrat durch Filmverdampfung vom Lösungsmittel befreit. So wurden 85 mg des (–)-Enantiomers von Diastereomer A in Form eines Sirups mit einer optischen Reinheit von 88% e. e. erhalten. Die optische Reinheit des (+)-Enantiomers des Diastereomers B wurde analog erhöht. So wurde durch Zugabe von Acetonitril (2 ml) zu der enantiomerenangereicherten Präparation von Diastereomer B (0,085 g) gefolgt von Rühren über Nacht ein Niederschlag erhalten, der abfiltriert wurde. Es wurden 0,050 g des (+)-Enantiomers von Diastereomer B mit einer optischen Reinheit von 95% e. e. erhalten.
-
Die beste derzeit bekannte Ausführungsform der vorliegenden Erfindung ist diejenige gemäß Beispiel 11.
-
Referenzbeispiel A
-
Oxidation von 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol mit tert.-Butylhydroperoxid unter neutralen Bedingungen.
-
(Das verwendete Verfahren entspricht dem in Euro. J. Biochem. 166 (1987), 453–459, verwendeten und in J. Am. Chem. Soc. 106 (1984), 8188, beschriebenen Verfahren).
-
Eine Lösung von L(+)-Weinsäurediethylester (1,7 ml, 10 mmol) und Titan(IV)-isopropoxid (1,5 ml, 5 mmol) in 50 ml Methylenchlorid wurde bei Raumtemperatur mit Wasser (90 μl, 5 mmol) versetzt. Nach 20 Minuten wurde 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (6,6 g, 5 mmol) in der Reaktionsmischung gelöst und die Lösung auf –20°C abgekühlt. Nach Zugabe einer 3 M Lösung von tert.-Butylhydroperoxid in Toluol (1,8 ml, 5,5 mmol) wurde die Mischung 120 h bei –20°C gehalten. Danach bestand die Mischung aus 28% Sulfid (Edukt), 8,6% Sulfon, 30,6% (–)-Enantiomer des Sulfoxids und 28,1% (+)-Enantiomer des Sulfoxids (d. h. ee = 4%). In einem analogen Versuch, der über einen Zeitraum von 7 h bei +8°C durchgeführt wurde, bestand die Mischung aus 32,4% Sulfid, 8,7% Sulfon, 24,6% (–)-Enantiomer des Sulfoxids und 26,7% (+)-Enantiomer des Sulfoxids (d. h. ee = 4%).
-
Referenzbeispiel B
-
Oxidation von 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol mit Cumolhydroperoxid bei –22°C ohne Zugabe einer Base. (Das verwendete Oxidationsverfahren wird in Tetrahedron (1987), 43, 5135, beschrieben.)
-
Der Versuch wurde unter den gleichen Bedingungen wie in Referenzbeispiel A durchgeführt, jedoch mit der Abwandlung, daß anstelle von tert.-Butylhydroperoxid Cumolhydroperoxid verwendet wurde. Nach 120 h bei –22°C bestand die Mischung aus 29% Sulfid, 3,8% Sulfon, 29,1% (–)-Enantiomer des Sulfoxids und 35,5% (+)-Enantiomer des Sulfoxids (d. h. ee = 10%).
-
Referenzbeispiel C
-
Oxidation von 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol mit Cumolhydroperoxid unter neutralen Bedingungen.
-
Eine Lösung von L(+)-Weinsäurediethylester (8,5 ml, 50 mmol) und Titan(IV)-isopropoxid (7,4 ml, 25 mmol) in 50 ml Methylenchlorid wurde bei Raumtemperatur mit Wasser (450 μl, 25 mmol) versetzt. Nach 20 Minuten wurde 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol (8,2 g, 25 mmol) zugegeben und die Mischung in drei Teile geteilt. Einer der Teile wurde bei Raumtemperatur mit Cumolhydroperoxid (1,7 ml, 80%ige Lösung, 9,2 mmol) versetzt, und nach 3 h und 20 Minuten wurde eine Probe entnommen. Die Mischung bestand aus 29,4% Sulfid, 6,3% Sulfon, 22,0% (–)-Enantiomer des Sulfoxids und 35% (+)-Enantiomer des Sulfoxids (d. h. ee = 23%).
-
Referenzbeispiel D
-
Oxidation von 5-Methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]thio]-1H-benzimidazol mit Cumolhydroperoxid unter Zugabe einer Base gemäß einer Ausgestaltung der vorliegenden Erfindung.
-
Der Versuch wurde unter den gleichen Bedingungen wie in Referenzbeispiel C durchgeführt, aber mit dem zusätzlichen Merkmal, daß zusammen mit dem Cumolhydroperoxid ein Äquivalent Diisopropylethylamin zugegeben wurde. Nach 3 h und 20 Minuten bestand die Mischung aus 17,2% Sulfid, 3,5% Sulfon, 8,7% (–)-Enantiomer des Sulfoxids und 69,3% (+)-Enantiomer des Sulfoxids (d. h. ee = 78%).
-
Referenzbeispiel E
-
Asymmetrische Synthese von (+)-2-[5-(3,5-Dimethylpyrazol-1-yl)pentylsulfinyl]-4,5-diphenylimidazol.
-
0,8 g (1,9 mmol) 2-[5-(3,5-Dimethylpyrazol-1-yl)pentylthio]-4,5-diphenylimidazol wurden in Toluol (20 ml) gelöst. Die Lösung wurde am Rotationsverdampfer aufkonzentriert, bis die Hälfte des Volumens abgezogen worden war. Dann wurde die Mischung in der angegebenen Reihenfolge mit 20 μl (1,1 mmol) Wasser, 1,0 g (4,8 mmol) L(+)-Weinsäurediethylester und 0,54 g (1,9 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt und dann mit 0,25 g (1,9 mmol) N,N-Diisopropylethylamin versetzt. Dann wurde die Mischung 30 Minuten bei Raumtemperatur gerührt, wonach 0,36 g (80%ig, 1,9 mmol) Cumolhydroperoxid zugegeben wurden. Die Mischung wurde vier Stunden bei Raumtemperatur gerührt und war danach vollständig. Die Lösung wurde mit Wasser (2 ml) gewaschen, wonach die organische Schicht abgetrennt wurde. Der ölige Rückstand wurde mittels Chromatographie an Kieselgel (Methanol/Methylenchlorid 0 bis 5%) gereinigt. Es wurden 0,7 g des gewünschten Produkts in Form eines Öls erhalten, das eine optische Reinheit von 87% e. e. aufwies.
-
Referenzbeispiel F
-
Asymmetrische Synthese von (–)-2-[5-(3,5-Dimethylpyrazol-1-yl)pentylsulfinyl]-4,5-diphenylimidazol.
-
1,5 g (3,6 mmol) 2-[5-(3,5-Dimethylpyrazol-1-yl)pentylthio]-4,5-diphenylimidazol wurden in Toluol (40 ml) gelöst. Die Lösung wurde am Rotationsverdampfer aufkonzentriert, bis die Hälfte des Volumens abgezogen worden war. Dann wurde die Mischung in der angegebenen Reihenfolge mit 38 μl (2,1 mmol) Wasser, 1,85 g (9,0 mmol) D(–)-Weinsäurediethylester und 1,01 g (3,6 mmol) Titan(IV)-isopropoxid versetzt. Die Mischung wurde 60 Minuten bei 50°C gerührt. Dann wurde die Mischung in zwei Teile geteilt, wonach die Hälfte der Mischung mit 0,23 g (1,9 mmol) N,N-Diisopropylethylamin versetzt wurde. Diese Mischung wurde dann 15 Minuten bei Raumtemperatur gerührt, wonach 0,35 g (80%ig, 1,8 mmol) Cumolhydroperoxid zugegeben wurden. Die Mischung wurde vier Stunden bei Raumtemperatur gerührt und war dann vollständig. Die Lösung wurde mit Wasser (2 ml) gerührt, wonach die organische Schicht abgetrennt wurde. Der ölige Rückstand wurde mittels Chromatographie an Kieselgel (Methanol/Methylenchlorid 0 bis 5%) gereinigt. Es wurden 0,65 g des gewünschten Produkts in Form eines Öls erhalten, das eine optische Reinheit von 92% e. e. aufwies.
-
Schlußfolgerung:
-
Wie die Beispiele zeigen, wird der höchste Enantiomerenüberschuß erzielt, wenn alle Aspekte der Erfindung berücksichtigt werden. Die Zugabe einer Base während der Oxidation ist für eine hohe Enantioselektivität gemäß einem Aspekt der Erfindung wesentlich. Ein hoher Enantiomerenüberschuß kann jedoch auch gemäß anderen Aspekten der Erfindung erzielt werden, wenn die Zugabereihenfolge der Komponenten in das Reaktionsgefäß geändert wird und alternativ dazu die Zeit und Temperatur bei der Herstellung des chiralen Titankomplexes berücksichtigt wird. Die Herstellung des chiralen Titankomplexes erfolgt vorzugsweise in Gegenwart des prochiralen Sulfids und bei erhöhter Temperatur und über einen längeren Zeitraum.
-
Bestimmung des Enantiomerenüberschusses in den Beispielen und Referenzbeispielen
-
Der in jedem oben aufgeführten Beispiel angegebene Wert für den Enantiomerenüberschuß gibt einen Hinweis auf die relativen Mengen jedes erhaltenen Enantiomers. Der Wert ist als die Differenz zwischen den relativen Prozentanteilen der beiden Enantiomere definiert. Bei einem Prozentanteil des (–)-Enantiomers des gebildeten Sulfoxids von 97,5% und einem Prozentanteil für das (+)-Enantiomer von 2,5% beträgt der Enantiomerenüberschuß für das (–)-Enantiomer beispielsweise 95%.
-
Die Enantiomerenzusammensetzung des erhaltenen Sulfoxids wurde mittels chiraler Hochleistungs-Flüssigkeitschromatographie (HPLC) auf einer Chiralpak-AD-Säule
® oder einer Chiral-AGP-Säule
® unter den folgenden Bedingungen, die für jede Verbindung angegeben sind, bestimmt:
Verbindung der Formel (Ia) |
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (100 ml), Ethanol (100 ml) und Essigsäure (10 μl) |
Fluß | 0,5 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 302 nm |
Retentionszeit für das (–)-Enantiomer: 4,0 min
Retentionszeit für das (+)-Enantiomer: 5,8 min |
Verbindung der Formel (Ib) |
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (125 ml), 2-Propanol (25 ml), Ethanol (50 ml) und Essigsäure (30 μl) |
Fluß | 0,4 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 287 nm |
Retentionszeit für das (+)-Enantiomer: 65 min
Retentionszeit für das (+)-Enantiomer: 13,8 min |
Verbindung der Formel (Ic) |
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (100 ml), Ethanol (100 ml) und Essigsäure (10 μl) |
Fluß | 0,4 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 300 nm |
Retentionszeit für das (+)-Enantiomer: 6,4 min
Retentionszeit für das (–)-Enantiomer: 9,4 min |
Verbindung der Formel (Id) |
Säule | Chiral-AGP 100 × 4,0 mm |
Elutionsmittel | Natriumphospatpufferlösung (pH 7,0) I = 0,025 (500 ml) und Acetonitril (70 ml) |
Fluß | 0,5 ml/min |
Inj.-Vol. | 20 μl |
Wellenlänge | 210 nm |
Retentionszeit für das (+)-Enantiomer: 6,2 min
Retentionszeit für das (–)-Enantiomer: 7,2 min |
Verbindung der Formel (Ie) |
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (150 ml), Ethanol (50 ml) und Essigsäure (10 μl) |
Fluß | 0,5 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 290 nm |
Retentionszeit für das (–)-Enantiomer: 9,5 min
Retentionszeit für das (+)-Enantiomer: 13,3 min |
Verbindung der Formel (If) |
Säule | Chiral-AGP 100 × 4,0 mm |
Elutionsmittel | Natriumphosphatpufferlösung (pH 7,0) I = 0,025 (430 ml) und Acetonitril (70 ml) |
Fluß | 0,5 ml/min |
Inj.-Vol. | 20 μl |
Wellenlänge | 210 nm |
Retentionszeit für das (+)-Enantiomer: 4,1 min
Retentionszeit für das (–)-Enantiomer: 6,8 min |
Verbindung der Formel (Ig) |
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (200 ml), Ethanol (10 ml) |
Fluß | 0,5 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 285 nm |
Retentionszeit für das (–)-Enantiomer: 9,0 min
Retentionszeit für das (+)-Enantiomer: 9,8 min |
Verbindung der Formel (Ih) |
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (150 ml) und 2-Propanol (50 ml) |
Fluß | 0,4 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 285 nm |
Retentionszeit für das (–)-Enantiomer von Diastereomer A: 6,9 min
Retentionszeit für das (+)-Enantiomer von Diastereomer A: 8,1 min
Retentionszeit für das (+)-Enantiomer von Diastereomer B: 8,8 min
Retentionszeit für das (–)-Enantiomer von Diastereomer B: 11,0 min |
-
Das erste Diastereomer der Verbindung (Ih), das auf gerader Phase (achirales Kieselgel, siehe unten) eluiert wird, wird als Diastereomer A und das zweite als das Diastereomer B bezeichnet.
-
Referenzbeispiele E und F
-
In den Referenzbeispielen E und F wurde die Enantiomerenzusammensetzung der Produkte mittels chiraler HPLC unter den folgenden Bedingungen bestimmt:
Säule | Chiralpak AD 50 × 4,6 mm |
Elutionsmittel | Isohexan (200 ml), Ethanol (5 ml) und Essigsäure (10 μl) |
Fluß | 1 ml/min |
Inj.-Vol. | 50 μl |
Wellenlänge | 280 nm |
Retentionszeit für das (+)-Enantiomer: 13,5 min
Retentionszeit für das ()-Enantiomer: 17,3 min |
-
Es sei darauf hingewiesen, daß in den Beispielen, die sich auf die einzelnen Enantiomere von Omeprazol oder dessen alkalische Salze beziehen, das Vorzeichen der in Wasser gemessenen optischen Drehung einer einzelnen Enantiomerenform von Omeprazol-Natriumsalz sich gegenüber dem Vorzeichen bei Vermessung der Verbindung in ihrer neutralen Form in Chloroform umkehrt.