Nothing Special   »   [go: up one dir, main page]

DE4129102A1 - Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles - Google Patents

Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles

Info

Publication number
DE4129102A1
DE4129102A1 DE19914129102 DE4129102A DE4129102A1 DE 4129102 A1 DE4129102 A1 DE 4129102A1 DE 19914129102 DE19914129102 DE 19914129102 DE 4129102 A DE4129102 A DE 4129102A DE 4129102 A1 DE4129102 A1 DE 4129102A1
Authority
DE
Germany
Prior art keywords
gas
finely crystalline
source
silicon
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19914129102
Other languages
German (de)
Inventor
Dieter Prof Neuschuetz
Farzin Dr Ing Salehomoum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Priority to DE19914129102 priority Critical patent/DE4129102A1/en
Publication of DE4129102A1 publication Critical patent/DE4129102A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Finely crystalline stoichiometric SiC is uniformly deposited from the gas phase onto the filaments of fibre bundles or into open porous substrates and/or onto substrates from a flowing gas mixt. at 0.1-1 bar total pressure and at 750-1100 deg.C. The gas mixt. mutually consists of a silicon source, a carbon source and a diluent gas and having a C to Si atomic ratio of 5-40. ADVANTAGE - The prcocess allows chemical vapour infiltration of uniform deposits of stoichiometric, very finely crystalline SiC, under moderate process conditions even into the interior of the complex components

Description

Es ist bekannt, daß keramische Schichten aus der Gasphase mittels "Chemi­ cal Vapor Deposition (CVD)" abgeschieden werden können. Die Ausgangs­ stoffe werden in gasförmigem Zustand an das auf höherer Temperatur befind­ liche Substrat herangeführt und bilden dort durch chemische Reaktion das ge­ wünschte, sich als feste Schicht abscheidende Produkt. Zur Abscheidung von Siliciumcarbid SiC wird überwiegend ein Gemisch aus Methyltrichlorsilan CH3SiCl3 (MTS) und Wasserstoff H2 verwendet.It is known that ceramic layers can be deposited from the gas phase by means of "chemical vapor deposition (CVD)". The starting materials are introduced in gaseous form to the substrate located at a higher temperature and form the desired product, which separates out as a solid layer, by chemical reaction. A mixture of methyltrichlorosilane CH 3 SiCl 3 (MTS) and hydrogen H 2 is predominantly used for the deposition of silicon carbide SiC.

CVD-Verfahren werden im allgemeinen bei Gesamtdrücken in der Nähe von 1 bar durchgeführt. Die Geschwindigkeit der Abscheidung wird meist durch die Diffusion in der Gasrandschicht bestimmt. Dadurch gelingt zwar bei ein­ fachen Bauteilen eine gute Rundum-Beschichtung, allerdings bereitet die gleichmäßige Beschichtung bei komplizierter Geometrie der Werkstücke we­ gen lokaler Verarmung der Gasphase an reaktiven Spezies Schwierigkeiten. Insbesondere gelingt es bisher nur mangelhaft, die Einzelfilamente eines Fa­ serbündels gleichmäßig mit einer CVD-Schicht zu überziehen oder die offe­ nen Poren eines Bauteils mittels CVD aufzufüllen. Im Falle der SiC-Abschei­ dung kommt ein weiteres Problem hinzu. Aufgrund von homogenen Gasreak­ tionen und Diffusionsprozessen in der Gasphase treten Konzentrationsver­ schiebungen im Gas auf, die zur Folge haben, daß entgegen thermodynami­ scher Vorhersagen nicht reines SiC abgeschieden wird, sondern SiC + Si oder, bei anderen Bedingungen, SiC + C. Da die Produkteigenschaften hier­ von stark beeinflußt werden, wird im allgemeinen eine gezielte stöchiometri­ sche Abscheidung gefordert. Außerdem wird eine sehr feinkörnige bis röntgenamorphe Abscheidungsform des SiC bevorzugt, da dann seine me­ chanischen Eigenschaften besonders günstig sind.CVD processes are generally used at near total pressures 1 bar. The speed of the deposition is mostly determined by determines the diffusion in the gas boundary layer. This makes it a success a good all-round coating, but the uniform coating with complicated workpiece geometry we Difficulties due to local depletion of the gas phase in reactive species. In particular, the individual filaments of a company have so far been unsuccessful cover the bundle evenly with a CVD layer or the open to fill the pores of a component using CVD. In the case of SiC rejection There is another problem. Because of homogeneous gas freak tion and diffusion processes in the gas phase occur  shifts in the gas, which have the consequence that contrary to thermodynami Sheer predictions do not separate pure SiC, but SiC + Si or, under other conditions, SiC + C. Because the product properties here are strongly influenced, is generally a targeted stoichiometry separation required. It also has a very fine grain up X-ray amorphous form of deposition of the SiC preferred, since then its me Chan properties are particularly favorable.

Für die technische Zielsetzung der gleichmäßigen Beschichtung der Einzelfi­ lamente von Faserbündeln und der Auffüllung von offenen Poren in Bauteilen mittels CVD (auch als Chemical Vapor Infiltration CVl bezeichnet) mit stöchio­ metrischem sehr feinkörnigem Siliciumcarbid SiC wird im folgenden ein erfin­ derisches, wirtschaftlich vorteilhaftes Verfahren beschrieben.For the technical objective of uniform coating of the individual fi laments of fiber bundles and the filling of open pores in components using CVD (also known as Chemical Vapor Infiltration CVl) with stoichio metric very fine-grained silicon carbide SiC is invented below deres, economically advantageous process described.

Aufgabe der Erfindung ist es, wirtschaftlich vertretbare und realisierbare Be­ dingungen anzugeben, bei denen Chemical Vapor Infiltration zur gleich­ mäßigen Abscheidung von stöchiometrischem, sehr feinkristallinem SiC auch im Inneren eines komplexen Bauteils führt.The object of the invention is to be economically justifiable and feasible specify conditions under which Chemical Vapor Infiltration at the same time moderate deposition of stoichiometric, very fine crystalline SiC too inside a complex component.

Für eine kostengünstige Durchführung der Beschichtung ist es vorteilhaft, den Prozeß bei oder in der Nähe von Atmosphärendruck ablaufen zu lassen, weil auf teure Vakuumapparaturen verzichtet werden kann. Bekannt ist, daß bei Gesamtdrücken oberhalb 0,1 bar die Abscheidegeschwindigkeit im wesent­ lichen von der Gasdiffusion abhängt, wenn 1100°C überschritten werden. CVl läßt sich jedoch nur realisieren, wenn die Gasdiffusion im Vergleich zur Ab­ scheidereaktion am Substrat schnell verläuft, also bei Temperaturen unter­ halb 1100°C. Tiefere Temperaturen haben weiterhin den Vorteil, daß SiC zu­ nehmend feinkristallin bis röntgenamorph abgeschieden wird. Allerdings ist auch bekannt, daß bei diesen Temperaturen aus MTS, das im allgemeinen als MTS-H2-Gemisch eingesetzt wird, kein reines SiC sondern eine Mischung aus Si und SiC abgeschieden wird. Dagegen führt ein solches Gasgemisch bei höheren Temperaturen, z. B. 1500°C, zu stöchiometrischem SiC. Wird bei solch hohen Temperaturen dem MTS + H₂-Gemisch noch ein Kohlenwasser­ stoff zugesetzt, so wird neben SiC freier Kohlenstoff abgeschieden. Die Aufgabenstellung wird erfindungsgemäß dadurch gelöst, daß die Ab­ scheidung bei einem Gesamtdruck von 0,1 bis 1 bar im Temperaturbereich zwischen 750°C und 1100°C, ausgehend von einer Gasmischung aus Silici­ umträger, Kohlenstoffträger und Verdünnungsgas, durchgeführt wird, wobei das Atomverhältnis C:Si in der Gasmischung zwischen 5 und 40 beträgt und die lineare Strömungsgeschwindigkeit, bezogen auf 20°C und 1 bar, bei 0,02 und 0,1 m/s liegt. Als Ausgangsstoffe werden beispielsweise Methyltrichlorsi­ lan, Methan und Wasserstoff verwendet.For the coating to be carried out inexpensively, it is advantageous to let the process run at or near atmospheric pressure, because expensive vacuum equipment can be dispensed with. It is known that at total pressures above 0.1 bar, the deposition speed depends essentially on the gas diffusion when 1100 ° C. is exceeded. However, CVl can only be realized if the gas diffusion is rapid compared to the deposition reaction on the substrate, i.e. at temperatures below half 1100 ° C. Lower temperatures also have the advantage that SiC is increasingly deposited in a fine crystalline to X-ray amorphous form. However, it is also known that at these temperatures MTS, which is generally used as an MTS-H 2 mixture, is not deposited as pure SiC but as a mixture of Si and SiC. In contrast, such a gas mixture at higher temperatures, z. B. 1500 ° C, to stoichiometric SiC. If the MTS + H₂ mixture still contains a hydrocarbon at such high temperatures, free carbon is deposited in addition to SiC. The object is achieved in that the separation from a total pressure of 0.1 to 1 bar in the temperature range between 750 ° C and 1100 ° C, starting from a gas mixture of silicon carrier, carbon carrier and diluent gas, the atomic ratio C: Si in the gas mixture is between 5 and 40 and the linear flow velocity, based on 20 ° C. and 1 bar, is 0.02 and 0.1 m / s. For example, methyltrichlorosilane, methane and hydrogen are used as starting materials.

Ausführungsbeispiel: Bei einem Gesamtdruck von 1 bar wurde bei 845°C ein Gemisch aus (Volumenanteile) 3,3% Methyltrichlorsilan, 46,7% H₂ und 50,0% CH4 mit 0,058 m/s Strömungsgeschwindigkeit (bezogen auf 20°C) über ein Graphitsubstrat geleitet, wo sich stöchiometrisches SiC in sehr feinkristalliner Form als β-SiC mit einer Geschwindigkeit von 5,7 µm/h gleichmäßig abschied.Embodiment: At a total pressure of 1 bar at 845 ° C, a mixture of (volume fractions) 3.3% methyltrichlorosilane, 46.7% H₂ and 50.0% CH 4 with 0.058 m / s flow rate (based on 20 ° C) passed over a graphite substrate, where stoichiometric SiC in a very fine crystalline form as β-SiC separated uniformly at a speed of 5.7 µm / h.

Claims (7)

1. Verfahren zur gleichmäßigen Abscheidung von feinkristallinem, stö­ chiometrischem SiC aus der Gasphase auf den Filamenten von Faser­ bündeln oder in offenporigen Substraten und/oder auf Substraten, da­ durch gekennzeichnet, daß die Abscheidung aus einem strömen­ den Gasgemisch bei einem Gesamtdruck von 0,1 bis 1 bar, bei Tempe­ raturen zwischen 750 und 1100°C vorgenommen wird, wobei das Gas­ gemisch im Ausgangszustand aus einem Siliciumträger, einem Koh­ lenstoffträger und einem Verdünnungsgas besteht und das Atomver­ hältnis Kohlenstoff zu Silicium in diesem Gas zwischen 5 und 40 ein­ gestellt wird.1. A method for the uniform deposition of fine crystalline, stoichiometric SiC from the gas phase on the filaments of fiber bundle or in open-pore substrates and / or on substrates, characterized in that the deposition from a stream of gas mixture at a total pressure of 0.1 up to 1 bar, at temperatures between 750 and 1100 ° C, the gas mixture in the initial state consisting of a silicon carrier, a carbon carrier and a diluent gas and the atomic ratio of carbon to silicon in this gas between 5 and 40 is set . 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Gesamtdruck Atmosphärendruck im Reaktor eingestellt wird.2. The method according to claim 1, characterized in that as Total pressure atmospheric pressure in the reactor is set. 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß eine Reaktionstemperatur zwischen 800 und 900°C eingestellt wird.3. The method according to claim 1, characterized in that a Reaction temperature between 800 and 900 ° C is set. 4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Siliciumträger Methyltrichlorsilan CH3SiCl3 verwendet wird.4. The method according to claim 1, characterized in that methyltrichlorosilane CH 3 SiCl 3 is used as the silicon carrier. 5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Kohlenstoffträger zusätzlich zu dem im Siliciumträger enthaltenen Koh­ lenstoff Methan CH4 eingesetzt wird. 5. The method according to claim 1, characterized in that methane CH 4 is used as a carbon carrier in addition to the Koh contained in the carbon lenstoff. 6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Verdünnungsgas Wasserstoff H2 eingesetzt wird.6. The method according to claim 1, characterized in that hydrogen H 2 is used as the diluent gas. 7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß im Reaktor eine Strömungsgeschwindigkeit eingestellt wird, die am Sub­ strat einer linearen Gasgeschwindigkeit (bezogen auf 1 bar und 20°C) zwischen 0,02 und 0,1 m/s entspricht.7. The method according to claim 1, characterized in that in Reactor a flow rate is set, which at the Sub linear gas velocity (based on 1 bar and 20 ° C) between 0.02 and 0.1 m / s.
DE19914129102 1991-09-02 1991-09-02 Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles Withdrawn DE4129102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914129102 DE4129102A1 (en) 1991-09-02 1991-09-02 Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914129102 DE4129102A1 (en) 1991-09-02 1991-09-02 Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles

Publications (1)

Publication Number Publication Date
DE4129102A1 true DE4129102A1 (en) 1993-03-04

Family

ID=6439657

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914129102 Withdrawn DE4129102A1 (en) 1991-09-02 1991-09-02 Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles

Country Status (1)

Country Link
DE (1) DE4129102A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016803A1 (en) * 1993-12-16 1995-06-22 Societe Europeenne De Propulsion Porous substrate densification method
EP0781739A1 (en) * 1995-12-26 1997-07-02 Asahi Glass Company Ltd. Jig for heat treatment and process for fabricating the jig
CN116514557A (en) * 2023-05-12 2023-08-01 北京航空航天大学 Method for efficiently and stably preparing SiC interface coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016803A1 (en) * 1993-12-16 1995-06-22 Societe Europeenne De Propulsion Porous substrate densification method
FR2714076A1 (en) * 1993-12-16 1995-06-23 Europ Propulsion Process for densifying porous substrates by chemical vapor infiltration of silicon carbide
US5738908A (en) * 1993-12-16 1998-04-14 Societe Europeenne De Propulsion Method of densifying porous substrates by chemical vapor infiltration of silicon carbide
EP0781739A1 (en) * 1995-12-26 1997-07-02 Asahi Glass Company Ltd. Jig for heat treatment and process for fabricating the jig
CN116514557A (en) * 2023-05-12 2023-08-01 北京航空航天大学 Method for efficiently and stably preparing SiC interface coating

Similar Documents

Publication Publication Date Title
DE69413138T2 (en) Process for the formation of coatings from crystalline silicon carbide
DE69501274T2 (en) Process for the deposition of a ceramic coating from the vapor phase using a carrier gas containing water vapor and non-alkoxy-silane precursors
DE69211425T2 (en) Vapor deposition of hydrogenated silsesquioxane resin
DE69014593T2 (en) GAS SEPARATION WITH SEMIPERMEABLED MEMBRANES.
DE69213387T2 (en) Process for passivating the inner surface of a coke-forming reactor by depositing a ceramic coating, and process for pyrolysis of hydrocarbons
DE69413910T2 (en) Low temperature process for the production of crystalline silicon carbide coatings
DE4229568C2 (en) Process for the deposition of thin titanium nitride layers with low and stable volume resistivity
DE69305048T2 (en) Vapor phase deposition of hydrogen silsesquioxane resin in the presence of nitrous oxide
DE69014811T2 (en) Process for applying an amorphous inorganic protective layer to a polymeric organic substrate.
DE2739258A1 (en) METHOD OF APPLICATION OF A PROTECTIVE LAYER TO SHAPED CARBON BODIES
DE69209990T2 (en) Process for the production of a diamond layer by means of CVD
GB2051875A (en) Preparing metal coatings
DE10357698A1 (en) Carrier for objects to be treated and method for producing such
DE69105404T2 (en) Process for producing a silicon dioxide layer on a substrate by means of chemical vapor deposition at low pressure (LPCVD).
DE1696621C3 (en) Process and device for the production of coatings of stoichiometric silicon carbide on wires
DE69007568T2 (en) Process for the production of a carbon material.
DE4129102A1 (en) Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles
DE3534563A1 (en) CERAMIC COMPOSITIONS MADE BY DISPERSION TOE AND METHOD FOR THE PRODUCTION THEREOF
DE3426911C2 (en)
US5114749A (en) Method for manufacturing carbon material having good resistance to oxidation by coating the carbon material with an inorganic polysilazane and then heating
DE1544287B2 (en) Process for producing a protective layer from silicon nitride
EP0425056A1 (en) Process for depositing microcrystalline particles from the gas phase by chemical vapour deposition
Bonnetot et al. Boron nitride matrixes and coatings obtained from tris (methylamino) borane. Application to the protection of graphite against oxidation
Dupel et al. Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections: Part I Study of the pulsed process of deposition
DE69313136T2 (en) AMORPHE BORCARBIDE COATING

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee