DE4129102A1 - Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles - Google Patents
Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundlesInfo
- Publication number
- DE4129102A1 DE4129102A1 DE19914129102 DE4129102A DE4129102A1 DE 4129102 A1 DE4129102 A1 DE 4129102A1 DE 19914129102 DE19914129102 DE 19914129102 DE 4129102 A DE4129102 A DE 4129102A DE 4129102 A1 DE4129102 A1 DE 4129102A1
- Authority
- DE
- Germany
- Prior art keywords
- gas
- finely crystalline
- source
- silicon
- sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Es ist bekannt, daß keramische Schichten aus der Gasphase mittels "Chemi cal Vapor Deposition (CVD)" abgeschieden werden können. Die Ausgangs stoffe werden in gasförmigem Zustand an das auf höherer Temperatur befind liche Substrat herangeführt und bilden dort durch chemische Reaktion das ge wünschte, sich als feste Schicht abscheidende Produkt. Zur Abscheidung von Siliciumcarbid SiC wird überwiegend ein Gemisch aus Methyltrichlorsilan CH3SiCl3 (MTS) und Wasserstoff H2 verwendet.It is known that ceramic layers can be deposited from the gas phase by means of "chemical vapor deposition (CVD)". The starting materials are introduced in gaseous form to the substrate located at a higher temperature and form the desired product, which separates out as a solid layer, by chemical reaction. A mixture of methyltrichlorosilane CH 3 SiCl 3 (MTS) and hydrogen H 2 is predominantly used for the deposition of silicon carbide SiC.
CVD-Verfahren werden im allgemeinen bei Gesamtdrücken in der Nähe von 1 bar durchgeführt. Die Geschwindigkeit der Abscheidung wird meist durch die Diffusion in der Gasrandschicht bestimmt. Dadurch gelingt zwar bei ein fachen Bauteilen eine gute Rundum-Beschichtung, allerdings bereitet die gleichmäßige Beschichtung bei komplizierter Geometrie der Werkstücke we gen lokaler Verarmung der Gasphase an reaktiven Spezies Schwierigkeiten. Insbesondere gelingt es bisher nur mangelhaft, die Einzelfilamente eines Fa serbündels gleichmäßig mit einer CVD-Schicht zu überziehen oder die offe nen Poren eines Bauteils mittels CVD aufzufüllen. Im Falle der SiC-Abschei dung kommt ein weiteres Problem hinzu. Aufgrund von homogenen Gasreak tionen und Diffusionsprozessen in der Gasphase treten Konzentrationsver schiebungen im Gas auf, die zur Folge haben, daß entgegen thermodynami scher Vorhersagen nicht reines SiC abgeschieden wird, sondern SiC + Si oder, bei anderen Bedingungen, SiC + C. Da die Produkteigenschaften hier von stark beeinflußt werden, wird im allgemeinen eine gezielte stöchiometri sche Abscheidung gefordert. Außerdem wird eine sehr feinkörnige bis röntgenamorphe Abscheidungsform des SiC bevorzugt, da dann seine me chanischen Eigenschaften besonders günstig sind.CVD processes are generally used at near total pressures 1 bar. The speed of the deposition is mostly determined by determines the diffusion in the gas boundary layer. This makes it a success a good all-round coating, but the uniform coating with complicated workpiece geometry we Difficulties due to local depletion of the gas phase in reactive species. In particular, the individual filaments of a company have so far been unsuccessful cover the bundle evenly with a CVD layer or the open to fill the pores of a component using CVD. In the case of SiC rejection There is another problem. Because of homogeneous gas freak tion and diffusion processes in the gas phase occur shifts in the gas, which have the consequence that contrary to thermodynami Sheer predictions do not separate pure SiC, but SiC + Si or, under other conditions, SiC + C. Because the product properties here are strongly influenced, is generally a targeted stoichiometry separation required. It also has a very fine grain up X-ray amorphous form of deposition of the SiC preferred, since then its me Chan properties are particularly favorable.
Für die technische Zielsetzung der gleichmäßigen Beschichtung der Einzelfi lamente von Faserbündeln und der Auffüllung von offenen Poren in Bauteilen mittels CVD (auch als Chemical Vapor Infiltration CVl bezeichnet) mit stöchio metrischem sehr feinkörnigem Siliciumcarbid SiC wird im folgenden ein erfin derisches, wirtschaftlich vorteilhaftes Verfahren beschrieben.For the technical objective of uniform coating of the individual fi laments of fiber bundles and the filling of open pores in components using CVD (also known as Chemical Vapor Infiltration CVl) with stoichio metric very fine-grained silicon carbide SiC is invented below deres, economically advantageous process described.
Aufgabe der Erfindung ist es, wirtschaftlich vertretbare und realisierbare Be dingungen anzugeben, bei denen Chemical Vapor Infiltration zur gleich mäßigen Abscheidung von stöchiometrischem, sehr feinkristallinem SiC auch im Inneren eines komplexen Bauteils führt.The object of the invention is to be economically justifiable and feasible specify conditions under which Chemical Vapor Infiltration at the same time moderate deposition of stoichiometric, very fine crystalline SiC too inside a complex component.
Für eine kostengünstige Durchführung der Beschichtung ist es vorteilhaft, den Prozeß bei oder in der Nähe von Atmosphärendruck ablaufen zu lassen, weil auf teure Vakuumapparaturen verzichtet werden kann. Bekannt ist, daß bei Gesamtdrücken oberhalb 0,1 bar die Abscheidegeschwindigkeit im wesent lichen von der Gasdiffusion abhängt, wenn 1100°C überschritten werden. CVl läßt sich jedoch nur realisieren, wenn die Gasdiffusion im Vergleich zur Ab scheidereaktion am Substrat schnell verläuft, also bei Temperaturen unter halb 1100°C. Tiefere Temperaturen haben weiterhin den Vorteil, daß SiC zu nehmend feinkristallin bis röntgenamorph abgeschieden wird. Allerdings ist auch bekannt, daß bei diesen Temperaturen aus MTS, das im allgemeinen als MTS-H2-Gemisch eingesetzt wird, kein reines SiC sondern eine Mischung aus Si und SiC abgeschieden wird. Dagegen führt ein solches Gasgemisch bei höheren Temperaturen, z. B. 1500°C, zu stöchiometrischem SiC. Wird bei solch hohen Temperaturen dem MTS + H₂-Gemisch noch ein Kohlenwasser stoff zugesetzt, so wird neben SiC freier Kohlenstoff abgeschieden. Die Aufgabenstellung wird erfindungsgemäß dadurch gelöst, daß die Ab scheidung bei einem Gesamtdruck von 0,1 bis 1 bar im Temperaturbereich zwischen 750°C und 1100°C, ausgehend von einer Gasmischung aus Silici umträger, Kohlenstoffträger und Verdünnungsgas, durchgeführt wird, wobei das Atomverhältnis C:Si in der Gasmischung zwischen 5 und 40 beträgt und die lineare Strömungsgeschwindigkeit, bezogen auf 20°C und 1 bar, bei 0,02 und 0,1 m/s liegt. Als Ausgangsstoffe werden beispielsweise Methyltrichlorsi lan, Methan und Wasserstoff verwendet.For the coating to be carried out inexpensively, it is advantageous to let the process run at or near atmospheric pressure, because expensive vacuum equipment can be dispensed with. It is known that at total pressures above 0.1 bar, the deposition speed depends essentially on the gas diffusion when 1100 ° C. is exceeded. However, CVl can only be realized if the gas diffusion is rapid compared to the deposition reaction on the substrate, i.e. at temperatures below half 1100 ° C. Lower temperatures also have the advantage that SiC is increasingly deposited in a fine crystalline to X-ray amorphous form. However, it is also known that at these temperatures MTS, which is generally used as an MTS-H 2 mixture, is not deposited as pure SiC but as a mixture of Si and SiC. In contrast, such a gas mixture at higher temperatures, z. B. 1500 ° C, to stoichiometric SiC. If the MTS + H₂ mixture still contains a hydrocarbon at such high temperatures, free carbon is deposited in addition to SiC. The object is achieved in that the separation from a total pressure of 0.1 to 1 bar in the temperature range between 750 ° C and 1100 ° C, starting from a gas mixture of silicon carrier, carbon carrier and diluent gas, the atomic ratio C: Si in the gas mixture is between 5 and 40 and the linear flow velocity, based on 20 ° C. and 1 bar, is 0.02 and 0.1 m / s. For example, methyltrichlorosilane, methane and hydrogen are used as starting materials.
Ausführungsbeispiel: Bei einem Gesamtdruck von 1 bar wurde bei 845°C ein Gemisch aus (Volumenanteile) 3,3% Methyltrichlorsilan, 46,7% H₂ und 50,0% CH4 mit 0,058 m/s Strömungsgeschwindigkeit (bezogen auf 20°C) über ein Graphitsubstrat geleitet, wo sich stöchiometrisches SiC in sehr feinkristalliner Form als β-SiC mit einer Geschwindigkeit von 5,7 µm/h gleichmäßig abschied.Embodiment: At a total pressure of 1 bar at 845 ° C, a mixture of (volume fractions) 3.3% methyltrichlorosilane, 46.7% H₂ and 50.0% CH 4 with 0.058 m / s flow rate (based on 20 ° C) passed over a graphite substrate, where stoichiometric SiC in a very fine crystalline form as β-SiC separated uniformly at a speed of 5.7 µm / h.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914129102 DE4129102A1 (en) | 1991-09-02 | 1991-09-02 | Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914129102 DE4129102A1 (en) | 1991-09-02 | 1991-09-02 | Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles |
Publications (1)
Publication Number | Publication Date |
---|---|
DE4129102A1 true DE4129102A1 (en) | 1993-03-04 |
Family
ID=6439657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19914129102 Withdrawn DE4129102A1 (en) | 1991-09-02 | 1991-09-02 | Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4129102A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995016803A1 (en) * | 1993-12-16 | 1995-06-22 | Societe Europeenne De Propulsion | Porous substrate densification method |
EP0781739A1 (en) * | 1995-12-26 | 1997-07-02 | Asahi Glass Company Ltd. | Jig for heat treatment and process for fabricating the jig |
CN116514557A (en) * | 2023-05-12 | 2023-08-01 | 北京航空航天大学 | Method for efficiently and stably preparing SiC interface coating |
-
1991
- 1991-09-02 DE DE19914129102 patent/DE4129102A1/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995016803A1 (en) * | 1993-12-16 | 1995-06-22 | Societe Europeenne De Propulsion | Porous substrate densification method |
FR2714076A1 (en) * | 1993-12-16 | 1995-06-23 | Europ Propulsion | Process for densifying porous substrates by chemical vapor infiltration of silicon carbide |
US5738908A (en) * | 1993-12-16 | 1998-04-14 | Societe Europeenne De Propulsion | Method of densifying porous substrates by chemical vapor infiltration of silicon carbide |
EP0781739A1 (en) * | 1995-12-26 | 1997-07-02 | Asahi Glass Company Ltd. | Jig for heat treatment and process for fabricating the jig |
CN116514557A (en) * | 2023-05-12 | 2023-08-01 | 北京航空航天大学 | Method for efficiently and stably preparing SiC interface coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69413138T2 (en) | Process for the formation of coatings from crystalline silicon carbide | |
DE69501274T2 (en) | Process for the deposition of a ceramic coating from the vapor phase using a carrier gas containing water vapor and non-alkoxy-silane precursors | |
DE69211425T2 (en) | Vapor deposition of hydrogenated silsesquioxane resin | |
DE69014593T2 (en) | GAS SEPARATION WITH SEMIPERMEABLED MEMBRANES. | |
DE69213387T2 (en) | Process for passivating the inner surface of a coke-forming reactor by depositing a ceramic coating, and process for pyrolysis of hydrocarbons | |
DE69413910T2 (en) | Low temperature process for the production of crystalline silicon carbide coatings | |
DE4229568C2 (en) | Process for the deposition of thin titanium nitride layers with low and stable volume resistivity | |
DE69305048T2 (en) | Vapor phase deposition of hydrogen silsesquioxane resin in the presence of nitrous oxide | |
DE69014811T2 (en) | Process for applying an amorphous inorganic protective layer to a polymeric organic substrate. | |
DE2739258A1 (en) | METHOD OF APPLICATION OF A PROTECTIVE LAYER TO SHAPED CARBON BODIES | |
DE69209990T2 (en) | Process for the production of a diamond layer by means of CVD | |
GB2051875A (en) | Preparing metal coatings | |
DE10357698A1 (en) | Carrier for objects to be treated and method for producing such | |
DE69105404T2 (en) | Process for producing a silicon dioxide layer on a substrate by means of chemical vapor deposition at low pressure (LPCVD). | |
DE1696621C3 (en) | Process and device for the production of coatings of stoichiometric silicon carbide on wires | |
DE69007568T2 (en) | Process for the production of a carbon material. | |
DE4129102A1 (en) | Uniformly depositing finely crystalline stoichiometric silicon carbide - using flowing gas mixt. comprising silicon source, carbon source and diluent gas at moderate temp. and pressure useful for fibre bundles | |
DE3534563A1 (en) | CERAMIC COMPOSITIONS MADE BY DISPERSION TOE AND METHOD FOR THE PRODUCTION THEREOF | |
DE3426911C2 (en) | ||
US5114749A (en) | Method for manufacturing carbon material having good resistance to oxidation by coating the carbon material with an inorganic polysilazane and then heating | |
DE1544287B2 (en) | Process for producing a protective layer from silicon nitride | |
EP0425056A1 (en) | Process for depositing microcrystalline particles from the gas phase by chemical vapour deposition | |
Bonnetot et al. | Boron nitride matrixes and coatings obtained from tris (methylamino) borane. Application to the protection of graphite against oxidation | |
Dupel et al. | Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections: Part I Study of the pulsed process of deposition | |
DE69313136T2 (en) | AMORPHE BORCARBIDE COATING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8139 | Disposal/non-payment of the annual fee |