Nothing Special   »   [go: up one dir, main page]

DE3687543T2 - MEASURING PROBE FOR BIOLOGICAL MOLECULES WITH USE OF OPTICAL WAVE GUIDE. - Google Patents

MEASURING PROBE FOR BIOLOGICAL MOLECULES WITH USE OF OPTICAL WAVE GUIDE.

Info

Publication number
DE3687543T2
DE3687543T2 DE8686302650T DE3687543T DE3687543T2 DE 3687543 T2 DE3687543 T2 DE 3687543T2 DE 8686302650 T DE8686302650 T DE 8686302650T DE 3687543 T DE3687543 T DE 3687543T DE 3687543 T2 DE3687543 T2 DE 3687543T2
Authority
DE
Germany
Prior art keywords
waveguide
medium
light
coating
biosensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE8686302650T
Other languages
German (de)
Other versions
DE3687543D1 (en
Inventor
William James Stewart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marconi UK Intellectual Property Ltd
Original Assignee
Marconi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marconi Co Ltd filed Critical Marconi Co Ltd
Publication of DE3687543D1 publication Critical patent/DE3687543D1/en
Application granted granted Critical
Publication of DE3687543T2 publication Critical patent/DE3687543T2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/808Optical sensing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

An optic-waveguide biosensor (fig 2) of the type comprising an optic-waveguide (1) provided with a coating (7) sensitized to a specific assay species, and input and output coupling members (3) and (5). Light signal response is enhanced by incorporating a partially reflecting, partially transmitting, low refractive index medium (15) between each coupling member (3,5) and the waveguide (1). The thickness of this medium (15) is chosen so that light may be coupled by frustrated total internal reflection and so that the medium (15) serves as a resonant mirror. It may be in the form of a single layer (fig 3(a)) formed of eg. magnesium fluoride or alumina material. Alternatively, it may be of multilayer structure dielectric material (fig 3 (b)).

Description

Die vorliegende Erfindung betrifft Meßfühler für biologische Moleküle (kurz Biosensoren) mit Verwendung optischer Wellenleiter, d. h. Sensoren zum Erfassen und/oder Überwachen oder zur quantitativen Bestimmung des Vorhandenseins und/oder Verhaltens spezifischer molekularer Testgattungen in Testfluidproben. Die Erfindung weist beispielsweise folgende Anwendung auf: Immunitätsprüfung (die Detektion von Antikörpern, Antigenen oder Hormonen in Blutproben), Verunreinigungsüberwachung; und Überwachung klinischer diagnostischer Reaktionen, die z. B. Enzyme und dergleichen umfassen.The present invention relates to biological molecule sensors (biosensors) using optical waveguides, i.e. sensors for detecting and/or monitoring or quantifying the presence and/or behavior of specific molecular test species in test fluid samples. The invention has, for example, application in: immunity testing (the detection of antibodies, antigens or hormones in blood samples), contamination monitoring; and monitoring of clinical diagnostic reactions involving, for example, enzymes and the like.

In einem Artikel mit dem Titel "Detection of Antibody-Antigen Reactions at a glass-Liquid Interface as a Novel Optical Immunoassay Concept" (1984) (Proceedings der 2ten Optischen Wellenleitertagung (Stuttgart 1984) Seite 75) beschreiben R.M. Sutherland et al einen Biosensor, in dem eine Antikörpergattung kovalent auf der Oberfläche eines planaren oder faseroptischen Wellenleiters immobilisiert wird. Die Reaktion des immobilisierten Antikörpers mit Antigen in Probenlösung wird unter Ausnutzung der Dämpfungs- oder Evaneszenzwellenkomponente eines Lichtstrahls, der viele Male innerhalb des Wellenleiters intern total reflektiert worden ist, erfaßt. Die evanesente Welle weist eine charakteristische Eindringtiefe eines Bruchteils einer Wellenlänge in die wässrige Phase auf, so daß sie optisch mit Substanzen, die an die Grenzschicht angebunden sind oder sehr dicht an dieser liegen, und nur minimal mit der Hauptlösung wechselwirkt.In an article entitled "Detection of Antibody-Antigen Reactions at a glass-Liquid Interface as a Novel Optical Immunoassay Concept" (1984) (Proceedings of the 2nd Optical Waveguide Conference (Stuttgart 1984) page 75) R.M. Sutherland et al describe a biosensor in which an antibody species is covalently immobilized on the surface of a planar or fiber optic waveguide. The reaction of the immobilized antibody with antigen in sample solution is detected by utilizing the attenuation or evanescent wave component of a light beam that has been totally internally reflected many times within the waveguide. The evanescent wave has a characteristic penetration depth of a fraction of a wavelength into the aqueous phase, so that it optically interacts with substances that are bound to the boundary layer or are very close to it, and only minimally with the bulk solution.

Es wird auch auf die Britische Patentanmeldung GB-A-2156970 verwiesen, die optisches Wellenleiter-Biosensoren und eine ähnliche Technik offenbart.Reference is also made to British Patent Application GB-A-2156970, which discloses optical waveguide biosensors and similar technology.

In "Analytical Chemistry", Band 54, Nr.9, August 1982, Seiten 1071-1080, ist eine Technik zur Analyse einer Filmbeschichtung beschrieben, in der Licht über Prismen in einen optischen Körper, auf dem die Beschichtung ausgebildet ist, hineingekoppelt und aus diesem herausgekoppelt wird.In "Analytical Chemistry", Volume 54, No. 9, August 1982, pages 1071-1080, a technique for analyzing a film coating is described in which light is coupled into and out of an optical body on which the coating is formed via prisms.

Die vorliegende Erfindung dient dazu, die Antwort der Vorrichtung für eine gegebene Strahlleistung anzuheben.The present invention serves to increase the response of the device for a given beam power.

Gemäß der Erfindung ist ein Meßfühler für biologische Moleküle mit Verwendung optischer Wellenleiter vorgesehen, der einen Wellenleiter, welcher eine Grenzfläche mit einer Beschichtung aufweist, die für eine gegebene Testgattung sensibilisiert ist, wobei der Wellenleiter einen höheren Brechungsindex als die Beschichtung aufweist, und zwei Lichtkopplungsteile angrenzend an den Wellenleiter umfaßt, die Licht in den Wellenleiter hinein- bzw. herauslenken, dadurch gekennzeichnet, daß der Biomeßfühler ein dielektrisches Festkörpermedium umfaßt, das zwischen dem Wellenleiter und einem oder beiden dieser Kopplungsteile angeordnet ist und eine Licht reflektierende und teilweise durchlässige Grenzfläche mit dem Wellenleiter und eine Grenzfläche mit diesem einen oder beiden Kopplungsteilen aufweist; daß der Wellenleiter einen solchen Brechungsindex in Relation zu diesem Medium aufweist, daß der Wellenleiter und die Grenzflächen des Wellenleiters mit der Beschichtung und mit dem Medium gemeinsam einen verspiegelten Resonanzhohlraum bilden.According to the invention there is provided a biological molecule sensor using optical waveguides comprising a waveguide having an interface with a coating sensitized to a given test species, the waveguide having a higher refractive index than the coating, and two light coupling members adjacent to the waveguide directing light into and out of the waveguide, respectively, characterized in that the biosensor comprises a solid dielectric medium disposed between the waveguide and one or both of said coupling members and having a light-reflecting and partially transmissive interface with the waveguide and an interface with said one or both of said coupling members; that the waveguide has a refractive index relative to said medium such that the waveguide and the interfaces of the waveguide with the coating and with the medium together form a mirrored resonant cavity.

Die Strahlungsleistung innerhalb des Hohlraums wird so in Bezug auf die Eingangsstrahlleistung gesteigert und die Leistung der interaktiven evaneszenten Welle, die sich in die sensibilisierte Beschichtung erstreckt, wird gleichermaßen gesteigert, wodurch die Empfindlichkeit der Vorrichtung gegenüber durch die Beschichtung absorbierter Gattungen verbessert wird.The radiation power within the cavity is thus increased in relation to the input beam power and the power of the interactive evanescent wave, which is in the sensitized coating is similarly increased, thereby improving the sensitivity of the device to species absorbed by the coating.

Das dielektrische Festkörpermedium kann eine einzige Schicht aus transparentem Material sein. Alternativ kann es eine dielektrische Mehrfachschichtstruktur sein.The solid-state dielectric medium may be a single layer of transparent material. Alternatively, it may be a multilayer dielectric structure.

In den beiliegenden ZeichnungenIn the attached drawings

ist Fig. 1 eine illustrative Querschnittsansicht eines bekannten optischen Wellenleiter-Biosensors;Fig. 1 is an illustrative cross-sectional view of a known optical waveguide biosensor;

ist Fig. 2 eine illustrative Querschnittsansicht eines optischen Wellenleiter-Biosensors, der gemäß der Erfindung modifiziert ist; undFig. 2 is an illustrative cross-sectional view of an optical waveguide biosensor modified according to the invention; and

zeigt Fig. 3 in schematischer Weise Brechungsindexprofile für einen modifizierten Biosensor, derFig. 3 shows schematically refractive index profiles for a modified biosensor, which

a) einen Einzelschichtreflektor; bzw.a) a single layer reflector; or

b) einen Reflektor mit mehrschichtigem Aufbau enthält.b) contains a reflector with a multi-layer structure.

Ausführungsbeispiele der Erfindung werden nun lediglich beispielhalber unter Bezug auf die der Beschreibung beigefügten Zeichnungen beschrieben.Embodiments of the invention will now be described by way of example only with reference to the drawings accompanying the description.

In Fig. 1 ist die Form eines optischen Wellenleiter-Biosensors gezeigt, der in dem zuvor erwähnten Artikel von R.M Sutherland et al offenbart ist, in welchem Sensor Licht von einer Quelle S mittels eines ersten Kopplungsprismas 3 in einen ebenen Wellenleiter 1 gerichtet wird und sich durch mehrfache interne Totalreflexion zum Austritt mittels eines zweiten Kopplungsprismas 5 ausbreitet, von wo aus es in einen Lichtdetektor D geleitet wird. Die äußere Oberfläche des Wellenleiters 1 ist mit einer sensibilisierten organischen Beschichtung 7 versehen. Letztere ist einer Probenflüssigkeit 9 ausgesetzt, die in einer Anordnung mit Strömungszelle 11 und Dichtung 13 enthalten ist. In der Beschichtung 7 ist Antikörpermaterial kovalent immobilisiert und dies spricht auf jedwedes spezifisches Antigenmaterial in der Probenflüssigkeit an, der es ausgesetzt ist. Der Wellenleiter besteht aus geschmolzenem Quarzmaterial und dies sorgt für eine großes Differential in der optischen Dichte zwischen dem Quarzwellenleiter 1 (hohen Brechungsindex n&sub1;) und der angrenzenden Beschichtung 7 (geringen Brechungsindex n&sub2;). Licht wird innerhalb des Körpers vom Wellenleiter 1 intern total reflektiert, ein Teil der optischen Leistung breitet sich jedoch als eine evaneszente Welle im Beschichtungsmedium 7 aus. Die Antigenbindung durch den immobilisierten Antikörper wird durch eine resultierende Zunahme der Lichtabsorption überwacht, die vom Detektor D gemessen wird.In Fig. 1 is shown the form of an optical waveguide biosensor disclosed in the aforementioned article by RM Sutherland et al, in which sensor light from a source S is directed into a plane waveguide 1 by means of a first coupling prism 3 and propagates by multiple total internal reflection to the exit by means of a second coupling prism 5, from where it is directed into a light detector D. The outer surface of the waveguide 1 is provided with a sensitized organic coating 7. The latter is exposed to a sample liquid 9 contained in an arrangement with flow cell 11 and seal 13. In the Coating 7 has antibody material covalently immobilized and this responds to any specific antigen material in the sample fluid to which it is exposed. The waveguide is made of fused quartz material and this provides a large differential in optical density between the quartz waveguide 1 (high refractive index n1) and the adjacent coating 7 (low refractive index n2). Light is totally internally reflected from the waveguide 1 within the body, but some of the optical power propagates as an evanescent wave in the coating medium 7. Antigen binding by the immobilized antibody is monitored by a resulting increase in light absorption which is measured by detector D.

In der in Fig. 2 gezeigten erfindungsgemäßen Modifikation ist eine Schicht 15 (beispielsweise eine aufgedampfte oder aufgesputterte Schicht aus Magnesiumfluorid) zwischen die Kopplungsprismen 3,5 und den planaren Wellenleiter 1 eingefügt. Die Schicht 15 weist einen geringeren Brechungsindex auf als der Wellenleiter 1 und die Grenzfläche zwischen der Schicht 15 und dem Wellenleiter 1 ist lichtreflektierend und teilweise durchlässig. Dieser Aufbau kann in Verbindung mit einem Infrarotlicht-Injektionslaser als Lichtquelle S mit einer typischen Wellenlänge von 0,8 um verwendet werden. Ein ähnlicher Apparat kann für sichtbares Licht und für ultraviolettes Licht verwendet werden, wobei jedoch in letzterem Fall eine Schicht 15 aus Aluminiumoxid oder ähnlichem Material verwendet würde, wobei die typische Wellenlänge 270 nm beträgt. Licht wird in den Wellenleiter 1 durch behinderte interne Totalreflexion (interne FTR von Frustrated Total Reflection) gekoppelt und die Dicke der zwischengefügten Schicht 15 wird entsprechend gewählt. Das Brechungsindexprofil für diese Anordnung von MedienIn the modification according to the invention shown in Fig. 2, a layer 15 (for example a vapor-deposited or sputtered layer of magnesium fluoride) is inserted between the coupling prisms 3, 5 and the planar waveguide 1. The layer 15 has a lower refractive index than the waveguide 1 and the interface between the layer 15 and the waveguide 1 is light-reflecting and partially transmissive. This structure can be used in conjunction with an infrared light injection laser as the light source S with a typical wavelength of 0.8 µm. A similar apparatus can be used for visible light and for ultraviolet light, but in the latter case a layer 15 of aluminum oxide or similar material would be used, the typical wavelength being 270 nm. Light is coupled into the waveguide 1 by Frustrated Total Reflection (FTR) and the thickness of the interposed layer 15 is chosen accordingly. The refractive index profile for this arrangement of media

- Beschichtung 7, Wellenleiter 1, Schicht 15 und Kopplungsteil 3 - ist in Fig. 3(a) gezeigt. Wie dort ersichtlich ist, ist der Wellenleiter 1 durch die Medien 7, 15 geringeren Brechungsindex isoliert. Einfallendes, in den Wellenleiter eingekoppeltes Licht wird daher resonant im verspiegelten Hohlraum zwischen den Grenzflächen des Wellenleiters 1 mit der Schicht 15 und der Beschichtung 7 eingefangen. Der Leistungspegel ist in diesem Hohlraumbereich hoch. Der geführte Lichtstrahl zweigt darauffolgend zurück in das Grundmedium, das zweite Kopplungsteil 5, ab, wonach er durch den Fotodetektor D aufgenommen wird. Die evaneszente Welle in der Beschichtung 7 wird mit jedweder in dieser Beschichtung 7 absorbierter Gattung wechselwirken und wird daher dann wiederum die Absorption und Phasenschiebung des aufgenommenen Lichtstrahls modifizieren. Letztere Komponente wird durch diesen Resonanzeffekt verstärkt.- coating 7, waveguide 1, layer 15 and coupling part 3 - is shown in Fig. 3(a). As can be seen there, the waveguide 1 is through the media 7, 15 lower refractive index. Incident light coupled into the waveguide is therefore resonantly captured in the mirrored cavity between the interfaces of the waveguide 1 with the layer 15 and the coating 7. The power level is high in this cavity region. The guided light beam subsequently branches off back into the base medium, the second coupling part 5, after which it is received by the photodetector D. The evanescent wave in the coating 7 will interact with any species absorbed in this coating 7 and will therefore in turn modify the absorption and phase shift of the received light beam. The latter component is amplified by this resonance effect.

Als eine alternative Modifikation kann die zwischengefügte einzelne Schicht 15 der in Fig. 2 gezeigten Anordnung durch eine dielektrische mehrschichtige Struktur 15' ersetzt werden. Ein typisches Indexprofil für diese modifizierte Anordnung ist in Fig. 3(b) gezeigt. Als Beispiel liefert eine mehrschichtige Struktur, die 90% Reflexion und 10% Transmission vorsieht, einen Faktor x10 an Leistungssteigerung innerhalb des Resonanzhohlraums.As an alternative modification, the interposed single layer 15 of the arrangement shown in Fig. 2 can be replaced by a dielectric multilayer structure 15'. A typical index profile for this modified arrangement is shown in Fig. 3(b). As an example, a multilayer structure providing 90% reflection and 10% transmission provides a factor of x10 of power enhancement within the resonant cavity.

Das Vorhandensein der Prüf- oder Testgattung kann durch Messen der Änderungen in der Absorption oder Polarisation des aufgenommenen Lichtstrahls erfaßt und/oder überwacht werden. Die Wechselwirkung wird von der Frequenz und dem Einfallswinkel des Lichtstrahls abhängen. Die Quelle S und der Detektor D können singuläre Komponenten sein, die mechanisch über einen Bereich von Winkeln gescannt werden, oder können jeweils eine ausgedehnte Anordnung umfassen, wobei jede Komponente zur Simulierung einer Abtastung elektronisch adressiert wird. Alternativ können die Quelle und der Detektor D in einer statischen optischen Konfiguration angeordnet sein.The presence of the test species can be detected and/or monitored by measuring the changes in the absorption or polarization of the received light beam. The interaction will depend on the frequency and angle of incidence of the light beam. The source S and detector D can be singular components that are mechanically scanned over a range of angles, or can each comprise an extended array, with each component electronically addressed to simulate scanning. Alternatively, the source and detector D can be arranged in a static optical configuration.

Claims (6)

1. Meßfühler für biologische Moleküle mit Verwendung optischer Wellenleiter, aufweisend einen Wellenleiter (1), der eine Grenzfläche mit einer Beschichtung (7) aufweist, die für eine gegebene Prüfgattung sensibilisiert ist, wobei der Wellenleiter (1) einen höheren Brechungsindex als die Beschichtung (7) aufweist, und zwei an den Wellenleiter angrenzende Lichtkopplungsteile (3,5), die Licht in den Wellenleiter (1) hinein- bzw. herausleiten, dadurch gekennzeichnet, daß der Biomeßfühler ein dielektrisches Festkörpermedium (15,15') umfaßt, das zwischen dem Wellenleiter (1) und einem oder beiden Kopplungsteilen (3,5) angeordnet ist und eine lichtreflektierende und teilweise durchlässige Grenzfläche mit dem Wellenleiter (1) und eine Grenzfläche mit einem oder beiden Kopplungsteilen (3,5) aufweist; daß der Wellenleiter (1) einen derartigen Brechungsindex in Bezug auf dieses Medium (15,15') aufweist, daß der Wellenleiter und die Grenzflächen des Wellenleiters (1) mit der Beschichtung (7) und mit diesem Medium (15,15') gemeinsam einen verspiegelten Resonanzhohlraum bilden.1. A sensor for biological molecules using optical waveguides, comprising a waveguide (1) having an interface with a coating (7) sensitized to a given type of test, the waveguide (1) having a higher refractive index than the coating (7), and two light coupling parts (3, 5) adjacent to the waveguide which guide light into and out of the waveguide (1), characterized in that the biosensor comprises a dielectric solid medium (15, 15') arranged between the waveguide (1) and one or both coupling parts (3, 5) and having a light-reflecting and partially transmissive interface with the waveguide (1) and an interface with one or both coupling parts (3, 5); that the waveguide (1) has a refractive index in relation to this medium (15, 15') such that the waveguide and the interfaces of the waveguide (1) together with the coating (7) and with this medium (15, 15') form a mirrored resonance cavity. 2. Biomeßfühler nach Anspruch 1, in welchem das dielektrische Festkörpermedium eine einzelne Schicht (15) aus solchem Material und solcher Dicke umfaßt, daß eine Lichtkopplung durch behinderte interne Totalreflexion mit dem Wellenleiter (1) zustande kommt.2. A biosensor according to claim 1, in which the solid-state dielectric medium comprises a single layer (15) of such material and thickness that light coupling by obstructed total internal reflection with the waveguide (1) is achieved. 3. Biomeßfühler nach Anspruch 2, in welchem die einzelne Schicht (15) aus Magnesiumfluoridmaterial besteht.3. A biosensor according to claim 2, in which the single layer (15) consists of magnesium fluoride material. 4. Biomeßfühler nach Anspruch 2, in welchem die einzelne Schicht (15) aus Aluminiumoxidmaterial besteht.4. A biosensor according to claim 2, in which the single layer (15) consists of alumina material. 5. Biomeßfühler nach Anspruch 1, in welchem das dielektrische Festkörpermedium eine dielektrische mehrschichtige Struktur (15') umfaßt.5. A biosensor according to claim 1, in which the solid-state dielectric medium comprises a dielectric multilayer structure (15'). 6. Biomeßfühler nach Anspruch 5, in welchem die mehrschichtige Struktur (15') 90% Reflexion und 10% Transmission liefert.6. Biosensor according to claim 5, in which the multilayer structure (15') provides 90% reflection and 10% transmission.
DE8686302650T 1985-04-12 1986-04-10 MEASURING PROBE FOR BIOLOGICAL MOLECULES WITH USE OF OPTICAL WAVE GUIDE. Expired - Fee Related DE3687543T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB858509491A GB8509491D0 (en) 1985-04-12 1985-04-12 Optic waveguide biosensors

Publications (2)

Publication Number Publication Date
DE3687543D1 DE3687543D1 (en) 1993-03-04
DE3687543T2 true DE3687543T2 (en) 1993-05-13

Family

ID=10577584

Family Applications (1)

Application Number Title Priority Date Filing Date
DE8686302650T Expired - Fee Related DE3687543T2 (en) 1985-04-12 1986-04-10 MEASURING PROBE FOR BIOLOGICAL MOLECULES WITH USE OF OPTICAL WAVE GUIDE.

Country Status (6)

Country Link
US (1) US4857273A (en)
EP (1) EP0205236B1 (en)
JP (1) JPH07117486B2 (en)
AT (1) ATE84876T1 (en)
DE (1) DE3687543T2 (en)
GB (2) GB8509491D0 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045902A1 (en) * 2004-09-22 2006-03-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. ATR sensor element

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3001669A1 (en) * 1980-01-18 1981-08-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen ARRANGEMENT FOR OPTICAL MEASUREMENT OF PHYSICAL SIZES AND SUBSTANCE CONCENTRATIONS
US4815843A (en) * 1985-05-29 1989-03-28 Oerlikon-Buhrle Holding Ag Optical sensor for selective detection of substances and/or for the detection of refractive index changes in gaseous, liquid, solid and porous samples
US4935346A (en) 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
DE3876398T2 (en) * 1987-06-20 1993-04-08 Applied Research Systems WAVE GUIDE SENSOR.
GB8714503D0 (en) * 1987-06-20 1987-07-22 Pa Consulting Services Detector
JPS646842A (en) * 1987-06-30 1989-01-11 Ricoh Kk Detecting device
GB8801807D0 (en) * 1988-01-27 1988-02-24 Amersham Int Plc Biological sensors
DE68907519T2 (en) * 1988-05-10 1993-10-21 Amersham Int Plc Biosensors.
GB8811919D0 (en) * 1988-05-20 1988-06-22 Amersham Int Plc Biological sensors
GB8813307D0 (en) * 1988-06-06 1988-07-13 Amersham Int Plc Biological sensors
GB8817710D0 (en) * 1988-07-25 1988-09-01 Ares Serono Res & Dev Ltd Method of assay
SE462454B (en) * 1988-11-10 1990-06-25 Pharmacia Ab METHOD FOR USE IN BIOSENSORS
GB8827853D0 (en) * 1988-11-29 1988-12-29 Ares Serono Res & Dev Ltd Sensor for optical assay
GB2227089A (en) * 1989-01-11 1990-07-18 Plessey Co Plc An optical biosensor
GB2228082A (en) * 1989-01-13 1990-08-15 Marconi Gec Ltd Gas or liquid chemical sensor
WO1990013029A1 (en) * 1989-04-19 1990-11-01 Ibiden Co., Ltd. Reagent for assaying biologically active substance, method of production thereof, and method and apparatus for assaying
US6010867A (en) * 1989-04-19 2000-01-04 Ibiden Co., Ltd. Reagent for biomaterials assay, preparation method thereof, and assay method
US5401469A (en) * 1989-04-19 1995-03-28 Ibiden Co., Ltd. Plastic optical biomaterials assay device
US5156810A (en) * 1989-06-15 1992-10-20 Biocircuits Corporation Biosensors employing electrical, optical and mechanical signals
US5491097A (en) * 1989-06-15 1996-02-13 Biocircuits Corporation Analyte detection with multilayered bioelectronic conductivity sensors
DE3923921A1 (en) * 1989-07-19 1991-01-24 Biotechnolog Forschung Gmbh OPTICAL BIOSENSOR
DE4033741C2 (en) * 1989-11-02 1994-03-31 Falko Volkhardt E Dipl Tittel Device for the detection of HIV antibodies in whole blood with display of the result
GB8924951D0 (en) * 1989-11-04 1989-12-28 Fisons Plc Device and methods
US5075551A (en) * 1990-03-12 1991-12-24 Fuji Electric Co., Ltd. Infrared absorption enhanced spectroscopic apparatus
US5143066A (en) * 1990-05-08 1992-09-01 University Of Pittsburgh Optical fiber sensors for continuous monitoring of biochemicals and related method
EP0543831B1 (en) * 1990-08-17 1995-12-13 FISONS plc Analytical device
GB9018195D0 (en) * 1990-08-18 1990-10-03 Fisons Plc Analytical device
GB2248497B (en) * 1990-09-26 1994-05-25 Marconi Gec Ltd An optical sensor
US5192510A (en) * 1991-01-30 1993-03-09 E. I. Du Pont De Nemours And Company Apparatus for performing fluorescent assays which separates bulk and evanescent fluorescence
ATE162628T1 (en) * 1991-02-27 1998-02-15 Boehringer Mannheim Corp IMPROVED TEST STRIP
US5271895A (en) * 1991-02-27 1993-12-21 Boehringer Mannheim Corporation Test strip
US5468620A (en) * 1991-03-09 1995-11-21 Fisons Plc Methods and device for glycosylation analysis
GB2254415B (en) * 1991-03-22 1994-10-12 Marconi Gec Ltd An optical sensor
GB9111912D0 (en) * 1991-06-04 1991-07-24 Fisons Plc Analytical methods
GB2256477B (en) * 1991-06-07 1995-03-08 Marconi Gec Ltd An optical sensor
GB9120000D0 (en) * 1991-09-19 1991-11-06 British Gas Plc Optical sensing
US5354574A (en) * 1992-06-23 1994-10-11 Ibiden Co., Ltd. Method for producing optical fiber having formyl groups on core surface thereof
US6256522B1 (en) 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
DE4411035A1 (en) * 1993-04-23 1994-11-03 Fraunhofer Ges Forschung Optical sensor
US5512492A (en) 1993-05-18 1996-04-30 University Of Utah Research Foundation Waveguide immunosensor with coating chemistry providing enhanced sensitivity
WO1994028396A1 (en) * 1993-05-28 1994-12-08 Fisons Plc Analytical apparatus
US5538850A (en) * 1994-04-15 1996-07-23 Hewlett-Packard Company Apparatus and method for intracavity sensing of microscopic properties of chemicals
US5437840A (en) * 1994-04-15 1995-08-01 Hewlett-Packard Company Apparatus for intracavity sensing of macroscopic properties of chemicals
JPH07318481A (en) * 1994-05-25 1995-12-08 Daikin Ind Ltd Optical measuring method and device therefor
US6287850B1 (en) * 1995-06-07 2001-09-11 Affymetrix, Inc. Bioarray chip reaction apparatus and its manufacture
JPH08116961A (en) * 1994-10-25 1996-05-14 Hamamatsu Photonics Kk Container for observing culture and device for observing the same
US5814565A (en) * 1995-02-23 1998-09-29 University Of Utah Research Foundation Integrated optic waveguide immunosensor
US5633724A (en) * 1995-08-29 1997-05-27 Hewlett-Packard Company Evanescent scanning of biochemical array
US5815278A (en) * 1995-10-25 1998-09-29 University Of Washington Surface plasmon resonance light pipe sensing probe and related interface optics
US6660233B1 (en) * 1996-01-16 2003-12-09 Beckman Coulter, Inc. Analytical biochemistry system with robotically carried bioarray
US5854863A (en) * 1996-03-15 1998-12-29 Erb; Judith Surface treatment and light injection method and apparatus
USRE39772E1 (en) * 1996-03-19 2007-08-14 University Of Utah Research Foundation Lens and associatable flow cell
US5832165A (en) 1996-08-28 1998-11-03 University Of Utah Research Foundation Composite waveguide for solid phase binding assays
GB9618635D0 (en) * 1996-09-06 1996-10-16 Thermo Fast Uk Ltd Improvements in or relating to sensors
EP0834735A3 (en) * 1996-10-01 1999-08-11 Texas Instruments Inc. A sensor
US5922537A (en) * 1996-11-08 1999-07-13 N.o slashed.AB Immunoassay, Inc. Nanoparticles biosensor
JPH10221249A (en) * 1996-12-05 1998-08-21 Norio Miura Drug measuring device, sensor, and detecting element used for sensor
US6025189A (en) * 1997-05-14 2000-02-15 3M Innovative Properties Company Apparatus for reading a plurality of biological indicators
AU8261098A (en) 1997-06-24 1999-01-04 University Of Wyoming Method and apparatus for detection of a controlled substance
US6222619B1 (en) 1997-09-18 2001-04-24 University Of Utah Research Foundation Diagnostic device and method
US6100541A (en) 1998-02-24 2000-08-08 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements
US6429023B1 (en) 1998-07-20 2002-08-06 Shayda Technologies, Inc. Biosensors with polymeric optical waveguides
US6573107B1 (en) 1998-08-05 2003-06-03 The University Of Wyoming Immunochemical detection of an explosive substance in the gas phase through surface plasmon resonance spectroscopy
US6770488B1 (en) 1999-03-19 2004-08-03 The University Of Wyoming Practical method and apparatus for analyte detection with colloidal particles
US8111401B2 (en) 1999-11-05 2012-02-07 Robert Magnusson Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats
US7167615B1 (en) 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US6315958B1 (en) 1999-11-10 2001-11-13 Wisconsin Alumni Research Foundation Flow cell for synthesis of arrays of DNA probes and the like
US6458326B1 (en) 1999-11-24 2002-10-01 Home Diagnostics, Inc. Protective test strip platform
US20080220440A1 (en) * 2000-07-25 2008-09-11 M Selim Unlu Waveguide sensors optimized for discrimination against non-specific binding
US7384797B1 (en) * 2000-10-12 2008-06-10 University Of Utah Research Foundation Resonant optical cavities for high-sensitivity high-throughput biological sensors and methods
AU2002213362A1 (en) * 2000-10-19 2002-04-29 Trans Photonics, L.L.C. Novel substituted-polyaryl chromophoric compounds
US7175980B2 (en) * 2000-10-30 2007-02-13 Sru Biosystems, Inc. Method of making a plastic colorimetric resonant biosensor device with liquid handling capabilities
US7217574B2 (en) * 2000-10-30 2007-05-15 Sru Biosystems, Inc. Method and apparatus for biosensor spectral shift detection
US20030092075A1 (en) * 2000-10-30 2003-05-15 Sru Biosystems, Llc Aldehyde chemical surface activation processes and test methods for colorimetric resonant sensors
US7615339B2 (en) * 2000-10-30 2009-11-10 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US7202076B2 (en) * 2000-10-30 2007-04-10 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US7300803B2 (en) * 2000-10-30 2007-11-27 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US6951715B2 (en) * 2000-10-30 2005-10-04 Sru Biosystems, Inc. Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements
US7575939B2 (en) * 2000-10-30 2009-08-18 Sru Biosystems, Inc. Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements
US7264973B2 (en) * 2000-10-30 2007-09-04 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant optical biosensor
US7118710B2 (en) * 2000-10-30 2006-10-10 Sru Biosystems, Inc. Label-free high-throughput optical technique for detecting biomolecular interactions
US7070987B2 (en) * 2000-10-30 2006-07-04 Sru Biosystems, Inc. Guided mode resonant filter biosensor using a linear grating surface structure
US7023544B2 (en) 2000-10-30 2006-04-04 Sru Biosystems, Inc. Method and instrument for detecting biomolecular interactions
US7153702B2 (en) * 2000-10-30 2006-12-26 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US7142296B2 (en) * 2000-10-30 2006-11-28 Sru Biosystems, Inc. Method and apparatus for detecting biomolecular interactions
US20030113766A1 (en) * 2000-10-30 2003-06-19 Sru Biosystems, Llc Amine activated colorimetric resonant biosensor
US7371562B2 (en) 2000-10-30 2008-05-13 Sru Biosystems, Inc. Guided mode resonant filter biosensor using a linear grating surface structure
US7306827B2 (en) * 2000-10-30 2007-12-11 Sru Biosystems, Inc. Method and machine for replicating holographic gratings on a substrate
US7875434B2 (en) * 2000-10-30 2011-01-25 Sru Biosystems, Inc. Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor
US7101660B2 (en) * 2000-10-30 2006-09-05 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US6525330B2 (en) 2001-02-28 2003-02-25 Home Diagnostics, Inc. Method of strip insertion detection
US6562625B2 (en) 2001-02-28 2003-05-13 Home Diagnostics, Inc. Distinguishing test types through spectral analysis
US6541266B2 (en) 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
WO2003036225A1 (en) * 2001-10-26 2003-05-01 University Of Rochester Method for biomolecular sensing and system thereof
US6707958B2 (en) * 2001-11-20 2004-03-16 Agilent Technologies, Inc. Biochemical assay device using frustrated total internal reflection modulator with an imaging optical waveguide
AU2003210523B2 (en) * 2002-01-28 2008-03-20 Sru Biosystems, Inc. A guided mode resonant filter biosensor using a linear grating surface structure
US7018842B2 (en) * 2002-02-28 2006-03-28 Agilent Technologies, Inc. Reading dry chemical arrays through the substrate
US7154598B2 (en) * 2002-07-12 2006-12-26 Decision Biomarkers, Inc. Excitation and imaging of fluorescent arrays
US20060127946A1 (en) * 2002-08-16 2006-06-15 Montagu Jean I Reading of fluorescent arrays
US7384742B2 (en) * 2002-08-16 2008-06-10 Decision Biomarkers, Inc. Substrates for isolating reacting and microscopically analyzing materials
US7927822B2 (en) 2002-09-09 2011-04-19 Sru Biosystems, Inc. Methods for screening cells and antibodies
US7429492B2 (en) * 2002-09-09 2008-09-30 Sru Biosystems, Inc. Multiwell plates with integrated biosensors and membranes
US7309614B1 (en) 2002-12-04 2007-12-18 Sru Biosystems, Inc. Self-referencing biodetection method and patterned bioassays
US7695680B2 (en) * 2003-03-19 2010-04-13 The Trustees Of Boston University Resonant cavity biosensor
US8298780B2 (en) * 2003-09-22 2012-10-30 X-Body, Inc. Methods of detection of changes in cells
JP2007510928A (en) * 2003-11-06 2007-04-26 エス アール ユー バイオシステムズ,インコーポレイテッド High density amine functionalized surface
GB0405823D0 (en) * 2004-03-15 2004-04-21 Evanesco Ltd Functionalised surface sensing apparatus and methods
US7709247B2 (en) * 2004-08-04 2010-05-04 Intel Corporation Methods and systems for detecting biomolecular binding using terahertz radiation
US7551294B2 (en) * 2005-09-16 2009-06-23 University Of Rochester System and method for brewster angle straddle interferometry
DE102005062174C5 (en) 2005-12-23 2010-05-06 INSTITUT FüR MIKROTECHNIK MAINZ GMBH measuring chip
EP1987344A1 (en) * 2006-02-06 2008-11-05 STMicroelectronics S.r.l. Nucleic acid analysis chip integrating a waveguide and optical apparatus for the inspection of nucleic acid probes
US20070235397A1 (en) * 2006-03-30 2007-10-11 Wannop George M Storage bin and frame system
US7692798B2 (en) * 2006-09-15 2010-04-06 Adarza Biosystems, Inc. Method for biomolecular detection and system thereof
US9658219B2 (en) * 2006-12-12 2017-05-23 Koninklijke Philips N.V. Microelectronic sensor device for detecting label particles
AU2008242664B2 (en) * 2007-04-19 2011-10-20 Sru Biosystems, Inc. Method for employing a biosensor to detect small molecules that bind directly to immobilized targets
DE102007025513B4 (en) * 2007-06-01 2014-06-05 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Apparatus and method for enabling the evaluation of a fill condition
CA2693700A1 (en) 2007-07-11 2009-01-15 Sru Biosystems, Inc. Methods for identifying modulators of ion channels
US9134307B2 (en) 2007-07-11 2015-09-15 X-Body, Inc. Method for determining ion channel modulating properties of a test reagent
US8257936B2 (en) 2008-04-09 2012-09-04 X-Body Inc. High resolution label free analysis of cellular properties
WO2009149285A1 (en) * 2008-06-04 2009-12-10 Sru Biosystems, Inc. Detection of promiscuous small submicrometer aggregates
CA2737505C (en) 2008-09-16 2017-08-29 Pacific Biosciences Of California, Inc. Substrates and optical systems and methods of use thereof
WO2010132890A1 (en) * 2009-05-15 2010-11-18 Sru Biosystems, Inc Detection of changes in cell populations and mixed cell populations
US8694069B1 (en) 2009-12-21 2014-04-08 Kosense, LLC Fiber-optic probe with embedded peripheral sensors for in-situ continuous monitoring
US8750652B2 (en) * 2010-10-12 2014-06-10 The Board Of Trustees Of The Leland Stanford Junior University Microfluidic waveguide detector
FR2970079B1 (en) * 2010-12-29 2022-08-12 Genewave BIOCHIP TYPE DEVICE
US20130201316A1 (en) 2012-01-09 2013-08-08 May Patents Ltd. System and method for server based control
DE102017211910A1 (en) * 2017-07-12 2019-01-17 Dr. Johannes Heidenhain Gmbh Diffractive biosensor
WO2019043446A1 (en) 2017-09-04 2019-03-07 Nng Software Developing And Commercial Llc A method and apparatus for collecting and using sensor data from a vehicle
US20210138232A1 (en) 2018-08-14 2021-05-13 Neurotrigger Ltd. Method and apparatus for transcutaneous facial nerve stimulation and applications thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE364371B (en) * 1969-01-24 1974-02-18 Western Electric Co
FR2193990B1 (en) * 1972-07-25 1976-01-16 Thomson Csf Fr
US3883221A (en) * 1974-02-01 1975-05-13 Bell Telephone Labor Inc Portable prism-grating coupler
US4059338A (en) * 1975-09-09 1977-11-22 Sharp Kabushiki Kaisha Integrated optical waveguide coupler
JPS5821213A (en) * 1981-07-31 1983-02-08 Canon Inc Optical coupler
WO1983001112A1 (en) * 1981-09-18 1983-03-31 Carter, Timothy Method for the determination of species in solution with an optical wave-guide
US4582809A (en) * 1982-06-14 1986-04-15 Myron J. Block Apparatus including optical fiber for fluorescence immunoassay
US4447546A (en) * 1982-08-23 1984-05-08 Myron J. Block Fluorescent immunoassay employing optical fiber in capillary tube
GB2146788B (en) * 1983-09-20 1986-09-24 Stc Plc Prism coupling to flat waveguides
US4565422A (en) * 1983-11-30 1986-01-21 Gte Laboratories Incorporated Surface plasmon coupler
GB2156970B (en) * 1984-01-06 1987-09-16 Plessey Co Plc Optical detection of specific molecules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045902A1 (en) * 2004-09-22 2006-03-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. ATR sensor element
DE102004045902B4 (en) * 2004-09-22 2006-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for measuring light absorption

Also Published As

Publication number Publication date
DE3687543D1 (en) 1993-03-04
GB8509491D0 (en) 1985-05-15
GB2174802B (en) 1989-08-02
GB8608448D0 (en) 1986-05-14
JPH07117486B2 (en) 1995-12-18
JPS61292044A (en) 1986-12-22
EP0205236B1 (en) 1993-01-20
US4857273A (en) 1989-08-15
EP0205236A2 (en) 1986-12-17
EP0205236A3 (en) 1989-05-24
GB2174802A (en) 1986-11-12
ATE84876T1 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
DE3687543T2 (en) MEASURING PROBE FOR BIOLOGICAL MOLECULES WITH USE OF OPTICAL WAVE GUIDE.
DE3882620T2 (en) BIOLOGICAL SENSORS.
DE69324472T2 (en) ANALYTICAL DEVICE WITH VARIABLE INCLINATION ANGLE
DE69915851T2 (en) OPTICAL SENSOR WITH STACKED DIELECTRIC LAYERS
DE68903688T2 (en) BIOSENSORS.
DE69719939T2 (en) Method and apparatus for immunoassay using fluorescence-induced surface plasmon resonance
EP0226604B1 (en) Optical sensor for selectively determining the presence of substances and the variation of the refraction index in the measured substances
DE68918659T2 (en) WAVE GUIDE SENSOR.
US5229833A (en) Optical sensor
DE69115493T2 (en) DEVICE FOR ANALYSIS
DE69407161T2 (en) FIBER OPTICAL SENSOR AND RELATED DEVICE AND METHOD
DE69226442T2 (en) OPTICAL FIBER FOR SPECTROSCOPIC DETECTION
DE69226572T2 (en) Sensor system with multiple surfaces for evanescent waves
CN106596474B (en) Three-channel SPR sensor based on seven-core optical fiber
DE69818092T2 (en) METHOD FOR OPTICAL INSPECTION AND SYSTEM WITH A MOVABLE SENSOR WITH SEVERAL SENSOR AREAS
EP1257809B1 (en) Spr sensor and spr sensor arrangement
JP3816072B2 (en) Optical waveguide sensor and measuring device using the same
WO1992014140A1 (en) Analytical device
EP1079226B1 (en) Apparatus for performing immunoassays
CN102095719A (en) Optical fiber type sensor system based on surface plasma resonance and stimulated Raman scattering
US4254223A (en) Apparatus for colorimetric determination
EP0551456A1 (en) Optical process for the selective detection of specific substances in chemical, biochemical and biological measuring samples
Dougherty A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance
DE19751403A1 (en) Process and assembly for determining absorption, fluorescence, scatter and refraction of liquids, gases and solids
WO1998002730A1 (en) Refractometric analysis with modification of refractive index dispersion

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8328 Change in the person/name/address of the agent

Free format text: PATENTANWAELTE REICHEL UND REICHEL, 60322 FRANKFURT

8327 Change in the person/name/address of the patent owner

Owner name: MARCONI CASWELL LTD., LONDON, GB

8327 Change in the person/name/address of the patent owner

Owner name: MARCONI UK INTELLECTUAL PROPERTY LTD., COVENTRY, G

8339 Ceased/non-payment of the annual fee