DE2931178A1 - Gas turbine energy conversion system - comprising open or closed process, using isothermal compression, e.g. for solar power plant - Google Patents
Gas turbine energy conversion system - comprising open or closed process, using isothermal compression, e.g. for solar power plantInfo
- Publication number
- DE2931178A1 DE2931178A1 DE19792931178 DE2931178A DE2931178A1 DE 2931178 A1 DE2931178 A1 DE 2931178A1 DE 19792931178 DE19792931178 DE 19792931178 DE 2931178 A DE2931178 A DE 2931178A DE 2931178 A1 DE2931178 A1 DE 2931178A1
- Authority
- DE
- Germany
- Prior art keywords
- gas turbine
- energy conversion
- compressed
- open
- evaporation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
- F02C7/143—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
- F02C7/1435—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/05—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/064—Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Gasturbinen-Energiewandlungs-Verfahren und Gas turbine energy conversion process and
Vorrichtung zu seiner Durchführung Die Erfindung bezieht sich auf ein Gasturbinen-Energiewandlungs-verfahren. Sie betrifft ferner eine Vorrichtung zur DurchLührllng dieses Verfahrens Bei stationären Gasturbinen-Energiewandlern wird das zu verdichtende Kreislaufmeditim entweder mit Außenlufttemperatur (offener Prozeß) oder aus einem Vorkühler bzw. Rückkühler (geschlossener Prozeß) angesaugt. Da die Verdichterleistung, der Durchsatz und der Prozeßwirkungsgrad stark von der Ansaugtemperatur bzw. von dem Gasvolumen abhängen, versucht man möglichst geringe Ausgangstemperaturen oder Zwiscchenkühlungen mit mehrstufigen Itompressoren anzuwenden. Apparatus for carrying it out The invention relates to a gas turbine energy conversion process. It also relates to a device to carry out this process in stationary gas turbine energy converters the circuit to be compressed is either mediated with outside air temperature (more open Process) or sucked in from a pre-cooler or dry cooler (closed process). Since the compressor performance, the throughput and the process efficiency greatly depend on the Intake temperature or depend on the gas volume, attempts are made to be as low as possible Use initial temperatures or intermediate cooling with multi-stage Itompressors.
Bei Fluggasturbinen verwendet man gelegentlich kurzzeitig, beispielsweise zum Ausgleich niedrigerer Leistung auf heißen und/oder llochqelegenen Flugplätzen, eine Wasser- oder Wasser/ Methanol-Einspritzung in den Kompressor an. Einer entsprechenden Langzeitanwendung bei stationären Bodenanlagen steht beispielsweise entgegen, daß die Schwefelanteile des Brennstoffs zusammen mit dem erhöhten Feuchtigkeitsanteil im Turbinenteil sowie die Tropfen im Verdichterteil eine Korrosionswirkung stark fördern. Unabhängig davon wurde aber bereits vorgeschlagen, nach dem Kompressor und nach der oder in die Brennkammer, Wasser zur Erhöhung des Massenstroms und des Wirkungsgrades als kombinierter Gas/Dampf-Turbinen-Prozeß einzuspritzen, wobei das Wasser außerdem mit Abwärme vorgewärmt wird.In the case of aircraft gas turbines, one uses occasionally briefly, for example to compensate for lower performance on hot and / or loch-located airfields, a water or water / Methanol injection into the compressor at. A corresponding long-term use in stationary ground systems is available, for example contrary to the fact that the sulfur content of the fuel together with the increased moisture content in the turbine part as well as the drops in the compressor part have a strong corrosive effect support financially. Independently of this, however, it has already been proposed after the compressor and after or into the combustion chamber, water to increase the mass flow and the Inject efficiency as a combined gas / steam turbine process, whereby the Water is also preheated with waste heat.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein einfaches und wirksames Verfahren sowie eine Vorrichtung der eingangs erwähnten Gattung zu schaffen, welche die Nachteile der bekannten Verfahren vermeiden und bei welchen insbesondere die Verdampfungskühlung der zu komprimierenden Gase auch im Langzeitbetrieb anwendbar ist.The present invention is based on the object of a simple and effective method and a device of the type mentioned create which avoid the disadvantages of the known methods and which in particular the evaporative cooling of the gases to be compressed, even in long-term operation is applicable.
Diese Aufgabe wird arfindungsgemäß dadurch gelöst, daß die zu komprimierenden Gase durch vor undioder im Verdichter eingespritzte und imVerdichter verdampfende Flüssigkeiten durch deren Verdampfungswärme gekühlt und nahezu isotherm verdichtet werden. Ijit Vorteil wird hierbei ein offener Gasturbinen-Prozeß verwendet Dabei wird vorteilhaft ein Recuperator -Wärmetauscher verwendet, der die Abgaswärme der verdichteten kühleren Luft indirekt zuführt. Dadurch können dann niedrigere Abgastemperaturen und höhere Wirkungsgrade realisiert werden.This object is achieved according to the invention in that the to be compressed Gases injected in front of and / or in the compressor and evaporating in the compressor Liquids are cooled by their heat of evaporation and almost isothermally compressed will. An open gas turbine process is used here to advantage it is advantageous to use a recuperator -Heat exchanger used that the Indirectly supplies exhaust heat to the compressed cooler air. This can then lower exhaust gas temperatures and higher efficiencies can be achieved.
Fig. 1 stellt diesen Vorgang schematisch im h/s-bzw. T/s-Diagramm mit Ableitung in Fig. la dar. Dabei erkennt man, daß die sonst nutzlose Abgaswärme Qab von 6 bis 6' in einem zusätzlichen Recuperatorteil als QtRe zur Vorwärmung der verdichteten Luft von 1' bis 2 verwendet werden kann.Fig. 1 shows this process schematically in h / s or. T / s diagram with derivation in Fig. La. It can be seen that the otherwise useless exhaust gas heat Qab from 6 to 6 'in an additional recuperator part as QtRe for preheating the compressed air from 1 'to 2 can be used.
Analog dem Formelmechanismus erhöhen sich die Wirkungsgrade 9 um ca. 8 %. Prinzipiell gilt das Vorgehen in Fig. 1 sowohl für den offenen als duch für den geschlossenen Gasturbinenprozeß.Analogous to the formula mechanism, the degrees of efficiency 9 increase by approx. 8th %. In principle, the procedure in Fig. 1 applies to both the open and through the closed gas turbine process.
Daher ist es auch vorteilhaft, erfindungsgemäß einen geschlossenen Gasturbinen-Prozeß zu verwenden und die Kühlflüssigkeit im Rückkühler rückzukondensieren. Dies ist deswegen leicht möglich, da ohnehin dem Kreislaufmittel kein Brennstoff zugeführt wird, da es indirekt erhitzt wird.It is therefore also advantageous according to the invention to have a closed one To use gas turbine process and recondense the cooling liquid in the recooler. This is easily possible because there is no fuel in the circuit means anyway because it is heated indirectly.
Vorteilhafterweise werden als Verdampfungs-Kühlflüssigkeit Wasser, siedepunkterniedrigende Wassergemische oder andere Flüssigkeiten verwendet, die eine annähernd isotherme Verdichtung ermöglichen. Insbesondere wirksame Verdampfungsflüssigkeiten einsetzen, da Reaktionen mit dem Brennstoff nicht möglich sind, und im geschlossenen Kreislauf praktisch kein Verlust des zusätzlichen Mediums stattfinden kann.Advantageously, water, water mixtures or other liquids that lower the boiling point are used enable an almost isothermal compression. In particular, effective evaporation liquids use, because reactions with the fuel are not possible and there is practically no loss of the additional medium in the closed circuit can.
Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß zum Einführen, Zerstäuben und Vermischen der zu komprimierenden Gase mit der Verdampfungs-Kühlflüssigkeit eine rotierende Scheibenzerstäubungseinrichtung mit einer zusätzlichen Wirbelkammer vorgesehen ist. Damit wird eine weitgehend homogene Zerstäubung und Vernebelung der Kühlflüssigkeit vor dem Kompressor erreicht. Erfindungsgemäß soll diese weitgehend homogene und feinstverteilte Zerstäubung der zu verdampfenden Kühlflüssigkeit mit besonderem Vorteil mit Hilfe von Rotationszerstäubern vorgenommen werden, wie sie beispielsweise bereits erfolgreich bei Befeuchtungsanlagen von belüfteten Gewächshäusern angewendet wurden. Erfindungsgemäß soll auch ein alternatives Zerstäubungsverfahren mit Ultraschallzerstäubung vorgesehen werden, welches zwar einen gewissen elektrischen Energieverbrauch nach sich zieht, aber eine besonders feine Zerstäubung und relativ geringen apparativen Aufwand gewährleistet.A device for carrying out the method according to the invention is characterized in that for introducing, atomizing and mixing the to compressing gases with the evaporation cooling liquid a rotating disc atomization device is provided with an additional swirl chamber. This makes a largely homogeneous one Atomization and misting of the cooling liquid is achieved in front of the compressor. According to the invention this largely homogeneous and finely distributed atomization of the to be evaporated Cooling liquid made with particular advantage with the help of rotary atomizers as they are already successfully used in humidifying systems of ventilated Greenhouses were applied. According to the invention, an alternative atomization method is also intended can be provided with ultrasonic atomization, which although a certain electrical Energy consumption entails, but a particularly fine atomization and relative low expenditure on equipment guaranteed.
In Fig. 2 ist die Anordnung einer Rotationszerstäuberscheibe 4 innerhalb eines-besonders geformten Einlaufgehäuses 3 vor dem Verdichter schematisch dargestellt.In Fig. 2 the arrangement of a rotary atomizer disk 4 is within a-specially shaped inlet housing 3 is shown schematically in front of the compressor.
In Fig. 3 ist in entsprechender Darstellung die Anordnung eines Ultraschallzerstäuberkopfes 5 vor dem Verdichter im Einlaufgehäuse 2 vor dem Verdichter dargestellt.In Fig. 3, the arrangement of an ultrasonic atomizer head is in a corresponding representation 5 in front of the compressor in the inlet housing 2 in front of the compressor.
Im Gegensatz zu den bereits vorgeschlagenen Kombinationsprozessen mit Wassereinspritzung in das bereits erhitzte oder komprimierte Gas wird bei dem erfindungsgemäßen Verfahren der volle Gewinn an Verdichtungsarbeit-Reduktion mit annähernd isothermer Verdichtung ermöglicht. Der zusätzliche apparative Aufwand rechtfertigt sich z.B auch bei Solarenergie-Anlagen, da sich bei diesen jeder Wirkungsgradgewinn durch eine investionskostensparende Solarkollektor-Spiegelflächenverkleinerung überproportional auswirkt. Außerdem erübrigt sich die sonst anzuwendenden Zwischenkühler-Systeme bei offenen Kreisprozessen. Erfindungsgemäß kann die bei offenen Prozessen den Zwischenkühler einsparende Verdampfungskühlung vorteilhaft auch bei geschlossenen Kreisprozessen angewendet werden, da sich die Vorkühler bzw. Rückkühler auf kleinere Einheiten reduzieren, weil aus der kondensierenden Gas/Flüssig-Phase der Verdampfungs-Kühlflüssigkeit hohe übergangswerte an den Innenwänden der Wärmetauscher resultieren. Außerdem liegt kein ständiger Verbrauch an Frischwasser gegenüber offenen Prozessen vor, so daß gemäß der Erfindung auch andere Verdampfungskühlmittel außer Wasser verwendet werden, die noch geeignetere Verdampfungscharakieristiken und/oder Kühleigenschaften als dieses aufweisen.In contrast to the combination processes already proposed with water injection into the already heated or compressed gas, the method according to the invention, the full gain in compression work reduction with Almost isothermal compression allows. The additional expenditure on equipment is also justified, for example, in solar energy systems, since with these there is every gain in efficiency disproportionately large thanks to a reduction in the size of the solar collector mirror surface that saves investment costs affects. In addition, there is no need for the intercooler systems that would otherwise be used in open cycle processes. According to the invention, the intercooler can be used in open processes Saving evaporative cooling is also advantageous for closed cycle processes can be used because the pre-cooler or dry-cooler is based on smaller units reduce, because from the condensing gas / liquid phase of the evaporation cooling liquid high transition values on the inner walls of the heat exchangers result. Also lies no constant consumption of fresh water compared to open processes, so that other evaporative coolants besides water can also be used according to the invention, the more suitable vaporization characteristics and / or cooling properties than have this.
Diese werden im Rückkühlersystem als Kondensat rückgewonnen und in einem separaten Kühler als Flüssigkeit völlig rückgekühlt. Außerdem lassen sich rückgewinnbare Verdampfungs-Kühlflüssigkeiten besser an das jeweilige Druckniveau des Kreislaufs und/oder an eventuell auftretende Korrosionsprobleme im Solar-Receiver anpassen. Dies wird erfindungsgemäß durch Mischen verschiedener Flüssigkeiten unterschiedlicher Verdampfungstemperatur und Verdampfungswärmen erreicht. Dabei werden gemäß der Erfindung auch Flüssigkeiten anwendbar, die mit niedrigerem Siedepunkt eine annähernd isotherme Verdichtung ermöglichen.These are recovered as condensate in the recooling system and stored in completely recooled in a separate cooler as a liquid. In addition, you can recoverable evaporation coolants are better adapted to the respective pressure level of the circuit and / or any corrosion problems that may arise in the solar receiver adjust. According to the invention, this becomes more different by mixing different liquids Evaporation temperature and heat of evaporation reached. In doing so, according to the invention Liquids can also be used which, with a lower boiling point, are approximately isothermal Enable compression.
LeerseiteBlank page
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19792931178 DE2931178A1 (en) | 1979-08-01 | 1979-08-01 | Gas turbine energy conversion system - comprising open or closed process, using isothermal compression, e.g. for solar power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19792931178 DE2931178A1 (en) | 1979-08-01 | 1979-08-01 | Gas turbine energy conversion system - comprising open or closed process, using isothermal compression, e.g. for solar power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
DE2931178A1 true DE2931178A1 (en) | 1981-02-19 |
Family
ID=6077334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19792931178 Withdrawn DE2931178A1 (en) | 1979-08-01 | 1979-08-01 | Gas turbine energy conversion system - comprising open or closed process, using isothermal compression, e.g. for solar power plant |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE2931178A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3826117A1 (en) * | 1988-08-01 | 1990-02-08 | Pelka Bertram Dipl Ing Fh | Thermal-engine arrangement |
WO1997043530A1 (en) * | 1996-05-14 | 1997-11-20 | The Dow Chemical Company | Process and apparatus for achieving power augmentation in gas turbines via wet compression |
EP0924410A1 (en) * | 1997-12-17 | 1999-06-23 | Asea Brown Boveri AG | Gas/steam power plant |
US5930990A (en) * | 1996-05-14 | 1999-08-03 | The Dow Chemical Company | Method and apparatus for achieving power augmentation in gas turbines via wet compression |
NL1009484C2 (en) * | 1998-06-24 | 1999-12-27 | Kema Nv | Device for compressing a gaseous medium |
NL1011383C2 (en) * | 1998-06-24 | 1999-12-27 | Kema Nv | Apparatus for compressing a gaseous medium and systems comprising such an apparatus. |
WO2000008326A3 (en) * | 1998-07-24 | 2000-10-19 | Gen Electric | Methods and apparatus for water injection in a turbine engine |
US6470668B2 (en) | 1998-07-24 | 2002-10-29 | General Electric Company | Methods and apparatus for water injection in a turbine engine |
US6484508B2 (en) | 1998-07-24 | 2002-11-26 | General Electric Company | Methods for operating gas turbine engines |
EP2573365A3 (en) * | 2011-09-20 | 2018-01-24 | General Electric Company | Gas turbine inlet air cooling system using ultrasonic water atomization, corresponding cooling method and wet compression system |
-
1979
- 1979-08-01 DE DE19792931178 patent/DE2931178A1/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3826117A1 (en) * | 1988-08-01 | 1990-02-08 | Pelka Bertram Dipl Ing Fh | Thermal-engine arrangement |
EP1108870A3 (en) * | 1996-05-14 | 2003-12-17 | The Dow Chemical Company | Process and apparatus for achieving power augmentation in gas turbines via wet compression |
WO1997043530A1 (en) * | 1996-05-14 | 1997-11-20 | The Dow Chemical Company | Process and apparatus for achieving power augmentation in gas turbines via wet compression |
US5867977A (en) * | 1996-05-14 | 1999-02-09 | The Dow Chemical Company | Method and apparatus for achieving power augmentation in gas turbines via wet compression |
US5930990A (en) * | 1996-05-14 | 1999-08-03 | The Dow Chemical Company | Method and apparatus for achieving power augmentation in gas turbines via wet compression |
AU725901B2 (en) * | 1996-05-14 | 2000-10-26 | Dow Chemical Company, The | Process and apparatus for achieving power augmentation in gas turbines via wet compression |
EP0924410A1 (en) * | 1997-12-17 | 1999-06-23 | Asea Brown Boveri AG | Gas/steam power plant |
US6178735B1 (en) | 1997-12-17 | 2001-01-30 | Asea Brown Boveri Ag | Combined cycle power plant |
NL1009484C2 (en) * | 1998-06-24 | 1999-12-27 | Kema Nv | Device for compressing a gaseous medium |
NL1011383C2 (en) * | 1998-06-24 | 1999-12-27 | Kema Nv | Apparatus for compressing a gaseous medium and systems comprising such an apparatus. |
WO1999067519A1 (en) * | 1998-06-24 | 1999-12-29 | N.V. Kema | Device for compressing a gaseous medium and systems comprising such device |
US6453659B1 (en) | 1998-06-24 | 2002-09-24 | N. V. Kema | Device for compressing a gaseous medium and systems comprising such device |
WO2000008326A3 (en) * | 1998-07-24 | 2000-10-19 | Gen Electric | Methods and apparatus for water injection in a turbine engine |
US6470667B1 (en) | 1998-07-24 | 2002-10-29 | General Electric Company | Methods and apparatus for water injection in a turbine engine |
US6484508B2 (en) | 1998-07-24 | 2002-11-26 | General Electric Company | Methods for operating gas turbine engines |
US6470668B2 (en) | 1998-07-24 | 2002-10-29 | General Electric Company | Methods and apparatus for water injection in a turbine engine |
EP2573365A3 (en) * | 2011-09-20 | 2018-01-24 | General Electric Company | Gas turbine inlet air cooling system using ultrasonic water atomization, corresponding cooling method and wet compression system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69919821T2 (en) | DEVICE FOR COMPRESSING A GASEOUS MEDIUM AND SYSTEMS CONTAINING SUCH A DEVICE | |
EP3797217B1 (en) | Aircraft propulsion system with exhasut-gas treatment device and method for treating an exhaust-gas stream | |
DE60006305T2 (en) | Gas Turbine System | |
EP0076529B1 (en) | Nox reduction for gas turbines by water injection into the combustion chamber | |
DE69318578T2 (en) | LARGE CHARGED DIESEL ENGINE | |
DE19939289C1 (en) | Exhaust gas mixture system at an internal combustion motor has a vapor heater to take the mixture from the exhaust gas turbine with a boiler and fresh water supply with a final acid-bonding heat exchanger for safer emissions | |
DE602004011762T2 (en) | METHOD FOR OPERATING A GAS TURBINE GROUP | |
DE69516307T2 (en) | METHOD FOR SUPPLYING STEAM FOR THE INLET AIR OF AN INTERNAL COMBUSTION ENGINE AND DEVICE THEREFOR | |
DE2204723A1 (en) | Arrangement of cooling devices | |
DE2402043A1 (en) | PROCESS AND SYSTEM FOR EVAPORATION AND HEATING OF LIQUIDED NATURAL GAS | |
CH666253A5 (en) | DEVICE FOR CHEMICAL PRODUCTION OF CARBON DIOXIDE. | |
DE1815955A1 (en) | Exhaust gas purification processes, especially for gas turbine systems, and equipment for its implementation | |
DE2550450A1 (en) | POWER PLANT WITH GAS TURBINE AND A HEAT EXCHANGER LOCATED IN THE GAS TURBINE'S WORKING CIRCUIT FOR COOLING THE WORKING GAS | |
DE2931178A1 (en) | Gas turbine energy conversion system - comprising open or closed process, using isothermal compression, e.g. for solar power plant | |
CH630702A5 (en) | PLANT FOR PRODUCING PRESSURE GAS. | |
DE19728151C2 (en) | Method and device for generating energy | |
DE2235125A1 (en) | MULTI-STAGE TURBO COMPRESSOR WITH INTERCOOLING OF THE MEDIUM TO BE COMPRESSED | |
DE1551273A1 (en) | Plant for generating electrical energy using steam | |
EP0916836B1 (en) | Device for admitting vapour to the intake air of a combustion engine | |
EP1375867B1 (en) | Intercooling process and intercooled gas turbine engine | |
DE4114678A1 (en) | Gas turbine engine operating method - has atomiser nozzle to inject water, so that evaporation enthalpy corresponds to output of adiabatic compression | |
DE2744615C3 (en) | Process for the detoxification of exhaust gases and utilization of the waste heat from a diesel engine used to drive a heating and heat pump system | |
DE10031241A1 (en) | Circulation system for separation of released and/or co-transported carbon dioxide in direct methanol fuel cell plant, has anode circuit with degassing device between anode chamber and pump | |
DE4311036C2 (en) | Device for cooling combustion air for diesel engines | |
EP0234363A1 (en) | Plant for the generation of pressurized gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8127 | New person/name/address of the applicant |
Owner name: M.A.N. MASCHINENFABRIK AUGSBURG-NUERNBERG AG, 8000 |
|
8139 | Disposal/non-payment of the annual fee |