Nothing Special   »   [go: up one dir, main page]

DE29522229U1 - Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern - Google Patents

Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern

Info

Publication number
DE29522229U1
DE29522229U1 DE29522229U DE29522229U DE29522229U1 DE 29522229 U1 DE29522229 U1 DE 29522229U1 DE 29522229 U DE29522229 U DE 29522229U DE 29522229 U DE29522229 U DE 29522229U DE 29522229 U1 DE29522229 U1 DE 29522229U1
Authority
DE
Germany
Prior art keywords
fibers
shaped body
body according
cellulose acetate
natural cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE29522229U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerdia Produktions GmbH
Original Assignee
Rhodia Acetow GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Acetow GmbH filed Critical Rhodia Acetow GmbH
Priority to DE29522229U priority Critical patent/DE29522229U1/de
Priority claimed from DE19517763A external-priority patent/DE19517763C2/de
Publication of DE29522229U1 publication Critical patent/DE29522229U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Materials Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Die Erfindung betrifft einen Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat als Bindemittel und verstärkenden natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern.
In vielen Bereichen, beispielsweise in der Automobil-, Verpackungs-, Möbel-, Elektro- und Elektronikindustrie sowie im Baugewerbe und dgl, werden neben Kunststoffen aus thermoplastischen oder duroplastischen Polymeren gelegentlich Materialien aus polymerhaltigen Faserstrukturen oder faserhaltigen bzw. faserverstärkten Polymeren eingesetzt. Derartige Materialien werden vielfach als Halbzeug hergestellt, beispielsweise in Form von Vliesstoffen, Matten, Platten etc. Diese werden unmittelbar oder erst nach weitergehender Verarbeitung oder Veredelung, z.B. durch Formgebung, Beschichtung oder dgl., eingesetzt. Die erwähnten Polymerwerkstoffe können außer Fasermaterialien oder anstelle von Fasermaterialien zur Erzielung bestimmter Eigenschaften geeignete Füllstoffe enthalten. Die Vielfalt und die Zahl der Anwendungsmöglichkeiten solcher Verbundmaterialien aus den unterschiedlichsten Polymeren, Fasern und Füllstoffen ist fast unübersehbar.
Im Zuge des gestiegenen Umweltbewußtseins und verschärfter Gesetze spielt die Recyclingfähigkeit von Werkstoffen bzw. deren umweltfreundliche Beseitigung eine immer wichtigere Rolle. Dabei kommt insbesondere der umweltschonenden Entsorgung Bedeutung zu, da die Recyclingfähigkeit wegen zunehmender Verunreinigungen und Materialschaden begrenzt ist und dann eine Beseitigung unvermeidlich wird. Diese kann nur durch
Verbrennen oder Deponieren erfolgen. Ein zeitlich unbegrenztes Deponieren scheidet aus Platzgründen aus. Eine besonders einfache und günstige Form der Beseitigung ist der biologische Abbau, der beispielsweise durch eine Kompostierung erfolgen kann. Wenn nachfolgend von "biologisch abbaubar" gesprochen wird, dann bedeutet das, daß die entsprechende Substanz einem Abbau durch lebende Organismen (Organismen / Mikroorganismen) und/oder durch natürliche umweltbedingte Faktoren zugänglich ist, z.B. den chemischen Abbau durch Bakterien, Pilze, insbesondere Schimmelpilze und Hefen. Kunststoffmaterialien, die gewöhnlich in Verpackungsmaterialien herangezogen werden, insbesondere Polystyrol, sind biologisch nicht abbaubar. Bei Kohlenhydraten führt der biologisehe Abbau, beispielsweise vornehmlich in Form einer anaeroben, bakteriell bedingten Zersetzung, zu unbedenklichen niederen Fettsäuren, Alkohol und Kohlendioxid. Dies ist dem Begriff "Fäulnis" unterzuordnen. Zwischenprodukte der Fäulnisprozesse können zu unbedenklichen neuen polymeren Produkten zusammentreten; diese vorteilhafte Humifizierung macht man sich bei der Kompostierung zu nutze. Hierunter versteht man insbesondere den biologischen Abbau bzw. die Umwandlung von organischen Substanzen, insbesondere organischen Abfällen, Holz, Blättern, u.a. Pflanzenmaterial, Papier und Klärschlamm, der unter Wärmeentwicklung ("Selbsterhitzung") verläuft und zur Bildung von Kompost, einer dunklen, krümligen Masse, mit vorteilhaftem Anteil an Nährsalzen (Phosphate, Stickstoff- und Caliumverbindung) führt (vgl. Römpp Chemie-Lexikon, 9. Aufl.,
20 Bd. 3, 1990, S. 2312/2313).
Im Hinblick auf die angesprochenen Möglichkeiten, bestimmte Abfallmaterialien einem biologischen Abbau zu unterziehen, werden deswegen bei der Materialentwicklung zunehmend Naturprodukte interessant. Sie bieten viele Vorteile. Als nachwachsende Rohstoffe tragen sie zur Resourcenschonung bei. Ferner sind sie überwiegend nicht toxisch und rückstandsfrei verbrennbar. Dire Abbauprodukte sind umweltverträglich.
Werkstoffe aus Spänen oder natürlichen Fasern, wie Zellstoff, Baumwolle, Bastfasern und Wolle, werden schon lange zu bekannten Produkten, wie Papier, Pappen, Filzen, Faserplatten und Spanplatten verarbeitet. Auch können aus solchen Spänen oder natürlichen Fasern nach unterschiedlichen Verfahren Formteile (Formkörper) hergestellt werden.
Daneben gibt es viele neue Entwicklungen, bei denen hochfeste Naturfasern, wie Flachs, Hanf, Ramie und dgl., deren mechanische Eigenschaften teilweise mit denen synthetischer Hochleistungsfasern vergleichbar sind, als Verstärkungsfasern in Verbundmaterialien bzw. -werkstoffen eingesetzt werden. Den alten und den neuen Werkstoffen ist gemeinsam, daß sie zur Erzielung von Festigkeit, Steifigkeit, Verformbarkeit oder Dauerhaftigkeit ein synthetisches Polymer oder synthetische Polymere als Bindemittel enthalten müssen. Wenn aber die biologische Abbaubarkeit erforderlich ist, kommen zunächst nur natürliche Bindemittel, wie Stärke, Gummen, etc., in Frage. Deren Wasserlöslichkeit ist jedoch nachteilig.
Die Entwicklung, synthetische, biologisch nicht abbaubare Polymere in den Verbundmaterialien durch biologisch abbaubare Polymere zu ersetzen, ist noch nicht abgeschlossen. Natürliche Produkte, wie Cellulose, Stärke etc., sind als direkt verformbare Massen für die meisten Zwecke nicht geeignet oder den synthetischen Polymeren hinsichtlich Variabilität der Eigenschaften und Verarbeitung unterlegen. Biologisch abbaubare und für Verbund-Werkstoffe geeignete neuartige Polymere sind beispielsweise die Polyhydroxybutyrate. Sie sind aber sehr teuer.
Bei den Verbundmaterialien bzw. -werkstoffen kann das Mischungsverhältnis zwischen Bindemittelkomponente und Verstärkungs- oder Füllkomponente in weiten Bereichen schwanken. Der Anteil des polymeren Bindemittels richtet sich lediglich nach den für den jeweiligen Einsatzzweck angestrebten Eigenschaften. Für Dämmstoffe oder bestimmte Verpackungsmaterialien kommen z.B. relativ weiche Vliesstoffe mit nur geringen Anteilen an polymerem Bindemittel in Frage. Aber auch harte und steife Faserplatten können mit sehr niedrigen Bindemittelzusätzen hergestellt werden. Andererseits sind für zähelastische, wasserfeste oder thermoformbare Materialien höhere Polymeranteile notwendig. Wenn die Materialeigenschaften schließlich überwiegend vom Polymer bestimmt werden sollen, sind gegebenenfalls nur geringe Zusätze an Füll- oder Verstärkungsmaterial - lediglich zur Modifizierung - erforderlich.
Verformbare Halbzeuge für z.B. Automobilteile, wie Verkleidungen (beispielsweise Türverkleidungen), Dachhimmel und dergleichen, werden derzeit in großer Menge aus harzge-
bundenen Fasermatten aus Glasfasern, Holzfasern, Reißbaumwolle oder Bastfasern hergestellt. Als Polymer werden überwiegend Phenolharze eingesetzt. Dies ist jedoch in toxikologischer und ökologischer Hinsicht umstritten. Daher sind zunehmend auch andere Duromere, wie Epoxide oder ungesättigte Polyester, im Einsatz. Duromere Bindemittel haben den Vorteil, daß sie bei den teilweise extremen Temperaturen im Auto nicht zur Verformung neigen. Nachteilig ist jedoch beim Einsatz von duromeren Bindemitteln der aufwendige Verarbeitungsprozeß und der hohe Preis. So sind insbesondere Epoxide relativ teuer. Weiter ist es nachteilig, daß ausgehärtete Duromere schwierig zu recyclieren sind. Aus diesen Gründen werden derzeit in großem Umfang andere faserverstärkte thermoplastische Polymere, zumeist Polypropylen, eingesetzt. Diese zeigen jedoch eine geringe Wärmeformstabilität. Als Alternative zu Glasfasern kommen Naturfasern, wie Zellstoff oder Jute, aber auch Holzmehl zum Einsatz. Die bisher bekannten Formteil-Werkstoffe enthalten in der Regel mindestens 20 Masse-% an Polymeren. Durch diesen relativ hohen Polymeranteil werden die Fasern so weit umhüllt und eingebunden, daß deren biologische
15 Abbaubarkeit nicht mehr möglich ist.
Als Dämmstoffe zur Wärmeisolation von Gebäuden werden in großen Mengen Glas- oder Mineralfasermatten eingesetzt, die mit geringen Anteilen an Duromeren, wie Phenol- oder Harnstoffharz, gebunden sind. Wegen der toxikologischen Bedenken gegen Mineralfasern und deren ungeklärter Entsorgung werden zunehmend Naturfasermatten entwickelt und angeboten. Je nach Herstellungsprozeß müssen auch diese mit geeigneten polymeren Bindemitteln verfestigt werden. Im Einsatz sind beispielsweise für die thermische Verfestigung leichtschmelzende synthetische Bindefasern. Diese stehen jedoch im Widerspruch zur Forderung nach biologischer Abbaubarkeit.
Aus verschiedenen Veröffentlichungen, z.B. aus "Verpackung aus nachwachsenden Rohstoffen", Vogel Buchverlag, Würzburg, 1. Aufl., 1994, S. 146 - 148 sowie 374 - 380, aus "Nachwachsende und bioabbaubare Materialien im Verpackungsbereich", Roman Kovar Verlag, München, 1. Aufl., 1993, S. 120 - 126 sowie S. 463 und der DE 39 14 022 Al, ist ein biologisch durch Kompostieren leicht abbaubares Rohstoffinaterial auf der Basis von Celluloseacetat und Zitronensäureestern und dessen Verwendung zur Herstellung von
·· i
*■ &bgr; i
· 4 · ti ^
beispielsweise Hüllen oder Behältern für Öllichte, Ewiglichtölkerzen, Kompositionsöllichte, andere Grablichtausführungen, Opferlichten und Folien bekannt. Dieses Kunststoffmaterial enthält neben den angegebenen Materialien Polyester und gegebenenfalls andere organische Säuren und/oder Säureester. Der Zitronensäureester dient als Weichmacher und führt dazu, daß das Celluloseacetat thermoplastisch verarbeitet werden kann, also zu einem Formkörper ausformbar ist.
Ferner ist aus dem Artikel "AVK-Tagung «Faserverstärkte Kunststoffe» - Weg zurück zur Natur" von Wolfgang Asche in der Zeitschrift "Chemische Rundschau", Nr. 39, 30.
September 1994, S. 3, die Verwendung des zuvor erwähnten, u.a. in dem genannten Werk "Verpackung aus nachwachsenden Rohstoffen" beschriebenen Kunststoffmaterials auf der Basis von Cellulose(di)acetat und Zitronensäureestern zusammen mit Naturfasern, wie Ramie, Flachs, Sisal oder Hanf, zur Herstellung von Verbundwerkstoffen bekannt. Das erwähnte ausformbare Material auf der Basis von Cellulose(di)acetat, Zitronensäureestern und Polyestern und gegebenenfalls anderen organischen Säuren und/oder Säureestern sowie Naturfasern, Ramie, Flachs, Sisal oder Hanf läßt sich zu Formkörpern verarbeiten, die biologisch gut abbaubar sind. Aufgrund des hohen Preises des Kunststoffmaterials sind sie relativ teuer. Nachteilig ist daran insbesondere der Anteil an Zitronensäureester als Weichmacher. Bei der Verarbeitung des Materials kann dieser Weichmacher bei erhöhter Temperatur entweichen, was zu einer unerwünschten Dampf- bzw. Rauchbelastung führen kann. Auch kann der Weichmacher bei Normaltemperatur an die Oberfläche des Materials migrieren und umweltbeeinträchtigend verdampfen. Durch die Einbindung des niedermolekularen Weichmachers zeigt das Fertigerzeugnis auch eine Festigkeitseinbuße. Ferner hat dieses einen ziemlich niedrigen Erweichungspunktes, der auf den Weichmacher zurück-
25 geht.
Der Erfindung liegt die Aufgabe zugrunde, die eingangs bezeichneten Formkörper so weiterzubilden, daß sie die angesprochenen physikalischen Nachteile der bekannten Formkörper nicht aufweisen, problemlos biologisch abbaubar sind und die wünschenswerten mechanischen Eigenschaften, wie insbesondere Festigkeit und Wärmeformbeständigkeit, zeigen und auch die strengen Gebrauchsanforderungen erfüllen. Insbeson-
I #·· · * * I &Lgr; &Lgr; I
dere sollen sie bei höherer Temperatur zu keiner Dampf- bzw. Rauchbelastung führen und die Notwendigkeit der Einbeziehung eines Weichmachers ausschließen.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß das Celluloseacetat einen Substitutionsgrad (DS) von etwa 1,2 bis 2,7 und der Formkörper eine Vicat-Temperatur (bestimmt nach DIN 53 460, Dezember 1976) von mindestens etwa 16O0C aufweist und das Masseverhältnis von Celluloseacetat zu den natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern etwa 10:90 bis 90:10 beträgt, wobei der Formkörper weitgehend oder vollständig frei an externem Weichmacher ist.
Der erfindungsgemäße Formkörper enthält Celluloseacetat als Bindemittel. Celluloseacetat ist seit langem bekannt und wird großtechnisch überwiegend zur Herstellung faserförmiger Materialien (Filamente und Spinnfasern) sowie zur Herstellung von Folien eingesetzt. In großen Mengen wird faserförmiges Celluloseacetat für die Herstellung von Zigarettenfiltern herangezogen, in kleineren Mengen für Textilien. Auch ist es, wie vorstehend gezeigt, bekannt, daß Celluloseacetat biologisch abbaubar ist und dessen biologischer Abbau beschleunigt werden kann, wenn dessen Acetylzahl verringert wird. Als Werkstoff zur Herstellung von Verbundwerkstoffen wurde reines Celluloseacetat bisher nicht eingesetzt, da man davon ausging, daß dieses den gravierenden Nachteil hat, daß es sich nicht thermoplastisch verarbeiten läßt und bei der Weiterverarbeitung zu Produkten mit wenig attraktiven Eigenschaften führt. Es muß daher als äußerst überraschend angesehen werden, daß sich im Rahmen der Erfindung reines Celluloseacetat, ohne daß zusätzlich ein Weichmacher mit seinen nachteiligen Auswirkungen herangezogen werden muß, thermoplastisch verarbeiten läßt. Dabei sind bezüglich seines Substitutionsgrades (DS) Rahmenbedingungen zu beachten. So hat es sich gezeigt, daß der Substitutionsgrad (DS) unter 3, nämlich in dem Bereich von etwa 1,2 bis 2,7 liegen sollte. Bevorzugt liegt der Substitutionsgrad (DS) zwischen etwa 1,8 bis 2,6 und insbesondere zwischen etwa 2,1 und 2,5.
Wird der Substitutionsgrad (DS) von 2,7 überschritten, dann führt das zu einer massiven Verschlechterung der thermoplastischen Verarbeitbarkeit. Ein Substitutionsgrad (DS) unter
1,2 bedeutet, daß der Formkörper in hohem Maße Feuchtigkeit aufnehmen kann und dann nicht mehr formstabil ist.
Der Polymerisationsgrad (DP) des Celluloseacetats liegt vorzugsweise zwischen etwa 140 bis 270, insbesondere zwischen etwa 170 bis 250. Liegt der Polymerisationsgrad (DP) zwischen etwa 140 und 270, dann stellen sich besonders vorteilhafte Eigenschaften ein, wie insbesondere hohe mechanische Festigkeiten bei gleichzeitig guter Verarbeitbarkeit bei der Formgebung.
Weiterer wichtiger Bestandteil des erfindungsgemäßen Formkörpers sind die verstärkenden natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern, die im Sinne der vorstehend dargestellten Definition als "biologisch abbaubar" zu verstehen sind. Dabei kann in Einzelfällen auch von einem weitgehend biologischen Abbau gesprochen werden, der möglichst zu solchen Abbauprodukten fuhren sollte, die als umweltunbedenklich anzusehen sind. Erfindungsgemäß werden mit besonderem Vorteil eingesetzt natürliche Cellulosefasern bzw. natürliche cellulosehaltige Fasern in Form von Kapok-, Sisal-, Jute-, Flachs-, Kokos-, Kenaf-, Abaka-, Maulbeerbast-, Hanf-, Ramie- und/oder Baumwollfasern. Die Fasern haben vorzugsweise eine mittlere Faserlänge von etwa 0,2 bis 100 mm, insbesondere 3 bis 30 mm, und einen mittleren Querschnittsdurchrnesser von etwa 8 bis 100 &mgr;&eegr;&agr;,
20 insbesondere von etwa 10 bis 30 &mgr;&idiagr;&eegr;.
Das Masseverhältnis von Celluloseacetat zu verstärkenden natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern ist nicht kritisch eingeschränkt. Es liegt zwischen etwa 10:90 bis 90:10, insbesondere zwischen etwa 15:85 bis 85:15 und ganz besonders bevorzugt zwischen etwa 25:75 bis 60:40.
Aufgrund des nachfolgend noch näher dargestellten Verfahrens zur Herstellung der erfindungsgemäßen Formkörper erlangen diese die erforderliche Wärmestabilität, wofür die sog. Vicat-Temperatur ein geeignetes Maß ist. Diese wird bestimmt nach der DIN 53 460 (Dezember 1976). Nach dieser Norm wird die Temperatur ermittelt, bei der ein Stahlstift mit einem kreisförmigen Querschnitt von 1 mm2 und einer Länge von mindestens 3 mm
i* *·»♦-« if ii:
unter Aufbringen einer Kraft von 50 N 1 mm tief senkrecht in einen Probekörper eindringt. Hierüber erfolgt eine Aufheizung mit der Aufheizrate von 120 K/min. Die Vicat-Temperatur liegt bei den meisten Polymeren deutlich unterhalb der Temperatur, bei der diese vollständig in den flüssigen Zustand übergehen. Im Rahmen der Erfindung beträgt diese mindestens etwa 16O0C, vorzugsweise mindestens etwa 17O0C und insbesondere etwa 180 bis 2000C.
Es kann vorteilhaft sein, den erfindungsgemäßen Formkörpern zusätzlich mineralische Materialien zur Verbesserung der mechanischen Eigenschaften einzuverleiben. Diese sind zwar nicht biologisch abbaubar, aber zumindest inert und ökologisch unbedenklich. Bevorzugte Beispiele hierfür sind Calciumcarbonat, Calciumsulfat, Siliziumdioxid und Aluminosilikate, wie z.B. Kaolin. Das mineralische Material liegt vorzugsweise in einer Menge von etwa 5 bis 50 Masse-%, insbesondere etwa 10 bis 20 Masse-% in dem erfindungsgemäßen Formkörper vor. Neben diesen mineralischen Materialien kann der erfindungsgemäße Formkörper Farbmittel in Form von Farbstoffen und/oder insbesondere Farbpigmenten enthalten. Soll der erfindungsgemäße Formkörper weiß eingefärbt sein, dann wird ein Weißpigment in Form von Titandioxid bevorzugt. Weitere denkbare Farbpigmente sind beispielsweise Eisenoxide. Um hier die gewünschte Einfärbung zu erzielen, reichen 0,2 bis 1 Masse-% Farbmittel innerhalb des erfindungsgemäßen Formkörpers aus.
Den erfindungsgemäßen Formkörpern werden noch weitere Substanzen zur Modifizierung, zur Verbesserung der Verarbeitbarkeit und zur Erzielung spezifischer Materialeigenschaften einverleibt werden, sofern dadurch die biologische Abbaubarkeit und die ökologische Unbedenklichkeit nicht wesentlich eingeschränkt werden. Als typische weitere Hilfsmittel und Additive kommen in Frage: Stabilisatoren, unbedenkliche Weichmacher, Vernetzer, Gleitmittel, Haftvermittler, Flammschutzmittel, Hydrophobier- oder Hydrophiliermittel, Biozide, Rodentizide, Aromen und dergleichen. Darüber hinaus können natürliche und biologisch abbaubare Füllmittel einbezogen werden, die bei der Verarbeitung oder Wiederaufarbeitung von Textilabfällen aus Naturfasern, von Reißwolle und
30 Reißbaumwolle sowie von Abfallen aus Altpapier und dergleichen anfallen.
Die erfindungsgemäßen Formkörper werden anhand des nachfolgend beschriebenen erfmdungsgemäßen Verfahrens hergestellt, wobei die angesprochenen Ausgangsmaterialien zu einem Verbundmaterial verarbeitet werden, bei dem der Celluloseacetat-Anteil die Funktion des Bindemittels erfüllt und dort eine weitgehend verschmolzene Phase bildet.
5
Bei der Herstellung der erfindungsgemäßen Formkörper wird insbesondere derartig vorgegangen, daß Celluloseacetat mit den natürlichen Cellulosefasern bzw. den natürlichen cellulosehaltigen Fasern in einem Masseverhältnis von etwa 10 : 90 bis etwa 90 : 10 gemischt, der Gesamtfeuchtigkeitsgehalt auf mindestens etwa 3 Masse-%, bezogen auf die Gesamtmenge des Celluloseacetats in diesem Gemisch, eingestellt, und dieses Gemisch bei einer Temperatur von etwa 220 bis 28O0C und einem Druck von etwa 30 bis 150 bar verpreßt wird. Vorzugsweise beträgt das oben angesprochene Masseverhältnis von Celluloseacetat zu den natürlichen Cellulosefasern bzw. den natürlichen cellulosehaltigen Fasern etwa 15 : 85 bis 85 : 15 und ganz besonders von 25 : 75 bis 60 : 40. Wird der untere Grenzwert von 10 : 90 unterschritten, dann liegt nicht ausreichend Celluloseacetat vor, um die Cellulosefasern ausreichend fest im Verbund zu halten. Wird der obere Grenzwert von etwa 90 : 10 überschritten, dann geht die angestrebte verstärkende Funktion der Cellulosefasern weitgehend verloren.
Die Ausgangsmaterialien werden vorzugsweise bei Raumtemperatur gemischt und dann den obigen Verfahrensbedingungen unterworfen. Dabei erfolgt das Verpressen vorzugsweise bei einer Temperatur von etwa 240 bis 27O0C und einem Druck von etwa 50 bis 130 bar. Die Einhaltung des oben genannten Druckrahmens von etwa 30 bis 150 bar ist erfindungswesentlich und läßt sich wie folgt erklären. Ein Druck unter etwa 30 bar führt dazu, daß Celluloseacetat nicht ausreichend gut fließen kann und infolgedessen nicht homogen im Formkörper vorliegt, während ein Überschreiten des Drucks von etwa 150 bar insofern nachteilig ist, als dieses einen sehr hohen technischen Aufwand erfordern würde. Um das Celluloseacetat ausreichend zu verschmelzen, ist es erforderlich, daß bei der Formgebung unter Druck eine Mindesttemperatur von etwa 2200C herrscht. Wird der obere Grenzwert von 2800C überschritten, dann bedeutet das, daß das Celluloseacetat thermisch geschädigt wird.
Das Celluloseacetat kann mit den jeweiligen Verstärkungskomponenten bzw. anderen Zusatzmitteln in beliebiger Form gemischt werden. Grundsätzlich können alle entsprechenden Einsatzformen, die aus anderen Bereichen bekannt und erprobt sind, herangezogen werden. Geeignete Einsatzformen sind z.B. Pulver, Mahlgut oder Granulat, insbesondere aber auch Fasern mit unterschiedlichen Längen und Querschnitten oder auch Folienbändchen des Celluloseacetats. Möglich ist auch die Anwendung des Bindemittels in Form von Flächengebilden, wie Folien oder Faservliesen. Schließlich kann das Bindemittel in Einzelfällen auch aus flüssiger Phase, aus Lösungen oder Dispersionen, eingebracht werden.
Zum Vermischen der erläuterten Ausgangsmaterialien des erfindungsgemäßen Formkörpers eignen sich grundsätzlich alle bekannten Verfahren der Komposit-Herstellung. Wegen der speziellen Eigenschaften der Verbundkomponenten sind einige Mischverfahren besonders bevorzugt. So kommen die üblichen Verfahren der Polymer-Compoundierung in Frage, wobei beispielsweise Extruder, Strainer, Kneter oder Walzwerke herangezogen werden. Da es dabei bereits vor der Formgebung zu einer thermischen und mechanischen Belastung der Verbundkomponten kommen kann, sind Mischmethoden, bei denen das als Bindemittel wirkende Celluloseacetat nicht wesentlich thermisch belastet wird, besonders vorteilhaft.
Für die Herstellung von Formteilen bzw. für die Herstellung bestimmter Eigenschaftsprofile sind z.B. die Imprägnierung mit Lösungen oder Dispersionen oder auch die Vereinigung der Komponenten in flächiger Form als Folie und/oder Faservlies durch Laminierung oder nach Sandwich- bzw. Filmstacking-Verfahren besonders gut geeignet. Besonders vorteilhaft ist im Hinblick auf die erfindungsgemäß möglichen Materialeigenschaften die Zugabe des Celluloseacetats zum jeweiligen Verstärkungsmaterial in Form von Pulvern oder Fasern, z.B. durch Misch- und Streuverfahren, in Fasermischstationen oder im Zuge eines der verschiedenen Vliesbildungsverfahren. Geeignet sind insbesondere die mechanische Vliesbildung auf Krempeln oder Karden, die aerodynamische Vliesbildung und die
30 hydrodynamische Vliesbildung bzw. der Papierprozeß.
»* »Si» i*
s.-ll- · ·♦ » ti i
Nach dem Mischprozeß liegt das Ausgangsmaterial, abhängig vom angewandten Mischverfahren, mit unterschiedlichem Charakter vor. So erhält man z.B. bei der Compoundierung auf Extrudern oder im Filmstacking-Verfahren harte und feste Produkte. Diese können gegebenenfalls zur Weiterverarbeitung granuliert oder aber bereits direkt zu Platten, Profilen oder fertigen Teilen geformt werden. Durch Fasermischung oder mit Vliesbildungsverfahren erhält man, je nach Vorgehensweise, lockere oder feste Matten, die gegebenenfalls bereits als solche z.B. zu Dämmzwecken eingesetzt werden können oder als Halbzeug anschließend zu den gewünschten Produkten weiterverarbeitet werden. Neben der biologischen Abbaubarkeit ist ein wesentliches vorteilhaftes Charakteristikum der erfindungsgemäßen Formkörper die Tatsache, daß sie zwar prinzipiell Thermoplaste enthalten und auch darauf zurückgehende Vorzüge besitzen, jedoch die Thermoplastizität nur unter speziellen Verarbeitungsbedingungen gegeben ist. Dagegen verhalten sich die Produkte unter üblichen Gebrauchsbedingungen praktisch nicht thermoplastisch und besitzen damit eine ausgezeichnete Wärmestandfestigkeit.
Die erfindungsgemäßen Verbundmaterialien besitzen bei spezifischen Verarbeitungsbedingungen die notwendig gute Verformbarkeit. Insbesondere sind die Preßtemperatur und der Preßdruck der jeweiligen Zusammensetzung im oben angesprochenen Rahmen anzupassen. Allerdings ist bei der Verarbeitung auch die Materialfeuchtigkeit von ReIevanz. So muß der Gesamtfeuchtigkeitsgehalt des Ausgangsmaterials mindestens etwa 3 Masse-%, bezogen auf die Gesamtmenge des in dem Ausgangsgemisch eingesetzten Celluloseacetats, betragen. Gegebenenfalls kann diese Menge etwa 20 Masse-% betragen, wobei regelmäßig besonders gute Werte in dem Bereich von etwa 3 bis 5 Masse-% erzielt werden. Im allgemeinen enthalten die natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern bereits den nötigen Feuchtigkeitsgehalt, um in der Vermischung obige Anforderungen an den Gesamtfeuchtigkeitsgehalt zu erfüllen. So enthält Flachs beispielsweise unter den Bedingungen eines Normklimas (nach DIN 50 014 / 200C / 65%ige Luftfeuchtigkeit) 8 bis 10% Wasser.
Die erfindungsgemäßen Formkörper lassen sich, wie ohne weiteres ersichtlich, aufgrund ihrer besonderen thermischen und mechanischen Eigenschaften vielfältig mit Vorteil ein-
setzen. Dies gilt insbesondere im Automobilbereich, so z.B. als Seitenverkleidungen bzw. Türverkleidungen sowie als Dachhimmel, als Verpackungsmaterial, Dämmaterial und als Möbelteil. Von Bedeutung sind die erfindungsgemäßen Formkörper auch als Halbzeuge jeglicher Art, wie Vliesstoffe, Matten, Platten und Folien.
5
Die Erfindung soll nachfolgend anhand verschiedener Beispiele erläutert werden. Dabei wird bezüglich erfindungswesentlicher Merkmale auf die Tabellen 1 bis 3 Bezug genommen.
10 Beispiele 1 bis 10
Es wurden Celluloseacetatfasem mit dem aus der Tabelle 1 ersichtlichen DS-Wert und dem dort angegebenen Faseranteil herangezogen. Dabei wurden Flachsfasern einer Schnittlänge von 10 mm und Celluloseacetatfasem einer Schnittlänge von 5 mm und einer Feinheit von 3 dtex mit einer Naßvliesanlage zu Faservliesen verarbeitet. Es kommen zwei Celluloseacetattypen zum Einsatz, die sich im Substitutionsgrad (DS) unterscheiden: DS 2,2 (Beispiele 1 bis 5) und DS 2,5 (Beispiele 6 bis 10). Der Anteil an Flachsfasern variiert von 15 bis 85 Gew.-%. Diese Vliese werden mehrlagig in einer hydraulischen Presse zu etwa 2,5 mm dicken Platten verpreßt. Die Preßbedingungen sind 2600C, 1 min und 120 bar. Die
20 mechanischen Eigenschaften sind in Tabelle 1 angegeben.
Beispiele 11 bis 15
Es wurden Celluloseacetatfasem mit dem aus der Tabelle 2 ersichtlichen DS-Wert und dem dort angegebenen Faseranteil herangezogen. Alle in Tabelle 2 aufgeführten Preßplatten besitzen einen Faseranteil von 50 Masse-%. Bzgl. der mechanischen Eigenschaften der hiernach erhaltenen Formkörper sei ebenfalls auf Tabelle 2 verwiesen.
Beispiel 13 entspricht dem Beispiel 8, wobei jedoch das Vlies nicht auf einer Naßanlage, sondern mit einer Vlieskrempel hergestellt wurde (Faserlänge von Flachs und Celluloseacetat: 50 mm).
· ♦
ti ·*♦■» »* ii
Die Beispiele 14 und 15 entsprechen dem Beispiel 8, wobei anstelle von Flachs Jute und Papierfaser (CTMP) eingearbeitet wird.
5 Vergleichsbeispiele 1 und 2
Zum Vergleich des Werkstoffs Celluloseacetat wurden Preßplatten mit Bioceta erstellt (spritzgießfähiges Celluloseacetat mit hohem Weichmacheranteil, Herstellung auf Naßvliesanlage, 50% Flachs) sowie Polypropylen (Herstellung nach dem "Film-Stacking"-Verfahren), wobei ein Sandwich-Aufbau aus mehreren Lagen Flachsvlies und PP-Folie verpreßt wird. Der Flachsanteil beträgt 50 Masse-%. Die mechanischen Kenndaten sind in Tabelle 2 angegeben. Die gemessene Vicat-Temperatur ist ein Maß für die Wärmeformbeständigkeit.
Beispiele 16 bis 18
Es wurden Celluloseacetatfasern mit dem aus der Tabelle 3 ersichtlichen DS-Wert und dem dort angegebenen Faseranteil herangezogen. Preßplatten aus reinem Celluloseacetat (Beispiel 16) sowie Preßplatten mit 50 und 75 Masse-% Flachs nach Beispiele 17 und 18 wurden in Anlehnung an den Erdeingrabtest nach DIN 53 933 45 Tage lang in feuchte Erde eingegraben und bei 290C gelagert. Die Änderungen der mechanischen Eigenschaften sowie der Gewichtsverlust sind angegeben. Durch den Zusatz von Flachs erhöht sich der Gewichtsverlust. Dies bedeutet, daß der biologische Abbau schneller abläuft.
Für sämtliche Tabellen gilt, daß die Abkürzung CA für Celluloseacetat steht.
-14-TABELLE 1
Beispiel 6 CA-Faser
DS
Faseranteil
%
Zugfestigkeit
N/mm2
Dehnung
%
Zug-E-Modul
N/mm2
Biegefestigkeit
N/mm2
Biege-E-Modul
N/mm2
Schlagzähigkeit
mJ/mm2
1 *. 7 2,2 15 27 2,8 1300 54 2320 4,7
2 :: 8 2,2 25 30 2,4 1800 51 2600 7,0
3 ..: 9 2,2 50 43 2,0 3300 64 4300 12,1
": 4 2,2 75 52 2,1 3400 63 4300 18,3
::. 5 2,2 85 44 2,5 3300 73 6700 14,8
• ·
•
2,5 15 27 2,7 1380 50 2300 4,5
2,5 25 30 1,9 1500 50 2300 6,2
2,5 50 43 2,2 2800 72 3800 15,8
2,5 75 52 2,0 3900 80 5400 11,2
2,5 85 44 2,0 3600 70 3700 12,2
TABELLE 2
(Faser- bzw. Füllstoffanteü 50 Masse-%)
" Beispiel
•
•
CA-Faser
DS
CA-Bioceta Faser bzw.
Fülstoff
Zugfestigkeit
N/mm2
Dehnung
%
Zug-E-Modul
N/mm2
Biegefestigkeit
N/mm2
Biege-E-Modul
N/mm2
Schlagzähigkeit
mJ/mm2
Vicat
0C
• ·
•
··* 11
2,2 Polypropylen Flachs 43 2,0 3300 64 4300 12,1 191
... 12 2,5 Flachs 45 2,2 2800 72 3800 15,6 195
13 2,5 Flachs Krempel 31 1,4 3200 87 5600 14,3
. 14 2,5 Jute 33 1,5 2700 55 4650 4,8
... 15 2,5 Papier 42 2,5 2550 73 3650 5,5
Vergleichsbeispiele 64
1 Flachs 43 2,5 2500 44 3400 17,5 125
2 Flachs 52 5,5 2000 82 4700 36,0 130
· »♦
-15-
TABELLE 3 Eingrabtest
(Prozentuale Änderung der Eigenschaften bezogen auf den Startwert von 100% Matrix: Celluloseacetat mit DS = 2,5, Eingrabdauer 45 Tage)
Beispiel Anteil Flachs
%
Zugfestigkeits
änderung
%
Zug-E-Modul-
Änderung
%
Bruchdehnungs
änderung
%
Gewichts
verlust
%
16 0 127 92,0 150 0,5
17 50 59 52,0 142 7
18 75 48 39,0 150 15
Anmerkung:
Die verschiedenen Eigenschaften wurden nach folgenden DIN-Vorschiiften bestimmt:
Zugfestigkeit:
Zug-E-Modul:
Biegefestigkeit:
Biege-E-Modul:
Bruchdehnung:
Schlagzähigkeit:
DIN 53 455 DIN 53 457 DIN 53 452 DIN 53 457 DIN 53 455 DIN 53 453

Claims (13)

1. Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat als Bindemittel und verstärkenden natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern, dadurch gekennzeichnet, daß das Celluloseacetat einen Substitutionsgrad (DS) von etwa 1,2 bis 2,7 und der Formkörper eine Vicat-Temperatur (bestimmt nach DIN 53 460, Dezember 1976) von mindestens etwa 160°C aufweist und das Masseverhältnis von Celluloseacetat zu natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern etwa 10 : 90 bis 90 : 10 beträgt, wobei der Formkörper weitgehend oder vollständig frei an externem Weichmacher ist.
2. Formkörper nach Anspruch 1, dadurch gekennzeichnet, daß der Substitutionsgrad (DS) des Celluloseacetats zwischen etwa 1,8 bis 2,6, insbesondere zwischen etwa 2,1 und 2,5 liegt.
3. Formkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Masseverhältnis von Celluloseacetat zu den natürlichen Cellulosefasern bzw. den natürlichen cellulosehaltigen Fasern etwa 15 : 85 bis 85 : 15, insbesondere etwa 25 : 75 bis 60 : 40 beträgt.
4. Formkörper nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Vicat-Temperatur mindestens etwa 170°C, insbesondere etwa 180- 200°C, beträgt.
5. Formkörper nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Polymerisationsgrad (DP) des Celluloseacetats zwischen etwa 140 bis 270, insbesondere zwischen etwa 170 bis 250 liegt.
6. Formkörper nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern eine mittlere Faserlänge von etwa 0,2 mm bis 100 mm, insbesondere von etwa 3 mm bis 30 mm, und einen mittleren Querschnittsdurchmesser von etwa 8 µm bis 100 µm, insbesondere von etwa 10 µm bis 30 µm, aufweisen.
7. Formkörper nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die natürlichen Cellulosefasern bzw. natürlichen cellulosehaltigen Fasern in Form von Kapok-, Sisal-, Jute-, Flachs-, Kokos-, Kenaf-, Abaka-, Maulbeerbast-, Hanf-, Ramie- und/oder Baumwollfasern vorliegen.
8. Formkörper nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er zusätzlich mineralische Materialien enthält.
9. Formkörper nach Anspruch 8, dadurch gekennzeichnet, daß das mineralische Material als Calciumcarbonat, Calciumsulfat, Siliziumdioxid und/oder Aluminosilikat vorliegt.
10. Formkörper nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß das mineralische Material in einer Menge von etwa 5 bis 50 Masse-%, insbesondere etwa 10 bis 20 Masse- % vorliegt.
11. Formkörper nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er Farbmittel enthält.
12. Formkörper nach Anspruch 11, dadurch gekennzeichnet, daß das Farbmittel ein Pigment, insbesondere ein Weißpigment, ist.
13. Formkörper nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Farbmittel darin in einer Menge von etwa 0,2 bis 1 Masse-% vorliegen.
DE29522229U 1995-05-15 1995-05-15 Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern Expired - Lifetime DE29522229U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE29522229U DE29522229U1 (de) 1995-05-15 1995-05-15 Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19517763A DE19517763C2 (de) 1995-05-15 1995-05-15 Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern und dessen Verwendung
DE29522229U DE29522229U1 (de) 1995-05-15 1995-05-15 Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern

Publications (1)

Publication Number Publication Date
DE29522229U1 true DE29522229U1 (de) 2001-01-18

Family

ID=26015155

Family Applications (1)

Application Number Title Priority Date Filing Date
DE29522229U Expired - Lifetime DE29522229U1 (de) 1995-05-15 1995-05-15 Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern

Country Status (1)

Country Link
DE (1) DE29522229U1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007941A1 (de) * 2004-02-18 2005-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biologisch abbaubares Compound, das sich für Spritzguss, Folienextrusion und zum Blasformen eignet, Verfahren zu seiner Herstellung und seine Verwendung, insbesondere im Lebensmittelbereich
DE102006029829A1 (de) * 2006-06-27 2008-01-03 St. Antoniusheim Ggmbh Konstruktionswerkstoff, insbesondere zur Herstellung von Bienenwabenrahmen, Bienenwabenmittelwände und/oder Zargen für Bienenbeuten
DE102008028544A1 (de) * 2008-06-16 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastische Formmasse und Formteile, Verfahren zu deren Herstellung und deren Verwendung
WO2012007397A1 (fr) 2010-07-13 2012-01-19 Centre National De La Recherche Scientifique (Cnrs) Nouveaux matériaux composites à base de cellulose

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007941A1 (de) * 2004-02-18 2005-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biologisch abbaubares Compound, das sich für Spritzguss, Folienextrusion und zum Blasformen eignet, Verfahren zu seiner Herstellung und seine Verwendung, insbesondere im Lebensmittelbereich
DE102004007941B4 (de) * 2004-02-18 2006-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biologisch abbaubares Compound, das sich für Spritzguss, Folienextrusion und zum Blasformen eignet, Verfahren zu seiner Herstellung und seine Verwendung, insbesondere im Lebensmittelbereich
DE102006029829A1 (de) * 2006-06-27 2008-01-03 St. Antoniusheim Ggmbh Konstruktionswerkstoff, insbesondere zur Herstellung von Bienenwabenrahmen, Bienenwabenmittelwände und/oder Zargen für Bienenbeuten
DE102008028544A1 (de) * 2008-06-16 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastische Formmasse und Formteile, Verfahren zu deren Herstellung und deren Verwendung
DE102008028544B4 (de) * 2008-06-16 2010-05-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Spritzgussfähige thermoplastische Formmasse und Formteile, Verfahren zu deren Herstellung und deren Verwendung
WO2012007397A1 (fr) 2010-07-13 2012-01-19 Centre National De La Recherche Scientifique (Cnrs) Nouveaux matériaux composites à base de cellulose
FR2962735A1 (fr) * 2010-07-13 2012-01-20 Centre Nat Rech Scient Nouveaux materiaux composites a base de cellulose
US9193851B2 (en) 2010-07-13 2015-11-24 Centre National De La Recherche Scientifique Cellulose-based composite materials

Similar Documents

Publication Publication Date Title
EP0773972B1 (de) Formkörper aus verbundmaterial auf der basis von celluloseacetat und verstärkenden natürlichen cellulosefasern, ein verfahren zu dessen herstellung und dessen verwendung
DE60307536T2 (de) Umweltfreundliche Polylactid-Verbundwerkstofformulierungen
DE19705280C1 (de) Faserverstärktes Kunststoff-Formteil und Verfahren zu dessen Herstellung
AT405847B (de) Verfahren zur herstellung von rohlingen oder formkörpern aus zellulosefasern
EP2953997B1 (de) Mikrostrukturiertes kompositmaterial, verfahren zu dessen herstellung, formkörper hieraus sowie verwendungszwecke
EP1958762B1 (de) Biologisch abbaubarer Naturfaserverbundwerkstoff
DE102006013988A1 (de) Faserverstärkter Thermoplast
EP2464612B1 (de) Formmasse zur herstellung von formteilen
DE102016102561A1 (de) VOC-armes Naturfaserverbundmaterial, Herstellungsverfahren dafür und Anwendung dafür
DE9321391U1 (de) Biologisch abbaubare Polymermischung
EP2909256B1 (de) Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfahren zu seiner herstellung
DE102010030926A1 (de) Verbundwerkstoff aus einem zellulosehaltigen Material mit PMMA als Kunststoffmatrix mittels verschiedener Kopplungs-Komponenten
DE19543635A1 (de) Verbundwerkstoffe aus Polyhydroxyfettsäuren und Fasermaterialien
DE4119295C2 (de) Umweltsicherer Verbundwerkstoff aus Naturfasern bzw. -produkten und Kunststoffen des Typs Polyurethan-Polyester und/oder Polyurethan-Polyamid sowie Verfahren zu dessen Herstellung
WO2007071387A2 (de) Pflanzliche faser, formkörper auf faserbasis sowie verfahren zur herstellung von mit novolak versehenen pflanzlichen fasern
DE29522229U1 (de) Formkörper aus Verbundmaterial auf der Basis von Celluloseacetat und verstärkenden natürlichen Cellulosefasern
DE102004007941B4 (de) Biologisch abbaubares Compound, das sich für Spritzguss, Folienextrusion und zum Blasformen eignet, Verfahren zu seiner Herstellung und seine Verwendung, insbesondere im Lebensmittelbereich
EP2922444B1 (de) Möbelplatte und verfahren zu deren herstellung
DE10027862B4 (de) Zusammensetzung zur Herstellung von Formkörpern, Verfahren zur Herstellung derselben und Formkörper aus einer solchen Zusammensetzung
DE10204321B4 (de) Formteil und Verfahren zu dessen Herstellung
DE102009003335A1 (de) Möbelteil, Möbel und Verfahren zur Herstellung einer Platte
DE102008012189A1 (de) Urne oder Aschekapsel sowie Verfahren zu deren Herstellung
EP4230686A1 (de) Verbundmaterial
WO2024213448A2 (de) Bioabbaubares verbundgebilde zur verwendung als kunstleder
EP0586874A2 (de) Verfahren zur Herstellung von Formteilen durch Verpressen

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20010222

R150 Utility model maintained after payment of first maintenance fee after three years

Effective date: 20010710

R151 Utility model maintained after payment of second maintenance fee after six years

Effective date: 20010710

R152 Utility model maintained after payment of third maintenance fee after eight years

Effective date: 20030910

R071 Expiry of right