DE2155217A1 - Electrostatic photocopying material prodn - by plasma spraying dielectric and/or photoconductive layer - Google Patents
Electrostatic photocopying material prodn - by plasma spraying dielectric and/or photoconductive layerInfo
- Publication number
- DE2155217A1 DE2155217A1 DE2155217A DE2155217A DE2155217A1 DE 2155217 A1 DE2155217 A1 DE 2155217A1 DE 2155217 A DE2155217 A DE 2155217A DE 2155217 A DE2155217 A DE 2155217A DE 2155217 A1 DE2155217 A1 DE 2155217A1
- Authority
- DE
- Germany
- Prior art keywords
- flame
- plasma
- oxidizing
- layers
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
- B05B7/222—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
- B05B7/226—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/0202—Dielectric layers for electrography
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
Verfahren zur Herstellung dielektrischer und/oder photoleitfähiger Schichten für den elektrostatischen Druck bzw. Elektrophotographie Die Erfindung bezieht sich auf ein Verfahren zur Herstellung dielektrischer und/oder photoleitfähiger Schichten für den elektrostatischen Druck bzw. Elektrophotographie.Process for the production of dielectric and / or photoconductive Layers for electrostatic printing or electrophotography The invention relates to a method of making dielectric and / or photoconductive ones Layers for electrostatic printing or electrophotography.
Bei der Elektrophotographie und beim elektrostatischen Druck möchte man die angefertigten Drucke möglichst auf Normalpapier ausgeben. Man verwendet dazu oft einen festen meistens trommel-oder plattenförmigen Zwischenträger, dessen obere Schicht die gewünschten dielektrischen oder elektrophotographischen Eigenschaften aufweist.I want to do electrophotography and electrostatic printing you output the prints made on normal paper if possible. One uses in addition often a solid, mostly drum-shaped or plate-shaped intermediate carrier, its upper layer has the desired dielectric or electrophotographic properties having.
Zur Herstellung solcher Schichten bieten sich oxidische, anorganische Metallverbindungen und Mischoxide an. In dieser Stoffgruppe findet man viele Photoleiter (z.B. ZnO, TiO2, ZnS, PbO, PbS, CdS) und viele dielektrische und ferroelektrische Materialien (z.B. alle keramischen Werkstoffe, A1203, BaTiO3, HDK-Keramiken, SiO2 usw.).Oxidic and inorganic layers are ideal for producing such layers Metal compounds and mixed oxides. In this group of substances finds there are many photoconductors (e.g. ZnO, TiO2, ZnS, PbO, PbS, CdS) and many dielectric ones and ferroelectric materials (e.g. all ceramic materials, A1203, BaTiO3, HDK ceramics, SiO2 etc.).
Die nötige Dicke dieser Schichten liegt je nach der Dielektrizitätskonstanten des verwendeten Stoffes zwischen ca. 10/um und einigen Millimetern (HDK-Keramik). Die gängigen Verfahren zur Herstellung dünner. Schichten, wie beispielsweise das Aufdampfen, das Sputtern oder die Pyrolyse, sind für den Aufbau von Schichten der oben angegebenen Dicken und den erforderlichen speziellen Eigenschaften wenig-geeignet.The required thickness of these layers depends on the dielectric constant of the material used between approx. 10 / um and a few millimeters (HDK ceramic). The common methods of making thinner. Layers, such as this Vapor deposition, sputtering or pyrolysis are used to build layers of the The thicknesses given above and the special properties required are not very suitable.
Zur Herstellung von piezoelektrischen Schichten ist ferner Flammenspritzen bekannt, aber solche mit verhältnismäßig geringer Flammentemperatur hergestellten Schichten sind wegen ihres relativ niedrigen Isolationswiderstandes und der kleinen Zeitkonstanten für die Elektrophotographie und den elektrostatischen Druck ungeeignet. Auch die bekannte Herstellung von geschmolzenen Pulverschichten mittels Plasmabrenner ist wegen der unvermeidlichen Hohlraumbildung innerhalb dieser Schichten für den angestrebten Zweck unbrauchbar.Flame spraying is also used to produce piezoelectric layers known, but those produced with a relatively low flame temperature Layers are because of their relatively low insulation resistance and small size Time constants unsuitable for electrophotography and electrostatic printing. Also the well-known production of melted powder layers by means of plasma torches is because of the inevitable formation of cavities within these layers for the intended purpose useless.
Aufgabe der Erfindung ist es, die dielektrischen oder elektrophotographischen Schichten mit wesentlich besseren mechanischen Ei den schaften als bisher bekannte herzustellen. Gelöst wird diese Aufgabe dadurch, daß die Schichten durch Plasmaspritzen aufgebracht werden, wobei in der Plasmaflamme und in ihrer Nähe eine oxidierende Atmosphäre erzeugt wird.The object of the invention is the dielectric or electrophotographic Layers with much better mechanical properties than previously known to manufacture. This object is achieved in that the layers are plasma sprayed upset be, being in the plasma flame and near it an oxidizing atmosphere is created.
Durch die Verwendung von insbesondere Stoffen mit hoher Dielektrizitätskonstanten und der damit verbundenen größeren Schichtdicken werden die mechanischen Eigenschaften verbessert sowie deren Lebensdauer verlängert, so daß diese Schichten vor allem bei Zwischenträgern für den elektrostatischen Druck und die Elektrophotographie vorteilhaft verwendet werden können.Through the use of materials with high dielectric constants in particular and the associated greater layer thicknesses are the mechanical properties improved and extended their life, so that these layers above all in the case of intermediate carriers for electrostatic printing and electrophotography can be used advantageously.
In der Fig, 1 der Zeichnung ist ein zur Durchführung des Verfahrens verwendbarer Plasmabrenner schematisch dargestellt.In Fig, 1 of the drawing is a for performing the method usable plasma torch shown schematically.
Zwischen den wassergekühlten Elektroden 1 und 2 wird ein Lichtbogen gezündet. Das entstehende Plasma wird durch dås ständig nachströmende Plasmagas 3 durch das Loch in der Anode hinausgeblasen. In der sich vor dem Brenner ausbildenden Plasmaflamme werden Temperaturen bis 20 000°C erreicht. Bei 4 oder 5 wird das aufzuspritzende Material in die Flamme gegeben. Entweder man bläst ein Pulver mit Hilfe eines Trägergases in die Flamme, oder man schmilzt laufend das Ende eines nachgeführten Drahtes, Stabes oder Rohres ab. Bei 6 kann schließlich noch e.n Schutzgas eingeblasen werden, um z.B. beim Spritzen von Metallen eine Oxydation zu verhindern. Normalerweise werden als Plasmagas und als Trägergas Argon, Stickstoff, Wasserstoff oder Gemische aus diesen oder anderen inerten oder reduzierenden Gasen verwendet.An arc is created between the water-cooled electrodes 1 and 2 ignited. The resulting plasma is caused by the continuously flowing plasma gas 3 blown out through the hole in the anode. In the one forming in front of the burner Plasma flames can reach temperatures of up to 20,000 ° C. At 4 or 5 it will be the one to be sprayed on Put material in the flame. Either you blow a powder with the help of a carrier gas into the flame, or one continuously melts the end of a trailing wire or rod or pipe. At 6, a protective gas can finally be blown in e.g. to prevent oxidation when spraying metals. Usually will as plasma gas and as carrier gas argon, nitrogen, hydrogen or mixtures these or other inert or reducing gases are used.
Die Herstellung von Schichten für den elektrostatischen Druck und die Elektrophotographie sei am Beispiel des BaTi03 näher erläutert. BaTiO) zahlt zu den HDK-Keramiken. Gesinterte Proben weisen bei Zimmertemperatur relative Dielektrizitätskonstanten e - 1000... 2000 auf, der spezifische Volumenwiderstand beträgt y = 1013...1012 cm. Damit erhält man für die theoretische Zeitkonstante von Schichten aus diesem Material T = e C e0 = 100 1000 s (cO = 8,85 10-14 As/(Vcm)), was bedeutet, daß diese Schichten für den elektrostatischen Druck gut brauchbar sein müssen. Mit Hilfe des Plasmaspritzens kann man BaTiO,-Schich-ten in Dicken zwischen 100/um und einigen mm gut herstellen. Solche Schichten sollten die für den elektrostatischen Druck geeigneten Kapazitäten besitzen. Die Schichten (10 in Fig. 2) werden normalerweise auf einem metallischen Träger 9 (Fig. 2) gespritzt. Auch Träger aus anderen Materialien können verwendet werden. Man muß dann zusätzlich für einen elektrischen Kontakt an der Schichtunterseite sorgen. Die Zeitkonstante solcher Schichten kann man auf recht einfache Art und Weise messen, indem man die (in Fig. 2 skizziert) Proben mit Hilfe einer Koronaentladung oberflächlich elektrisch auflädt und den zeitlichen Verlauf des Oberflächenpotentials nach Abschalten der Korona mit Hilfe einer Elektrometersonde verfolgt.The production of layers for electrostatic printing and the electrophotography is explained in more detail using the example of the BaTi03. BaTiO) pays to the HDK ceramics. Sintered samples have relative dielectric constants at room temperature e - 1000 ... 2000, the specific volume resistance is y = 1013 ... 1012 cm. This gives the theoretical time constant of layers from this Material T = e C e0 = 100 1000 s (cO = 8.85 10-14 As / (Vcm)), which means that this Layers must be usable for electrostatic printing. With the help of Plasma spraying can be used with BaTiO, layers in thicknesses between 100 μm and a few make mm well. Such layers should be those for electrostatic printing have suitable capacities. The layers (10 in Fig. 2) are normally sprayed on a metallic carrier 9 (Fig. 2). Also supports made of other materials can be used. You then also have to make an electrical contact on the underside of the layer. The time constant of such layers can be found on Quite a simple way of measuring by taking the (outlined in Fig. 2) samples with the help of a corona discharge superficially charges electrically and the temporal Course of the surface potential after switching off the corona with the help of an electrometer probe tracked.
Unter den bisher bekannten Bedingungen plasmagespritSe BaXiO3-Schichten hätten jedoch Zeitkonstanten weit unterhalb einer Sekunde (typischer Wert: 0,01s). Sie sind nicht für den elektrostatischen Druck geeignet, weil ein auf die Schicht aufgebrachtes latentes elektrostatisches Ladungsbild praktisch sofort durch Selbs-tentladung wieder verschwindet und nicht mit hilfe eines geeigneten Entwicklers sichtbar gemacht werden kann. Die Ursache ist vermutlich eine Umwandlung oder Zersetzung des Bariumtitanates durch Anreduktion im Plasmagas. Die entstehenden Schichten sind grau bis blau-schwarz gefärbt und haben, obwohl sie an sich: noch als isolierend bezeichnet werden können, für den elektrostatischen Druck einen zu kleinen elektrischen Durchgangswiderstand.Plasma-fueled BaXiO3 layers under the previously known conditions however, would have time constants well below one Second (more typical Value: 0.01s). They are not suitable for electrostatic printing because a latent electrostatic charge image applied to the layer practically immediately disappears again by self-discharge and not with the help of a suitable one Developer can be made visible. The cause is probably a transformation or decomposition of the barium titanate by reduction in the plasma gas. The emerging Layers are gray to blue-black in color and, although in themselves: still can be described as insulating, for the electrostatic pressure one to small electrical volume resistance.
Der wesentliche Gedanke dieser Erfindung besteht nun darin, entgegen der üblichen neutralen oder reduzierenden Atmosphäre in der Plasmaflamme oxidierende Bedingungen zu schafen. Das kann durch Zugabe von Sauerstoff oder anderen oxidierenden ,Gasen in das Plasmagas 3 oder in das Trägergas 4, 5 erreicht werden.The main idea of this invention is to counter this the usual neutral or reducing atmosphere in the plasma flame oxidizing Conditions to create. That can be done by adding oxygen or other oxidizing , Gases in the plasma gas 3 or in the carrier gas 4, 5 can be achieved.
Eine andere Nöglichkeit besteht darin, den Sauerstoff oder die anderen oxi-dierenden Gase außerhalb des Brenners in die Flamme zu blasen. Das kann z.B. an der Stelle geschehen, wo sonst das Schutzgas zugegeben wird (6). Ebenso kann man der Flamme von außen andere Oxydationsmittel beigeben, oder 0xi'dationsmittel von vornherein dem zu verspritzenden Material beimengen.Another possibility is to use the oxygen or the other Blowing oxidizing gases outside the burner into the flame. This can e.g. happen at the point where the protective gas is otherwise added (6). Likewise can other oxidizing agents or oxidizing agents are added to the flame from outside Add to the material to be sprayed from the start.
Auf diese Art und Weise durch Plasmaspritzen in oxidierender Flamme hergestellte Bariumbitanat-Schichten erreicheIl Zeitkonstanten von 100 s und mehr. Sie sind für den elektrostatischen Druck hervorragend geeignet. Die gleichen BrgeUnisse wurden mit anderen keramischen, dielektrischen und pliotoleitenden Materialien erzielt. Das Verfahren laßt sich auf alle Materialien anwenden, bei denen man durch Erzeugung einer oxldierenden Atmosphäre eine Zersetzung verhindern oder eine vorteilhafte Aufoxidation erreichen kann.In this way by plasma spraying in an oxidizing flame produced barium bitanate layers achieve time constants of 100 s and more. They are ideally suited for electrostatic printing. The same bonds were with other ceramic, dielectric and pliotoconductive Materials achieved. The procedure can be applied to all materials which can be prevented from decomposing by creating an oxidising atmosphere or can achieve an advantageous oxidation.
Es sei noch darauf hingewiesen, daß plasmagespritzte ;cllich-ten häufig zur Schließung der auftretenden Poren nachträglich mit Hilfe von Flüssigkeiten, Kunstharzen oder- anderen Stoffen versiegelt werden. Außerdem kann man die fertigen Schichten mechanisch nachbearbeiten.It should also be pointed out that plasma-sprayed; cllich-th frequently to close the pores that occur subsequently with the help of liquids, Synthetic resins or other substances are sealed. You can also manufacture them Post-process layers mechanically.
Patentansprüche:Patent claims:
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2155217A DE2155217A1 (en) | 1971-11-06 | 1971-11-06 | Electrostatic photocopying material prodn - by plasma spraying dielectric and/or photoconductive layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2155217A DE2155217A1 (en) | 1971-11-06 | 1971-11-06 | Electrostatic photocopying material prodn - by plasma spraying dielectric and/or photoconductive layer |
Publications (1)
Publication Number | Publication Date |
---|---|
DE2155217A1 true DE2155217A1 (en) | 1973-05-10 |
Family
ID=5824391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2155217A Pending DE2155217A1 (en) | 1971-11-06 | 1971-11-06 | Electrostatic photocopying material prodn - by plasma spraying dielectric and/or photoconductive layer |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE2155217A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0180433A2 (en) * | 1984-10-30 | 1986-05-07 | Minnesota Mining And Manufacturing Company | Charge transfer media and process for making thereof |
EP0288711A2 (en) * | 1987-04-28 | 1988-11-02 | International Business Machines Corporation | Rapid, large area coating of high-Tc superconductors |
EP0324121A1 (en) * | 1987-12-26 | 1989-07-19 | The Tokai University Juridical Foundation | Method for metallizing superconducting material onto surface of substrate by use of plasma phenomenon |
EP0326944A1 (en) * | 1988-02-04 | 1989-08-09 | The Perkin-Elmer Corporation | Superconductive powder and method of making superconductive powder |
EP0330196A1 (en) * | 1988-02-24 | 1989-08-30 | The Perkin-Elmer Corporation | Subathmospheric pressure plasma spraying of superconductive ceramic |
EP0413296A1 (en) * | 1989-08-17 | 1991-02-20 | Hoechst Aktiengesellschaft | Method for thermally spraying of oxide-ceramic superconductive materials |
EP0423370A1 (en) * | 1989-03-31 | 1991-04-24 | Leningradsky Politekhnichesky Institut Imeni M.I.Kalinina | Method of treatment with plasma and plasmatron |
US5356674A (en) * | 1989-05-04 | 1994-10-18 | Deutsche Forschungsanstalt Fuer Luft-Raumfahrt E.V. | Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element |
EP0887432A2 (en) * | 1997-06-19 | 1998-12-30 | The BOC Group plc | Improved plasma spraying |
EP2465965A1 (en) * | 2010-12-15 | 2012-06-20 | LEONI Bordnetz-Systeme GmbH | Device and method for spraying a structure made of conductive material on a substrate |
WO2023225470A1 (en) * | 2022-05-16 | 2023-11-23 | Praxair S.T. Technology, Inc. | Oxygen interception for air plasma spray processes |
-
1971
- 1971-11-06 DE DE2155217A patent/DE2155217A1/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0180433A3 (en) * | 1984-10-30 | 1987-11-19 | Minnesota Mining And Manufacturing Company | Charge transfer media and process for making thereof |
EP0180433A2 (en) * | 1984-10-30 | 1986-05-07 | Minnesota Mining And Manufacturing Company | Charge transfer media and process for making thereof |
EP0288711A3 (en) * | 1987-04-28 | 1990-01-17 | International Business Machines Corporation | Rapid, large area coating of high-tc superconductors |
EP0288711A2 (en) * | 1987-04-28 | 1988-11-02 | International Business Machines Corporation | Rapid, large area coating of high-Tc superconductors |
EP0324121A1 (en) * | 1987-12-26 | 1989-07-19 | The Tokai University Juridical Foundation | Method for metallizing superconducting material onto surface of substrate by use of plasma phenomenon |
EP0326944A1 (en) * | 1988-02-04 | 1989-08-09 | The Perkin-Elmer Corporation | Superconductive powder and method of making superconductive powder |
EP0330196A1 (en) * | 1988-02-24 | 1989-08-30 | The Perkin-Elmer Corporation | Subathmospheric pressure plasma spraying of superconductive ceramic |
EP0423370A1 (en) * | 1989-03-31 | 1991-04-24 | Leningradsky Politekhnichesky Institut Imeni M.I.Kalinina | Method of treatment with plasma and plasmatron |
EP0423370A4 (en) * | 1989-03-31 | 1991-11-21 | Leningradsky Politekhnichesky Institut Imeni M.I.Kalinina | Method of treatment with plasma and plasmatron |
US5356674A (en) * | 1989-05-04 | 1994-10-18 | Deutsche Forschungsanstalt Fuer Luft-Raumfahrt E.V. | Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element |
EP0413296A1 (en) * | 1989-08-17 | 1991-02-20 | Hoechst Aktiengesellschaft | Method for thermally spraying of oxide-ceramic superconductive materials |
EP0887432A2 (en) * | 1997-06-19 | 1998-12-30 | The BOC Group plc | Improved plasma spraying |
EP0887432A3 (en) * | 1997-06-19 | 1999-01-20 | The BOC Group plc | Improved plasma spraying |
EP2465965A1 (en) * | 2010-12-15 | 2012-06-20 | LEONI Bordnetz-Systeme GmbH | Device and method for spraying a structure made of conductive material on a substrate |
WO2023225470A1 (en) * | 2022-05-16 | 2023-11-23 | Praxair S.T. Technology, Inc. | Oxygen interception for air plasma spray processes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2630762C2 (en) | AC corona discharge device | |
DE2647396C2 (en) | Gas discharge display device and method for manufacturing the same | |
DE2362915B2 (en) | Corona discharge electrode for generating a negative corona discharge | |
DE2155217A1 (en) | Electrostatic photocopying material prodn - by plasma spraying dielectric and/or photoconductive layer | |
DE2264943B2 (en) | Multi-layer circuit construction and method of making the same | |
DE1521393A1 (en) | Process for the production of oxidation and heat-resistant protective layers | |
DE2855135C2 (en) | Starting paste for a thick film capacitor dielectric | |
EP0017875B1 (en) | Method for producing an electrode activating substance for a gas-discharge tube | |
DE1571521A1 (en) | Process for the production of molded parts by fusing mixtures of powdery metal oxides | |
DE69930305T2 (en) | GAS DISCHARGE TUBE | |
EP2207758B1 (en) | Piezoceramic multi-layer element | |
DE2217718A1 (en) | Superconducting coils and a method for their manufacture | |
DE102005026731A1 (en) | laminated chip | |
DE1293519B (en) | Process for the production of dielectric or semiconducting oxide layers | |
DE2650211C2 (en) | Ceramic capacitor and method of manufacturing | |
DE571571C (en) | Arc chamber for switch | |
DE4114769A1 (en) | Corona discharge element - having high melting point linear semiconductor electrode | |
DE4116734C1 (en) | ||
DE3106763A1 (en) | SURGE ARRESTERS | |
DE69212010T2 (en) | Partially crystallizable glass compositions | |
DE3238824A1 (en) | OXYGEN MEASUREMENT ELEMENT AND METHOD FOR THE PRODUCTION THEREOF | |
DE3341561A1 (en) | METHOD FOR PRODUCING LAYERS FROM A DIELECTRIC MATERIAL | |
DE68912258T2 (en) | Method of manufacturing a semiconducting structure for a low voltage spark plug. | |
DE1646435B1 (en) | CERAMIC ELECTRICALLY CONDUCTIVE MATERIAL AND PROCESS FOR ITS MANUFACTURING | |
DE102013112809A1 (en) | A method for producing a sprayed cylinder surface of a cylinder crankcase of an internal combustion engine and such a cylinder crankcase |