DE20206704U1 - Ice sensor for wind turbines - Google Patents
Ice sensor for wind turbinesInfo
- Publication number
- DE20206704U1 DE20206704U1 DE20206704U DE20206704U DE20206704U1 DE 20206704 U1 DE20206704 U1 DE 20206704U1 DE 20206704 U DE20206704 U DE 20206704U DE 20206704 U DE20206704 U DE 20206704U DE 20206704 U1 DE20206704 U1 DE 20206704U1
- Authority
- DE
- Germany
- Prior art keywords
- ice
- wind turbines
- ice sensor
- rotor blades
- recorded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010354 integration Effects 0.000 claims 1
- 244000309464 bull Species 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/02—De-icing means for engines having icing phenomena
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/40—Ice detection; De-icing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05B2270/804—Optical devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05B2270/821—Displacement measuring means, e.g. inductive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05D2270/804—Optical devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05D2270/821—Displacement measuring means, e.g. inductive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Wind Motors (AREA)
Description
• ·· * *Antfatp8uf£iiJtrafiun(j eines
\ S "&Ggr; ' "·..'...' •..'&Lgr;&bgr;&udigr;&mgr;-&eegr;: • ·· * *Antfatp8uf£iiJtrafiun(j of a
\ S "&Ggr;'"·..'...'•..'&Lgr;&bgr;&udigr;µ-&eegr;:
AnmalHür"1 AnmalHür" 1
Gebrauchmusters 27.04.02 Anmelder: Werner DiwaldUtility model 27.04.02 Applicant: Werner Diwald
Titel: Eissensor für WindenergieanlagenTitle: Ice sensor for wind turbines
Das hier vorgestellte System dient der Erkennung von Eisansatz an Rotorblättern von Windenergieanlagen. Die Sensoren erfassen, im Gegensatz zu den bisherigen Systemen, die Ist-Vereisung jedes einzelnen Rotorblattes.The system presented here is used to detect ice buildup on the rotor blades of wind turbines. In contrast to previous systems, the sensors record the actual icing of each individual rotor blade.
Moderne Anlagen verfügen i.d.R. über Vorrichtungen, die die Anlagen bei Eisansatz stilllegen oder durch ein Beheizen der Rotorblätter den Eisansatz minimieren bzw. verhindern. Die derzeitige Erfassung ob Eisansatz an den Rotorblättern vorliegt erfolgt durch die Aufnahme der metrologischen Umweltbedingungen. Dieses Verfahren ist jedoch von einer hohen Unsicherheit geprägt.Modern systems usually have devices that shut down the system when ice forms or that minimize or prevent ice formation by heating the rotor blades. The current method of determining whether ice is forming on the rotor blades is to record the metrological environmental conditions. However, this method is characterized by a high degree of uncertainty.
Das hier angemeldete System erfasst die an jedem Blatt anliegenden mit Hilfe geeigneter Sensoren (1) im Rotorblatt den realen Eisansatz. Als Sensoren bieten sich z.B. optische, induktive etc. Sensoren an. In Kombination mit den metrologischen Umweltdaten kann eine zuverlässige Erfassung von relevanten Eisansatz an jedem einzelnen Rotorblatt erfolgen. Auf diese Weise kann das Gefahrenpotential durch Eisabwurf auf ein vertretbares Minimum reduziert werden bzw. unnötige Stillstandzeiten von den Anlagen vermieden werden. Gleichzeitig bietet dieses System dem Betreiber die Möglichkeit die Unregelmäßigkeit des ordnungsgemäßen Betriebs zu dokumentieren.The system registered here records the actual ice buildup on each blade using suitable sensors (1) in the rotor blade. Suitable sensors include optical, inductive, etc. sensors. In combination with the metrological environmental data, relevant ice buildup on each individual rotor blade can be reliably recorded. In this way, the risk potential from ice shedding can be reduced to a reasonable minimum and unnecessary downtimes of the systems can be avoided. At the same time, this system offers the operator the opportunity to document irregularities in proper operation.
Die Erfassung des Eisansatzes erfolgt in der Nähe der Rotorblattspitzen, dadurch ist gewährleistet, dass die Datenerfassung in dem Bereich erfolgt, indem i.d.R. sich vorrangig Eis ansetzt. Die erfassten Daten werden über entsprechende Datenleitungen (2) in das Maschinenhaus der Anlagen geleitet, wo sie unter Berücksichtigung der metrologischen Rahmenbedingungen in entsprechenden Datenverarbeitungseinheiten (3) soweit aufgearbeitet werden, dass die erforderlichen Maßnahmen ergriffen werden können.The ice buildup is recorded near the tips of the rotor blades, which ensures that the data is recorded in the area where ice usually forms. The recorded data is sent via appropriate data lines (2) to the turbine's machine room, where it is processed in appropriate data processing units (3) taking the metrological conditions into account so that the necessary measures can be taken.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20206704U DE20206704U1 (en) | 2002-04-27 | 2002-04-27 | Ice sensor for wind turbines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20206704U DE20206704U1 (en) | 2002-04-27 | 2002-04-27 | Ice sensor for wind turbines |
Publications (1)
Publication Number | Publication Date |
---|---|
DE20206704U1 true DE20206704U1 (en) | 2002-08-22 |
Family
ID=7970606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE20206704U Expired - Lifetime DE20206704U1 (en) | 2002-04-27 | 2002-04-27 | Ice sensor for wind turbines |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE20206704U1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004057182A1 (en) * | 2002-12-20 | 2004-07-08 | Lm Glasfiber A/S | Method of operating a wind turbine |
EP1466827A2 (en) | 2003-04-07 | 2004-10-13 | Thomas Dr. Huth- Fehre | Surface sensor |
WO2006063990A1 (en) * | 2004-12-14 | 2006-06-22 | Aloys Wobben | Rotor blade for a wind power station |
DE102004060449A1 (en) * | 2004-12-14 | 2006-06-29 | Aloys Wobben | Rotor blade for wind power station has rotor blade nose, deposition sensor device arranged in area of rotor blade nose with transmitter for wireless transmission of signals via transmission link and receiver for receiving signals |
DE102006023642A1 (en) * | 2006-05-18 | 2007-11-22 | Daubner & Stommel Gbr Bau-Werk-Planung | Wind turbine and rotor blade for a wind turbine |
CN101886617A (en) * | 2010-06-07 | 2010-11-17 | 三一电气有限责任公司 | Wind generating set and blade deicing system thereof |
US8234083B2 (en) | 2008-09-22 | 2012-07-31 | Vestas Wind Systems A/S | Wind turbine rotor blade comprising an edge-wise bending insensitive strain sensor system |
US8310657B2 (en) | 2008-03-31 | 2012-11-13 | Vestas Wind Systems A/S | Optical transmission strain sensor for wind turbines |
US8348611B2 (en) | 2008-07-01 | 2013-01-08 | Vestas Wind Systems A/S | Wind turbine having a sensor system for detecting deformation in a wind turbine rotor blade and corresponding method |
WO2013050485A3 (en) * | 2011-10-05 | 2013-06-20 | Windvector Ab | Method and device for detecting accumulation of material on a blade of a wind turbine and for determining upwind condition |
AT512413A4 (en) * | 2012-03-19 | 2013-08-15 | Michael Moser | Integrated flexible ice detector |
US8712703B2 (en) | 2008-12-16 | 2014-04-29 | Vestas Wind Systems A/S | Turbulence sensor and blade condition sensor system |
US8733164B2 (en) | 2010-02-04 | 2014-05-27 | Vestas Wind Systems A/S | Wind turbine optical wind sensor |
US8814514B2 (en) | 2008-07-03 | 2014-08-26 | Vestas Wind Systems A/S | Embedded fibre optic sensor for wind turbine components |
US9014863B2 (en) | 2009-08-06 | 2015-04-21 | Vestas Wind Systems A/S | Rotor blade control based on detecting turbulence |
-
2002
- 2002-04-27 DE DE20206704U patent/DE20206704U1/en not_active Expired - Lifetime
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004057182A1 (en) * | 2002-12-20 | 2004-07-08 | Lm Glasfiber A/S | Method of operating a wind turbine |
US7182575B2 (en) | 2002-12-20 | 2007-02-27 | Lm Glasfiber A/S | Method of operating a wind turbine |
CN100347441C (en) * | 2002-12-20 | 2007-11-07 | Lm玻璃纤维制品有限公司 | Method of operating a wind turbine |
EP1466827A2 (en) | 2003-04-07 | 2004-10-13 | Thomas Dr. Huth- Fehre | Surface sensor |
WO2006063990A1 (en) * | 2004-12-14 | 2006-06-22 | Aloys Wobben | Rotor blade for a wind power station |
DE102004060449A1 (en) * | 2004-12-14 | 2006-06-29 | Aloys Wobben | Rotor blade for wind power station has rotor blade nose, deposition sensor device arranged in area of rotor blade nose with transmitter for wireless transmission of signals via transmission link and receiver for receiving signals |
US8500402B2 (en) | 2004-12-14 | 2013-08-06 | Aloys Wobben | Rotor blade for a wind power station |
AU2005315674B2 (en) * | 2004-12-14 | 2009-05-21 | Aloys Wobben | Rotor blade for a wind power station |
NO340104B1 (en) * | 2004-12-14 | 2017-03-13 | Aloys Wobben | Rotor blade for a wind power plant |
DE102006023642A1 (en) * | 2006-05-18 | 2007-11-22 | Daubner & Stommel Gbr Bau-Werk-Planung | Wind turbine and rotor blade for a wind turbine |
US8310657B2 (en) | 2008-03-31 | 2012-11-13 | Vestas Wind Systems A/S | Optical transmission strain sensor for wind turbines |
US8348611B2 (en) | 2008-07-01 | 2013-01-08 | Vestas Wind Systems A/S | Wind turbine having a sensor system for detecting deformation in a wind turbine rotor blade and corresponding method |
US8814514B2 (en) | 2008-07-03 | 2014-08-26 | Vestas Wind Systems A/S | Embedded fibre optic sensor for wind turbine components |
US8234083B2 (en) | 2008-09-22 | 2012-07-31 | Vestas Wind Systems A/S | Wind turbine rotor blade comprising an edge-wise bending insensitive strain sensor system |
US8712703B2 (en) | 2008-12-16 | 2014-04-29 | Vestas Wind Systems A/S | Turbulence sensor and blade condition sensor system |
US9014863B2 (en) | 2009-08-06 | 2015-04-21 | Vestas Wind Systems A/S | Rotor blade control based on detecting turbulence |
US8733164B2 (en) | 2010-02-04 | 2014-05-27 | Vestas Wind Systems A/S | Wind turbine optical wind sensor |
CN101886617B (en) * | 2010-06-07 | 2012-05-30 | 三一电气有限责任公司 | Wind generating set and blade deicing system thereof |
CN101886617A (en) * | 2010-06-07 | 2010-11-17 | 三一电气有限责任公司 | Wind generating set and blade deicing system thereof |
WO2013050485A3 (en) * | 2011-10-05 | 2013-06-20 | Windvector Ab | Method and device for detecting accumulation of material on a blade of a wind turbine and for determining upwind condition |
AT512413A4 (en) * | 2012-03-19 | 2013-08-15 | Michael Moser | Integrated flexible ice detector |
AT512413B1 (en) * | 2012-03-19 | 2013-08-15 | Michael Moser | Integrated flexible ice detector |
US9909568B2 (en) | 2012-03-19 | 2018-03-06 | Eologix Sensor Technology Gmbh | Device for detecting critical states of a surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE20206704U1 (en) | Ice sensor for wind turbines | |
US7550862B2 (en) | Wind turbine and method for the automatic correction of wind vane settings | |
EP1801682B1 (en) | Information analysis system for water distribution and pipelines | |
FI3921225T3 (en) | Method and system for reducing vessel fuel consumption | |
DE10022129C2 (en) | Method for operating a wind energy installation and wind energy installation for carrying out the method | |
Logan | Using a ship’s propeller for hull condition monitoring | |
EP0825418A3 (en) | Method for the fault tolerant position detection of an object | |
CN113373449A (en) | Buried steel pipeline anticorrosive coating damage point prediction method | |
Tarełko | The effect of hull biofouling on parameters characterising ship propulsion system efficiency | |
WO2019007579A1 (en) | Determining a wind speed value | |
CN117371994B (en) | Ship maintenance intelligent management system based on opinion feedback | |
DE102010063396A1 (en) | Method for compensating inadmissible high winds in wind park, involves detecting wind speed and wind direction at wind energy plants by sensors | |
CN102703633A (en) | Furnace top stock-level detection system for blast furnace | |
DE102009015167A1 (en) | Method for tracking rotor level of wind turbine against wind direction, involves adjusting rotor level in azimuthal direction according to amount of correction value in adjustment direction that coincides with another adjustment direction | |
CN220430466U (en) | Energy efficiency monitoring system for ship | |
DE20206706U1 (en) | dirt sensor | |
CN115508528A (en) | River and lake water quality-hydrodynamics online intelligent monitoring system and method | |
EP1706522B1 (en) | Method for the electrochemical removal of layers from components | |
EP0777130A3 (en) | Digital method for detecting temporally short pulses, and device for performing the method | |
CN113049034A (en) | Artificial intelligence-based intelligent health monitoring method for large-span bridge pier supporting structure | |
CN207114535U (en) | The online dissolved oxygen analytic instrument of automatic correction type | |
CN108128404A (en) | One kind is used for the pinpoint experimental rig of paddle precompensation conduit and installation method | |
CN205262403U (en) | Storage tank volumetric measurement device | |
CN117882663B (en) | Automatic high-density clam offspring breeding system and method | |
Beer | Run timing of adult Chinook salmon passing Bonneville dam on the Columbia River |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R086 | Non-binding declaration of licensing interest | ||
R207 | Utility model specification |
Effective date: 20020926 |
|
R156 | Lapse of ip right after 3 years |
Effective date: 20051101 |