Nothing Special   »   [go: up one dir, main page]

DE20120189U1 - Gleichstrom-Schacht-Reaktor - Google Patents

Gleichstrom-Schacht-Reaktor

Info

Publication number
DE20120189U1
DE20120189U1 DE20120189U DE20120189U DE20120189U1 DE 20120189 U1 DE20120189 U1 DE 20120189U1 DE 20120189 U DE20120189 U DE 20120189U DE 20120189 U DE20120189 U DE 20120189U DE 20120189 U1 DE20120189 U1 DE 20120189U1
Authority
DE
Germany
Prior art keywords
gas
shaft
shaft body
supply device
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE20120189U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umweltkontor Renewable Energy AG
Original Assignee
Umweltkontor Renewable Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umweltkontor Renewable Energy AG filed Critical Umweltkontor Renewable Energy AG
Priority to DE20120189U priority Critical patent/DE20120189U1/de
Priority to DE50213409T priority patent/DE50213409D1/de
Priority to SI200230833T priority patent/SI1323809T1/sl
Priority to EP02027458A priority patent/EP1323809B1/de
Priority to AT02027458T priority patent/ATE427347T1/de
Publication of DE20120189U1 publication Critical patent/DE20120189U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/08Continuous processes with ash-removal in liquid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/14Continuous processes using gaseous heat-carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0276Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using direct heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories or equipment specially adapted for furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories or equipment specially adapted for furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/30Arrangements for extraction or collection of waste gases; Hoods therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0032Charging or loading melting furnaces with material in the solid state using an air-lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/16Waste feed arrangements using chute
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/18Waste feed arrangements using airlock systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • F23G2209/261Woodwaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/28Plastics or rubber like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7004Incinerating contaminated animal meals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15081Reheating of flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/05Waste materials, refuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2003/00Type of treatment of the charge
    • F27M2003/14Pyrolising

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

Die vorliegende Erfindung betrifft einen Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzstoffen unterschiedlicher Art und Konsistenz, wie schadstofffreie und/oder schadstoffbelastete Hölzer, Haus- und Sperrmüll, Ersatzbrennstoffe, pelletierte Stäube bzw. Tiermehl, Kunststoffe, Industrie- und Gewerbeabfallstoffe.
In Schacht-Reaktoren kann ein Synthesegas, welches zur Erzeugung von elektrischer Energie sowie Wärme geeignet ist und/oder als Basis für Syntheseprozesse Verwendung findet, erzeugt werden. Als festes Produkt entsteht eine nichtauslaugbare Schlacke und eine stofflich
Telefon: (0221) 916520 ■ iJ^ax: (02.2f)#i3^97*#· .^e.lefa^: (G. $$£·>. {§2?];? 91 ip.301.·.- eMail: mail@dompatent.de
weiterverarbeitbare Metallphase oder eine nichteluierbare flüssige Phase, welche für eine weitergehende Verarbeitung zur Verfügung steht.
DE 43 17 145 Cl beschreibt ein Verfahren und eine Vorrichtung zur Entgasung von Abfallmaterialen auf Basis eines koksbeheizten Gegenstrom-Schachtofens. Hierbei wird das entstehende staubhaltige Gas vollständig abgezogen und in der darunter befindlichen Schmelz- und Überhitzungszone mit Sauerstoff bei hohen Temperaturen verbrannt. Die Gegenstromführung des Gases durch die sich nach unten bewegende Schüttung und die Absaugung zwischen der Kreislaufgasabsaugung und der Kreislaufgaszuführung ergeben eine Vielzahl von praktischen Problemen. Folge sind Kurzschlussströmungen im Schacht und ungenügende Wärmeübertragung in den oberen Schachtbereich, wodurch ein schadstoffbelastetes Gas mit Teerund Staubbestandteilen entsteht. Hierdurch wird eine aufwendige Gasaufbereitung und -reinigung notwendig. Ferner besteht die Gefahr, dass durch Teer- und Staubablagerungen der kontinuierliche Betrieb gestört wird. Eine weitere permanente Gefahr für einen stabilen Betrieb ist die Führung von Pyrolyse- und Entgasungsgas mit Teer- und Staubanteilen in Leitungen. Stellenweise oder vollständige Versetzung der Leitungen mit Teer- Staubablagerungen haben eine ungleichmäßige Kreislaufgasführung und damit eine ungleichmäßige Prozessführung im Schachtofen zur Folge.
In der DE 196 40 497 C2 wird ein koksbeheizter Kreislaufgaskupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien beschrieben. Er besteht aus einem senkrechten Ofenschacht mit unterhalb der Begichtung liegenden großvolumigen Kreislaufgasabsaugöffnungen, die durch Kanäle und Düsen mit der Schmelz- und Überhitzungszone
verbunden sind, oberhalb welcher eine großvolumige Überschussgasabsaugebene das entstehende Gas aus dem Prozess führt. Hierbei ist der Ofenschachtteil zwischen Kreislaufgas- und Überschussgasabsaugöffnung querschnittsverjüngt. Die Wärmeübertragung erfolgt wie auch in DE 43 17 145 Cl durch die im Gegenstromprinzip zum Einsatzmaterial nach oben steigenden Prozessgase. Auch die mehrfache Gegenstromführung des Gases durch die sich nach unten bewegende Schüttung ermöglicht trotz einiger Modifizierungen durch Querschnittsverengung im Schacht und Querschnittserweiterung im Gasabgang nicht die Verarbeitung eines breiten Spektrums an Einsatzmaterial.
Weiterführend ist in DE 198 16 864 Al ein Kreislaufgaskupolofen beschrieben, bei welchem eine Überschussgasabsaugung unterhalb der Schmelz- und Überhitzungszone angeordnet ist. Hierdurch ergibt sich eine Gegenstromvergasung und Wärmeübertragung im oberen Ofenschachtbereich, wo das Gas mittels großvolumiger Öffnungen abgesaugt wird und durch Kanäle/ Düsen in die Schmelz- und Überhitzungszone geleitet wird. In der anschließenden Gleichstromvergasung wird das Gas bei hohen Temperaturen reduziert und längerkettige Kohlenwasserstoffe gespalten. Durch diese gewählte Anordnung wird der negative Einfluss von Kurzschlussströmungen verringert. Die räumliche Nähe der endothermen Prozesse zum Herdbereich und die großvolumige Überschussgasabsaugung entzieht der Schmelze notwendige Wärme, um unter allen Betriebsbedingungen den notwendigen flüssigen Austrag von Schmelze sicher zu stellen.
In DE 100 07 115 Al ist ein Reaktor zum Vergasen und/ oder Schmelzen von Einsatzstoffen mit einem Zuführ-, Pyrolyse-, Schmelz- und Überhitzungsabschnitt beschrieben. Der Pyrolyseabschnitt weist eine Querschnittserweiterung als Gaszuführraum auf, in den mindestens eine Brennkammer mit
• ·
• · 9 ·
mindestens einem Brenner mündet, durch welche heiße Verbrennungsgase einem sich ausbildenden Schüttkegel zugeführt werden. Des weiteren werden energiereiche Medien mittels oberen und unteren Eindüsungsmitteln im Bereich der Schmelz- und Überhitzungszone sowie oberhalb der Schmelze mittels Sauerstofflanzen und/ oder Düsen eingebracht. Nachteilig ist bei dieser Vorrichtung die vergrößerte Reaktoroberfläche im Bereich der Querschnittserweiterung der Pyrolyse, da Wärmeverluste auftreten. Die im Gleichstrom in die Schüttung eintretenden heißen Gase bilden zudem bevorzugte Strömungskanäle aus, was eine inhomogene Reaktion über den Reaktorquerschnitt zur Folge hat.
Generell kann davon ausgegangen werden, dass bei Einsatzstoffen mit hohen Zündpunkten bei schlechter Wärmeleitung und bei Stoffen mit hoher Feuchte die zugeführte Wärme im Pyrolyseabschnitt nicht zu einer ausreichenden Erwärmung und Pyrolyse bzw. Entgasung der Stoffe führt. Die Prozesse der Ent- und Vergasung verschieben sich in den Bereich des Schmelz- und Überhitzungsabschnittes und verringern so die Reaktionszeit zur Zerstörung aller sich bildenden Teere und Öle in Form längerkettiger Kohlenwasserstoffe.
Sämtliche vorstehende beschriebene Schacht-Reaktoren sind nur für einen geringen Bereich an Einsatzstoffen einsetzbar. Ferner muss zum Vergasen der Einsatzstoffe eine erhebliche Menge an .Energie zugeführt werden. Dies erfolgt durch unterschiedliche Düsensysteme, die in den vertikalen Schachtkörpern angeordnet sind, sowie über zusammen mit dem Schüttgut in den Schachtkörper eingebrachtes Brennmaterial, wie Koks oder dergleichen. Ferner besteht bei bekannten Schacht-Reaktoren unabhängig davon, ob sie im Gleichstrom- oder Gegenstromprinzip arbeiten, das Problem, dass das entnommene Gas stark
partikelbelastet ist und somit vor einer Weiterverarbeitung beispielsweise gefiltert werden muss.
Die Aufgabe der Erfindung besteht darin, einen Gleichstrom-Schacht-Reaktor zu schaffen, mit dem auch beim Einsatz unterschiedlicher Einsatzstoffe Nutzgase, insbesondere brennbare Nutzgase mit einer geringen Partikelbelastung, erzeugt werden können.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Der erfindungsgemäße Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, weist einen vertikalen Schachtkörper auf. Innerhalb des Schachtkörpers wird das Einsatzmaterial getrocknet, erwärmt und vergast. Der Schachtkörper lässt sich somit üblicherweise in die Bereiche Trockenzone, Entgasungszone und Vergasungszone unterteilen. An den Schachtkörper schließt sich ein Aufnahmekörper an, der zur Aufnahme von geschmolzenem Einsatzmaterial dient. Innerhalb dieses Körpers ist die Schmelzzone des Reaktors ausgebildet. Der Schachtkörper und/oder der Aufnahmekörper sind mit einer Gas-Abführeinrichtung zum Abführen der innerhalb des Reaktors erzeugten Nutzgase verbunden. Insbesondere ist die Abführeinrichtung im Bereich zwischen dem Schachtkörper und dem Aufnahmekörper angeordnet und als Rohr ausgebildet. Ferner weist der vertikal ausgerichtete Schachtkörper eine Zuführeinrichtung auf, durch die das Einsatzmaterial dem Schacht-Reaktor zugeführt wird.
Erfindungsgemäß ist mit dem Schachtkörper eine Gas-Zuführeinrichtung zum Zuführen von Gas in den Schachtkörper verbunden. Das zugeführte Gas, bei dem es sich vorzugsweise um
Luft oder mit Sauerstoff angereicherte Luft handelt, dient zum Trocknen des Einsatzmaterials. Um eine gute und effektive Trocknung des Einsatzmaterials zu erzielen, ist das zugeführte Gas erfindungsgemäß vorgewärmt. Zum Vorwärmen des Gases ist erfindungsgemäß die Gas-Zuführeinrichtung mit der Gas-Abführeinrichtung verbunden. Das aus dem Reaktor abgeführte heiße Gas wird erfindungsgemäß somit zum Vorwärmen des dem Schachtkörper zugeführten Gases genutzt. Dies hat den Vorteil, dass zum Vorwärmen des Gases keine zusätzliche Energie erforderlich ist. Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, dass dem abgeführten Gas Wärme entzogen wird. Hierdurch ist die Weiterverarbeitung bzw. Nutzung dieses Gases vereinfacht.
Aufgrund des Vorwärmens des Einsatzmaterials, was erfindungsgemäß vorzugsweise bereits unmittelbar nach dem Zuführen des Einsatzmaterials in den Schachtkörper erfolgt, kann eine größere Produktpalette an Einsatzmaterial in dem Schachtreaktor verarbeitet werden, da das Einsatzmaterial während seines Aufenthalts im Schachtreaktor stärker erwärmt wird und somit auch bei schlechter verarbeitbaren Materialien eine Ent- und Vergasung erzielt werden kann. Insbesondere ist hierdurch auch erreicht, dass innerhalb des Reaktors eine bessere Ent- und Vergasung stattfindet, so dass das Nutzgas weniger Partikel aufweist. Ein Filtern des Nutzgases kann daher ggf. entfallen. Insbesondere ist es aufgrund der erfindungsgemäßen Ausgestaltung des Gleichstrom-Schacht-Reaktors möglich, Nutzgase zu erzeugen, die einen erheblich geringeren Öl- und Teeranteil sowie einen erheblich geringeren Schadstoffgehalt aufweisen. Ferner ist durch den erfindungsgemäßen Reaktor die Funktionssicherheit erhöht, da die Gefahr von Gasexplosionen innerhalb des Reaktors aufgrund des Vorwärmens des Einsatzmaterials verringert ist.
• ·
• ·
• ·
Bei einer besonders bevorzugten Ausführungsform weist der Gleichstrom-Schacht-Reaktor eine Schleusenanordnung auf. Die Schleusenanordnung ist der Zuführöffnung des Schachtkörpers vorzugsweise unmittelbar nachgeordnet. Das Einbringen von Einsatzmaterial in den Schachtkörper erfolgt somit durch die Zuführöffnung über die Schleusenanordnung. Mit Hilfe der Schleusenanordnung kann sichergestellt werden, dass beispielsweise nur eine begrenzte Menge an Umgebungsluft in den Schachtreaktor über die Zuführöffnung gelangt. Hierdurch kann der Prozess innerhalb des Schachtreaktors besser gesteuert werden. Die Schleusenanordnung weist vorzugsweise mindestens eine Schleusenkammer auf. Es wird somit eine erste Schleusenöffnung geöffnet, um das Einsatzmaterial in die Schleusenkammer einzubringen. Sodann wird diese erste Schleusenöffnung geschlossen, so dass die Schleusenkammer verschlossen ist. In diesem Zustand kann ggf. enthaltene Luft aus der Schleusenkammer abgesaugt und/oder durch anderes Gas ersetzt werden. Anschließend wird die zweite Schleusenöffnung, die in Richtung des Innenraums des Schachtreaktors führt, geöffnet und das Einsatzmaterial gelangt aus der Schleusenkammer in den Reaktor.
Besonders bevorzugt ist es hierbei, dass die erfindungsgemäße Gaszuführeinrichtung im Bereich der Schleusenanordnung mit der Schleusenkammer verbunden ist. Dies hat den Vorteil, dass das Einsatzmaterial bereits in und/oder unmittelbar nach der Schleusenkammer eine erste Trocknung erfährt. Somit wird erfindungsgemäß bereits der Bereich der Schleuse zum Trocknen des Einsatzmaterials genutzt.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung erläutert.
Die Figur zeigt eine schematische Seitenansicht eines Gleichstrom-Schacht-Reaktors.
Der Gleichstrom-Schacht-Reaktor weist einen Schachtkörper 10 auf. Der Schacht körper 10 kann im dargestellten Ausführungsbeispiel in eine Schleusenanordnung 12, eine sich an die Schleusenanordnung 12 anschließende Trocknungszone 14, eine sich an die Trocknungszone 14 anschließende Entgasungszone 16 sowie eine sich hieran anschließende Vergasungszone 18 unterteilt werden. An die Vergasungszone 18 des Schachtkörpers 10 schließt sich ein Aufnahmekörper 20 an, der zur Aufnahme von geschmolzenem Einsatzmaterial 22 dient. Im Grenzbereich zwischen der Vergasungszone 18 und dem Aufnahmekörper 20 ist der Querschnitt des Aufnahmekörpers erweitert, so. dass ein ringförmig ausgebildeter Gassammeiraum 24 ausgebildet ist, der den unteren Teil der Vergasungszone 18 umgibt. Der Gassammeiraum 24 ist mit einer im dargestellten Ausführungsbeispiel als Rohr ausgebildeten Gas-Abführeinrichtung 26 verbunden.
Das Einsatzmaterial wird durch eine Zuführöffnüng 28 in den Schachtkörper 10 über die Schleusenanordnung 12 eingeführt. Das Zuführen des Einsatzmaterials erfolgt über die Schleusenanordnung um das Einbringen großer Mengen an Umgebungsluft, durch die der Schmelz- und Vergasungsprozess unkontrolliert beeinflusst werden.kann/ zu verhindern. Hierzu weist die Schleusenanordnung zwei Schleuseneinrichtungen bzw. Schleusentore 30,32 auf, zwischen ,denen die Schleusenkammer 34
ausgebildet ist, wobei die Schleusenkammer 34 bereits ein Teil des Schachtkörpers 10 ist.
Das Einsatzmaterial gelangt über die Schleusenanordnung 12 sodann in die Trockenzone 14. In der Trockenzone 14 und den anschließenden Zonen 16,18 ist der Schachtkörper 10 während des Betriebs stets vollständig mit Einsatzmaterial gefüllt. Auch in der Trockenzone 14 bildet sich kein oder allenfalls ein geringer Schüttkegel nahe des Schleusentors 32 aus.
Im dargestellten Ausführungsbeispiel ist im Bereich der Trockenzone des Schachtkörpers 10 eine Gas-Zuführeinrichtung 36 vorgesehen. Die Gas-Zuführeinrichtung 36 weist eine den Schachtkörper 10 umgebende Ringleitung 38 auf, die mit mehreren gleichmäßig an Umfang verteilten Düsen 40 verbunden ist. Über die Gas-Zuführeinrichtung 36 wird dem Einsatzmaterial im Bereich der Trockenzone 14 vorzugsweise heiße Luft, die ggf. mit Sauerstoff angereichert sein kann, zum Trocknen des Einsatzmaterials zugeführt.
In der sich an die Trockenzone 14 anschließenden Entgasungszone 16 ist eine weitere Gas-Zuführeinrichtung 42 angeordnet, die ebenfalls eine den Schachtkörper 10 umgebende Ringleitung 44 aufweist. Die Ringleitung 44 ist mit mehreren am Umfang vorzugsweise gleichmäßig verteilten Düse 4 6 verbunden. Über die Gas-Zuführeinrichtung 42 können energiereiche Gase, Sauerstoff, Luft oder andere zur Steuerung des Schmelz- und Vergasungsprozesses geeignete Gase dem Einsatzmaterial zugeführt werden.
Weitere Düsen 48 sind in der Vergasungszone 18 vorgesehen. Über die Düsen 4 8 kann wiederum energiereiches Gas oder andere den Schmelz- und Vergasungsprozess steuernde Gase oder Stoffe
♦ · ♦
•&igr; * *
- 10 -
zugeführt werden. Ebenso können anstatt der Düsen 48 auch Brenner vorgesehen sein, die in der Vergasungszone 18 unmittelbar Wärme dem Einsatzmaterial zuführen. Der Endbereich des zur Längsachse 50 rotationssymmetrischen Schachtkörpers 10 ist sich leicht verjüngend konisch ausgebildet, so dass das Einsatzmaterial im Bereich der Vergasungszone 18 etwas zurückgehalten wird.
In einer Seitenwand 52 des Aufnahmekörpers 20 sind ferner mehrere am Umfang verteilte Düsen 54 angeordnet. Die Düsen 54 dienen zum Einbringen energiereicher Gase oder entsprechender Stoffe. Durch die Düsen 54 ist sichergestellt, dass die Schmelze 22 flüssig bleibt. Ebenso können anstelle der Düsen 54 auch Brenner vorgesehen sein.
Die Gas-Zuführeinrichtung 36 ist erfindungsgemäß mit der Gas-Abführeinrichtung 26 verbunden. Hierzu führt das Rohr der Gas-Abführeinrichtung 26 durch das die heißen in dem Reaktor entstandenen Gase abgeführt werden, zu einem Wärmetauscher 56. Die abgeführten Gase bzw. Nutzgase strömen durch den Wärmetauscher 56 und werden sodann von einem Rohr 58 vorzugsweise zur Weiterverarbeitung abgeführt. Ferner ist mit dem Wärmetauscher 56 eine Rohrleitung 60 verbunden. Durch die Rohrleitung 60 wird Luft oder ein anderes Gas in den Wärmetauscher 56 geleitet, nimmt in dem Wärmetauscher 56 Wärme von dem Nutzgas auf und wird durch ein Rohr 62 wieder aus dem Wärmetauscher abgeleitet. Das Rohr 62 ist sodann über eine Heizeinrichtung 64 und ein Rohr 66 mit der Ringleitung 38 der Gas-Zuführeinrichtung 36 verbunden. Das Erwärmen der durch die Gas-Zuführeinrichtung 36 im Bereich der Trockenzone 14 dem Einsatzmaterial zugeführte Gas wird somit im Betrieb vorzugsweise ausschließlich durch die Wärme der Nutzgase mit Hilfe des Wärmetauschers 56 vorgewärmt. Mit Hilfe der
·&iacgr;
- 11 -
Heizeinrichtung 64, bei der es sich beispielsweise um eine elektrische Heizung oder einen Brenner handeln kann, kann das über die Gas-Zuführeinrichtung zuzuführende Gas zusätzlich erwärmt werden. Insbesondere während des Start-Zyklus' des Reaktors, in dem noch keine heißen Nutzgase durch die Gas-Abführeinrichtung 26 abgeführt werden oder die Temperatur dieser Nutgase noch nicht hoch genug ist, kann die Heizeinrichtung 64 zum Erwärmen des Gases genutzt werden.
Vorzugsweise ist eine Seitenwand 68 der Schleusenanordnung 12 doppelwandig ausgebildet. Hierdurch kann eine Erwärmung und somit eine Trocknung des Einsatzmaterials in der Schleusenkammer 34 erzielt werden indem ein heißes Medium durch die doppelwandige Seitenwand 68 geleitet wird. Vorzugsweise handelt es sich hierbei um Luft oder ein anderes Gas, das ebenfalls durch das Nutzgas vorzugsweise mit Hilfe des Wärmetauschers 56 vorgewärmt wird. Insbesondere ist es auch möglich, die Gaszuführeinrichtung 36 anstatt im Bereich der Trockenzone 14 im Bereich der Schleusenanordnung 12 vorzusehen. Ebenso können in beiden Bereichen entsprechende Gas-Zuführeinrichtungen angeordnet sein, deren Gas vorzugsweise über das Nutzgas erwärmt wird.
Die Schleusenanordnung 12 besitzt die Aufgabe der kontinuierlichen und homogenen Zufuhr von Material und den gasdichten Abschluss gegenüber der Umgebung. Bei seitlicher Beaufschlagung ist ein Schrägliegen des Materials in Schüttrichtung nicht zu vermeiden. Bei einer zentralen Beschickung auf einen größeren Reaktorquerschnitt bildet sich ein Schüttkegel aus, bei welchem die größeren Stücke an die Ofenwandung rollen. Hierdurch tritt eine nachteilige Entmischung auf. Die Folge wäre eine stark einseitige Abschmelzung der Ofenausmauerung, die Ausbildung von
*» t »t i .
- 12 -
Strömungskanälen sowie ungleichmäßige Reaktionszonen und führt zu schwankenden Gasqualitäten, einer zu kalten Schmelzzone 20 und kürzerer Standzeit des Reaktors.
Der ideale Materialeintrag setzt vorzugsweise eine homogene Mischung voraus, insbesondere bei Zudosierung von Zusätzen wie Koks und Kalk. Der Eintrag erfolgt erfindungsgemäß zentral auf der Achse des Reaktors. Das Volumen der Schleusenkammer 34 wird möglichst vollständig ausgenutzt und fällt in den Reaktorschacht möglichst gleichen Durchmessers. Der Reaktor ist im laufenden Betrieb möglichst voll zu halten. Eine Füllstandsüberwachung ist demzufolge vorzugsweise direkt unter dem Schleusentor 32 angebracht. Die Befüllung erfolgt in einer hohen Taktrate. Durch diese Maßnahmen wird gleichzeitig der Falschlufteintrag verringert und die Druckhaltung im Gesamtsystem verbessert.
Erfindungsgemäß sind die Bereiche Schleusenanordnung 12, Trocknungszone 14 und Entgasungszone 16 bis in die Vergasungszone 18 vorzugsweise zylindrisch oder leicht konisch sich nach unten erweiternd ausgebildet. Der Übergang zwischen den Zonen erfolgt ohne stufenförmige oder sprunghafte Querschnittserweiterung, d.h. der Übergang ist gleichen Querschnitts und ohne Ausbildung von schüttschichtfreien Hohlräumen, Stufen oder Kanten.
Die Trocknungszone 14 kann insbesondere bei größeren Bauarten ebenfalls doppelwandig ausgeführt sein. Dies ermöglicht die indirekte Erwärmung der Gutsäule im Innern bzw. die Sicherstellung einer gleichmäßigen Temperatur an der Wandung und eine Verringerung von Kondensationserscheinungen an der Innenseite. Als. Wärmeträgermedium wird vorzugsweise ebenfalls
• »e·· 9
t ·
- 13 -
heiße Luft eingesetzt. Der Einsatz des am Ende des Prozesses aufstehenden Rauchgases ist ebenfalls möglich.
Bei der Erwärmung des Ausgangsgutes findet in der Trocknungszone 14 die Verdampfung des Wassers statt. Die Temperatur im Gut steigt dabei nur wenig über 100°C an. Mit zunehmender Temperatur werden im weiteren Verlauf adsorbierte Gase wie Stickstoff und Kohlendioxid freigesetzt, welche nicht durch Spaltreaktionen entstanden sind. Spätestens hier kann von der Entgasung gesprochen werden. Oberhalb 250 bis 300 0C setzt dann die Entwicklung von Gasen und Dämpfen ein, bei denen es sich um abdestillierte niedrigmolekulare Verbindungen und erste Spaltprodukte handelt. Ein weiteres Ansteigen der Temperatur bewirkt den Ablauf von Reaktionen, die zur Bildung von Methan und Wasserstoff führen.
Die Entgasungszone 16 kann in Fortführung der Trocknungszone 14 ebenfalls doppelwandig gestaltet sein.
Im unteren Drittel der Trocknungs- und Entgasungszone 14,16 ergibt sich ein Bereich, in welchem die Reaktorinnentemperatur größer als die Heißlufttemperatur ist. Hier kann die doppelwandige Ausführung durch eine silikatische Ausmauerung ersetzt werden. Eine Ausführung der gesamten Trocknungs- und Entgasungszone 14,16 mit einer Stampfmasse, auch bei einer doppelwandigen Gestaltung, ist vorteilhaft. Geringerem Verschleiß der Stahlbauhülle stehen geringerer Wärmeübergang und niedrigere Temperaturwechselbeständigkeit gegenüber.
Bei der weiteren Erwärmung der Schüttsäule ab etwa 7000C erfolgt neben der Spaltung des Brennstoffes unter dem Einfluss der Wärme die heterogene Reaktion zwischen dem Brennstoff und dem noch nicht reagierten Sauerstoff der Luft.
.11
- 14 -
Die Vergasungszone 18 ist die Hauptreaktionszone innerhalb des Schachtreaktors. Hier erfolgt bei Temperaturen von 1.200 bis 1.400 0C die stoffliche und energetische Umsetzung der Feststoffe. Aus dem festen Brennstoff entstehen Gase und feste Produkte von Koks bis Asche. Für die vollständige und gleichmäßige Reaktion ist entscheidend, dass eine homogene Schüttung durch das bereits entstandene Entgasungsgas und das hier einzubringende Vergasungsmittel gleichmäßig durchströmt wird. Die Vergasungszone 18 muss aus diesen Gründen eine ausreichende Höhe besitzen. Dies wird insofern dadurch erreicht, dass die Vergasungszone 18 als ein gerader zylindrischer Bereich mit Übergang in eine konische Verkleinerung des Querschnittes oder sofort als zunehmende Verjüngung ausgebildet ist. Da sich durch die stofflichen Umsetzungen und damit zusammenhängende zerstörende Kräfte das Materialkorn verkleinert, vergrößern sich die Hohlräume innerhalb der Schüttsäule. Durch die Verkleinerung des Schachtquerschnittes in diesem Bereich kann die Sinkgeschwindigkeit der Materialsäule vergleichmäßigt werden, Strömungskanäle werden zerstört und die Ausbildung von größeren Hohlräumen in der Schüttung und damit erhöhter Explosionsgefahr wird vermieden.
In Fortführung der darüber befindlichen Entgasungszone 16 ist der Bereich der Vergasung ebenfalls mit einer silikatischen Masse ausgekleidet.
Der untere zylindrische oder sich verjüngende Bereich des Vergasungsbereiches 18 ragt in die Schmelzzone 20 hinein. Auf diesen Teil liegt die darüber befindliche Schüttsäule zumindest teilweise auf, gleichzeitig herrschen dort hohe Temperaturen. Für die Sicherung der mechanischen Festigkeit und des Schutzes
.2 ·
&Sgr; &iacgr;
&ogr;. &psgr;
1 ··
- 15 -
vor zu hohen Temperaturen erfolgt eine Kühlung mittels indirekter Wasserkühlung in der Schachtwand 70.
Das Gas durchströmte im Gleichstrom mit dem Einsatzmaterial die Zone der Hochtemperaturvergasung 18. Die aus den abgelaufenen Entgasungs- und Pyrolysereaktionen entstandenen längerkettigen Kohlenwasserstoffe sind hier thermisch gespalten worden und waren gleichzeitig an den ablaufenden Vergasungsprozesse beteiligt. Es entsteht ein brennbares Gas mittleren Heizwertes mit den Hauptkomponenten Kohlenmonoxid, Kohlendioxid, Wasserstoff und Wasserdampf ohne Bestandteile an kondensierbaren Kohlenwasserstoffen. Viele der dabei abgelaufenen chemischen Reaktionen sind endotherm. Die Temperatur des Gases wie der Schüttung verringert sich somit.
Unterhalb des wassergekühlten Bereiches des Vergasungsbereiches 18 erfährt das Gas eine Umlenkung um etwa 180° und gelangt in den schüttschichtfreien Raum 24. Durch vorstehend beschriebene endotherme Vorgänge besitzt das Gas eine Temperatur von ca. 1.000 0C. Nach einer gewissen Gasberuhigung und -Vergleichmäßigung wird das Gas oberhalb aus dem Reaktor abgesaugt.
Der Gassammeiraum 24 ist bereits Bestandteil der Schmelzzone 20, welche oben wesentlich weiter als die hineinragende Vergasungszone 18 ist. Die zylindrische Schmelzzone 20 verkleinert sich konisch nach unten und schließt mit der Bodenplatte ab, oberhalb welcher sich die aufgeschmolzene Phase sammelt.
Die Schmelzzone 20 ist in ihrer Gesamtheit mit einer mehrschichtigen Stampfmasse, versehen oder mit einer Ausmauerung ausgestattet. Grund hierfür sind die notwendigen hohen
- 16 -
Temperaturen. Nur im Bereich des Gassammeiraumes ist unter Umständen eine Ausmauerung nicht notwendig.
Der vollständig entgaste und verkokte Feststoff, ist stellenweise bereits gesintert bzw. geschmolzen und sinkt aus der Vergasungszone 18 weiter in die Schmelzzone 20.
In die Schmelzzone 20 integriert ist eine Ebene mit mehreren Sauerstoffdüsen oder -Injektoren und/oder oxidierend betriebenen Brennern 54, welche ebenso symmetrisch auf der Achse verteilt sind.
Durch die Zuführung von Gas mit einem hohen Sauerstoffanteil kommt es zu starken exothermen Reaktionen mit dem Gas und dem Feststoff aus der Vergasungszone 18. Es ergeben sich Temperaturen, welche deutlich über dem Schmelzpunkt des Materials liegen, üblicherweise ca. 1400 0C bis 1600 0C. Im Bereich der Sauerstoffdüsen ergeben sich sogar heiße Temperaturzonen von 1800 bis 2000 0C. Unter diesen Bedingungen und durch die Zugabe von Schlackebildnern und/ oder Materialien, welche den Schmelzpunkt absenken, werden alle anorganischen Schadstoffen sicher aufgeschmolzen.
Das aufgeschmolzene Material sammelt sich als Schmelze am Boden des Reaktors. Die Entleerung dieser flüssigen Schmelze erfolgt wie in der Gießerei üblich über ein Abstichloch und eine Rinne 72. Eine Bauart mit Vorherd oder Siphon ist möglich.
Bei ausreichend großer Bauart und entsprechender Verweilzeit der Schmelze wird sich die Schmelze in eine schwere metallhaltige Phase und eine darauf schwimmende Schlacke trennen. Hier besteht die Möglichkeit, über verschieden hohe Entleerungen eine verwertbare metallische Phase und eine
Schlacke gewinnen zu können. Im Produkt Schlacke sind keine organischen Stoffe enthalten und die anorganischen Bestandteile sind in einer silikatischen Matrix stabil eingebaut. Die Nutzung als Material für den Hafen-, Deponie- und Straßenbau sind bekannt, ebenso möglich ist die Herstellung spezieller Gussformen und Produkten, wie sie in der Glasindustrie üblich sind.

Claims (10)

1. Gleichstrom-Schacht-Reaktor zum Schmelzen und Vergasen von Einsatzmaterial, mit
einem vertikalen Schachtkörper (10) zum Trocknen, Erwärmen und Vergasen des Einsatzmaterials, wobei der Schachtkörper (10) eine Zuführöffnung (28) zum Zuführen des Einsatzmaterials aufweist,
einem sich an den Schachtkörper (10) anschließenden Aufnahmekörper (20) zur Aufnahme von geschmolzenem Einsatzmaterial (22),
einer mit dem Schachtkörper (10) und/oder dem Aufnahmekörper (20) verbundenen Gas-Abführeinrichtung (26) zum Abführen entstandener Gase und
einer mit dem Schachtkörper (10) verbundenen Gaszuführeinrichtung (36) zum Zuführen von Gas in den Schachtkörper (10) zum Trocknen des Einsatzmaterials,
wobei die Gas-Zuführeinrichtung (36) zur Gaserwärmung mit der Gas-Abführeinrichtung (26) verbunden ist.
2. Gleichstrom-Schacht-Reaktor nach Anspruch 1, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) und die Gas-Abführeinrichtung (26) über einen Wärmetauscher (56) miteinander verbunden sind.
3. Gleichstrom-Schacht-Reaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) mit einer Heizeinrichtung (64) verbunden ist.
4. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-3, gekennzeichnet durch eine der Zuführöffnung (30) nachgeordnete Schleusenanordnung (12).
5. Gleichstrom-Schacht-Reaktor nach Anspruch 4, dadurch gekennzeichnet, dass die Schleusenanordnung (12) mindestens eine Schleusenkammer (34) aufweist.
6. Gleichstrom-Schacht-Reaktor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) im Bereich der Schleusenanordnung (12) mit dem Schachtkörper (10) verbunden ist.
7. Gleichstrom-Schacht-Reaktor nach Anspruch 5, dadurch gekennzeichnet, dass die Gas-Zuführeinrichtung (36) mit der Schleusenkammer (34) verbunden ist.
8. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 4-7, dadurch gekennzeichnet, dass die Schleusenanordnung (12) im Wesentlichen achssymmetrisch zum Schachtkörper (10) angeordnet ist.
9. Gleichstrom-Schacht-Reaktor nach einem der Ansprüche 1-8, dadurch gekennzeichnet, dass eine Seitenwand (68) des Schachtkörpers (10) insbesondere im Bereich der Schleusenanordnung (12) zum Erwärmen des Einsatzmaterials doppelwandig ist.
10. Gleichstrom-Schacht-Reaktor nach Anspruch 9, dadurch gekennzeichnet, dass die doppelwandige Seitenwand (68) mit der Gas-Zuführeinrichtung (36) verbunden ist.
DE20120189U 2001-12-14 2001-12-14 Gleichstrom-Schacht-Reaktor Expired - Lifetime DE20120189U1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE20120189U DE20120189U1 (de) 2001-12-14 2001-12-14 Gleichstrom-Schacht-Reaktor
DE50213409T DE50213409D1 (de) 2001-12-14 2002-12-10 Gleichstrom-Schacht-Reaktor
SI200230833T SI1323809T1 (sl) 2001-12-14 2002-12-10 Sotočni jaškasti reaktor
EP02027458A EP1323809B1 (de) 2001-12-14 2002-12-10 Gleichstrom-Schacht-Reaktor
AT02027458T ATE427347T1 (de) 2001-12-14 2002-12-10 Gleichstrom-schacht-reaktor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE20120189U DE20120189U1 (de) 2001-12-14 2001-12-14 Gleichstrom-Schacht-Reaktor

Publications (1)

Publication Number Publication Date
DE20120189U1 true DE20120189U1 (de) 2003-04-24

Family

ID=7965116

Family Applications (2)

Application Number Title Priority Date Filing Date
DE20120189U Expired - Lifetime DE20120189U1 (de) 2001-12-14 2001-12-14 Gleichstrom-Schacht-Reaktor
DE50213409T Expired - Lifetime DE50213409D1 (de) 2001-12-14 2002-12-10 Gleichstrom-Schacht-Reaktor

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50213409T Expired - Lifetime DE50213409D1 (de) 2001-12-14 2002-12-10 Gleichstrom-Schacht-Reaktor

Country Status (4)

Country Link
EP (1) EP1323809B1 (de)
AT (1) ATE427347T1 (de)
DE (2) DE20120189U1 (de)
SI (1) SI1323809T1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371714A2 (de) * 2002-06-15 2003-12-17 GNS - Gesellschaft für Nachhaltige Stoffnutzung mbH Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
DE10327178B3 (de) * 2003-06-17 2005-05-04 Hans Ulrich Feustel Anlage zur Herstellung von Metall- und Schlackeschmelzen sowie von Synthesegas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493799A1 (de) * 2003-07-04 2005-01-05 von Görtz & Finger Technische Entwicklungs Ges.m.b.H. Flashdampf-Vergasung für Biomasse
FR2903168B1 (fr) * 2006-06-30 2008-08-22 Fayard Eliane Bruleur pour realiser la combustion de substances reputees difficilement combustibles
MD3959C2 (ro) * 2007-07-04 2010-04-30 Dinano Ecotechnology Llc Dispozitiv de încărcare a instalaţiei pentru prelucrarea materiei prime ce conţine carbon
GB2453111B (en) * 2007-09-25 2010-12-08 Refgas Ltd Gasification
DE102013218521A1 (de) * 2013-09-16 2015-03-19 Sgl Carbon Se Schachtofen und Verfahren zum Aufarbeiten von einem Fluor enthaltenden Abfallprodukt

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966459C (de) * 1952-06-29 1957-08-08 Paul Hahnel Dr Ing Verfahren zur oxydierenden und reduzierenden Behandlung oxydischer Erze in Schachtoefen
DE2747571A1 (de) * 1976-10-26 1978-04-27 Union Steel South Africa Verfahren zum kontinuierlichen erzeugen eines reduktionsgases und vorrichtung zum durchfuehren des verfahrens
EP0277862A1 (de) * 1987-01-22 1988-08-10 AEROSPATIALE Société Nationale Industrielle Verfahren und Vorrichtung zur Vernichtung von festen Rückständen durch Pyrolyse
DE3734988C2 (de) * 1987-10-15 1990-09-27 Deutsche Voest-Alpine Industrieanlagenbau Gmbh, 4000 Duesseldorf, De
EP0443596A1 (de) * 1990-02-23 1991-08-28 Thermoselect Aktiengesellschaft Verfahren zum Transportieren, Zwischenlagern und energetischen sowie stofflichen Verwerten von Entsorgungsgut aller Art und Vorrichtung zur Durchführung des Verfahrens
DE4030554C2 (de) * 1990-09-27 1992-10-22 Kalkum Consulting, 4000 Duesseldorf, De
DE4317145C1 (de) * 1993-05-24 1994-04-28 Feustel Hans Ulrich Dipl Ing Verfahren und Einrichtung zur Entsorgung unterschiedlich zusammengesetzter Abfallmaterialien
DE19640497C2 (de) * 1996-10-01 1999-01-28 Hans Ulrich Dipl Ing Feustel Koksbeheizter Kreislaufgaskupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien
DE19816864A1 (de) * 1996-10-01 1999-10-07 Hans Ulrich Feustel Koksbeheizter Kreislaufgas-Kupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien unterschiedlicher Zusammensetzung
DE10007115A1 (de) * 2000-02-17 2001-09-06 Masch Und Stahlbau Gmbh Rolan Reaktor und Verfahren zum Vergasen und/oder Schmelzen von Stoffen
WO2002021047A1 (fr) * 2000-09-05 2002-03-14 Kawasaki Jukogyo Kabushiki Kaisha Four de fusion a gazeification de dechets et procede de fonctionnement de ce four de fusion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2633128C3 (de) * 1976-07-23 1980-06-26 Kernforschungsanlage Juelich, Gmbh, 5170 Juelich Feuerungsrost für eine Einrichtung zum Verbrennen von Abfallstoffen
US4530702A (en) * 1980-08-14 1985-07-23 Pyrenco, Inc. Method for producing fuel gas from organic material, capable of self-sustaining operation
US4584947A (en) * 1985-07-01 1986-04-29 Chittick Donald E Fuel gas-producing pyrolysis reactors
FR2596409B1 (fr) * 1986-04-01 1988-07-08 Distrigaz Sa Procede et appareil de gazeification de charbon en cocourant
DE10127138C2 (de) * 2000-06-23 2003-12-24 Nachhaltige Stoffnutzung Mbh G Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE966459C (de) * 1952-06-29 1957-08-08 Paul Hahnel Dr Ing Verfahren zur oxydierenden und reduzierenden Behandlung oxydischer Erze in Schachtoefen
DE2747571A1 (de) * 1976-10-26 1978-04-27 Union Steel South Africa Verfahren zum kontinuierlichen erzeugen eines reduktionsgases und vorrichtung zum durchfuehren des verfahrens
EP0277862A1 (de) * 1987-01-22 1988-08-10 AEROSPATIALE Société Nationale Industrielle Verfahren und Vorrichtung zur Vernichtung von festen Rückständen durch Pyrolyse
DE3734988C2 (de) * 1987-10-15 1990-09-27 Deutsche Voest-Alpine Industrieanlagenbau Gmbh, 4000 Duesseldorf, De
EP0443596A1 (de) * 1990-02-23 1991-08-28 Thermoselect Aktiengesellschaft Verfahren zum Transportieren, Zwischenlagern und energetischen sowie stofflichen Verwerten von Entsorgungsgut aller Art und Vorrichtung zur Durchführung des Verfahrens
DE4030554C2 (de) * 1990-09-27 1992-10-22 Kalkum Consulting, 4000 Duesseldorf, De
DE4317145C1 (de) * 1993-05-24 1994-04-28 Feustel Hans Ulrich Dipl Ing Verfahren und Einrichtung zur Entsorgung unterschiedlich zusammengesetzter Abfallmaterialien
DE19640497C2 (de) * 1996-10-01 1999-01-28 Hans Ulrich Dipl Ing Feustel Koksbeheizter Kreislaufgaskupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien
DE19816864A1 (de) * 1996-10-01 1999-10-07 Hans Ulrich Feustel Koksbeheizter Kreislaufgas-Kupolofen zur stofflichen und/oder energetischen Verwertung von Abfallmaterialien unterschiedlicher Zusammensetzung
DE10007115A1 (de) * 2000-02-17 2001-09-06 Masch Und Stahlbau Gmbh Rolan Reaktor und Verfahren zum Vergasen und/oder Schmelzen von Stoffen
WO2002021047A1 (fr) * 2000-09-05 2002-03-14 Kawasaki Jukogyo Kabushiki Kaisha Four de fusion a gazeification de dechets et procede de fonctionnement de ce four de fusion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371714A2 (de) * 2002-06-15 2003-12-17 GNS - Gesellschaft für Nachhaltige Stoffnutzung mbH Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
EP1371714A3 (de) * 2002-06-15 2004-12-15 GNS - Gesellschaft für Nachhaltige Stoffnutzung mbH Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
DE10327178B3 (de) * 2003-06-17 2005-05-04 Hans Ulrich Feustel Anlage zur Herstellung von Metall- und Schlackeschmelzen sowie von Synthesegas

Also Published As

Publication number Publication date
SI1323809T1 (sl) 2009-08-31
DE50213409D1 (de) 2009-05-14
EP1323809A2 (de) 2003-07-02
ATE427347T1 (de) 2009-04-15
EP1323809A3 (de) 2004-01-02
EP1323809B1 (de) 2009-04-01

Similar Documents

Publication Publication Date Title
AT402964B (de) Verfahren zur nutzbarmachung von entsorgungsgütern
EP1261827B1 (de) Reaktor und verfahren zum vergasen und/oder schmelzen von stoffen
DE69027302T2 (de) Verfahren zum Vorwärmen von Schrott durch Pyrolyse der harzhaltigen Rückstände unter totaler Rückgewinnung ihres Energieinhaltes und Stahlherstellungsverfahren
EP0055840B1 (de) Verfahren und Einrichtung zum Verbrennen von organischen Stoffen
DE19829385C1 (de) Vorrichtung zur Flugstromvergasung von kohlenstoffhaltigen Brenn-, Rest- und Abfallstoffen
DE4030554C2 (de)
CH615215A5 (de)
DE4123406C2 (de) Verfahren zum Vergasen von minderwertigen festen Brennstoffen in einem schachtförmigen Vergasungsreaktor
EP1248828B1 (de) Vorrichtung und verfahren zur erzeugung von brenngasen
EP1187891B1 (de) Verfahren und vorrichtung zur entsorgung von abfallgütern
DE3614048A1 (de) Verfahren und vorrichtung zur vergasung minderwertiger brennstoffe in einem feuerfluessigen metallschmelzbad
EP1323809B1 (de) Gleichstrom-Schacht-Reaktor
EP1338847B1 (de) Gleichstrom-Schacht-Reaktor
DE19536383C2 (de) Verfahren und Vorrichtung zur Vergasung von heizwertarmen Brennstoffen
DE19937188C1 (de) Verfahren zur Verwertung von Gasen aus dem Absetzbecken
DE202009002781U1 (de) Reaktor zur thermischen Behandlung eines Einsatzstoffs
DE2735130C3 (de) Schachtofen für die Pyrolyse von pelletiertem Abfall
DE20200095U1 (de) Gleichstrom-Schacht-Reaktor
DE102015009458A1 (de) Reduktionsrecycling
EP1734321B1 (de) Verfahren und Schachtofen zum Erhitzen und Niederschmelzen von Reststoffen wie beispielsweise Schrott
DE10158463B4 (de) Verfahren zur kombinierten Verwertung von Abfallstoffen unterschiedlicher Art, Konsistenz und Zusammensetzung in einem Schacht-Schmelz-Vergaser
EP4026885A1 (de) Reaktor und verfahren zum vergasen und/oder schmelzen von einsatzstoffen und zur herstellung von wasserstoff
DE3311009A1 (de) Gaswandler
DE20017930U1 (de) Eintragvorrichtung für Elektrolichtbogenöfen mit neuartigen Lanzen
CZ87493A3 (en) Method of removing and utilization of waste materials and apparatus for making the same

Legal Events

Date Code Title Description
R163 Identified publications notified
R207 Utility model specification

Effective date: 20030528

R156 Lapse of ip right after 3 years

Effective date: 20050701