DE2046215C3 - Vibrationsantrieb - Google Patents
VibrationsantriebInfo
- Publication number
- DE2046215C3 DE2046215C3 DE2046215A DE2046215A DE2046215C3 DE 2046215 C3 DE2046215 C3 DE 2046215C3 DE 2046215 A DE2046215 A DE 2046215A DE 2046215 A DE2046215 A DE 2046215A DE 2046215 C3 DE2046215 C3 DE 2046215C3
- Authority
- DE
- Germany
- Prior art keywords
- drive
- eccentric
- pin
- vibration
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C19/00—Other disintegrating devices or methods
- B02C19/16—Mills provided with vibrators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/10—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/10—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
- B06B1/16—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
- B06B1/161—Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
- B06B1/162—Making use of masses with adjustable amount of eccentricity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/1836—Rotary to rotary
- Y10T74/18392—Crank, pitman, and crank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/18—Mechanical movements
- Y10T74/18544—Rotary to gyratory
- Y10T74/18552—Unbalanced weight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/211—Eccentric
- Y10T74/2116—Eccentric having anti-friction means, e.g., roller bearing, lubrication, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Description
Die Erfindung betrifft einen Vibrationsantrieb gemäß dem Oberbegriff des Anspruchs 1.
Ein derartiger Antrieb ist in der DE-AS U 01 035 beschrieben. Bei ihm greift der Exzenterzapfen unter
geringem transversalem Spiel in einen Längsschlitz des Schwingkörpers ein, und auf diese Weise wird die
Senkrecht zur Achse dieses Längsschlitzes gerichtete Bewegungskomponente des Exzenterzapfens auf den
Schwingkörper übertragen. Bei diesem bekannten Antrieb ist der Hub des Schwingkörpers nicht
einstellbar; zudem wird die vom Exzenterantrieb Senkrecht zur gewünschten Vibrationsrichtung durchgeführte
Bewegung für den Schwingkörper nicht nutzbar gemacht.
Durch die vorliegende Erfindung soll daher ein Vibrationsantrieb gemäß dem Oberbegriff des Anspruchs
1 so weitergebildet werden, daß die an sich nicht gewünschte Bewegungskomponente des Exzenterantriebs
möglichst weitgehend von dem Schwingkörper aufgefangen und in die gewünschte Bewegungsrichtung
transformiert wird.
Ausgehend von dem im Oberbegriff des Anspruc hs 1 berücksichtigten Stand der Technik ist diese Aufgabe
erfindungsgemäß gelöst mit den im Kennzeichen des Anspruchs 1 angegebenen Merkmalen.
Exzenterantriebe mit kontinuierlich einstellbarem Hub sind zwar an sich bekannt, wie die DE-PS 5 83738
und die US-PS 28 27 790 und 30 99 349 zeigen.
Bei dem erfindungsgemäßen Vibrationsantrieb ist aber darüber hinaus der Exzenterantrieb mit verstellbarem
Hub in dem Gleitkörper angeordnet, welcher radial zum Schwenkzapfen verschiebbar in der Öffnung des
Schwingkörpers angeordnet ist Auf diese Weise ist sichergestellt, daß die Verschieberichtung immer radial
zum Schwenkzapfen verläuft Damit erhält man einen Nocken- oder Rampeneffekt, und auf diese Weise wird
auch die senkrecht zur Bewegungsrichtung des Schwingkörpers gerichtete Bewegungskomponente des
Exzenterantriebs nutzbar gemacht Damit kann der Vibrationsantrieb bei vergleichbarer Leistung kompakter
und billiger gebaut werden als die bekannten Vibrationsantriebe.
Vorteilhafte Weiterbildungen der Erfindung sind in den LJnteransprüchen angegeben.
Nachstehend wird die Erfindung an Hand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung
näher erläutert In dieser zeigt
Fig. 1 eine Aufsicht auf die Stirnseite eines Vibralionsantriebs,
F i g. 2 einen Vibrationsantrieb gemäß F', g. 1 in
Verbindung mit einem Gerät zum Aufbrechen von Straßenbelägen,
F i g. 3 einen axialen Schnitt durch den Vibrationsantrieb
nach F i g. 1 längs der Linie 3-3,
F i g. 4 einen transversalen Schnitt durch den Vibrationsantrieb nach F i g. 1 längs der Linie 4-4,
F i g. 5 einen axialen Schnitt durch den Vibrationsantrieb nach den F i g. I bis 4 längs der Linie 5-5 von
F i g. 4,
F i g. 6a bis 6c schematische Darstellungen der so Hauptteile des Vibrationsantriebs bei unterschiedlicher
Einstellung des Exzenterhubes,
Fig. 7a bis 7f schematische Darstellungen der wichtigsten Teile des Vibrationsantriebs nach den
Fig. 1 bis 4, weiche in verschiedenen Phasenlagen j5 innerhalb eines Arbeitszyklus gezeigt sind.
Ein Vibrationsantrieb ist in einem zylindrischen
Gehäuse 10 untergebracht, das durch Stirnwände 12 verschlossen und an einem Träger 14 befestigt ist, so daß
der Vibrationsantrieb in einfacher Weise mit den verschiedenen Arbeitsmaschinen verbunden werden
kann. Wie gezeigt, enthält der Träger 14 eine Grundplatte 16 und zwei gebogene Tragplatten 18, in
denen das Gehäuse 10 einsitzt, jedoch kann die Form des Trägers 14 in Abhängigkeit von dem besonderen
Anwendungsfall verändert werden.
Im Gehäuse 10 im eine im wesentlichen scheibenförmige Schwungmasse in Form eines Schwingkörpers 20
angeordnet, welcher an seinem unteren Ende schwenkbar auf einem Schwenkzapfen 22 gelagert ist, der
parallel zur Achse des zylindrischen Gehäuses 10 durch das Gehäuse verläuft. Um den für die Schwingbewegung
des Schwingkörpers 20 erforderlichen freien Raum /u erhalten, ist der Schwingkörper 20 kleiner als
die Innenkammer des Gehäuses 10 ausgebildet, und in Radialrichtung des Schwenkzapfens 22 ist der Schwingkörper
20 ferner von geringfügig gestreckter Form. Infolgedessen ist der am oberen und unteren Ende des
Schwingkörpers 20 vorhandene freie Raum sehr klein, der seitlich des Schwingkörpers 20 vorhandene freie
bo Raum jedoch ausreichend groß bemessen. In der Mitte
des Schwingkörpers 20 ist eine erweiterte, in Horizontalrichtung länglich ausgebildete öffnung 24 vorgesehen,
die den Schwingkörper 20 in Axialrichtung durchsetzt. An den einander zugekehrten Seitenflächen
der öffnung 24 sind senkrechte Gleitplatten 26 mit einander zugekehrten, parallelen Gleitflächen angeordnet
Der Schwenkzapfen 22 ist an seinen Enden in Taschen 28 von Lageiköfpern 30 gehalten, die in
Öffnungen der Stirnwände 12 einsitzen (siehe F i g. 3).
Die Lagerkörper 30 sind durch Schrauben 94 an den Stirnplatten 12 befestigt, und Verschlußschrauben 3:2
dienen zum Verschließen von Gewindebohrungen, in die zum Zwecke eines einfachen Abnehmens der
Lagerkörper 30 Zapfen eingeschraubt werden können.
In der öffnung 24 ist ein im wesentlichen ovaler Gleitkörper 36 angeordnet, an dessen einander
gegenüberliegenden Enden Seitenplatten 38 befestigt sind, die in glatter, gleitfähiger Anlage mit den
Gleitplatten 26 zusammenwirken. In der Mitte ist der Gleitkörper 36 mit einer kreisförmigen Bohrung 40
versehen, in der Axial-Walzenlager 42 angeordnet sind. In den Walzenlagern 42 ist ein exzentrischer Antriebskörper 44 gelagert Der Antriebskörper 44 ist in einer zu
seiner Längsachse senkrecht verlaufenden Ebene in zwei Antriebselemente 44a und 44b unterteilt, die durch
in Axialriclitung verlaufende, in Umfangsrichtung verteilte Spannschrauben 46 miteinander verbunden
sind. Die Köpfe 47 der Spannschrauben 46 sitzen in öffnungen des Antriebselements 44a ein, und die
Gewindeabschnitte 49 der Spannschrauben 46 sind mit dem Antriebselement 446 verschraubt. Durch de Köpfe
47 werden Druckfedern 48 in einander zugekehrten Taschen 50 zwischen den beiden Antriebselementen
gehaltert (siehe Fig.3). Zur Zentrierung des Gleitkörpers
36 dienen am Schwingkörper 20 angebrachte Führungsplatten 52, die an gegenüberliegenden Enden
der Gleitplatten 26 angeordnet sind und die Enden der Gleitplatten 38 nach innen übergreifen.
Der Antriebskörper 44 wird durch eine Antriebswelle 54 angetrieben, die in Axialrichtung durch das Gehäuse
10 verläuft und an ihren Enden in geeigneten Lagern 56 abgestützt ist Die Lager 56 sind in Lagerplatten
abgestützt die beispielsweise aus einer vorderen Lagerplatte 58 und einer hinteren Lagerplatte 60,
welche durch Schrauben 95 an den Stirnwänden 12 befestigt sind, bestehen können. In der vorderen
Lagerplatte 58 sind Stellschrauben 62 angeordnet, die mit dem zugeordneten Lager 56 zusammenwirken und
dieses in AxLlrichtung beaufschlagen, um ein Axialspiel auszuschalten. Die Antriebswelle 54 ist in der Mitte mit
einem erweiterten Exzenterzapfen 64 versehen, der geneigt verlaufende, sich axial verjüngende Abschnitte
66 und Endabschnitte 68 verringerten Durchmessers aufweist Die Antriebselemente 44a und 44£>
sind mit exzentrisch verlaufenden Bohrungen 70 versehen, die engsiuend an den Exzenterzapfen 64 und die Abschnitte
66 angepaßt sind, so daß die Antriebselemente beim Festziehen der Spannschrauben 46 gegen die geneigten
Abschnitte 66 gezogen urn! antriebsschlüssig mit diesen verklemmt werden.
Wie die Fig. 3 und 4 zeigen, sind die fluchtend angeordneten Bohrungen 71 der Antriebselemente 44a
und 446 zur Achse der Antriebswelle 54 versetzt angeordnet. Infolgedessen ist die in den Figuren obere
radiale Wandstärke der Antriebselemente größer als die untere radiale Wandstärke. Weiterhin ist die Mittelachse
des Exzenterzapfens 64 zur Drehachse der Antriebswelle 54 versetzt angeordnet. Da die Antriebswelle
54 in den Bohrungen 71 verdreht werden kann, bestimmen die versetzten Bohrungen 71 und der
Exzenterzapfen 64 die Exzentrizität der beiden Bauteile, wobei diese Exzentrizität einstellbar ist. Durch diese
Einstellmöglichkeit kann die gesamte Massenkraft der beiden Bauteile, d. h. des Exzenterzapfens 64 und der
Antriebselemente 44, sowie ihre Radialauslenkung gegenüber der Drehachse; der Antriebswelle wahlweise
eingestellt werden, so daß der Exzenterhub des Exzenterantriebs in erwünschter Weise verstellt werden
kann. Der Antrieb enthält somit einen innerhalb eines ersten Exzenters angeordneten zweiten Exzenter und
läßt sich hinsichtlich seines Exzenterhubes leicht verstellen.
In der vorderen Lagerplatte 58 sind abnehmbare Verschlußkappen 72 mit einem derartigen Umfangsabstand
angeordnet, daß sie in der in Fig.5 gezeigten
ίο Winkellage des Exzenterantriebs fluchtend zu den
Klemmschrauben 46 ausgerichtet sind. Um den Exzenterantrieb in diese Winkellage zu bringen, ist an
der vorderen Lagerplatte 58 ein Einstellzapfen 74 vorgesehen, der durch eine Feder 76 in einen
π Radialschlitz 78 des Antriebselements 44a gedruckt
wird. Der Einstellzapfen 74 ist an seinem erweiterten Kopf 80 mit Flügeln 82 versehen, die normalerweise in
Schlitznuten 84 einsitzen, weiche in eiaem koaxial zum Einstellzapfen von der Lagerplatte 58 vorstehenden
Ansatz 86 ausgebildet sind. In der in Fig. 3 gezeigten Lage ist der Einstellzapfen außer Eingriff mit dem
Schlitz 78. Zur Verriegelung des Exzenterantriebs wird der Einstellzapfen um 90° gedreht, so daß die
Flügelabschnitte 82 in die Schlitznuten 88 des Ansatzes
>> 86 einrasten können, wodurch der Einstellzapfen /4 in
den Schl'tz 78 eingreifen kann. Wenn der Exzenterantrieb in dieser Lage verriegelt ist und die Verschlußkappen
72 entfernt sind, können die Spannschrauben 46 gelockert werden und die Federn 48 drücken die
jo Antriebselemente auseinander. Da der Einstellzapfen 74
an der Stirnwand 12 gehaltert ist werden die Antriebselemente 44 in der Verriegelungslage des
Einstellzapfens in der gezeigten Winkellage gehalten. Die Antriebswelle 54 kann daher gegenüber den
r. Antriebselementen 44 verdreht werden, wodurch die
exzentrische Lage des Exzenterzapfens 64 zur exzentrischen Lage der Bohrungen 70 verändert wird. Die
Antriebswelle 54 ist an ihrem einen Ende mit einem Schlitz 57 versehen, der zur Anzeige der Rehtivlage der
beiden Exzenter und somit des Exzenterhubes des Vibrationsantriebes dienen kann. Es lassen sich jedoch
aucl andere, genauere Markierungen zur Anzeige des Ausmaßes der Exzentrizität verwenden. Der Schlitz 78
ist in Radialrichtung länglich ausgebildet, um die geringe
■r. Radialverschiebung der Antriebselemente 44 aufzunehmen,
die bei einer Relativdrehung der beiden Exzenter auftreten. Wenn die gewünschte Exzentrizität eingestellt
wurde, werden die Spannschrauben 46 angezogen, so daß der Exzenterantrieb verriegelt wird, und die
-.ο Verschlußkappen 72 werden wieder eingesetzt, und der
Einstellzapfen 74 wird aus dem Schlitz 78 herausgezogen und in der Nichtbetätigungslage verriegelt.
Zur Verdeutlichung der F.instellmöglichkeiten des zur Verfügung stehenden Exzenterhubes zeigen die F i g. 6a,
,. 6b und 6c drei unterschiedliche Exzentereinstellungen. Zum besseren Verständnis der unterschiedlichen Exzentereinstellungen
ist der Antriebskörper 44 mit einer Bezugsmarkierung 90 und der Exzenterzapfen 64 mit
einer Bezugsmarkierung 92 versehen. Gemäß Fig. 6a
w) ist der Exzenterant leb auf den maximalen Exzenterhub
T eingestellt, wobei beide Bezugsmarkierungen in Radialrichtung fluclitrn. In dieser Lage befindet sich die
Achse der Antriebswelle 54 am Punkt 91* d:e Achse des
Exzenterantriebs am Punkt 93 und die Achse des Exzenterzapfens 64 am Punkt 61. Der Radialhub des
Doppelexzenters entspricht somit der Länge T. Diese Länge entspricht der Weglänge, um die der Schwingkörper
20 in beiden Richtungen ausgelenkt wird, und
von dieser Länge hängt auch die seitliche und nach oben
und unten gerichtete Relativbewegung des Antriebskörpers 44 und somit des Gleitkörpers 36 ab. Diese
maximale Exzenterhübeinslellung ist auch in den F i g. 3 und 4 gezeigt. Gemäß F i g. 6b ist die Antriebswelle 54
um 90° gedreht, und die Exzenter befinden sich in einer Zwischenlage, wobei die Verschiebung zwischen den
Mittelpunkten 9} und 93 zu einem verringerten Exzenterhub Tl führt. Gemäß Fig.6c liegen sich die
Bezugsmarkierungen 90 und 92 im wesentlichen gegenüber und der Exzenterhub T2 ist bis auf Null
verringert. Es sei darauf hingewieren, daß bei einer solchen Einstellung das Ausmaß der Exzentrizität des
Exzenterzapfens 64 genau gleich dem Ausmaß der Exzentrizität des Antriebskörpers 44 ist. Somit liebt sich
in dieser Lage die Exzenterwirkung der beiden Exzenter genau auf und der Massenmittelpunkt und der
Auslenkungspunkt 93 liegen auf der Drehachse der Antriebswelle 54. Bei dieser Einstellung wird daher der
Schwingkörper 20 vom Antriebεkörper 44 nicht in
Schwingungen versetzt, wenn der Antriebskörper 44 von der umlaufenden Antriebswelle 54 in Drehung
versetzt wird.
Die verschiedenen Bauteile sind durch entsprechend bemessene Schrauben 94 miteinander verbunden, wobei
die Stirnwände 12 während des Zusammenbaus durch Paßstifte 96 in genauer Ausrichtung gehalten werden.
Einzelheiten der Befestigungsmittel und des Zusammenbaus richten sich nach der Art des verwendeten
Materials und der Größe des Vibrationsantriebs.
Zur Schmierung der Einrichtung sind im Schwingkörper 20 Olkanäle 101 und Hilfskanäle 105, im Gleitkörper
36 ölkanäie 103 und für die Kugellager Olkanäle 105 vorgesehen. Während des Betriebs befindet sich das öl
im erfindungsgemäßen Antrieb normalerweise auf dem durch die gestrichelten Linien 111 angedeuteten Pegel.
Während der Schwingbewegung des Schwingkörpers 20 wird das Öl durch die Kanäle 105 und 101 und um die
Außenfläche 113 des Schwingkörpers 20 in den oberen freien Raum zwischen dem Schwingkörper 20 und dem
Gleitkörper 36 getrieben. Das öl strömt dann durch die oberen Ölkanäie 101 zum Gleitkörper 36 und ebenso an
Schwingkörpers 20 und der Stirnwände 12 zu sorgen. Zur Abdichtung der Antriebswelle 54 sind Dichtungen
49 vorgesehen.
,. Betriebsweise
Die Antriebswelle 54 ist mit einer geeigneten Kraftmaschine verbunden. Der Exzenterantfieb wird
auf die oben beschriebene Weise auf den erwünschten
Exzenterhub eingestellt. Anschließend wird die Antriebswelle 54 angetrieben, Wodurch die Antriebselemente
44 in den Lagern 42 umlaufen. Da zwischen dem Exzenterzapfen 64 und den Antriebselementen 44 eine
Exzentrizität besteht, bewegt sich der Gleitkörper 36 in seitlicher Richtung und nach oben und unten, lnfolgedessen
verschiebt sich der Gleitkörper 36 in senkrechter Richtung relativ zum Schwingkörper 20 und versetzt ihn
in eine hin- und hergehende Schwingbewegung um den Schwenkzapfen 22. Diese Bewegung ist in den F i g. 7a
bis 7f gezeigt, wobei die Bewegungslage des Antriebskörpers 44 in im Uhrzeigersinn um 60° verdrehten
Winkellagen gezeigt ist. Zum besseren Verständnis ist die Drehachse der Antriebswelle 54 durch den Kreis 98
dargestellt, und die betrachtete Exzenterhubeinstellung des Exzenterzapfens 64 und des Antriebskörpers 44 ist
durch das Bezugszeichen 65 gekennzeichnet.
Gemäß Fig. 7a ist der Exzenterantrieb in seiner oberen senkrechten Hublage und der Gleitkörper 36 am
oberen Umkehrpunkt seiner Hubbewegung. Wenn sich die Antriebswelle 54 im Uhrzeigersinn dreht, wird der
Gleitkörper 36 nach rechts und nach unten verstellt. Hierdurch wird der Schwingkörper 20 nach rechts
verschwenkt. Bei einer weiteren Drehung der Antriebswelle 54 verschieben sich der Gleillagerkörper und der
Schwingkörper 20 nach rechts, bis der für den eingestellten Exzenterhub maximale Verstellweg erreicht
ist. Wenn sich der Gleitkörper 36 weiter nach unten verschiebt, bewegt er sich gleichzeitig in Richtung
auf die Mittellage zurück, wodurch der Schwingkörper 20 aus seiner äußersten rechten Endlage nach links
gezogen wird. Bei einer weiteren Drehbewegung der Antriebswelle 54 wird der Gleitkörper 36 in die in
F i g. 7d gezeigte untere Lage gebracht und wandert
Während der Auf- und Abbewegung des Gleitkörpers 36 trifft dieser auf das öl auf und treibt es durch die
unteren Kanäle 103 nach oben und leitet gleichzeitig öl über die oberen Kanäle 103 und die Kanäle 105 zu den
Lagern 42. Das Öl strömt weiterhin über die oberen Kanäle 101 und die Außenfläche des Gleitkörpers 36 zu
den Lagerflächen zwischen den Platten 26, 38 und 52. Der mit ölnuten 34 versehene Schwenkzapfen 22 erhält
das Schmiermittel über die Kanäle 101. Das öl kann über das obere Ventil 109 und die Bohrung 107 in das
Gehäuse eingefüllt werden. Das Ventil 109 kann ein auf einen geeigneten Druck eingestelltes Überdruckventil
sein, das einen unzulässigen Druckaufbau verhindert und den Druck in der Innenkammer des Vibrationsantriebs
ausgleicht Der ölpegel 111 wird so hoch eingestellt, daß der umlaufende Antriebskörper 44 auch
dann ausreichend geschmiert wird, wenn der Exzenterhub des Exzenterantriebs auf Null eingestellt ist
Der Abstand zwischen den Stirnflächen 115 des Schwingkörpers 20 und den Innenflächen der Stirnwände
12 ist so groß, daß das Schmiermittel zu den Lagern 56 gelangen kann. Die Stirnflächen 115 des Schwingkörpers
20 sind außerdem mit Ölnuten (nicht gezeigt) versehen, um für einen regulierten Schmiermittelstrom
zwischen den sich zugekehrten Stirnflächen des
oben in Verbindung mit seiner Bewegung nach rechts
beschrieben wurde. Somit wandert der Gleitkörper in senkrechter Richtung und verstellt sich gleichzeitig in
seitlicher Richtung und beschreibt im wesentlichen eine Kreisbahn, die der kreisenden Bewegung des Exzenterzapfens
64 und der Antriebselemente 44 entspricht
Die vom Vibrationsantrieb erzeugten Massenkräfte verlaufen im wesentlichen lediglich in Horizontalrichtung,
d. h. in Richtung der Pfeile 151 und 153. Der Gleitkörper 36 hat eine senkrechte Bewegungskomponente,
jedoch erzeugt der Vibrationsantrieb in senkrechter Richtung beinahe keine Oszillationskräfte. Bei
der seitlichen Bewegung der Einrichtung addieren sich die Trägheitskräfte des Gleitkörpers 36 mit denen des
Schwingkörpers 20, wobei die Trägheitskräfte des Schwingkörpers 20 an der Achse des Schwenkzapfens
22 über einen großen Hebelarm angreifen. Die Masse des Gleitkörpers 36 einschließlich des Antriebskörpers
44 und des Exzenterzapfens 64 bildet nur einen Teil der bewegten Bauteile und wirkt über einen kleineren
Hebelarm als die gesamte bewegte Masse. Zusätzlich wird die Bewegungsenergie des Gi'eitkörpers 36 über
die während des größten Teils des Arbeitszyklus zur Vertikalen geneigten Gleitflächen 26 und 38 an den
Schwingkörper 20 übertragen. Infolge dieses geringen
Neigungswinkels (siehe Fig. 7b, 7c, 7e und 7f) wird die
Bewegungsenergie des Gleitkörpers 36 fast vollständig . in eine seitliche ßchwingbewegung des Schwingkörpers
20 umgesetzt. Wenn der Massenschwerpunkl des
Gleitkörpers 36 nach unten durch den Mittelpunkt der Einrichtung wandert, übt der Gleitkörper auf den
Sch^ngkörpef 20 eine Kraft aus, durch die Schwingbe^
wegung des Schwingkörpers 20 umgekehrt wird. Die vertikalen Kraftkomponenten des Gleitkörpers Werden
somit In Bewegungsenergie des Schwingkörpers Umgewandelt,
und die Höfizoritajaüslerikung der gesamten
Unwuchtmasse erzeugt die horizontalen Kraftkomponenten.
Bei Einrichtungen, in Verbindung mit denen der Vibrationsantrieb verwendbar ist, ist das anzutreibende
Bauteil gewöhnlich in einer einzigen Ebene oder längs einer einzigen Achse verschiebbar angeordnet. Falls ein
iV U l A
i/inonnlrmU »iönwörti-
fr* W In nnrlnt-on
als der erwünschten Richtung Vibrationskräfte erzeugt, muß die Einrichtung in Unerwünschter Weise so
bemessen werden, daß sie diese erhöhten Beanspruchungen aushält. Bei dem oben beschriebenen Vibrationsantrieb
ist eine derartige Überdimensionierung nicht erforderlich.
Ein Anwendungsbeispiel des oben beschriebenen Vibrationsantriebs ist in F i g. 2 gezeigt. Der Antrieb 100
ist am oberen Ende eines Brechers angeordnet, der an einem Schaft 102 einen Aufreißzahn 104 oder eine
ähnliche Einrichtung trägt. Der Schaft 102 ist schwenkbar an einem Rahmen 106 angelenkt, so daß er nach
vorn und hinten schwingen kann, wie dies durch die Pfeile angedeutet ist. Der Rahmen ist mit einer
Zugstange 108 versehen, die an einem Fahrzeug befestigt werden kann, und der Vibrationsantrieb wird
in Betrieb gesetzt, wenn die Einrichtung flach voffi
gezogen wird, wobei der Arbeitsschaft 102 unterhalb der Erdoberfläche liegt und die Vibrationsbewegung
somit das Eindringen erleichtert. Zum Antrieb des Vibrationsantriebs dient ein nicht gezeigter Motor.
Der verstellbare Exzenterhub des Exzenterantriebs ermöglicht es, die Antriebsleistung ohne Änderung der
Drehzahl zu regulieren, was irisbesondere dann von
Vorteil ist, wenn die Frequenz der Einrichtung aus Resonanzgründen begrenzt ist. Eine derartige Hubeinstellung
läßt sich auf die oben beschriebene Weise durchführen, ohne daß das Gehäuse des Antriebs
entfernt oder der Antrieb von der zugehörigen Arbeitsmaschine abgenommen werden muß. Die
Schv/ii^bswe^ui!" des Schv/in^kor^ers 20 u?iu ^**
Gleitbewegung des Gleitkörpers 36 sorgen für einen
Schmiermittelumlauf in dem Antrieb. Der ölstand läßt
sich wahlweise einstellen und gewünschtenfalls an unterschiedliche Exzenterhübe oder Vertikalauslenkungen
des Gleitkörpers anpassen. Wegen der gedrängten Bauweise und der geringen Trägheitsmasse des
Exzenterantriebs selbst kommt der oben beschriebene Vibrationsantrieb sehr rasch in Gang und zum Stillstand,
und beim Abschalten des Antriebsmotors wirkt die Trägheitskraft des Schwingkörpers 20 als Bremse und
wirkt einer Bewegung des Gleitkörpers entgegen, so daß der Gleitkörper und die Antriebswelle beinahe
augenblicklich zum Stillstand kommen.
Hierzu 5 Blatt Zeichnungen
Claims (3)
1. Vibrationsantrieb mit einem Gehäuse; mit einer im Gehäuse drehbar angebrachten Exzenterwelle;
mit einem am Gehäuse befestigten und parallel, radial versetzt zur Antriebswelle verlaufenden
Schwenkzapfen; mit einem Schwingkörper, der verschwenkbar auf dem Schwenkzapfen angebracht
ist und eine öffnung aufweist, durch welche sich der
Exzenterzapfen erstreckt, dadurch gekennzeichnet,
daß ein Gleitkörper (36) in der Öffnung (24) des Schwingkörpers (20) radial zum Schwenkzapfen
(22) verschiebbar angeordnet ist und daß der Exzenterantrieb (40, 42, 44, 64) mit verstellbarem
Hub in dem Gleitkörper (36) drehbar gelagert ist
2. Vibrationsantrieb nach Anspruch 1, dadurch gekennzeichnet, daß der Exzenterzapfen (64) sich
axial verjüngende Abschnitte (66) an gegenüberliegenden Enden aufweist, auf denen ein aus zwei axial
getrennten Elementen (44a, 44b) bestehender, exzentrischer Antriebskörper (44) vorgesehen ist,
dessen Elemente (44a, 44b) durch Spannschrauben (46) auf den sich axial verjüngenden Abschnitten (66)
des Exzenterzapfens (64) gegeneinander festklemmbar sind.
3. Vibrationsantrieb nach Anspruch 2, dadurch gekennzeichnet, daß in einer Endplatte (58) des
Gehäuses Verschlußkappen (72) angeordnet sind und eine Arretiervorrichtung (80), durch welche der
Exzenterantrieb (40, 42, 44, 64) in der Stellung blockierbar ir.t. in der sich die Verschlußkappen (72)
mit den Spannschrauben (46) decken.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85908969A | 1969-09-18 | 1969-09-18 |
Publications (3)
Publication Number | Publication Date |
---|---|
DE2046215A1 DE2046215A1 (de) | 1971-04-15 |
DE2046215B2 DE2046215B2 (de) | 1979-05-10 |
DE2046215C3 true DE2046215C3 (de) | 1980-01-10 |
Family
ID=25329997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2046215A Expired DE2046215C3 (de) | 1969-09-18 | 1970-09-18 | Vibrationsantrieb |
Country Status (5)
Country | Link |
---|---|
US (1) | US3600957A (de) |
JP (1) | JPS496849B1 (de) |
CA (1) | CA921290A (de) |
DE (1) | DE2046215C3 (de) |
ZA (1) | ZA706360B (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3866480A (en) * | 1972-06-02 | 1975-02-18 | Martin Concrete Eng Co | Orbital vibrator |
CH579211A5 (de) * | 1974-06-12 | 1976-08-31 | Sulzer Ag | |
US4041800A (en) * | 1975-04-07 | 1977-08-16 | Nikkiso Co., Ltd. | Stroke length adjusting devices |
US4709362A (en) * | 1985-09-27 | 1987-11-24 | Conoco Inc. | Oscillating orbital vibrator |
US4817417A (en) * | 1987-05-06 | 1989-04-04 | Westinghouse Electric Corp. | Double eccentric mount |
DE3776907D1 (de) * | 1987-08-05 | 1992-04-02 | Conoco Inc | Vibrator mit orbital oszillierender masse. |
JPH01180798A (ja) * | 1987-12-29 | 1989-07-18 | Sankyo Seisakusho:Kk | プレス機械のストローク長調節装置 |
JPH01180799A (ja) * | 1987-12-29 | 1989-07-18 | Sankyo Seisakusho:Kk | ストローク調節装置を備えたプレス機械 |
US4907456A (en) * | 1988-03-24 | 1990-03-13 | Westinghouse Electric Corp. | Sensor probe system |
DE29805619U1 (de) * | 1998-03-27 | 1999-07-29 | Passavant-Werke Ag, 65326 Aarbergen | Vibrations-Verdichtungssystem zum Verdichten von Formmassen in Formkästen |
NL2000741C2 (nl) * | 2007-07-10 | 2009-01-13 | F En P Beheer B V | Trilblok. |
WO2014153449A1 (en) * | 2013-03-20 | 2014-09-25 | Lord Corporation | Low moment force generator devices and methods |
CN103551297B (zh) * | 2013-11-18 | 2015-09-23 | 农业部规划设计研究院 | 一种振幅可调式激振装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2335645A (en) * | 1941-12-08 | 1943-11-30 | Scintilla Ltd | Variable crank gear |
US2592237A (en) * | 1950-01-11 | 1952-04-08 | Builders Iron Foundry | Pump stroke adjusting device |
US2776573A (en) * | 1954-03-01 | 1957-01-08 | Baldwin Lima Hamilton Corp | Variable reciprocating stroke mechanism |
US2947183A (en) * | 1957-09-30 | 1960-08-02 | Chain Belt Co | Vibration imparting mechanism |
US3189106A (en) * | 1962-01-09 | 1965-06-15 | Jr Albert G Bodine | Sonic pile driver |
-
1969
- 1969-09-18 US US859089A patent/US3600957A/en not_active Expired - Lifetime
-
1970
- 1970-09-11 CA CA092954A patent/CA921290A/en not_active Expired
- 1970-09-17 ZA ZA706360A patent/ZA706360B/xx unknown
- 1970-09-18 DE DE2046215A patent/DE2046215C3/de not_active Expired
- 1970-09-18 JP JP45081314A patent/JPS496849B1/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
CA921290A (en) | 1973-02-20 |
US3600957A (en) | 1971-08-24 |
DE2046215A1 (de) | 1971-04-15 |
ZA706360B (en) | 1971-05-27 |
JPS496849B1 (de) | 1974-02-16 |
DE2046215B2 (de) | 1979-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2046215C3 (de) | Vibrationsantrieb | |
EP0433730B1 (de) | Axialkolbenmaschine in Schrägscheibenbauweise | |
DE3750404T2 (de) | Reibschweissgerät. | |
DE2826537A1 (de) | Planetare drahtzufuehreinrichtung | |
DE9203378U1 (de) | Ölpumpe, insbesondere für eine Kettensäge | |
DE2419495A1 (de) | Regelvorrichtung fuer hydraulische maschinen | |
DE102005004281B3 (de) | Nockenwellenversteller mit spielfreier Verriegelung | |
DE2511081A1 (de) | Schlitz- oder stemm-maschine | |
DE4108131C3 (de) | Schneidkopf | |
DE2124644B2 (de) | Axialkolbenmaschine mit umlaufender Zylindertrommel | |
DE69822203T2 (de) | Hydraulischer rotierender axialkolbenmotor | |
DE4231834C2 (de) | Tufting-Maschine | |
DE2137061C2 (de) | Vorrichtung zum Verstellen der Blätter eines Verstellpropellers | |
DE3875236T2 (de) | Exzentrisch einstellbare vorrichtung. | |
DE3206152A1 (de) | Kreuzkopf einer kolbenmaschine | |
DE2137543B2 (de) | Hydrostatische Schubkolbenmaschine | |
EP0085271A1 (de) | Unwuchterreger mit drehzahlabhängig verstellbaren beweglichen Schwungstücken | |
DE19527649A1 (de) | Axialkolbenmaschine | |
DE2351856B2 (de) | Hydrostatische Kolbenmaschine | |
DE10028336C1 (de) | Axialkolbenmaschine | |
DE19812913C2 (de) | Vorschubvorrichtung für eine Nähmaschine | |
DE2758989C3 (de) | Kurbeltrieb mit verstellbarem Kurbelradius für schlagend wirkende Arbeitsgeräte | |
CH655898A5 (de) | Pressenantrieb. | |
EP0596422A1 (de) | Ausgleichsgetriebe | |
DE2417725A1 (de) | Vorrichtung zum feinstziehschleifen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) | ||
8339 | Ceased/non-payment of the annual fee | ||
8370 | Indication of lapse of patent is to be deleted | ||
8339 | Ceased/non-payment of the annual fee |