DE19955586A1 - Wind-power generator station - Google Patents
Wind-power generator stationInfo
- Publication number
- DE19955586A1 DE19955586A1 DE19955586A DE19955586A DE19955586A1 DE 19955586 A1 DE19955586 A1 DE 19955586A1 DE 19955586 A DE19955586 A DE 19955586A DE 19955586 A DE19955586 A DE 19955586A DE 19955586 A1 DE19955586 A1 DE 19955586A1
- Authority
- DE
- Germany
- Prior art keywords
- generator
- variable
- wind
- network
- speed drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000006978 adaptation Effects 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 240000001913 Atriplex hortensis Species 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/48—Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
- F05B2220/7064—Application in combination with an electrical generator of the alternating current (A.C.) type
- F05B2220/70644—Application in combination with an electrical generator of the alternating current (A.C.) type of the asynchronous type, i.e. induction type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/403—Transmission of power through the shape of the drive components
- F05B2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/1016—Purpose of the control system in variable speed operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
Die Erfindung betrifft eine Windkraftanlage mit einem Rotor und wenigstens einem Generator.The invention relates to a wind turbine with a rotor and at least one generator.
Bei den in Kraftwerken eingesetzten Generatoren ist die Fre quenz des erzeugten Stroms proportional der Ankerdrehzahl. Es muß deshalb die Drehzahl der Antriebsmaschine während des Be triebs exakt konstant gehalten werden, falls eine bestimmte Frequenz des erzeugten Stroms gefordert wird. Diese Forderung ist leicht erfüllbar, wenn es sich um stationäre Anlagen han delt, deren Antriebsmaschinen für diesen Zweck eigens kon struiert wurden.For the generators used in power plants, the Fre frequency of the generated current proportional to the armature speed. It must therefore the speed of the drive machine during loading drives are kept exactly constant if a certain one Frequency of the generated electricity is required. This requirement is easy to fulfill when it comes to stationary systems delt, the drive machines of which are specifically designed for this purpose were structured.
Bei einer Windkraftanlage treten in Folge eines stochastisch auftretenden Windes Leistungsschwankungen auf, die bisher mittels einer Rotorblattverstellung ausgeregelt werden. Nach teilig dabei ist, daß die Rotorblattverstellung der Wind kraftanlage nur eine langsame Leistungsregelung zuläßt. Die DE 197 52 940 A1 beschreibt ein Verfahren und eine Vorrich tung zur dynamischen Leistungsregelung einer angetriebenen Synchronmaschine. Dabei wird in Abhängigkeit von Lageistwer ten der Synchronmaschine und eines ermittelten Netzspannungs raumzeigers ein Lastwinkelistwert ermittelt und durch Drehung des Ständers der angetriebenen Synchronmaschine auf einen in Abhängigkeit einer Leistungsregelung ermittelten Lastwinkel sollwerts geregelt. Somit können Wirkleistungspendelungen ei ner geregelten, angetriebenen Synchronmaschine ausgeregelt werden. Nachteilig dabei ist der erhöhte Automatisierungsein satz und die aufwendige Regelung.In a wind turbine, stochastically occur occurring wind power fluctuations that previously be adjusted by means of a rotor blade adjustment. After Part of it is that the rotor blade adjustment of the wind power plant allows only a slow power control. The DE 197 52 940 A1 describes a method and a device device for dynamic power control of a driven Synchronous machine. Depending on the position, the actual ten of the synchronous machine and a determined mains voltage space pointer determined a load angle actual value and by rotation of the stator of the driven synchronous machine to one in Load angle determined as a function of a power control setpoint regulated. Active power oscillations can thus ner regulated, driven synchronous machine adjusted become. The disadvantage of this is the increased level of automation sentence and the complex regulation.
Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, Leistungsschwankungen bei Windkraftanlagen in einfacher Art und Weise hochdynamisch auszuregeln, so daß die Frequenz un ter Berücksichtigung der jeweils zulässigen Normen (ICE 38) von im wesentlichen 50 Hz bzw. 60 Hz eingehalten wird.Proceeding from this, the object of the invention is Power fluctuations in wind turbines in a simple way and way to adjust highly dynamic, so that the frequency un taking into account the respective permissible standards (ICE 38) of essentially 50 Hz or 60 Hz is observed.
Die Lösung der gestellten Aufgabe gelingt erfindungsgemäß da durch, daß sich zwischen Rotor und Netzgenerator ein Getriebe befindet und dabei Mittel vorhanden sind, die über das Ge triebe eine hochdynamische Anpassung des Netzgenerators an die jeweilige Windsituation bewirken.The task is solved according to the invention that there is a gear between the rotor and the generator is located and there are funds available that over Ge drive a highly dynamic adaptation of the network generator cause the respective wind situation.
Erfindungsgemäß wird dabei der Regelaufwand um die Netznenn frequenz zu halten erheblich reduziert. Die Netzgeneratoren können dabei als Asynchron- oder Synchrongeneratoren ausge führt werden. Windböen oder andere stochastisch auf den Wind rotor einwirkenden Kräfte und die daraus resultierenden Fre quenzschwankungen an den Generatorausgangsklemmen halten sich innerhalb der zulässigen Toleranzen, so daß der Generator di rekt in das öffentliche Netz speisen kann.According to the invention, the control effort is about the nominal network keeping frequency significantly reduced. The network generators can be used as asynchronous or synchronous generators leads. Wind gusts or others stochastically on the wind forces acting on the rotor and the resulting fre Frequency fluctuations at the generator output terminals persist within the allowable tolerances so that the generator di can feed directly into the public network.
Vorteilhafterweise wird die hochdynamische Getriebeanpassung durch einen drehzahlveränderlichen Antrieb vorgenommen. Als Getriebe ist vorzugsweise ein Planetenradgetriebe vorgesehen. Dabei werden insbesondere niederpolige Asynchronmotoren ein gesetzt, die kraftschlüssig mit dem Getriebe auf an sich be kannte Art und Weise verbunden sind. Dieser Asynchronmotor ist im Verhältnis zum hochpoligen (< 10 Pole) Netzgenerator aufgrund seiner an ihn gestellten Anforderungen wesentlich kleiner ausgelegt. Der drehzahlveränderliche Antrieb weist außer einem Asynchronmotor vorzugsweise einen Spannungs- Zwischenkreis-Umrichter auf. Die elektrische Versorgung des drehzahlveränderlichen Antrieb erfolgt direkt über die Aus gangklemmen des Netzgenerators oder über eine eigene Netzan kopplung. Durch den erfindungsgemäßen Gedanken verringert sich die Anzahl der Pole des Netzgenerators und damit dessen Gewicht gegenüber herkömmlichen Netzgeneratoren erheblich, so daß ein Einsatz derartiger Windkraftanlagen, insbesondere im Offshore Bereich, erleichtert wird. The highly dynamic gear adaptation is advantageous made by a variable-speed drive. As A planetary gear is preferably provided. In particular, low-pole asynchronous motors are used set that be non-positively with the gear on itself known way are connected. This asynchronous motor is in relation to the multi-pole (<10 pole) network generator due to its requirements designed smaller. The variable-speed drive has in addition to an asynchronous motor, preferably a voltage DC link converter. The electrical supply of the Variable-speed drive takes place directly via the off connection terminals of the network generator or via its own network coupling. Reduced by the idea of the invention the number of poles of the network generator and thus its number Weight significantly compared to conventional network generators that use of such wind turbines, especially in Offshore area.
In einer weiteren Ausführungsform bilden Getriebe, Netzgene rator und drehzahlveränderlicher Antrieb einen geschlossenen Regelkreis. Damit wird gewährleistet, daß sich die Ausgangs frequenz des Netzgenerators innerhalb vorgegebener Toleranzen bewegt, da, sobald Windböen oder andere stochastische Win dereignisse am Rotorblatt angreifen, diese hochdynamisch über den Getriebeeingriff ausgeregelt werden. Dabei dient insbe sondere die Netzgenerator-Drehzahl als Führungsgröße des Re gelprozesses. Die Netzgenerator-Drehzahl wird erfaßt und der Regeleinheit zugeführt. Die Drehzahl kann auch über die Stromerfassung mittels des Heyland-Kreises ermittelt werden. Andere kennzeichnenden Größen des Netzgeneratorbetriebs sind ebenso dem Regelkreis zur weiteren Optimierung und Erhöhung der Regelgeschwindigkeit zuführbar.In a further embodiment, gears form network genes rator and variable-speed drive a closed Control loop. This ensures that the starting frequency of the network generator within specified tolerances moves there as soon as gusts of wind or other stochastic win events on the rotor blade attack them in a highly dynamic manner the transmission intervention can be corrected. In particular, especially the grid generator speed as the reference variable of the Re gel process. The network generator speed is recorded and the Control unit fed. The speed can also be adjusted via the Electricity acquisition can be determined using the Heyland circle. Other characteristic sizes of network generator operation are also the control loop for further optimization and increase can be fed to the control speed.
Asynchronmotoren bzw. -generatoren haben dabei den grundsätz lichen Vorteil nicht fremd-erregt werden zu müssen. Es ist aber notwendig, daß diese Asynchronmaschinen die Blindlei stung aus dem Netz beziehen.Asynchronous motors and generators have the basic principle advantage not to have to be excited by someone else. It is but necessary for these asynchronous machines to be blind Get power from the network.
Der drehzahlveränderliche Antrieb soll bei einem Mehrangebot an Windenergie, diese als Netzgenerator umsetzen und bei ei ner mangelnden Windenergiebereitstellung, die fehlende Ener gie als Motor ins Getriebe einspeisen, so daß jederzeit die erforderliche Nennfrequenz am Abgang des Netzgenerators be reitsteht. Der drehzahlveränderliche Antrieb und dabei insbe sondere die Asynchronmaschine und der Umrichter müssen somit für die Differenzleistung zum Nennbetrieb des Netzgenerators ausgelegt sein. Wobei unter Differenzleistung die Leistung zu verstehen ist, die der drehzahlveränderliche Antrieb aufgrund z. B. eines Windüberangebots als Netzgenerator aufnehmen muß, als auch die Leistung, die er aufgrund eines Windmangels mo torisch über das Getriebe dem Netzgenerator zukommen lassen muß. Der Übergang zwischen Motor- und Generatorbetrieb ge schieht gemäß des Helandkreises über den Betriebspunkt "Schlupf gleich Null". The variable-speed drive is said to be in the case of an additional offer of wind energy, implement it as a grid generator and at egg a lack of wind energy supply, the lack of energy Feed the motor into the gearbox so that the required nominal frequency at the outlet of the network generator be is riding. The variable-speed drive and in particular in particular, the asynchronous machine and the converter must therefore for the differential power to the nominal operation of the network generator be designed. And under differential power the power increases understand is that the variable-speed drive due e.g. B. must take up a surplus wind as a network generator, as well as the performance he mo due to lack of wind Send it to the network generator torically via the gearbox got to. The transition between engine and generator operation ge shoots over the operating point according to the Heland circle "Zero slip".
Durch eine derartige Windkraftanlage reduzieren sich Kosten für Netzgenerator und Umrichter als auch die Wartungskosten. Damit sind derartige Windkraftanlagen insbesondere für abge legene oder schwer zugängliche Gegenden geeignet, in denen eine intensive Wartung unmöglich ist.Such a wind power plant reduces costs for grid generator and converter as well as the maintenance costs. Such wind turbines are especially for abge suitable or difficult to access areas where intensive maintenance is impossible.
Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß Merkmale der Unteransprüche werden im folgen den anhand eines schematisch dargestellten Ausführungsbei spiels in der Zeichnung näher erläutert. Dabei zeigt:The invention and further advantageous configurations of the Invention according to the features of the subclaims will follow the on the basis of a schematically illustrated embodiment game explained in more detail in the drawing. It shows:
Fig. 1 den prinzipiellen Aufbau einer derartigen Windkraftan lage. Fig. 1 shows the basic structure of such a Windkraftan.
In Fig. 1 einer erfindungsgemäßen Windkraftanlage dient ein an sich bekannter Rotor 1 dazu, die Windenergie über eine Achse 2 auf ein Getriebe 3 zu übertragen. In diesem Getriebe 3 ist der Netzgenerator 4 mit dem drehzahlveränderlichen Antrieb 6 und der Achse 2 mechanisch starr gekoppelt. Der drehzahlver änderliche Antrieb 6 wird über seinen Stromrichter 5 elek trisch an das 50/60 Hz Netz gekoppelt. Dabei bezeichnet das 50/60 Hz Netz, ein Netz, das die ortsübliche Netzfrequenz aufweist (also 50 Hz, 60 Hz oder auch 16 2/3 Hz ect.) Der drehzahlveränderliche Antrieb 6 wird je nach Windenergieange bot von dem 50/60 Hz Netz gespeist oder speist in dieses Netz. Je nach dem, ob die elektrische Maschine des drehzahl veränderlichen Antriebs 6 als Generator oder Motor wirkt. Im Abgang des Netzgenerators 4 sind Sensoren bzw. Meßaufnehmer 7 vorgesehen, die den Betrieb abbildende Größen (z. B. den Gene ratorstrom) erfassen und an eine nicht näher dargestellte Re geleinheit vorzugsweise im Umrichter 5 weiterleiten. Über den drehzahlveränderlichen Antrieb erfolgt somit eine hochdynami sche Anpassung des Getriebes 3 an die jeweilige Windsituati on.In FIG. 1 of a wind power plant according to the invention, a rotor 1 known per se serves to transmit the wind energy to a transmission 3 via an axis 2 . In this transmission 3 , the network generator 4 is mechanically rigidly coupled to the variable-speed drive 6 and the axis 2 . The variable-speed drive 6 is electrically coupled to the 50/60 Hz network via its converter 5 . The 50/60 Hz network refers to a network that has the local network frequency (i.e. 50 Hz, 60 Hz or 16 2/3 Hz ect.) The variable-speed drive 6 is offered by the 50/60 Hz network, depending on the wind energy supply fed or feeds into this network. Depending on whether the electrical machine of the variable-speed drive 6 acts as a generator or motor. In the outlet of the network generator 4 sensors or sensors 7 are provided which detect the operation-mapping variables (for example the generator current) and forward them to a control unit (not shown), preferably in the converter 5 . Via the variable-speed drive, a highly dynamic adaptation of the transmission 3 to the respective wind situation takes place.
Dabei sind folgende Betriebszustände zu unterscheiden: A distinction must be made between the following operating states:
Es liegen quasistationäre Windverhältnisse vor, die dem Nenn betrieb der Anlage entsprechen, d. h. ein Ausregeln des Netz generators 4 durch den drehzahlveränderlichen Antriebs 6 ist nicht notwendig. Die durch den Rotor 1 der Windkraftanlage aufgenommene Energie wird direkt ohne Eingriff des drehzahl veränderlichen Antriebs 6 über den Netzgenerator 4 an das Netz weitergeleitet.There are quasi-steady wind conditions that correspond to the nominal operation of the system, ie it is not necessary to regulate the network generator 4 by the variable-speed drive 6 . The energy absorbed by the rotor 1 of the wind power plant is passed on to the network directly via the network generator 4 without the intervention of the variable-speed drive 6 .
Bei Erhöhung des Windenergieangebots würde der Rotor 1 schneller drehen und damit der Netzgenerator 4 seine Nennfre quenz von z. B. 50/60 Hz verlassen. Dies wird dadurch vermie den, daß der drehzahlveränderliche Antrieb 6 die überschüssi ge Energie, d. h. die Differenz zwischen Nennbetrieb und Über angebot aufnimmt und als zusätzlicher Generator in elektri sche Energie umwandelt und über den Umrichter ebenfalls ins Netz einspeist.When increasing the wind energy supply, the rotor 1 would rotate faster and thus the network generator 4 would have its nominal frequency of z. B. leave 50/60 Hz. This is avoided by the fact that the variable-speed drive 6 absorbs the excess energy, ie the difference between rated operation and excess supply and converts it into electrical energy as an additional generator and also feeds it into the network via the converter.
Falls das Windenergieangebot unterhalb des für den Nennbe trieb des Netzgenerators 4 erforderlichen Angebots liegt, d. h. der Netzgenerator 4 nur eine Frequenz kleiner 50/60 Hz abgeben könnte, regelt der drehzahlveränderliche Antrieb 6 über einen Regler 8 aufgrund der über die Meßaufnehmer 7 übermittelten Daten dies aus, indem er motorisch die Energie differenz zwischen Nennbetrieb und tatsächlichen Energieange bot bereitstellt. Damit arbeitet der drehzahlveränderliche Antrieb motorisch der Energie vom Netz bezieht und in das Ge triebe einspeist, so daß der Netzgenerator 4 weiterhin eine Nennfrequenz von z. B. 50/60 Hz abgibt.If the wind energy supply is below the supply required for the nominal operation of the network generator 4 , ie the network generator 4 could only emit a frequency less than 50/60 Hz, the variable-speed drive 6 regulates this via a controller 8 on the basis of the data transmitted via the sensor 7 by providing the energy difference between the nominal operation and the actual energy supply. So that the variable-speed drive motor draws the energy from the network and feeds into the Ge transmissions, so that the network generator 4 continues to have a nominal frequency of z. B. 50/60 Hz.
Falls das Energieangebot weiter absinken sollte, so daß der drehzahlveränderliche Antrieb 6 die Differenz zwischen Ener gieminimum und Energienennbetrieb nicht decken sollte, wird die Anlage durch einen nicht näher dargestellten Schaltele mente wie z. B. Leistungs- oder Lastschalter abgeschaltet.If the energy supply should decrease further, so that the variable-speed drive 6 should not cover the difference between the energy minimum and the energy nominal operation, the system is operated by a switching element, not shown, such as, for. B. Circuit breaker or load switch switched off.
Ebenso wird die Anlage abgeschaltet, falls sowohl der Netzge nerator 4 als auch der drehzahlveränderliche Antrieb 6 das Energieangebot, das am Rotor 1 ansteht, nicht übernehmen kön nen. In diesem Fall ist ein Stillstand der Anlage oder eine langsame Regelung der Rotorblätter vorgesehen, die das Ge samtsystem in den Arbeitsbereich hebt. Die Summe der Überset zungsverhältnisse ist dabei immer konstant. Als Netzgenerato ren bzw. elektrische Maschine für den drehzahlveränderlichen Antrieb eignen sich insbesondere für unzugängliche Gebiete, wartungsfreundliche Asynchronmotoren. Es sind aber ebenso Synchronmaschinen verwendbar.Likewise, the system is switched off, if both the Netzge generator 4 and the variable-speed drive 6 can not take over the energy available at the rotor 1 . In this case, a standstill of the system or a slow regulation of the rotor blades is provided, which lifts the entire system into the work area. The sum of the gear ratios is always constant. As a network generator or electrical machine for the variable-speed drive, maintenance-friendly asynchronous motors are particularly suitable for inaccessible areas. But synchronous machines can also be used.
Als Führungsgröße des Regelkreises im Netz- oder Inselbetrieb sind insbesondere die Generatordrehzahl, der Ständerstrom oder die Schlupffrequenz der Asynchronmaschine vorgesehen.As the reference variable of the control loop in grid or island operation are in particular the generator speed, the stator current or the slip frequency of the asynchronous machine is provided.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19955586A DE19955586A1 (en) | 1999-11-18 | 1999-11-18 | Wind-power generator station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19955586A DE19955586A1 (en) | 1999-11-18 | 1999-11-18 | Wind-power generator station |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19955586A1 true DE19955586A1 (en) | 2001-06-13 |
Family
ID=7929535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19955586A Ceased DE19955586A1 (en) | 1999-11-18 | 1999-11-18 | Wind-power generator station |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19955586A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6927502B2 (en) * | 2000-05-12 | 2005-08-09 | Aloys Wobben | Three-phase asynchronous motor driven azimuthal drive for wind power installations |
DE102004007461A1 (en) * | 2004-02-13 | 2005-09-01 | Helgers Finanzberatung Gmbh | Method for operating a wind turbine, and accordingly configured wind turbine |
US6945752B1 (en) | 1998-11-26 | 2005-09-20 | Aloys Wobben | Azimuthal driving system for wind turbines |
WO2006010190A1 (en) * | 2004-07-30 | 2006-02-02 | Gerald Hehenberger | Power train for a wind power plant |
US7190086B2 (en) * | 2001-06-02 | 2007-03-13 | Aloys Wobben | Wind energy plant with an asynchronous machine for determining the azimuth position |
DE102005049426A1 (en) * | 2005-10-15 | 2007-04-19 | Nordex Energy Gmbh | Method for operating a wind energy plant |
EP1895157A2 (en) * | 2006-08-31 | 2008-03-05 | NORDEX ENERGY GmbH | Method for operating a wind farm with a synchronous generator and an overriding drive |
DE102006040930A1 (en) * | 2006-08-31 | 2008-03-20 | Nordex Energy Gmbh | Method for operating a wind turbine with a synchronous generator and a superposition gear |
DE102007019665A1 (en) | 2007-04-26 | 2008-10-30 | Nordex Energy Gmbh | Wind energy plant operating method, involves providing stall controller having rotor blade that defines blade angle with rotation plane, and inducing passive stall with predetermined power by increasing or decreasing rotor speed |
WO2010040167A1 (en) * | 2008-10-09 | 2010-04-15 | Gerald Hehenberger | Method for operating a differential gear for an energy production plant |
WO2010040165A2 (en) * | 2008-10-09 | 2010-04-15 | Gerald Hehenberger | Differential for a wind power station |
WO2010040166A2 (en) * | 2008-10-09 | 2010-04-15 | Gerald Hehenberger | Wind power station |
WO2009016508A3 (en) * | 2007-07-30 | 2010-05-27 | Orbital 2 Limited | Improvements in and relating to electrical power generation from fluid flow |
WO2010108209A2 (en) * | 2009-03-26 | 2010-09-30 | Gerald Hehenberger | Energy production plant, in particular wind power station |
DE102007008761B4 (en) * | 2007-02-22 | 2010-10-07 | Schuler Pressen Gmbh & Co. Kg | Wind turbine with braced gear |
WO2010040168A3 (en) * | 2008-10-09 | 2010-11-18 | Gerald Hehenberger | Wind power station |
AT510119A1 (en) * | 2010-07-01 | 2012-01-15 | Hehenberger Gerald Dipl Ing | DIFFERENTIAL GEARBOX FOR A WIND POWER PLANT AND METHOD FOR OPERATING THIS DIFFERENTIAL GEARING |
US9446822B2 (en) | 2008-04-23 | 2016-09-20 | Principle Power, Inc. | Floating wind turbine platform with ballast control and water entrapment plate systems |
US9810204B2 (en) | 2010-10-15 | 2017-11-07 | Principle Power, Inc. | Floating wind turbine platform structure with optimized transfer of wave and wind loads |
US9879654B2 (en) | 2013-05-20 | 2018-01-30 | Principle Power, Inc. | System and method for controlling offshore floating wind turbine platforms |
US10421524B2 (en) | 2014-10-27 | 2019-09-24 | Principle Power, Inc. | Connection system for array cables of disconnectable offshore energy devices |
US11225945B2 (en) | 2019-05-30 | 2022-01-18 | Principle Power, Inc. | Floating wind turbine platform controlled to optimize power production and reduce loading |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3445535A1 (en) * | 1983-12-14 | 1985-06-27 | Peter Jan Fournais | Method and installations for supplying power to an AC network, using a diesel engine |
DE3628137A1 (en) * | 1986-08-19 | 1988-02-25 | Bbc Brown Boveri & Cie | Wind power installation (system) |
DE3402015C2 (en) * | 1984-01-21 | 1990-11-15 | Asea Brown Boveri Ag, 6800 Mannheim, De | |
DE4224228A1 (en) * | 1991-08-23 | 1993-02-25 | Valmet Oy | Coupling between propeller and gearbox of wind generator - attaches propeller to main shaft passing through hollow layshaft with ring-gear coupling between shafts |
DE19634464A1 (en) * | 1995-08-28 | 1997-04-03 | Lothar Kloft | Eddy current retarder for wind power generator installation |
DE19624809A1 (en) * | 1996-06-21 | 1998-01-02 | Weier Elektromotorenwerke Gmbh | Active filter for compensating rapid power fluctuations in three=phase network |
-
1999
- 1999-11-18 DE DE19955586A patent/DE19955586A1/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3445535A1 (en) * | 1983-12-14 | 1985-06-27 | Peter Jan Fournais | Method and installations for supplying power to an AC network, using a diesel engine |
DE3402015C2 (en) * | 1984-01-21 | 1990-11-15 | Asea Brown Boveri Ag, 6800 Mannheim, De | |
DE3628137A1 (en) * | 1986-08-19 | 1988-02-25 | Bbc Brown Boveri & Cie | Wind power installation (system) |
DE4224228A1 (en) * | 1991-08-23 | 1993-02-25 | Valmet Oy | Coupling between propeller and gearbox of wind generator - attaches propeller to main shaft passing through hollow layshaft with ring-gear coupling between shafts |
DE19634464A1 (en) * | 1995-08-28 | 1997-04-03 | Lothar Kloft | Eddy current retarder for wind power generator installation |
DE19624809A1 (en) * | 1996-06-21 | 1998-01-02 | Weier Elektromotorenwerke Gmbh | Active filter for compensating rapid power fluctuations in three=phase network |
Non-Patent Citations (1)
Title |
---|
JP 61-106097 in Jap. Abstr. * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6945752B1 (en) | 1998-11-26 | 2005-09-20 | Aloys Wobben | Azimuthal driving system for wind turbines |
US6927502B2 (en) * | 2000-05-12 | 2005-08-09 | Aloys Wobben | Three-phase asynchronous motor driven azimuthal drive for wind power installations |
US7190086B2 (en) * | 2001-06-02 | 2007-03-13 | Aloys Wobben | Wind energy plant with an asynchronous machine for determining the azimuth position |
US7288851B2 (en) | 2001-06-02 | 2007-10-30 | Aloys Wobben | Wind power installation with an asynchronous machine for establishing the azimuth position |
DE102004007461A1 (en) * | 2004-02-13 | 2005-09-01 | Helgers Finanzberatung Gmbh | Method for operating a wind turbine, and accordingly configured wind turbine |
JP2008508456A (en) * | 2004-07-30 | 2008-03-21 | ヘーエンベルガー,ゲラルド | Wind train power train |
WO2006010190A1 (en) * | 2004-07-30 | 2006-02-02 | Gerald Hehenberger | Power train for a wind power plant |
DE102005049426A1 (en) * | 2005-10-15 | 2007-04-19 | Nordex Energy Gmbh | Method for operating a wind energy plant |
DE102005049426B4 (en) * | 2005-10-15 | 2009-12-03 | Nordex Energy Gmbh | Method for operating a wind energy plant |
DE102006040929A1 (en) * | 2006-08-31 | 2008-03-20 | Nordex Energy Gmbh | Method for operating a wind turbine with a synchronous generator and a superposition gear |
EP1895157A2 (en) * | 2006-08-31 | 2008-03-05 | NORDEX ENERGY GmbH | Method for operating a wind farm with a synchronous generator and an overriding drive |
DE102006040930A1 (en) * | 2006-08-31 | 2008-03-20 | Nordex Energy Gmbh | Method for operating a wind turbine with a synchronous generator and a superposition gear |
DE102006040929B4 (en) * | 2006-08-31 | 2009-11-19 | Nordex Energy Gmbh | Method for operating a wind turbine with a synchronous generator and a superposition gear |
EP1895157A3 (en) * | 2006-08-31 | 2010-03-10 | NORDEX ENERGY GmbH | Method for operating a wind farm with a synchronous generator and an overriding drive |
EP1998041A3 (en) * | 2007-02-22 | 2013-09-11 | Schuler Pressen GmbH & Co. KG | Wind turbine with braced gears |
DE102007008761B4 (en) * | 2007-02-22 | 2010-10-07 | Schuler Pressen Gmbh & Co. Kg | Wind turbine with braced gear |
DE102007019665A1 (en) | 2007-04-26 | 2008-10-30 | Nordex Energy Gmbh | Wind energy plant operating method, involves providing stall controller having rotor blade that defines blade angle with rotation plane, and inducing passive stall with predetermined power by increasing or decreasing rotor speed |
RU2471087C2 (en) * | 2007-07-30 | 2012-12-27 | Орбитал 2 Лимитед | Driving mechanism of power generator (versions), method to control frequency of power generator driving mechanism rotation, turbine (versions) |
WO2009016508A3 (en) * | 2007-07-30 | 2010-05-27 | Orbital 2 Limited | Improvements in and relating to electrical power generation from fluid flow |
CN101815862B (en) * | 2007-07-30 | 2012-10-17 | 轨道2有限公司 | Improvements in and relating to electrical power generation from fluid flow |
US9446822B2 (en) | 2008-04-23 | 2016-09-20 | Principle Power, Inc. | Floating wind turbine platform with ballast control and water entrapment plate systems |
WO2010040165A3 (en) * | 2008-10-09 | 2010-10-07 | Gerald Hehenberger | Differential for a wind power station |
WO2010040165A2 (en) * | 2008-10-09 | 2010-04-15 | Gerald Hehenberger | Differential for a wind power station |
WO2010040168A3 (en) * | 2008-10-09 | 2010-11-18 | Gerald Hehenberger | Wind power station |
WO2010040167A1 (en) * | 2008-10-09 | 2010-04-15 | Gerald Hehenberger | Method for operating a differential gear for an energy production plant |
WO2010040166A3 (en) * | 2008-10-09 | 2010-10-07 | Gerald Hehenberger | Wind power station |
WO2010040166A2 (en) * | 2008-10-09 | 2010-04-15 | Gerald Hehenberger | Wind power station |
AT507394B1 (en) * | 2008-10-09 | 2012-06-15 | Gerald Dipl Ing Hehenberger | WIND TURBINE |
AT507395A3 (en) * | 2008-10-09 | 2012-09-15 | Hehenberger Gerald | DIFFERENTIAL GEARBOX FOR WIND POWER PLANT |
AT507393B1 (en) * | 2008-10-09 | 2012-11-15 | Gerald Dipl Ing Hehenberger | WIND TURBINE |
WO2010108209A2 (en) * | 2009-03-26 | 2010-09-30 | Gerald Hehenberger | Energy production plant, in particular wind power station |
CN102365456A (en) * | 2009-03-26 | 2012-02-29 | 格拉尔德·黑亨贝格尔 | Energy extraction system, in particular wind power station |
CN102365456B (en) * | 2009-03-26 | 2014-01-08 | 格拉尔德·黑亨贝格尔 | Energy extraction system, in particular wind power station |
WO2010108209A3 (en) * | 2009-03-26 | 2011-04-07 | Gerald Hehenberger | Energy production plant, in particular wind power station |
AT510119A1 (en) * | 2010-07-01 | 2012-01-15 | Hehenberger Gerald Dipl Ing | DIFFERENTIAL GEARBOX FOR A WIND POWER PLANT AND METHOD FOR OPERATING THIS DIFFERENTIAL GEARING |
AT510119B1 (en) * | 2010-07-01 | 2015-06-15 | Hehenberger Gerald Dipl Ing | DIFFERENTIAL GEARBOX FOR A WIND POWER PLANT AND METHOD FOR OPERATING THIS DIFFERENTIAL GEARING |
US9810204B2 (en) | 2010-10-15 | 2017-11-07 | Principle Power, Inc. | Floating wind turbine platform structure with optimized transfer of wave and wind loads |
US9879654B2 (en) | 2013-05-20 | 2018-01-30 | Principle Power, Inc. | System and method for controlling offshore floating wind turbine platforms |
US10267293B2 (en) | 2013-05-20 | 2019-04-23 | Principle Power, Inc. | Methods for controlling floating wind turbine platforms |
US10421524B2 (en) | 2014-10-27 | 2019-09-24 | Principle Power, Inc. | Connection system for array cables of disconnectable offshore energy devices |
US10858075B2 (en) | 2014-10-27 | 2020-12-08 | Principle Power, Inc. | Floating electrical connection system for offshore energy devices |
US11225945B2 (en) | 2019-05-30 | 2022-01-18 | Principle Power, Inc. | Floating wind turbine platform controlled to optimize power production and reduce loading |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19955586A1 (en) | Wind-power generator station | |
EP1540811B1 (en) | Operating method for a wind turbine with a supersynchronous cascade | |
EP2647840B1 (en) | Method for operating a wind turbine | |
EP1125060B1 (en) | Control logic for a wind energy system | |
DE19532409B4 (en) | Method for operating a wind turbine and an associated wind turbine | |
EP1895157B1 (en) | Method for operating a wind farm with a synchronous generator and an overriding drive | |
DE102011087109B3 (en) | Apparatus and method for recovering energy from a fluid flow | |
EP1012943B1 (en) | System for supplying electromotive consumers with electric energy | |
DE3225456A1 (en) | METHOD FOR EXPLOITING WIND ENERGY FOR GENERATING ELECTRICITY WITH CONSTANT FREQUENCY | |
EP2143186B1 (en) | Wind energy plant with reactive power condition | |
EP4249748A2 (en) | Method for controlling a wind turbine | |
EP1892412A1 (en) | Method for operating wind farms | |
WO2011018527A2 (en) | Asynchronous generator system and wind turbine having an asynchronous generator system | |
EP1379780B1 (en) | Method for operating a wind energy plant | |
EP1821382A2 (en) | Wind farm with an additional gearswitch assembly for low-wind operation | |
EP2265816B1 (en) | Double-fed asynchronous generator and method for its operation | |
DE102009037523A1 (en) | Wind park system, has wind turbines including generator i.e. self-excited synchronous generator, with adjustable excitation that is indirectly adjusted depending upon reactive power requirement of wind park controlling device | |
DE102011084573A1 (en) | Stepless adjustable hydromechanical power-split transmission for e.g. wind power plant for converting flow energy into electric energy, has control device adjusting hydraulic pump such that output shaft exhibits constant output speed | |
DE102007020615A1 (en) | Powertrain for a diving power generation plant | |
DE19509974A1 (en) | Method for braking an AC motor | |
EP3759338B1 (en) | Combined power plant and method for operation | |
DE3151851C2 (en) | Power generation plant | |
DE102011008061A1 (en) | Wind-power plant i.e. off-shore-system, for power generation, has generator with low power causing rotation speed reduction for another generator with high power, where generators are coupled with each other and commonly driven | |
DE102023202769A1 (en) | Rotating phase shifter with variable ratio | |
DE919833C (en) | Electromechanical converter for an alternating or three-phase wind power plant with a constant number of periods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |