DE19634893A1 - Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications - Google Patents
Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communicationsInfo
- Publication number
- DE19634893A1 DE19634893A1 DE19634893A DE19634893A DE19634893A1 DE 19634893 A1 DE19634893 A1 DE 19634893A1 DE 19634893 A DE19634893 A DE 19634893A DE 19634893 A DE19634893 A DE 19634893A DE 19634893 A1 DE19634893 A1 DE 19634893A1
- Authority
- DE
- Germany
- Prior art keywords
- photon crystal
- filter
- structured
- tuning
- field strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1225—Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/32—Photonic crystals
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
Abstimmbare Filter für die optische Nachrichtentechnik und
Telekommunikation werden z. Z. in Form von langen optischen
Fasern, die ihre Filterwirkung durch mit UV-Licht in
spezielle Fasern eingeschriebene Bragg-Beugungsgitter
erhalten, realisiert. Siehe
R. Kashyap, "Photosensitive Optical Fibers: Devices and
Applications", Opt. Fibres Techn. 1, 17-34, (1994).Tunable filters for optical communications and telecommunications are e.g. Z. realized in the form of long optical fibers, which get their filtering effect through Bragg diffraction gratings inscribed with UV light in special fibers. Please refer
R. Kashyap, "Photosensitive Optical Fibers: Devices and Applications", Opt. Fibers Techn. 1, 17-34, (1994).
Dabei stellt es eine beträchtliche technologische
Anforderung dar, diese Beugungsgitter mit hoher Genauigkeit
über große Längen von einigen mm bis cm herzustellen.
Spezielle die Elektronenstrahl-Lithographie in ihrem
"Stitching" verbessernde Verfahren werden angewandt, um
diesen Fehler zu verringern. Siehe
H. W. P. Koops, J. Kretz, M. Weber, "Combined Lithograpies
for the reduction of stitching errors in Lithography",
Proc. EIPB 94, J. Vac. Sci Technol B 12 (6) (1994) 3265-
3269, und
V. V. Wong, J. Ferrera, J. N. Damask, T. E. Murphy, H. A.
Haus und H. I. Smith, "Distributed Bragg greating
integreted-optical Filters: Synthesis and fabrication" J.
Vac. Sci. technol. B 13 (6) Nov/Dez. 1995 S. 2859-2864.It is a considerable technological requirement to produce these diffraction gratings with great accuracy over great lengths from a few mm to cm. Special techniques improving electron beam lithography in its "stitching" are used to reduce this error. Please refer
HWP Koops, J. Kretz, M. Weber, "Combined Lithograpies for the reduction of stitching errors in Lithography", Proc. EIPB 94, J. Vac. Sci Technol B 12 (6) (1994) 3265-3269, and
VV Wong, J. Ferrera, JN Damask, TE Murphy, HA Haus and HI Smith, "Distributed Bragg greating integrated-optical Filters: Synthesis and fabrication" J. Vac. Sci. technol. B 13 (6) Nov / Dec 1995 pp. 2859-2864.
Faserfilter müssen immer mittels Steck- oder Spleißverbindungen in einer Hybridtechnik in eine makroskopische optische Anordnung eingefügt werden. Eine Miniaturisierung der Baugruppen ist damit nicht zu erreichen.Fiber filters must always be plug-in or Splice connections in a hybrid technique in one Macroscopic optical arrangement can be inserted. A Miniaturization of the assemblies is therefore not allowed to reach.
Mit dem Verfahren der Additiven Lithographie durch
rechnergeführte elektronenstrahl-induzierte Deposition
werden Photonen-Kristalle als 2- und 3-dimensionale
Anordnungen von langen miniaturisierten Nadeln aus
dielektrischen Materialien mit Nanometer-Präzision
miniaturisiert aufgebaut. Siehe
H. W. P. Koops, R. Weiel, D. P. Kern, T. H. Baum, "High
Resolution Electron Beam Induced Deposition", Proc. 31.
Int. Symp. on Electron, Ion, and Photon Beams, J. Vac. Sci.
Technol. B 6 (1) (1988) 477.Using the process of additive lithography by computer-guided electron beam-induced deposition, photon crystals are miniaturized as 2- and 3-dimensional arrangements of long miniaturized needles made of dielectric materials with nanometer precision. Please refer
HWP Koops, R. Weiel, DP Kern, TH Baum, "High Resolution Electron Beam Induced Deposition", Proc. 31. Int. Symp. On Electron, Ion, and Photon Beams, J. Vac. Sci. Technol. B 6 (1) (1988) 477.
Diese können direkt in den optischen Weg eingebaut werden. Durch die bei dem Verfahren übliche hochpräzise Rechnersteuerung des Elektronenstrahles in Ort, Zeit und Bewegungsrichtung ist es möglich, nahezu alle geforderten Geometrien der Kristalle und ihre für den gewünschten optischen Zweck gezielte Deformation zu erzeugen. Dadurch kann ein maßgeschneidertes optisches Verhalten der Struktur erzeugt werden.These can be built directly into the optical path. Due to the high-precision that is customary in the process Computer control of the electron beam in place, time and Direction of movement it is possible to almost all required Geometries of the crystals and their for the desired one optical purpose to produce targeted deformation. Thereby can create a customized optical behavior of the structure be generated.
Bei M. Eich, H. Looser, D. Y. Yoon, R. Twieg, G. C.
Bjorklund, "Second harmonic generation in poled organic
monomeric glasses", J. Opt. Soc. Am. B, 6, 8 (1989) und
M. Eich, A. Sen, H. Looser, G. C. Björklund, J. D. Swalen,
R. Twieg, D. Y. Yoon, "Corona Poling and Real Time Second
Harmonic Generation Study of a Novel Oovalently
Functionalized Amorphous Nonlinear Optical Polymer", J.
Appl. Phys., 66, 6 (1989) wird der Einsatz von nichtlinear
optischem Material beschrieben. Durch Anlegen eines starken
elektrischen Feldes an das nichtlinear optische Material
kann der optische Weg im Kristall und damit dessen
Eigenschaften elektrisch eingestellt werden. Die gleiche
Wirkung wird bei Anlegen eines elektrischen Feldes an eine
Flüssigkristallstruktur erzielt. Siehe
M. Stalder, P. Ehbets, "Electrically switchable diffractive
optical element for image processing", Optics Letters 19, 1
(1994). Durch die Variation des elektrischen Feldes kann
damit sowohl bei nichtlinear optischem Material als auch
bei Flüssigkristallen die optische Durchlaßcharakteristik
in feinen Stufen verschoben werden. Desweiteren ist eine
Variation der optischen Spiegelwirkung, der Reflexions
richtung und eventuell der Stärke möglich.With M. Eich, H. Looser, DY Yoon, R. Twieg, GC Bjorklund, "Second harmonic generation in poled organic monomeric glasses", J. Opt. Soc. At the. B, 6, 8 (1989) and M. Eich, A. Sen, H. Looser, GC Björklund, JD Swalen, R. Twieg, DY Yoon, "Corona Poling and Real Time Second Harmonic Generation Study of a Novel Oovalently Functionalized Amorphous Nonlinear Optical Polymer ", J. Appl. Phys., 66, 6 (1989) describes the use of nonlinear optical material. By applying a strong electric field to the nonlinear optical material, the optical path in the crystal and thus its properties can be adjusted electrically. The same effect is achieved when an electric field is applied to a liquid crystal structure. Please refer
M. Stalder, P. Ehbets, "Electrically switchable diffractive optical element for image processing", Optics Letters 19, 1 (1994). By varying the electric field, the optical transmission characteristic can be shifted in fine steps both in the case of nonlinear optical material and in the case of liquid crystals. Furthermore, a variation of the optical mirror effect, the direction of reflection and possibly the strength is possible.
Desweiteren ist eine Lösung für die Herstellung von
Photonen-Kristallen mit Hilfe von Vielstrahl-Schreibgeräten
bekannt. Bei dieser Lösung werden die Photonen-Kristalle
mittels Korpuskularstrahlen und mit Hilfe der Additiven
Lithographie in sehr wirtschaftlicher Weise hergestellt.
Siehe
H. Koops, 1974, Patentanmeldung P 2446 789.8-33
"Korpus kularstrahl-Optisches Gerät zur Korpuskelbestrahlung
eines Präparates", USA Patent No. 4021674,
H. Koops, 1974, Patentanmeldung DE-PS 24 60 716.7
"Korpuskularstrahl-Optisches Gerät zur Korpuskelbestrahlung
eines Präparates",
H. Koops, 1974, Patentanmeldung DE-PS P 2460 715.6
"Korpuskularstrahl-Optisches Gerät zur Korpuskelbestrahlung
eines Präparates in Form eines Flächenmusters mit mehreren
untereinander gleichen Flächenelementen",
H. Koops, 1975, Patentanmeldung DE-PS P 2515 550.4
"Korpuskularstrahl-Optisches Gerät zur Abbildung einer
Maske auf ein zu bestrahlendes Präparat",
M. Rüb, H. W. P. Koops, T. Tschudi "Electron beam induced
deposition in a reducing image projector", Microelectronic
Engineering 9 (1989) 251-254 und
H. Elsner, H.-J. Döring, H. Schacke, G. Dahm, H. W. P.
Koops, "Advanced Multiple Beam-shaping Diaphragm for
Efficient Exposure", Microelectronic Engineering 23 (1994)
85-88.Furthermore, a solution for the production of photon crystals using multibeam writing instruments is known. With this solution, the photon crystals are produced in a very economical manner by means of corpuscular rays and with the aid of additive lithography. Please refer
H. Koops, 1974, patent application P 2446 789.8-33 "Corpus Kularstrahl-Optical device for the corpuscle irradiation of a preparation", USA Patent No. 4021674,
H. Koops, 1974, patent application DE-PS 24 60 716.7 "corpuscular beam optical device for corpuscle irradiation of a preparation",
H. Koops, 1974, patent application DE-PS P 2460 715.6 "corpuscular beam optical device for corpuscle irradiation of a preparation in the form of a surface pattern with several surface elements that are identical to one another",
H. Koops, 1975, patent application DE-PS P 2515 550.4 "corpuscular beam optical device for imaging a mask onto a preparation to be irradiated",
M. Rüb, HWP Koops, T. Tschudi "Electron beam induced deposition in a reducing image projector", Microelectronic Engineering 9 (1989) 251-254 and
H. Elsner, H.-J. Döring, H. Schacke, G. Dahm, HWP Koops, "Advanced Multiple Beam-shaping Diaphragm for Efficient Exposure", Microelectronic Engineering 23 (1994) 85-88.
Photonen-Kristalle mit Bandlücken sind 2- und 3- dimensionale dielektrische Strukturen, in denen die Ausbreitung elektromagnetischer Wellen, abhängig oder unabhängig von ihrer Ausbreitungsrichtung, verboten ist. Rechnungen und Mikrowellen-Messungen zeigten, daß eine kubisch flächenzentrierte oder auch eine 2-dimensional kubische Anordnung von Löchern in einer dielektrischen Matrix oder von dielektrischen Stangen solch photonische Bandlücken aufzeigen. Dabei reichen bereits 6 Ebenen aus, um eine hohe Güte der Elemente zu erzielen. Derartige 2- und 3-dimensionale Strukturen werden häufig "Photonische Kristalle" genannt.Band gap photon crystals are 2- and 3- dimensional dielectric structures in which the Propagation of electromagnetic waves, depending on or regardless of their direction of propagation. Calculations and microwave measurements showed that a face centered cubic or also a 2-dimensional cubic arrangement of holes in a dielectric Matrix or of dielectric rods such photonic Show band gaps. 6 levels are sufficient to achieve a high quality of the elements. Such 2- and 3-dimensional structures are often "photonic Called crystals ".
Die erfindungsgemäße Lösung soll es ermöglichen, ein abstimmbares Filter auf der Basis von Photonen-Kristallen herzustellen.The solution according to the invention should make it possible tunable filter based on photon crystals to manufacture.
Das abstimmbare Filter soll mechanisch stabil sein. Gleichzeitig soll eine hohe Variabilität der Eigenschaften des Filters erzielt werden.The tunable filter should be mechanically stable. At the same time, a high variability in properties of the filter can be achieved.
Der Grundbaustein des erfindungsgemäßen Filters wird mit dem bekannten Verfahren der Additiven Lithographie durch rechnergestützte elektronenstrahl-induzierte Deposition als 2 und 3-dimensionale Anordnung von langen miniaturi sierten Nadeln aus dielektrischen Materialien hergestellt. Aufgrund der nadelförmigen Kristallstruktur ist der so erzeugte Grundbaustein des erfindungsgemäßen Filters mechanisch wenig belastbar.The basic building block of the filter according to the invention is with the known method of additive lithography Computer-aided electron beam-induced deposition as a 2 and 3-dimensional arrangement of long miniaturi based needles made of dielectric materials. This is because of the needle-shaped crystal structure generated basic building block of the filter according to the invention mechanically less resilient.
Erfindungsgemäß werden die Zwischenräume der nadelförmigen Kristallstruktur mit optisch transparentem Material mit einstellbarem Brechungsindex gefüllt, so daß ein abstimmbares Filter entsteht. Für die Füllung, die die gewünschte mechanische Stabilität des Bauelements bewirkt, eignen sich insbesondere nichtlinear optische Materialien bzw. Flüssig-Kristalle. Die Abstimmung des Filters wird mittels Einwirkung eines elektrischen Feldes auf das Filter und insbesondere auf das transparente Material der Füllung erzielt. Das elektrische Feld wird vorzugsweise durch Feldplatten, die in der Umgebung des Filters angeordnet sind, erzeugt. Das elektrische Feld bewirkt durch den linear optischen Materialkoeffizienten eine Veränderung des Brechungsindex im gefüllten Kristall-Hohlraum. Durch die Veränderung des Brechungsindex verändern sich die Eigenschaften und damit die Filterwirkung des Filters. Durch Veränderung der Feldstärke können folgende Effekte erzielt werden:According to the invention, the spaces between the needle-shaped Crystal structure with optically transparent material with adjustable refractive index filled so that a tunable filter is created. For the filling that the desired mechanical stability of the component causes nonlinear optical materials are particularly suitable or liquid crystals. The tuning of the filter will by the action of an electric field on the filter and especially on the transparent material of the filling achieved. The electric field is preferably through Field plates arranged around the filter are generated. The electric field is caused by the linear optical material coefficients a change in Refractive index in the filled crystal cavity. Through the Changes in the refractive index change the Properties and thus the filter effect of the filter. Changing the field strength can have the following effects be achieved:
- - Feinabstimmung des Wellenlängenbereichs der Transmission des Filters,- Fine-tuning the wavelength range of the transmission the filter,
- - Feinabstimmung der Phasenverschiebung des Lichtes,- fine-tuning the phase shift of the light,
- - Feinabstimmung der transmittierenden Amplitude des Lichtes,- fine-tuning the transmitting amplitude of the light,
- - Änderung des Brechungsindex und damit Änderung der Reflexionsrichtung für das durchgehende und das reflektierte Licht.- Changing the refractive index and thus changing the Direction of reflection for the continuous and the reflected light.
Bei der Herstellung des Grundelements des Filters mittels der bekannten Verfahren der Additiven Lithographie durch rechnergestützte elektronenstrahl-induzierte Deposition läßt sich ebenfalls schon gezielt Einfluß auf die gewünschte Filterstruktur nehmen.In the manufacture of the basic element of the filter by means of the known methods of additive lithography Computer-aided electron beam-induced deposition can also have a targeted influence on the Take the desired filter structure.
Durch programmierte Modulation, die beim Aufbau der Kristallzellen überlagert wird, lassen sich optische Eigenschaften wie Fokussierung oder Vorablenkung gezielt beeinflussen.By programmed modulation, which when building the Crystal cells are superimposed, can be optical Properties such as focusing or pre-distraction are targeted influence.
Werden sequentiell mehrere eventuell auch verschieden abstimmbare Photonen-Kristalle an speziell in Wellenleiter- Mustern angebrachten Vertiefungen aufgebaut, so kann eine hohe Miniaturisierung von Filtern und optischen Resonatoren für Laseranwendungen erreicht werden. Dadurch wird eine hohe Packungsdichte möglich.If several are sequentially also possibly different tunable photon crystals on specially in waveguide Patterned recesses built, so one high miniaturization of filters and optical resonators for laser applications. This will make one high packing density possible.
Mit dem erfindungsgemäßen Verfahren lassen sich feinabstimmbare und in weitem Bereich abstimmbare schmalbandige Filterelemente geringer Abmessungen herstellen und in hoher Packungsdichte integriert realisieren. Eine Vielzahl von Bauelementen und Schaltungen der integrierten Optik können so verbessert und neuartig miniaturisiert erzeugt werden. Das betrifft beispielsweise abstimmbare elektromagnetische Mikro-Resonatoren für einmodige, Licht emittierende Dioden, wobei diese Strukturen die spontane Emission in einem nun einstellbaren weiten Wellenlängenbereich unterdrücken und so die Leistungsanforderungen verringern und die Zuverlässigkeit von Lichtemittern, besonders von optischen Arrays, erhöhen. Desweiteren wird eine verstärkte spontane Emission von feinabstimmbaren Lichtemittern möglich. Dadurch wird eine schnellere Modulationsgeschwindigkeit für optische Verbindungen und Schalter möglich. Es können optische Spiegel hoher Güte mit maßgeschneidertem fein einstellbarem Reflektions- und Transmissions-Vermögen mit geometrisch voreingestellten Wellenlängen und Durchlaß-Bandbreiten miniaturisiert und in hoher Packungsdichte aufgebaut werden. Es lassen sich ebenso kompakte elektrisch abstimmbare Schmalbandfilter (0,5-1 nm), Polarisatoren und die Polarisation selektierende abstimmbare Bandpaß- Filter herstellen. Ein gezieltes Pumpen von optoelektronischen Elementen in einstellbarem Wellenlängenbereich ist möglich. Fein eingestellte gerichtete Auskopplung von Licht in vorgegebene und variierbare Richtung ist erreichbar. Es können Wellenleiter und Y-Koppler mit fast jeder einstellbaren Form und ultra kleinen einstellbaren Krümmungsradien, sowie auch sehr wirkungsvolle feinabstimmbare Mikrowellen-Antennen hergestellt werden.With the method according to the invention finely tunable and widely tunable narrow-band filter elements of small dimensions manufacture and integrated in high packing density realize. A variety of components and circuits The integrated optics can be improved and new miniaturized. That applies, for example tunable electromagnetic micro-resonators for single-mode, light-emitting diodes, these Structures the spontaneous emission in a now adjustable suppress broad wavelength range and so the Reduce performance requirements and reliability of light emitters, especially optical arrays. Furthermore, an increased spontaneous emission of fine-tunable light emitters possible. This will make one faster modulation speed for optical Connections and switches possible. It can be optical High quality mirror with tailor-made finely adjustable Reflective and transmittance with geometric preset wavelengths and pass bandwidths miniaturized and built up in high packing density will. It can also be compact electrically tunable narrowband filters (0.5-1 nm), polarizers and the polarization-selecting tunable bandpass Make filters. A targeted pumping of optoelectronic elements in adjustable Wavelength range is possible. Fine-tuned directed coupling of light into predetermined and variable direction can be reached. There can be waveguides and Y-couplers with almost every adjustable shape and ultra small adjustable radii of curvature, as well as very effective fine tunable microwave antennas getting produced.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19634893A DE19634893A1 (en) | 1995-11-10 | 1996-08-29 | Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19542058 | 1995-11-10 | ||
DE19634893A DE19634893A1 (en) | 1995-11-10 | 1996-08-29 | Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19634893A1 true DE19634893A1 (en) | 1997-05-15 |
Family
ID=7777200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19634893A Ceased DE19634893A1 (en) | 1995-11-10 | 1996-08-29 | Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19634893A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19720784A1 (en) * | 1997-05-17 | 1998-11-26 | Deutsche Telekom Ag | Integrated optical circuit |
WO1998057207A1 (en) * | 1997-06-09 | 1998-12-17 | Massachusetts Institute Of Technology | High efficiency channel drop filter with absorption induced on/off switching and modulation |
WO1999019754A1 (en) * | 1997-10-14 | 1999-04-22 | Deutsche Telekom Ag | Process and device for the wavelength-selective mixture and/or distribution of polychromatic light |
WO1999041626A1 (en) * | 1998-02-10 | 1999-08-19 | Infineon Technologies Ag | Optical structure and process for manufacturing the same |
DE19915139A1 (en) * | 1999-03-26 | 2000-09-28 | Deutsche Telekom Ag | Method for dispersion compensation of commonly transmitted optical signals with different wavelengths |
US6130969A (en) * | 1997-06-09 | 2000-10-10 | Massachusetts Institute Of Technology | High efficiency channel drop filter |
WO2001042831A2 (en) * | 1999-12-10 | 2001-06-14 | Blazephotonics Limited | Photonic-crystal fibre with specific mode confinement |
EP1308773A1 (en) * | 2001-11-01 | 2003-05-07 | Agilent Technologies, Inc. (a Delaware corporation) | Wavelength tuneable optical device |
WO2003062909A2 (en) * | 2002-01-19 | 2003-07-31 | Bookham Technology Plc | Polarisation converter |
DE10341030A1 (en) * | 2003-09-03 | 2005-04-07 | Christian-Albrechts-Universität Zu Kiel | III-V semiconductor for semiconductor devices comprises a waveguide consisting of a structure with a porous core with a region of crystallographic pores likewise having a porous sleeve produced by a region of current line pores |
US6990282B2 (en) | 1999-12-10 | 2006-01-24 | Crystal Fibre A/S | Photonic crystal fibers |
US7489841B2 (en) | 2000-12-22 | 2009-02-10 | Schleifring Und Apparatebau Gmbh | Device for transferring optical signals by means of planar optical conductors |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3816512A1 (en) * | 1988-05-14 | 1989-11-23 | Univ Koeln | Universally infinitely tunable photon filter |
US5091979A (en) * | 1991-03-22 | 1992-02-25 | At&T Bell Laboratories | Sub-micron imaging |
WO1994015389A1 (en) * | 1992-12-22 | 1994-07-07 | Iowa State University Research Foundation, Inc. | Periodic dielectric structure for production of photonic band gap and devices incorporating the same |
US5365541A (en) * | 1992-01-29 | 1994-11-15 | Trw Inc. | Mirror with photonic band structure |
US5452127A (en) * | 1994-09-16 | 1995-09-19 | Martin Marietta Corporation | Etalon with optically polarizing field electrodes |
JPH0854643A (en) * | 1994-08-12 | 1996-02-27 | Dainippon Printing Co Ltd | Optical sensor, information recorder and information recording and reproducing method |
DE19628355A1 (en) * | 1995-09-08 | 1997-03-13 | Deutsche Telekom Ag | Process for the production of 3-dimensional photon crystals |
-
1996
- 1996-08-29 DE DE19634893A patent/DE19634893A1/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3816512A1 (en) * | 1988-05-14 | 1989-11-23 | Univ Koeln | Universally infinitely tunable photon filter |
US5091979A (en) * | 1991-03-22 | 1992-02-25 | At&T Bell Laboratories | Sub-micron imaging |
US5365541A (en) * | 1992-01-29 | 1994-11-15 | Trw Inc. | Mirror with photonic band structure |
WO1994015389A1 (en) * | 1992-12-22 | 1994-07-07 | Iowa State University Research Foundation, Inc. | Periodic dielectric structure for production of photonic band gap and devices incorporating the same |
JPH0854643A (en) * | 1994-08-12 | 1996-02-27 | Dainippon Printing Co Ltd | Optical sensor, information recorder and information recording and reproducing method |
US5452127A (en) * | 1994-09-16 | 1995-09-19 | Martin Marietta Corporation | Etalon with optically polarizing field electrodes |
DE19628355A1 (en) * | 1995-09-08 | 1997-03-13 | Deutsche Telekom Ag | Process for the production of 3-dimensional photon crystals |
Non-Patent Citations (6)
Title |
---|
3-36527 A.,P-1197,April 30,1991,Vol.15,No.172 * |
5-61017 A.,P-1573,July 13,1993,Vol.17,No.372 * |
AUSTON,D.H., et.al.: Research on nonlinear optical materials: an asessment. In: Applied Optics, 15. Jan. 1987, Vol.26, No.2, S.211-234 * |
JP Patents Abstracts of Japan: 6-82814 A.,P-1760,June 27,1994,Vol.18,No.339 * |
KOOPS,H.W.P., et.al.: High-resolution electron- beam induced deposition. In: J. Vac. Sci. Technol. B6 (1), Jan./Feb. 1988, S.477-481 * |
NODA,Susumu, et.al.: New Realization Method for Three-Dimensional Photonic Crystal in Optical Wavelength Region. In: Jpn. J. Appl. Phys., Vol.35, 1996, S. L909 - L912 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19720784A1 (en) * | 1997-05-17 | 1998-11-26 | Deutsche Telekom Ag | Integrated optical circuit |
WO1998057207A1 (en) * | 1997-06-09 | 1998-12-17 | Massachusetts Institute Of Technology | High efficiency channel drop filter with absorption induced on/off switching and modulation |
US6101300A (en) * | 1997-06-09 | 2000-08-08 | Massachusetts Institute Of Technology | High efficiency channel drop filter with absorption induced on/off switching and modulation |
US6130969A (en) * | 1997-06-09 | 2000-10-10 | Massachusetts Institute Of Technology | High efficiency channel drop filter |
US6512866B1 (en) | 1997-06-09 | 2003-01-28 | Massachusetts Institute Of Technology | High efficiency channel drop filter with absorption induced on/off switching and modulation |
WO1999019754A1 (en) * | 1997-10-14 | 1999-04-22 | Deutsche Telekom Ag | Process and device for the wavelength-selective mixture and/or distribution of polychromatic light |
US7075705B1 (en) | 1997-10-14 | 2006-07-11 | Deutsche Telekom Ag | Method for wavelength-selective mixing and/or distribution of polychromatic light |
US6614575B1 (en) | 1998-02-10 | 2003-09-02 | Infineon Technologies Ag | Optical structure and method for producing the same |
WO1999041626A1 (en) * | 1998-02-10 | 1999-08-19 | Infineon Technologies Ag | Optical structure and process for manufacturing the same |
DE19915139A1 (en) * | 1999-03-26 | 2000-09-28 | Deutsche Telekom Ag | Method for dispersion compensation of commonly transmitted optical signals with different wavelengths |
US6760513B1 (en) | 1999-03-26 | 2004-07-06 | Deutsche Telekom Ag | Method using photonic crystals for the dispersion compensation of optical signals of different wavelengths which are transmitted together |
US6853786B2 (en) | 1999-12-10 | 2005-02-08 | Crystal Fibre A/C | Photonic-crystal fibers and photonic-crystal fiber devices |
WO2001042831A3 (en) * | 1999-12-10 | 2001-12-13 | Blazephotonics Ltd | Photonic-crystal fibre with specific mode confinement |
US6990282B2 (en) | 1999-12-10 | 2006-01-24 | Crystal Fibre A/S | Photonic crystal fibers |
WO2001042831A2 (en) * | 1999-12-10 | 2001-06-14 | Blazephotonics Limited | Photonic-crystal fibre with specific mode confinement |
US7489841B2 (en) | 2000-12-22 | 2009-02-10 | Schleifring Und Apparatebau Gmbh | Device for transferring optical signals by means of planar optical conductors |
EP1308773A1 (en) * | 2001-11-01 | 2003-05-07 | Agilent Technologies, Inc. (a Delaware corporation) | Wavelength tuneable optical device |
US6882780B2 (en) | 2001-11-01 | 2005-04-19 | Agilent Technologies, Inc. | Wavelength tuneable optical device |
WO2003062909A2 (en) * | 2002-01-19 | 2003-07-31 | Bookham Technology Plc | Polarisation converter |
WO2003062909A3 (en) * | 2002-01-19 | 2004-03-11 | Bookham Technology Plc | Polarisation converter |
DE10341030A1 (en) * | 2003-09-03 | 2005-04-07 | Christian-Albrechts-Universität Zu Kiel | III-V semiconductor for semiconductor devices comprises a waveguide consisting of a structure with a porous core with a region of crystallographic pores likewise having a porous sleeve produced by a region of current line pores |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5973823A (en) | Method for the mechanical stabilization and for tuning a filter having a photonic crystal structure | |
EP0885402B1 (en) | Optical multi-channel separating filter with electrically adjustable photon crystals | |
DE69122821T2 (en) | Method of manufacturing an optical amplifier device | |
DE19628355A1 (en) | Process for the production of 3-dimensional photon crystals | |
DE69325640T2 (en) | Method for producing a Bragg grating in an optical medium | |
DE60129847T2 (en) | OPTICAL DEVICES FROM RADIATION NETWORKED FLUOR MIXTURES | |
DE19535809B4 (en) | Apparatus and method for compensating frequency chirp | |
DE60036872T2 (en) | OPTICAL DEVICES FROM RADIATION NETWORKED FLUOR MIXTURES | |
DE69329358T2 (en) | Device and method for amplifying optical energy by two-beam coupling | |
DE19634893A1 (en) | Mechanical stabilisation and tuning method for photon crystal filter used in optical fibre communications | |
DE69119708T2 (en) | Longitudinal mode selection laser | |
DE69427673T2 (en) | Device with an optical fiber laser or amplifier | |
DE69115033T2 (en) | WAVE GUIDE LASER. | |
DE69429448T2 (en) | OPTICAL FILTER | |
DE69120479T2 (en) | ELECTRIC FIELD INDUCED QUANTUM POTENTIAL POT WAVE GUIDE | |
DE69033955T2 (en) | Hermetically sealed, doped glass fiber | |
DE69417611T2 (en) | Process for the stable operation of an active mode-locked optical fiber laser | |
DE69412472T2 (en) | LASER | |
DE10322350B4 (en) | Optical device, and method for its production | |
DE60019658T2 (en) | Multi-wavelength optical multiplexing device, multi-wavelength light source with such a device and optical amplifier | |
EP0569353A1 (en) | Rare-earth-doped lithium niobate waveguide structures. | |
DE69032140T2 (en) | Process for producing a diffraction grating for optical elements | |
DE60110455T2 (en) | OPTICAL FILTER | |
DE69116504T2 (en) | Packaging of optical components made of silicon | |
DE69736292T2 (en) | SPECTRAL DESIGNER WITH RECONFIGURABLE HOLOGRAPHIC FILTER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OR8 | Request for search as to paragraph 43 lit. 1 sentence 1 patent law | ||
8105 | Search report available | ||
8110 | Request for examination paragraph 44 | ||
8131 | Rejection |