DE19615069A1 - Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece - Google Patents
Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpieceInfo
- Publication number
- DE19615069A1 DE19615069A1 DE19615069A DE19615069A DE19615069A1 DE 19615069 A1 DE19615069 A1 DE 19615069A1 DE 19615069 A DE19615069 A DE 19615069A DE 19615069 A DE19615069 A DE 19615069A DE 19615069 A1 DE19615069 A1 DE 19615069A1
- Authority
- DE
- Germany
- Prior art keywords
- tool
- workpiece
- edge
- tracking
- machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/42—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
- G05B19/425—Teaching successive positions by numerical control, i.e. commands being entered to control the positioning servo of the tool head or end effector
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36404—Adapt teached position as function of deviation 3-D, 2-D position workpiece
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36405—Adjust path by detecting path, line with a photosensor
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Nachführen von Werkzeugen mittels Kantenverfolgung gemäß Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Ver fahrens.The invention relates to a method for tracking Tools using edge tracking according to the preamble of Claim 1 and a device for performing the Ver driving.
Es ist beispielsweise beim Laserschweißen von Überlapp nähten und Kehlnähten in der Automobilindustrie bekannt (W. Weidlich, Laser in der Technik, Laser 93, Springer-Ver lag, 1993; E. U. Beske, Untersuchungen zum Schweißen mit ND: YAG-Laserstrahlung, Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik, VDI-Verlag), den Laserstrahl in einer feststehenden Strahlquelle zu generieren und über einen fle xiblen Lichtwellenleiter zu einer Bearbeitungsoptik zu füh ren. Dadurch ist eine 3D-Naterialbearbeitung mit vergleichs weise geringem Aufwand realisierbar. Dabei wird die Bearbei tungsoptik von einem Industrie-Roboter entlang einer program mierten Bahn über die zu verschweißende Naht geführt. Da es sich bei dem Werkstück um ein toleranzbehaftetes Blechform teil handelt und der fokussierte Laserstrahl mit geringen Toleranzen entlang der Kante der zu verschweißenden Blech formteile positioniert werden muß, entstehen Probleme, welche einen Handlungsbedarf im Bereich der Bahnkorrektur hervorru fen.It is for example when laser welding overlap seams and fillet welds known in the automotive industry (W. Weidlich, Laser in Technology, Laser 93, Springer-Ver lay, 1993; E. U. Beske, studies on welding with ND: YAG laser radiation, progress reports VDI, series 2: Manufacturing technology, VDI-Verlag), the laser beam in one generate fixed beam source and via a fle xiblen fiber optic lead to a processing optics Ren. This is a 3D material processing with comparative wise little effort realizable. Thereby the processing optics from an industrial robot along a program gated web over the seam to be welded. Because it the workpiece is a tolerant sheet metal shape part acts and the focused laser beam with low Tolerances along the edge of the sheet to be welded Problems must be positioned, which arise a need for action in the field of path correction fen.
Bestehende Kantenverfolgungssysteme (K. Bartel, W. Trun zer, Sensor verfolgt die Schweißbahn, Laserpraxis 10/94; D. Schmidt, K. Sichler, E. Nichalak, Robotertechnik: Sensorun terstützte Bahnprogrammierung beim Laserschweißen mit Robo ter, Springer-Verlag 92, Nayak, N.; Ray, A.: Intelligent Seam Tracking for Robot Welding; Nitsch, A.: Kaierle, S.: Der Schweißnaht auf der Spur, Roboter 12 (1194) Heft 2) ver messen die Lage der Kante mit optischen Verfahren, wie z. B. Linienprojektion und darauf folgende Bildauswertung. Sie kor rigieren dann die Fokuspunktlage, indem der berichtigende Versatz der programmierten Vorschubbewegung überlagert wird. Dies führt zu hohem Rechenaufwand innerhalb der Robotersteue rung und damit zu steigenden Kosten bei der Investition der Rechner-Hardware und Rechner-Software. Auch das optische Meß system selbst benötigt zur Bildauswertung eine hohe Rechner leistung und eine regelmäßige Wartung der bildaufnehmenden Komponenten.Existing edge tracking systems (K. Bartel, W. Trun zer, sensor tracks the welding path, laser practice 10/94; D. Schmidt, K. Sichler, E. Nichalak, robot technology: Sensorun Supported path programming for laser welding with robo ter, Springer-Verlag 92, Nayak, N .; Ray, A .: Intelligent Seam Tracking for Robot Welding; Nitsch, A .: Kaierle, S .: The weld seam on the track, Robot 12 (1194) Book 2) ver measure the position of the edge with optical methods, such as B. Line projection and subsequent image evaluation. You kor then rig the focus point position by the corrective Offset of the programmed feed movement is superimposed. This leads to high computing effort within the robot control and thus increasing costs when investing Computer hardware and computer software. Even the optical measurement system itself requires a high computer for image evaluation performance and regular maintenance of the imaging staff Components.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung zur Nachführung von Werkzeugen der eingangs genannten Art anzugeben, die einen einfachen Aufbau, eine einfache Bedienbarkeit und eine kostengünstige Herstellung ermöglichen, und mit denen Toleranzen der Werk stückgeometrien auf einfache Weise kompensierbar sind und der Programmieraufwand für das Handhabungsgerät (beispielsweise Roboter) verringert werden kann.The object of the present invention is a Method and device for tracking tools of the type mentioned at the beginning, which is a simple Structure, ease of use and inexpensive Allow manufacturing, and with tolerances of the factory piece geometries can be compensated in a simple manner and the Programming effort for the handling device (for example Robot) can be reduced.
Diese Aufgabe wird durch die Erfindung gemäß Ansprüchen 1 und 3 gelöst.This object is achieved by the invention according to claims 1 and 3 solved.
Vorteilhafte und zweckmäßige Weiterbildungen der Erfin dung sind in den Unteransprüchen angegeben.Advantageous and expedient further training of the Erfin are specified in the subclaims.
Durch die Erfindung wird eine zwei- als auch dreidimen sionale Kantenverfolgung ermöglicht. Die Position der Kante wird in der Verfahrbewegung vor laufend mit einem taktilen Meßtaster aufgenommen und in einer Regelelektronik so ver arbeitet, daß in Richtung zweier Zusatzachsen die Position des Bearbeitungswerkzeuges nachführbar ist, ohne das Handha bungsgerät zu beeinflussen. Die Nachführung erfolgt dabei mit hoher Geschwindigkeit. Durch die erfindungsgemäße Ausbildung kann der Aufwand zur Programmierung des Handhabungsgerätes bei neuen Bearbeitungsgeometrien stark verringert werden, da eine geringe Anzahl von Stützpunkten ausreicht, um den Meßta ster an der Kante entlangzuführen. Weiterhin können Toleran zen der Werkstoffgeometrie auch in der vollautomatisierten Fertigung kompensiert werden. Die Erfindung ermöglicht eine Nachrüstung bekannter Vorrichtungen, wobei eine Modifikation der Handhabungssteuerungen nicht notwendig ist. Weitere Vor teile bestehen im einfachen mechanischen Aufbau der erfin dungsgemäßen Vorrichtung, in der einfachen Bedienbarkeit der Vorrichtung und in geringen Herstellungskosten.The invention makes two and three dimes regional edge tracking enables. The position of the edge is in the traversing movement before running with a tactile Probe included and ver in a control electronics works that in the direction of two additional axes of the processing tool can be tracked without the handle to influence exercise equipment. The tracking is done with high speed. Through the training according to the invention can the effort to program the handling device can be greatly reduced with new machining geometries because a small number of bases is sufficient to measure the meas most along the edge. Toleran zen of the material geometry also in the fully automated Manufacturing to be compensated. The invention enables one Retrofitting known devices, with a modification the handling controls are not necessary. More before parts consist of the simple mechanical structure of the inventor device according to the invention, in the ease of use of Device and in low manufacturing costs.
Die Erfindung soll nachfolgend anhand eines in der bei gefügten Zeichnung dargestellten Ausführungsbeispiels näher erläutert werden.The invention is based on one in the attached drawing illustrated embodiment are explained.
Es zeigtIt shows
Fig. 1 schematisch eine Seitenansicht einer Vorrich tung zum Nachführen von Werkzeugen mittels Kan tenverfolgung und Fig. 1 shows schematically a side view of a Vorrich device for tracking tools by means of edge tracking and
Fig. 2 eine schematische Rückansicht der Vorrichtung nach Fig. 1. FIG. 2 shows a schematic rear view of the device according to FIG. 1.
Gleiche Bauteile in den Figuren der Zeichnung sind mit den gleichen Bezugszeichen versehen.The same components in the figures of the drawing are included provided with the same reference numerals.
Die Zeichnung zeigt eine Vorrichtung 2 zur Nachführung von Werkzeugen mittels Kantenverfolgung, die aus mehreren Komponenten besteht.The drawing shows a device 2 for tracking tools by means of edge tracking, which consists of several components.
Auf einer Grundplatte 4, welche an einer nicht dar gestellten, die Vorrichtung 2 in Vorschubrichtung (X-Achse) verfahrenden Handhabungsvorrichtung, beispielsweise einem Roboter, befestigt ist, sind ein Werkzeug 5 (hier beispiels weise ein Laserbearbeitungskopf), ein sensorischer Teil 6 und ein aktiv korrigierender Teil 8 angeordnet, welche über eine Regeleinrichtung 10 miteinander verbunden sind, welche nicht vom Roboter mitgeführt wird, sondern über Kabel angeschlossen ist.On a base plate 4 , which is attached to a handling device (not shown), the device 2 moving in the feed direction (X-axis), for example a robot, are a tool 5 (here, for example, a laser processing head), a sensor part 6 and a actively correcting part 8 arranged, which are connected to each other via a control device 10 , which is not carried by the robot, but is connected via cable.
Der sensorische Teil 6 umfaßt einen Meßtaster 12 als tak tilen Sensor mit mechanischem, mittels Feder 13 vorgespanntem Taster 14, welcher schleppend in einem definierten Abstand A zur Bearbeitungsstelle 16 an einer Kante 18 zwischen zwei beispielsweise zu verschweißenden Blechformteilen 20 und 22 vorlaufend entlanggeführt wird, und einen 2 D-Wegaufnehmer 24.The sensory part 6 comprises a probe 12 as a tactile sensor with mechanical spring 13 pretensioned button 14 , which is dragged along at a defined distance A to the processing point 16 on an edge 18 between two sheet metal parts 20 and 22 to be welded, for example, and a 2-D transducer 24 .
Der aktiv korrigierende Teil 8 umfaßt einen ersten Notor 26 mit Getriebe 28 und Kurbeltrieb 30 zur Linearbewegung des Werkzeuges 5 in Z-Richtung 31 (Z-Achse), um so beispielsweise die Fokuslage eines Laserstrahles zu korrigieren, und einen zweiten Notor 32 mit Getriebe 34 und Kurbeltrieb 36 zur Bewe gung des Werkzeuges quer zur Kante 18, also quer zur Bearbei tungsrichtung, wobei die Querbewegung (Y-Achse 38) durch Ver kippen des Werkzeuges um die Y-Achse erfolgt, um die Position des Bearbeitungspunktes (beispielsweise des Schweißpunktes) entlang der Kante, beispielsweise der zu verschweißenden Naht zu führen.The actively correcting part 8 comprises a first notor 26 with gear 28 and crank mechanism 30 for linear movement of the tool 5 in the Z direction 31 (Z axis) in order to correct the focus position of a laser beam, for example, and a second notor 32 with gear 34 and crank mechanism 36 for moving the tool transversely to the edge 18 , that is to say transversely to the machining direction, the transverse movement (Y-axis 38 ) being effected by tilting the tool about the Y-axis to the position of the machining point (for example the welding point) along the edge, for example the seam to be welded.
Das Werkzeug 5, am dargestellten Beispiel der Laser-Be arbeitungskopf, ist starr mit dem Meßtaster 12 gekoppelt.The tool 5 , in the example shown the laser processing head, is rigidly coupled to the probe 12 .
Die Vorrichtung 2 arbeitet wie folgt:
Ein Bearbeitungswerkzeug 5, beispielsweise eine Laser
schweißeinrichtung, wird von einer Handhabungsvorrichtung,
beispielsweise einem Roboter, entlang einer Bearbeitungsbahn,
beispielsweise einer zu verschweißenden Naht 40 eines Werk
stückes 42 geführt. Während der Verfahrbewegung in X-Rich
tung, beispielsweise durch die Handhabungsvorrichtung, wird
der Ist-Verlauf der Kante 18 und damit am dargestellten Bei
spiel die reale Position der zu schweißenden Naht 40 des
Werkstückes 42 vor laufend mit Hilfe des Meßtasters 12 aufge
nommen. Die Meßdaten werden in der Regeleinrichtung 10 mit
der vorgegebenen Position der vorprogrammierten Bearbeitungs
bahn verglichen und ausgewertet. Die Regeleinrichtung erzeugt
Regelsignale, die die beiden Notoren 26 und 32 steuern, wel
che die Position des Werkzeuges 5 nachführen. Senkrecht zur
Oberfläche des Werkstückes 42 erfolgt dabei eine Nachführung
der Höhenlage (Z-Achse) des Werkzeuges 5 durch eine Linearbe
wegung des Werkzeuges; quer zur Bearbeitungsrichtung (Y-Ach
se) erfolgt eine Nachführung des Werkzeuges durch eine Ver
kippung, siehe Pfeil 44 in Fig. 2. Wenn sich die Position des
Tasters 14 während des Bearbeitungsprozesses (beispielsweise
während des Schweißvorganges) in Z- oder Y-Richtung verän
dert, führen die beiden Motoren 26 und 32 über die Zusatz
achsen in Z- oder Y-Richtung das Werkzeug nach bzw. führen
eine entsprechende Korrekturbewegung des Werkzeuges mit hoher
Geschwindigkeit durch. Der maximale Verstellbereich der Zu
satzachsen (Y- und Z-Achse) wird durch die Kraftübertragung
mit einem Kurbeltrieb an der Abgangswelle des jeweiligen Ge
triebes 28, 34 begrenzt.The device 2 works as follows:
A processing tool 5 , for example a laser welding device, is guided by a handling device, for example a robot, along a processing path, for example a seam 40 to be welded, of a workpiece 42 . During the traversing movement in the X-Rich direction, for example by the handling device, the actual profile of the edge 18 and thus the actual position of the seam 40 to be welded on the workpiece 42 shown before is continuously taken up with the aid of the measuring probe 12 . The measurement data are compared and evaluated in the control device 10 with the predetermined position of the preprogrammed machining path. The control device generates control signals which control the two notors 26 and 32 , which track the position of the tool 5 . Perpendicular to the surface of the workpiece 42 there is a tracking of the height (Z axis) of the tool 5 by a Linearbe movement of the tool; transverse to the machining direction (Y-axis se), the tool is tilted, see arrow 44 in Fig. 2. If the position of the button 14 during the machining process (for example during the welding process) in the Z or Y direction changed, the two motors 26 and 32 guide the tool via the additional axes in the Z or Y direction or perform a corresponding correction movement of the tool at high speed. The maximum adjustment range of the additional axes (Y and Z axes) is limited by the power transmission with a crank mechanism on the output shaft of the respective gear 28 , 34 .
Beispielsweise konnten beim Laserstrahlschweißen mit ei nem Nd:YAG-Laser, der einen Fokusdurchmesser von 0,6 mm auf wies, Kehlnähte mit einer Blechdicke von 1 mm mit einer Ge schwindigkeit von 2,5 m/min mit hoher Qualität gefügt werden. Der eingesetzte Roboter als Handhabungsgerät führte dabei eine lineare Verfahrbewegung aus, und der Bearbeitungskopf des Laserschweißgerätes wurde allein durch die Zusatzachsen (Z- und Y-Achse) entlang der gekrümmten Kehlnaht nachgeführt.For example, laser welding with ei nem Nd: YAG laser, which has a focus diameter of 0.6 mm pointed, fillet welds with a sheet thickness of 1 mm with a Ge speed of 2.5 m / min can be joined with high quality. The robot used as a handling device led a linear movement, and the machining head of the laser welding machine was achieved solely through the additional axes (Z and Y axes) along the curved fillet weld.
Claims (11)
- - zweiachsige Messung des Verlaufs der Kante an dem zu bearbeitenden Werkstück,
- - Vergleich des gemessenen Verlaufs mit der vorgegebenen Position der Bearbeitungsbahn und
- - Nachführen des Werkzeuges oder Werkstückes in Abhängig keit vom Vergleichsergebnis.
- - biaxial measurement of the course of the edge on the workpiece to be machined,
- - Comparison of the measured course with the predetermined position of the machining path and
- - Tracking the tool or workpiece depending on the comparison result.
- - einen an der Kante (18) des Werkstückes (42) entlangge führten Meßtaster (12) zur Erfassung der Ist-Lage der Kante und
- - eine Regeleinrichtung (10), die mit dem Meßtaster (12) verbunden ist und die Meßdaten des Meßtasters (12) mit der vorgegebenen Position der von der Handhabungsvor richtung ausgeführten Bearbeitungsbahn vergleicht und auswertet und Regelsignale erzeugt, die
- - One on the edge ( 18 ) of the workpiece ( 42 ) along measuring probe ( 12 ) for detecting the actual position of the edge and
- - A control device ( 10 ) which is connected to the probe ( 12 ) and the measured data of the probe ( 12 ) with the predetermined position of the machining path executed by the device Machiningvor compares and evaluates and generates control signals that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19615069A DE19615069A1 (en) | 1996-04-17 | 1996-04-17 | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19615069A DE19615069A1 (en) | 1996-04-17 | 1996-04-17 | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19615069A1 true DE19615069A1 (en) | 1997-10-23 |
Family
ID=7791471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19615069A Ceased DE19615069A1 (en) | 1996-04-17 | 1996-04-17 | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19615069A1 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19847867A1 (en) * | 1998-07-18 | 2000-01-13 | Rofin Sinar Laser Gmbh | Apparatus for laser welding of a workpiece along a linear seam |
DE19930087A1 (en) * | 1999-06-30 | 2001-01-11 | Charalambos Tassakos | Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy |
DE10007837A1 (en) * | 2000-02-21 | 2001-08-23 | Nelson Bolzenschweis Technik G | Welding stud positioning method and stud welding head |
DE10006852A1 (en) * | 2000-02-16 | 2001-08-30 | Anders Michael | Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam |
EP1157770A2 (en) * | 2000-05-26 | 2001-11-28 | Sikora GmbH | Laser brazing head |
WO2005035179A1 (en) * | 2003-10-06 | 2005-04-21 | Daimlerchrysler Ag | Method for joining two workpieces by fusion welding using detectors for locating recesses in said workpieces |
EP1762328A1 (en) | 2005-09-09 | 2007-03-14 | Highyag Lasertechnologie GmbH | Tactile driven laser processing optic |
WO2008037548A1 (en) * | 2006-09-26 | 2008-04-03 | Scansonic Mi Gmbh | Device for guiding an energy beam |
DE102007006115A1 (en) | 2007-02-02 | 2008-08-14 | Scansonic Mi Gmbh | Device for joining workpiece parts by means of an arc with a seam guiding device |
DE102008054040A1 (en) | 2008-10-31 | 2010-05-06 | Audi Ag | Method for the production of metal sheet connection through seam welding by laser beam, comprises galvanizing the metal sheet connection, where a welding device is associated to a pressure element influencing on one of the components |
US8569646B2 (en) | 2009-11-13 | 2013-10-29 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US8747116B2 (en) | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback |
US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing |
US8851896B2 (en) | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US8911237B2 (en) | 2008-08-21 | 2014-12-16 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator |
USRE45398E1 (en) | 2009-03-09 | 2015-03-03 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system |
US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system |
US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator |
DE102014017307A1 (en) * | 2014-11-21 | 2016-05-25 | Kuka Roboter Gmbh | Method and system for processing a component with a robot-guided tool |
CN105728630A (en) * | 2016-02-24 | 2016-07-06 | 浙江大学 | Pressure foot unit of automatic drilling and riveting machine |
US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator |
US9685099B2 (en) | 2009-07-08 | 2017-06-20 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training |
US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US9895267B2 (en) | 2009-10-13 | 2018-02-20 | Lincoln Global, Inc. | Welding helmet with integral user interface |
US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
US10198962B2 (en) | 2013-09-11 | 2019-02-05 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment |
DE102007055453B4 (en) * | 2007-11-19 | 2019-03-07 | Coast Composites, Inc. | Apparatus and method for laser welding |
US10373524B2 (en) | 2009-07-10 | 2019-08-06 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US10473447B2 (en) | 2016-11-04 | 2019-11-12 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking |
US10475353B2 (en) | 2014-09-26 | 2019-11-12 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures |
US10496080B2 (en) | 2006-12-20 | 2019-12-03 | Lincoln Global, Inc. | Welding job sequencer |
US10878591B2 (en) | 2016-11-07 | 2020-12-29 | Lincoln Global, Inc. | Welding trainer utilizing a head up display to display simulated and real-world objects |
US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display |
US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US10940555B2 (en) | 2006-12-20 | 2021-03-09 | Lincoln Global, Inc. | System for a welding sequencer |
US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data |
US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration |
US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training |
US12136353B2 (en) | 2023-06-05 | 2024-11-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3341964A1 (en) * | 1983-11-21 | 1985-05-30 | Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen | Device for the automatic guidance of tools |
DE3243341C2 (en) * | 1981-11-20 | 1989-04-20 | Tokico Ltd., Kawasaki, Kanagawa, Jp |
-
1996
- 1996-04-17 DE DE19615069A patent/DE19615069A1/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3243341C2 (en) * | 1981-11-20 | 1989-04-20 | Tokico Ltd., Kawasaki, Kanagawa, Jp | |
DE3341964A1 (en) * | 1983-11-21 | 1985-05-30 | Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen | Device for the automatic guidance of tools |
Non-Patent Citations (1)
Title |
---|
McCloy, D., Harris, D.M.J.: Robotertechnik, VCH Verlagsgesellschaft mbH, Weinheim 1989, S. 230,231 * |
Cited By (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19847867A1 (en) * | 1998-07-18 | 2000-01-13 | Rofin Sinar Laser Gmbh | Apparatus for laser welding of a workpiece along a linear seam |
DE19930087C5 (en) * | 1999-06-30 | 2011-12-01 | Inos Automationssoftware Gmbh | Method and device for controlling the advance position of a manipulator of a handling device |
DE19930087A1 (en) * | 1999-06-30 | 2001-01-11 | Charalambos Tassakos | Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy |
DE19930087B4 (en) * | 1999-06-30 | 2007-08-30 | Inos Automationssoftware Gmbh | Method and device for controlling the advance position of a manipulator of a handling device |
DE10006852A1 (en) * | 2000-02-16 | 2001-08-30 | Anders Michael | Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam |
US6596962B2 (en) | 2000-02-16 | 2003-07-22 | Michael Anders | Process and device for joining of workpiece parts by means of an energy beam, in particular by means of a laser beam |
DE10006852C5 (en) * | 2000-02-16 | 2004-08-26 | Anders, Michael, Dr.-Ing. | Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam |
DE10007837A1 (en) * | 2000-02-21 | 2001-08-23 | Nelson Bolzenschweis Technik G | Welding stud positioning method and stud welding head |
EP1157770A2 (en) * | 2000-05-26 | 2001-11-28 | Sikora GmbH | Laser brazing head |
EP1157770A3 (en) * | 2000-05-26 | 2003-05-14 | Sikora GmbH | Laser brazing head |
WO2005035179A1 (en) * | 2003-10-06 | 2005-04-21 | Daimlerchrysler Ag | Method for joining two workpieces by fusion welding using detectors for locating recesses in said workpieces |
DE10346264A1 (en) * | 2003-10-06 | 2005-04-28 | Daimler Chrysler Ag | Method for joining two workpieces by fusion welding |
EP1762328A1 (en) | 2005-09-09 | 2007-03-14 | Highyag Lasertechnologie GmbH | Tactile driven laser processing optic |
DE102006056252A1 (en) * | 2006-09-26 | 2008-04-03 | Scansonic Mi Gmbh | Device for guiding an energy beam |
DE102006056252B4 (en) * | 2006-09-26 | 2009-06-10 | Scansonic Mi Gmbh | Device for guiding an energy beam |
WO2008037548A1 (en) * | 2006-09-26 | 2008-04-03 | Scansonic Mi Gmbh | Device for guiding an energy beam |
US11980976B2 (en) | 2006-12-20 | 2024-05-14 | Lincoln Global, Inc. | Method for a welding sequencer |
US10496080B2 (en) | 2006-12-20 | 2019-12-03 | Lincoln Global, Inc. | Welding job sequencer |
US10940555B2 (en) | 2006-12-20 | 2021-03-09 | Lincoln Global, Inc. | System for a welding sequencer |
US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data |
DE102007006115A1 (en) | 2007-02-02 | 2008-08-14 | Scansonic Mi Gmbh | Device for joining workpiece parts by means of an arc with a seam guiding device |
DE102007055453B4 (en) * | 2007-11-19 | 2019-03-07 | Coast Composites, Inc. | Apparatus and method for laser welding |
US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator |
US9965973B2 (en) | 2008-08-21 | 2018-05-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US11521513B2 (en) | 2008-08-21 | 2022-12-06 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US11715388B2 (en) | 2008-08-21 | 2023-08-01 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US11030920B2 (en) | 2008-08-21 | 2021-06-08 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US8851896B2 (en) | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing |
US10916153B2 (en) | 2008-08-21 | 2021-02-09 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US10056011B2 (en) | 2008-08-21 | 2018-08-21 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9928755B2 (en) | 2008-08-21 | 2018-03-27 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
US10204529B2 (en) | 2008-08-21 | 2019-02-12 | Lincoln Global, Inc. | System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment |
US10803770B2 (en) | 2008-08-21 | 2020-10-13 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US10762802B2 (en) | 2008-08-21 | 2020-09-01 | Lincoln Global, Inc. | Welding simulator |
US9293057B2 (en) | 2008-08-21 | 2016-03-22 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9293056B2 (en) | 2008-08-21 | 2016-03-22 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9836995B2 (en) | 2008-08-21 | 2017-12-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator |
US9336686B2 (en) | 2008-08-21 | 2016-05-10 | Lincoln Global, Inc. | Tablet-based welding simulator |
US10629093B2 (en) | 2008-08-21 | 2020-04-21 | Lincoln Global Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US8911237B2 (en) | 2008-08-21 | 2014-12-16 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US9818312B2 (en) | 2008-08-21 | 2017-11-14 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator |
US9858833B2 (en) | 2008-08-21 | 2018-01-02 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9691299B2 (en) | 2008-08-21 | 2017-06-27 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US9754509B2 (en) | 2008-08-21 | 2017-09-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9761153B2 (en) | 2008-08-21 | 2017-09-12 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US8747116B2 (en) | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback |
US10249215B2 (en) | 2008-08-21 | 2019-04-02 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US9779635B2 (en) | 2008-08-21 | 2017-10-03 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9779636B2 (en) | 2008-08-21 | 2017-10-03 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
US9792833B2 (en) | 2008-08-21 | 2017-10-17 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
US9818311B2 (en) | 2008-08-21 | 2017-11-14 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
DE102008054040A1 (en) | 2008-10-31 | 2010-05-06 | Audi Ag | Method for the production of metal sheet connection through seam welding by laser beam, comprises galvanizing the metal sheet connection, where a welding device is associated to a pressure element influencing on one of the components |
USRE47918E1 (en) | 2009-03-09 | 2020-03-31 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
USRE45398E1 (en) | 2009-03-09 | 2015-03-03 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
US10347154B2 (en) | 2009-07-08 | 2019-07-09 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training |
US9685099B2 (en) | 2009-07-08 | 2017-06-20 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US10522055B2 (en) | 2009-07-08 | 2019-12-31 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system |
US10068495B2 (en) | 2009-07-08 | 2018-09-04 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations |
US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system |
US10991267B2 (en) | 2009-07-10 | 2021-04-27 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US9911360B2 (en) | 2009-07-10 | 2018-03-06 | Lincoln Global, Inc. | Virtual testing and inspection of a virtual weldment |
US10134303B2 (en) | 2009-07-10 | 2018-11-20 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
US9911359B2 (en) | 2009-07-10 | 2018-03-06 | Lincoln Global, Inc. | Virtual testing and inspection of a virtual weldment |
US10643496B2 (en) | 2009-07-10 | 2020-05-05 | Lincoln Global Inc. | Virtual testing and inspection of a virtual weldment |
US9836994B2 (en) | 2009-07-10 | 2017-12-05 | Lincoln Global, Inc. | Virtual welding system |
US10373524B2 (en) | 2009-07-10 | 2019-08-06 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US9895267B2 (en) | 2009-10-13 | 2018-02-20 | Lincoln Global, Inc. | Welding helmet with integral user interface |
US9012802B2 (en) | 2009-11-13 | 2015-04-21 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9050679B2 (en) | 2009-11-13 | 2015-06-09 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US8569646B2 (en) | 2009-11-13 | 2013-10-29 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9050678B2 (en) | 2009-11-13 | 2015-06-09 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US8987628B2 (en) | 2009-11-13 | 2015-03-24 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9089921B2 (en) | 2009-11-13 | 2015-07-28 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
US9269279B2 (en) | 2010-12-13 | 2016-02-23 | Lincoln Global, Inc. | Welding training system |
US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US10748447B2 (en) | 2013-05-24 | 2020-08-18 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
US10198962B2 (en) | 2013-09-11 | 2019-02-05 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment |
US11100812B2 (en) | 2013-11-05 | 2021-08-24 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
US10720074B2 (en) | 2014-02-14 | 2020-07-21 | Lincoln Global, Inc. | Welding simulator |
US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
US10475353B2 (en) | 2014-09-26 | 2019-11-12 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures |
DE102014017307A1 (en) * | 2014-11-21 | 2016-05-25 | Kuka Roboter Gmbh | Method and system for processing a component with a robot-guided tool |
DE102014017307B4 (en) | 2014-11-21 | 2019-08-01 | Kuka Roboter Gmbh | Method and system for processing a component with a robot-guided tool |
US10394216B2 (en) | 2014-11-21 | 2019-08-27 | Kuka Deutschland Gmbh | Method and system for correcting a processing path of a robot-guided tool |
CN105728630A (en) * | 2016-02-24 | 2016-07-06 | 浙江大学 | Pressure foot unit of automatic drilling and riveting machine |
US10473447B2 (en) | 2016-11-04 | 2019-11-12 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking |
US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display |
US10878591B2 (en) | 2016-11-07 | 2020-12-29 | Lincoln Global, Inc. | Welding trainer utilizing a head up display to display simulated and real-world objects |
US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration |
US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training |
US12136353B2 (en) | 2023-06-05 | 2024-11-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19615069A1 (en) | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece | |
DE102006030130B3 (en) | Workpiece machining method for, e.g., industrial robot, involves compensating deviation of determined actual-position from reference-movement path and deviation of determined actual-speed vector from measured reference-speed vector | |
DE69127121T3 (en) | Device and method for automatically aligning a welding device for butt welding workpieces | |
EP1125672B2 (en) | Method and apparatus for joining workpieces by using a beam of energy, especially a laserbeam | |
DE69333540T2 (en) | Robotic movement of a laser beam over a workpiece surface | |
DE102009042986B3 (en) | Welding head and method for joining a workpiece | |
DE102017126867A1 (en) | Laser processing system and method for laser processing | |
DE102008049821B4 (en) | Distance sensor and method for determining a distance and / or distance variations between a processing laser and a workpiece | |
EP0707920A2 (en) | Compact laser processing head for laser processing of material, with an integrated on-line track control | |
EP2418040B1 (en) | Method of controlling a device for laser welding | |
EP2353801A2 (en) | Working device with robot on movable platform and working method | |
EP1238746A2 (en) | Method and device for robotically controlled laser cutting and welding | |
DE202006005916U1 (en) | Monitoring device for jet mechanisms e.g. remote lasers, has jet e.g. laser beam for treatment of workpiece and movable jet head e.g. laser head, where monitoring device has sensor unit attached to jet head, preferably at exit of jet optics | |
EP2091699B1 (en) | Method and device for fine-positioning a tool having a handling device | |
EP3349938B1 (en) | Method for guiding a machining head along a track to be machined | |
DE3413731A1 (en) | Arrangement on an industrial robot | |
DE102008029063B4 (en) | Method and device for applying an application structure to a workpiece and for monitoring the application structure | |
DE102020100803A1 (en) | Follow-up robot and robot work system | |
EP4029641A1 (en) | Laser processing system | |
EP2022595B1 (en) | Method and apparatus for setting a processing position with determination of the real processing line in comparison with the programmed processing line of the processing tool | |
EP0037521B1 (en) | Process and apparatus for automatically tracking a weld seam | |
DE102011117454B4 (en) | Laser processing device | |
DE102016005592B4 (en) | Method for laser beam joining and apparatus with a laser beam source for laser beam joining | |
DE3700190A1 (en) | Laser-cutting apparatus and process | |
WO2020007984A1 (en) | Method and device for checking a focus position of a laser beam in relation to a workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |