Nothing Special   »   [go: up one dir, main page]

DE19615069A1 - Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece - Google Patents

Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece

Info

Publication number
DE19615069A1
DE19615069A1 DE19615069A DE19615069A DE19615069A1 DE 19615069 A1 DE19615069 A1 DE 19615069A1 DE 19615069 A DE19615069 A DE 19615069A DE 19615069 A DE19615069 A DE 19615069A DE 19615069 A1 DE19615069 A1 DE 19615069A1
Authority
DE
Germany
Prior art keywords
tool
workpiece
edge
tracking
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19615069A
Other languages
German (de)
Inventor
Joerg Schumacher
Andreas Ostendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LZH Laser Zentrum Hannover eV
Original Assignee
LZH Laser Zentrum Hannover eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LZH Laser Zentrum Hannover eV filed Critical LZH Laser Zentrum Hannover eV
Priority to DE19615069A priority Critical patent/DE19615069A1/en
Publication of DE19615069A1 publication Critical patent/DE19615069A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/425Teaching successive positions by numerical control, i.e. commands being entered to control the positioning servo of the tool head or end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36404Adapt teached position as function of deviation 3-D, 2-D position workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36405Adjust path by detecting path, line with a photosensor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)

Abstract

A procedure for panning a tool using edge tracking on the workpiece has the tool or the workpiece moved along a machining path by a manipulator. The procedural steps are: two-axis measurement of the course of the edge on the workpiece; comparison of the course with the preset position of the machining path; panning of the tool or workpiece depending on this comparison. The course of the edge is measured in two independent axes transverse to the machining path, or the feed direction of the manipulator. A pressure foot (12) guided along the edge of the workpiece (42) evaluates its actual length. There is a control unit (10) to do the measurement comparison and to generate signals for the tool (5) panning.

Description

Die Erfindung betrifft ein Verfahren zum Nachführen von Werkzeugen mittels Kantenverfolgung gemäß Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Ver­ fahrens.The invention relates to a method for tracking Tools using edge tracking according to the preamble of Claim 1 and a device for performing the Ver driving.

Es ist beispielsweise beim Laserschweißen von Überlapp­ nähten und Kehlnähten in der Automobilindustrie bekannt (W. Weidlich, Laser in der Technik, Laser 93, Springer-Ver­ lag, 1993; E. U. Beske, Untersuchungen zum Schweißen mit ND: YAG-Laserstrahlung, Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik, VDI-Verlag), den Laserstrahl in einer feststehenden Strahlquelle zu generieren und über einen fle­ xiblen Lichtwellenleiter zu einer Bearbeitungsoptik zu füh­ ren. Dadurch ist eine 3D-Naterialbearbeitung mit vergleichs­ weise geringem Aufwand realisierbar. Dabei wird die Bearbei­ tungsoptik von einem Industrie-Roboter entlang einer program­ mierten Bahn über die zu verschweißende Naht geführt. Da es sich bei dem Werkstück um ein toleranzbehaftetes Blechform­ teil handelt und der fokussierte Laserstrahl mit geringen Toleranzen entlang der Kante der zu verschweißenden Blech­ formteile positioniert werden muß, entstehen Probleme, welche einen Handlungsbedarf im Bereich der Bahnkorrektur hervorru­ fen.It is for example when laser welding overlap seams and fillet welds known in the automotive industry (W. Weidlich, Laser in Technology, Laser 93, Springer-Ver lay, 1993; E. U. Beske, studies on welding with ND: YAG laser radiation, progress reports VDI, series 2: Manufacturing technology, VDI-Verlag), the laser beam in one generate fixed beam source and via a fle xiblen fiber optic lead to a processing optics Ren. This is a 3D material processing with comparative wise little effort realizable. Thereby the processing optics from an industrial robot along a program gated web over the seam to be welded. Because it the workpiece is a tolerant sheet metal shape part acts and the focused laser beam with low Tolerances along the edge of the sheet to be welded Problems must be positioned, which arise a need for action in the field of path correction fen.

Bestehende Kantenverfolgungssysteme (K. Bartel, W. Trun­ zer, Sensor verfolgt die Schweißbahn, Laserpraxis 10/94; D. Schmidt, K. Sichler, E. Nichalak, Robotertechnik: Sensorun­ terstützte Bahnprogrammierung beim Laserschweißen mit Robo­ ter, Springer-Verlag 92, Nayak, N.; Ray, A.: Intelligent Seam Tracking for Robot Welding; Nitsch, A.: Kaierle, S.: Der Schweißnaht auf der Spur, Roboter 12 (1194) Heft 2) ver­ messen die Lage der Kante mit optischen Verfahren, wie z. B. Linienprojektion und darauf folgende Bildauswertung. Sie kor­ rigieren dann die Fokuspunktlage, indem der berichtigende Versatz der programmierten Vorschubbewegung überlagert wird. Dies führt zu hohem Rechenaufwand innerhalb der Robotersteue­ rung und damit zu steigenden Kosten bei der Investition der Rechner-Hardware und Rechner-Software. Auch das optische Meß­ system selbst benötigt zur Bildauswertung eine hohe Rechner­ leistung und eine regelmäßige Wartung der bildaufnehmenden Komponenten.Existing edge tracking systems (K. Bartel, W. Trun  zer, sensor tracks the welding path, laser practice 10/94; D. Schmidt, K. Sichler, E. Nichalak, robot technology: Sensorun Supported path programming for laser welding with robo ter, Springer-Verlag 92, Nayak, N .; Ray, A .: Intelligent Seam Tracking for Robot Welding; Nitsch, A .: Kaierle, S .: The weld seam on the track, Robot 12 (1194) Book 2) ver measure the position of the edge with optical methods, such as B. Line projection and subsequent image evaluation. You kor then rig the focus point position by the corrective Offset of the programmed feed movement is superimposed. This leads to high computing effort within the robot control and thus increasing costs when investing Computer hardware and computer software. Even the optical measurement system itself requires a high computer for image evaluation performance and regular maintenance of the imaging staff Components.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung zur Nachführung von Werkzeugen der eingangs genannten Art anzugeben, die einen einfachen Aufbau, eine einfache Bedienbarkeit und eine kostengünstige Herstellung ermöglichen, und mit denen Toleranzen der Werk­ stückgeometrien auf einfache Weise kompensierbar sind und der Programmieraufwand für das Handhabungsgerät (beispielsweise Roboter) verringert werden kann.The object of the present invention is a Method and device for tracking tools of the type mentioned at the beginning, which is a simple Structure, ease of use and inexpensive Allow manufacturing, and with tolerances of the factory piece geometries can be compensated in a simple manner and the Programming effort for the handling device (for example Robot) can be reduced.

Diese Aufgabe wird durch die Erfindung gemäß Ansprüchen 1 und 3 gelöst.This object is achieved by the invention according to claims 1 and 3 solved.

Vorteilhafte und zweckmäßige Weiterbildungen der Erfin­ dung sind in den Unteransprüchen angegeben.Advantageous and expedient further training of the Erfin are specified in the subclaims.

Durch die Erfindung wird eine zwei- als auch dreidimen­ sionale Kantenverfolgung ermöglicht. Die Position der Kante wird in der Verfahrbewegung vor laufend mit einem taktilen Meßtaster aufgenommen und in einer Regelelektronik so ver­ arbeitet, daß in Richtung zweier Zusatzachsen die Position des Bearbeitungswerkzeuges nachführbar ist, ohne das Handha­ bungsgerät zu beeinflussen. Die Nachführung erfolgt dabei mit hoher Geschwindigkeit. Durch die erfindungsgemäße Ausbildung kann der Aufwand zur Programmierung des Handhabungsgerätes bei neuen Bearbeitungsgeometrien stark verringert werden, da eine geringe Anzahl von Stützpunkten ausreicht, um den Meßta­ ster an der Kante entlangzuführen. Weiterhin können Toleran­ zen der Werkstoffgeometrie auch in der vollautomatisierten Fertigung kompensiert werden. Die Erfindung ermöglicht eine Nachrüstung bekannter Vorrichtungen, wobei eine Modifikation der Handhabungssteuerungen nicht notwendig ist. Weitere Vor­ teile bestehen im einfachen mechanischen Aufbau der erfin­ dungsgemäßen Vorrichtung, in der einfachen Bedienbarkeit der Vorrichtung und in geringen Herstellungskosten.The invention makes two and three dimes regional edge tracking enables. The position of the edge is in the traversing movement before running with a tactile Probe included and ver in a control electronics works that in the direction of two additional axes of the processing tool can be tracked without the handle to influence exercise equipment. The tracking is done with high speed. Through the training according to the invention can the effort to program the handling device  can be greatly reduced with new machining geometries because a small number of bases is sufficient to measure the meas most along the edge. Toleran zen of the material geometry also in the fully automated Manufacturing to be compensated. The invention enables one Retrofitting known devices, with a modification the handling controls are not necessary. More before parts consist of the simple mechanical structure of the inventor device according to the invention, in the ease of use of Device and in low manufacturing costs.

Die Erfindung soll nachfolgend anhand eines in der bei­ gefügten Zeichnung dargestellten Ausführungsbeispiels näher erläutert werden.The invention is based on one in the attached drawing illustrated embodiment are explained.

Es zeigtIt shows

Fig. 1 schematisch eine Seitenansicht einer Vorrich­ tung zum Nachführen von Werkzeugen mittels Kan­ tenverfolgung und Fig. 1 shows schematically a side view of a Vorrich device for tracking tools by means of edge tracking and

Fig. 2 eine schematische Rückansicht der Vorrichtung nach Fig. 1. FIG. 2 shows a schematic rear view of the device according to FIG. 1.

Gleiche Bauteile in den Figuren der Zeichnung sind mit den gleichen Bezugszeichen versehen.The same components in the figures of the drawing are included provided with the same reference numerals.

Die Zeichnung zeigt eine Vorrichtung 2 zur Nachführung von Werkzeugen mittels Kantenverfolgung, die aus mehreren Komponenten besteht.The drawing shows a device 2 for tracking tools by means of edge tracking, which consists of several components.

Auf einer Grundplatte 4, welche an einer nicht dar­ gestellten, die Vorrichtung 2 in Vorschubrichtung (X-Achse) verfahrenden Handhabungsvorrichtung, beispielsweise einem Roboter, befestigt ist, sind ein Werkzeug 5 (hier beispiels­ weise ein Laserbearbeitungskopf), ein sensorischer Teil 6 und ein aktiv korrigierender Teil 8 angeordnet, welche über eine Regeleinrichtung 10 miteinander verbunden sind, welche nicht vom Roboter mitgeführt wird, sondern über Kabel angeschlossen ist.On a base plate 4 , which is attached to a handling device (not shown), the device 2 moving in the feed direction (X-axis), for example a robot, are a tool 5 (here, for example, a laser processing head), a sensor part 6 and a actively correcting part 8 arranged, which are connected to each other via a control device 10 , which is not carried by the robot, but is connected via cable.

Der sensorische Teil 6 umfaßt einen Meßtaster 12 als tak­ tilen Sensor mit mechanischem, mittels Feder 13 vorgespanntem Taster 14, welcher schleppend in einem definierten Abstand A zur Bearbeitungsstelle 16 an einer Kante 18 zwischen zwei beispielsweise zu verschweißenden Blechformteilen 20 und 22 vorlaufend entlanggeführt wird, und einen 2 D-Wegaufnehmer 24.The sensory part 6 comprises a probe 12 as a tactile sensor with mechanical spring 13 pretensioned button 14 , which is dragged along at a defined distance A to the processing point 16 on an edge 18 between two sheet metal parts 20 and 22 to be welded, for example, and a 2-D transducer 24 .

Der aktiv korrigierende Teil 8 umfaßt einen ersten Notor 26 mit Getriebe 28 und Kurbeltrieb 30 zur Linearbewegung des Werkzeuges 5 in Z-Richtung 31 (Z-Achse), um so beispielsweise die Fokuslage eines Laserstrahles zu korrigieren, und einen zweiten Notor 32 mit Getriebe 34 und Kurbeltrieb 36 zur Bewe­ gung des Werkzeuges quer zur Kante 18, also quer zur Bearbei­ tungsrichtung, wobei die Querbewegung (Y-Achse 38) durch Ver­ kippen des Werkzeuges um die Y-Achse erfolgt, um die Position des Bearbeitungspunktes (beispielsweise des Schweißpunktes) entlang der Kante, beispielsweise der zu verschweißenden Naht zu führen.The actively correcting part 8 comprises a first notor 26 with gear 28 and crank mechanism 30 for linear movement of the tool 5 in the Z direction 31 (Z axis) in order to correct the focus position of a laser beam, for example, and a second notor 32 with gear 34 and crank mechanism 36 for moving the tool transversely to the edge 18 , that is to say transversely to the machining direction, the transverse movement (Y-axis 38 ) being effected by tilting the tool about the Y-axis to the position of the machining point (for example the welding point) along the edge, for example the seam to be welded.

Das Werkzeug 5, am dargestellten Beispiel der Laser-Be­ arbeitungskopf, ist starr mit dem Meßtaster 12 gekoppelt.The tool 5 , in the example shown the laser processing head, is rigidly coupled to the probe 12 .

Die Vorrichtung 2 arbeitet wie folgt:
Ein Bearbeitungswerkzeug 5, beispielsweise eine Laser­ schweißeinrichtung, wird von einer Handhabungsvorrichtung, beispielsweise einem Roboter, entlang einer Bearbeitungsbahn, beispielsweise einer zu verschweißenden Naht 40 eines Werk­ stückes 42 geführt. Während der Verfahrbewegung in X-Rich­ tung, beispielsweise durch die Handhabungsvorrichtung, wird der Ist-Verlauf der Kante 18 und damit am dargestellten Bei­ spiel die reale Position der zu schweißenden Naht 40 des Werkstückes 42 vor laufend mit Hilfe des Meßtasters 12 aufge­ nommen. Die Meßdaten werden in der Regeleinrichtung 10 mit der vorgegebenen Position der vorprogrammierten Bearbeitungs­ bahn verglichen und ausgewertet. Die Regeleinrichtung erzeugt Regelsignale, die die beiden Notoren 26 und 32 steuern, wel­ che die Position des Werkzeuges 5 nachführen. Senkrecht zur Oberfläche des Werkstückes 42 erfolgt dabei eine Nachführung der Höhenlage (Z-Achse) des Werkzeuges 5 durch eine Linearbe­ wegung des Werkzeuges; quer zur Bearbeitungsrichtung (Y-Ach­ se) erfolgt eine Nachführung des Werkzeuges durch eine Ver­ kippung, siehe Pfeil 44 in Fig. 2. Wenn sich die Position des Tasters 14 während des Bearbeitungsprozesses (beispielsweise während des Schweißvorganges) in Z- oder Y-Richtung verän­ dert, führen die beiden Motoren 26 und 32 über die Zusatz­ achsen in Z- oder Y-Richtung das Werkzeug nach bzw. führen eine entsprechende Korrekturbewegung des Werkzeuges mit hoher Geschwindigkeit durch. Der maximale Verstellbereich der Zu­ satzachsen (Y- und Z-Achse) wird durch die Kraftübertragung mit einem Kurbeltrieb an der Abgangswelle des jeweiligen Ge­ triebes 28, 34 begrenzt.
The device 2 works as follows:
A processing tool 5 , for example a laser welding device, is guided by a handling device, for example a robot, along a processing path, for example a seam 40 to be welded, of a workpiece 42 . During the traversing movement in the X-Rich direction, for example by the handling device, the actual profile of the edge 18 and thus the actual position of the seam 40 to be welded on the workpiece 42 shown before is continuously taken up with the aid of the measuring probe 12 . The measurement data are compared and evaluated in the control device 10 with the predetermined position of the preprogrammed machining path. The control device generates control signals which control the two notors 26 and 32 , which track the position of the tool 5 . Perpendicular to the surface of the workpiece 42 there is a tracking of the height (Z axis) of the tool 5 by a Linearbe movement of the tool; transverse to the machining direction (Y-axis se), the tool is tilted, see arrow 44 in Fig. 2. If the position of the button 14 during the machining process (for example during the welding process) in the Z or Y direction changed, the two motors 26 and 32 guide the tool via the additional axes in the Z or Y direction or perform a corresponding correction movement of the tool at high speed. The maximum adjustment range of the additional axes (Y and Z axes) is limited by the power transmission with a crank mechanism on the output shaft of the respective gear 28 , 34 .

Beispielsweise konnten beim Laserstrahlschweißen mit ei­ nem Nd:YAG-Laser, der einen Fokusdurchmesser von 0,6 mm auf­ wies, Kehlnähte mit einer Blechdicke von 1 mm mit einer Ge­ schwindigkeit von 2,5 m/min mit hoher Qualität gefügt werden. Der eingesetzte Roboter als Handhabungsgerät führte dabei eine lineare Verfahrbewegung aus, und der Bearbeitungskopf des Laserschweißgerätes wurde allein durch die Zusatzachsen (Z- und Y-Achse) entlang der gekrümmten Kehlnaht nachgeführt.For example, laser welding with ei nem Nd: YAG laser, which has a focus diameter of 0.6 mm pointed, fillet welds with a sheet thickness of 1 mm with a Ge speed of 2.5 m / min can be joined with high quality. The robot used as a handling device led a linear movement, and the machining head of the laser welding machine was achieved solely through the additional axes (Z and Y axes) along the curved fillet weld.

Claims (11)

1. Verfahren zum Nachführen von Werkzeugen mittels Kanten­ verfolgung an einem zu bearbeitenden Werkstück, bei dem das Werkzeug oder das Werkstück entlang einer von einer Handha­ bungsvorrichtung ausgeführten Bearbeitungsbahn bewegt wird, gekennzeichnet durch folgende Verfahrensschritte:
  • - zweiachsige Messung des Verlaufs der Kante an dem zu bearbeitenden Werkstück,
  • - Vergleich des gemessenen Verlaufs mit der vorgegebenen Position der Bearbeitungsbahn und
  • - Nachführen des Werkzeuges oder Werkstückes in Abhängig­ keit vom Vergleichsergebnis.
1. A method for tracking tools by means of edge tracking on a workpiece to be machined, in which the tool or the workpiece is moved along a machining path executed by a handling device, characterized by the following method steps:
  • - biaxial measurement of the course of the edge on the workpiece to be machined,
  • - Comparison of the measured course with the predetermined position of the machining path and
  • - Tracking the tool or workpiece depending on the comparison result.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Verlauf der Kante in zwei voneinander unabhängigen Achsen quer zur Bearbeitungsbahn (Vorschubrichtung der Handhabungsvorrichtung) gemessen wird.2. The method according to claim 1, characterized in that the course of the edge in two mutually independent Axes transverse to the machining path (feed direction of the Handling device) is measured. 3. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
  • - einen an der Kante (18) des Werkstückes (42) entlangge­ führten Meßtaster (12) zur Erfassung der Ist-Lage der Kante und
  • - eine Regeleinrichtung (10), die mit dem Meßtaster (12) verbunden ist und die Meßdaten des Meßtasters (12) mit der vorgegebenen Position der von der Handhabungsvor­ richtung ausgeführten Bearbeitungsbahn vergleicht und auswertet und Regelsignale erzeugt, die
3. Device for performing the method according to one of the preceding claims, characterized by
  • - One on the edge ( 18 ) of the workpiece ( 42 ) along measuring probe ( 12 ) for detecting the actual position of the edge and
  • - A control device ( 10 ) which is connected to the probe ( 12 ) and the measured data of the probe ( 12 ) with the predetermined position of the machining path executed by the device Machiningvor compares and evaluates and generates control signals that
einer Antriebseinrichtung (26, 28, 30; 32, 34, 36) zu­ geführt werden zum Nachführen des Werkzeuges (5) senk­ recht (Z-Achse) zur Oberfläche des Werkstückes (42) und/oder quer (Y-Achse) zur Bearbeitungsrichtung des Werkzeuges in Abhängigkeit von der erfaßten Ist-Lage der Kante des Werkstückes (42).a drive device ( 26 , 28 , 30 ; 32 , 34 , 36 ) to be guided to track the tool ( 5 ) perpendicular (Z axis) to the surface of the workpiece ( 42 ) and / or transversely (Y axis) to the machining direction of the tool as a function of the detected actual position of the edge of the workpiece ( 42 ). 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Meßtaster (12) einen mechanischen Taster (14) aufweist, welcher in einem bestimmten Abstand (A) zur Bearbeitungsstel­ le des Werkzeuges (5), der Bearbeitungsstelle vorlaufend an­ geordnet ist.4. The device according to claim 3, characterized in that the probe ( 12 ) has a mechanical button ( 14 ) which is arranged at a certain distance (A) to the machining position le of the tool ( 5 ), the machining point. 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Taster (14) schleppend oder stechend angeordnet ist.5. The device according to claim 4, characterized in that the button ( 14 ) is arranged dragging or stabbing. 6. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Antriebseinrichtung einen ersten Motor (26) mit Getriebe (28) und Kurbeltrieb (30) zum Nachführen des Werkzeuges (5) senkrecht zur Oberfläche des zu bearbeitenden Werkstückes (42) aufweist.6. The device according to claim 3, characterized in that the drive device has a first motor ( 26 ) with gear ( 28 ) and crank mechanism ( 30 ) for tracking the tool ( 5 ) perpendicular to the surface of the workpiece ( 42 ) to be machined. 7. Vorrichtung nach Anspruch 3 oder 6, dadurch gekennzeich­ net, daß die Antriebseinrichtung einen zweiten Notor (32) mit Getriebe (34) und Kurbeltrieb (36) zum Nachführen des Werk­ zeuges (5) quer zur Bearbeitungsrichtung des Werkzeuges auf­ weist. 7. Apparatus according to claim 3 or 6, characterized in that the drive device has a second notor ( 32 ) with gear ( 34 ) and crank mechanism ( 36 ) for tracking the tool ( 5 ) transversely to the machining direction of the tool. 8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeich­ net, daß die Antriebseinrichtung (26, 28, 30; 32, 34, 36) das Werkzeug (5) durch Linear- oder Kippbewegung nachführt.8. Apparatus according to claim 6 or 7, characterized in that the drive device ( 26 , 28 , 30 ; 32 , 34 , 36 ) tracks the tool ( 5 ) by linear or tilting movement. 9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch ge­ kennzeichnet, daß der maximale Verstell- bzw. Nachführbereich durch Kraftübertragung mit einem Kurbeltrieb an der Abgangs­ welle des jeweiligen Getriebes (28, 34) begrenzt ist.9. Device according to one of claims 6 to 8, characterized in that the maximum adjustment or tracking range is limited by power transmission with a crank mechanism on the output shaft of the respective transmission ( 28 , 34 ). 10. Vorrichtung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Vorrichtung zum Nachführen von der Handhabungsvorrichtung des Werkzeuges getrennt angeordnet ist.10. Device according to one of claims 3 to 9, characterized characterized in that the device for tracking the Handling device of the tool arranged separately is.
DE19615069A 1996-04-17 1996-04-17 Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece Ceased DE19615069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19615069A DE19615069A1 (en) 1996-04-17 1996-04-17 Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19615069A DE19615069A1 (en) 1996-04-17 1996-04-17 Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece

Publications (1)

Publication Number Publication Date
DE19615069A1 true DE19615069A1 (en) 1997-10-23

Family

ID=7791471

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19615069A Ceased DE19615069A1 (en) 1996-04-17 1996-04-17 Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece

Country Status (1)

Country Link
DE (1) DE19615069A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847867A1 (en) * 1998-07-18 2000-01-13 Rofin Sinar Laser Gmbh Apparatus for laser welding of a workpiece along a linear seam
DE19930087A1 (en) * 1999-06-30 2001-01-11 Charalambos Tassakos Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy
DE10007837A1 (en) * 2000-02-21 2001-08-23 Nelson Bolzenschweis Technik G Welding stud positioning method and stud welding head
DE10006852A1 (en) * 2000-02-16 2001-08-30 Anders Michael Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam
EP1157770A2 (en) * 2000-05-26 2001-11-28 Sikora GmbH Laser brazing head
WO2005035179A1 (en) * 2003-10-06 2005-04-21 Daimlerchrysler Ag Method for joining two workpieces by fusion welding using detectors for locating recesses in said workpieces
EP1762328A1 (en) 2005-09-09 2007-03-14 Highyag Lasertechnologie GmbH Tactile driven laser processing optic
WO2008037548A1 (en) * 2006-09-26 2008-04-03 Scansonic Mi Gmbh Device for guiding an energy beam
DE102007006115A1 (en) 2007-02-02 2008-08-14 Scansonic Mi Gmbh Device for joining workpiece parts by means of an arc with a seam guiding device
DE102008054040A1 (en) 2008-10-31 2010-05-06 Audi Ag Method for the production of metal sheet connection through seam welding by laser beam, comprises galvanizing the metal sheet connection, where a welding device is associated to a pressure element influencing on one of the components
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8747116B2 (en) 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US8915740B2 (en) 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
USRE45398E1 (en) 2009-03-09 2015-03-03 Lincoln Global, Inc. System for tracking and analyzing welding activity
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
DE102014017307A1 (en) * 2014-11-21 2016-05-25 Kuka Roboter Gmbh Method and system for processing a component with a robot-guided tool
CN105728630A (en) * 2016-02-24 2016-07-06 浙江大学 Pressure foot unit of automatic drilling and riveting machine
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9685099B2 (en) 2009-07-08 2017-06-20 Lincoln Global, Inc. System for characterizing manual welding operations
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9895267B2 (en) 2009-10-13 2018-02-20 Lincoln Global, Inc. Welding helmet with integral user interface
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US10198962B2 (en) 2013-09-11 2019-02-05 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
DE102007055453B4 (en) * 2007-11-19 2019-03-07 Coast Composites, Inc. Apparatus and method for laser welding
US10373524B2 (en) 2009-07-10 2019-08-06 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10473447B2 (en) 2016-11-04 2019-11-12 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
US10475353B2 (en) 2014-09-26 2019-11-12 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
US10496080B2 (en) 2006-12-20 2019-12-03 Lincoln Global, Inc. Welding job sequencer
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10940555B2 (en) 2006-12-20 2021-03-09 Lincoln Global, Inc. System for a welding sequencer
US10994358B2 (en) 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
US12136353B2 (en) 2023-06-05 2024-11-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341964A1 (en) * 1983-11-21 1985-05-30 Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen Device for the automatic guidance of tools
DE3243341C2 (en) * 1981-11-20 1989-04-20 Tokico Ltd., Kawasaki, Kanagawa, Jp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243341C2 (en) * 1981-11-20 1989-04-20 Tokico Ltd., Kawasaki, Kanagawa, Jp
DE3341964A1 (en) * 1983-11-21 1985-05-30 Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen Device for the automatic guidance of tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
McCloy, D., Harris, D.M.J.: Robotertechnik, VCH Verlagsgesellschaft mbH, Weinheim 1989, S. 230,231 *

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847867A1 (en) * 1998-07-18 2000-01-13 Rofin Sinar Laser Gmbh Apparatus for laser welding of a workpiece along a linear seam
DE19930087C5 (en) * 1999-06-30 2011-12-01 Inos Automationssoftware Gmbh Method and device for controlling the advance position of a manipulator of a handling device
DE19930087A1 (en) * 1999-06-30 2001-01-11 Charalambos Tassakos Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy
DE19930087B4 (en) * 1999-06-30 2007-08-30 Inos Automationssoftware Gmbh Method and device for controlling the advance position of a manipulator of a handling device
DE10006852A1 (en) * 2000-02-16 2001-08-30 Anders Michael Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam
US6596962B2 (en) 2000-02-16 2003-07-22 Michael Anders Process and device for joining of workpiece parts by means of an energy beam, in particular by means of a laser beam
DE10006852C5 (en) * 2000-02-16 2004-08-26 Anders, Michael, Dr.-Ing. Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam
DE10007837A1 (en) * 2000-02-21 2001-08-23 Nelson Bolzenschweis Technik G Welding stud positioning method and stud welding head
EP1157770A2 (en) * 2000-05-26 2001-11-28 Sikora GmbH Laser brazing head
EP1157770A3 (en) * 2000-05-26 2003-05-14 Sikora GmbH Laser brazing head
WO2005035179A1 (en) * 2003-10-06 2005-04-21 Daimlerchrysler Ag Method for joining two workpieces by fusion welding using detectors for locating recesses in said workpieces
DE10346264A1 (en) * 2003-10-06 2005-04-28 Daimler Chrysler Ag Method for joining two workpieces by fusion welding
EP1762328A1 (en) 2005-09-09 2007-03-14 Highyag Lasertechnologie GmbH Tactile driven laser processing optic
DE102006056252A1 (en) * 2006-09-26 2008-04-03 Scansonic Mi Gmbh Device for guiding an energy beam
DE102006056252B4 (en) * 2006-09-26 2009-06-10 Scansonic Mi Gmbh Device for guiding an energy beam
WO2008037548A1 (en) * 2006-09-26 2008-04-03 Scansonic Mi Gmbh Device for guiding an energy beam
US11980976B2 (en) 2006-12-20 2024-05-14 Lincoln Global, Inc. Method for a welding sequencer
US10496080B2 (en) 2006-12-20 2019-12-03 Lincoln Global, Inc. Welding job sequencer
US10940555B2 (en) 2006-12-20 2021-03-09 Lincoln Global, Inc. System for a welding sequencer
US10994358B2 (en) 2006-12-20 2021-05-04 Lincoln Global, Inc. System and method for creating or modifying a welding sequence based on non-real world weld data
DE102007006115A1 (en) 2007-02-02 2008-08-14 Scansonic Mi Gmbh Device for joining workpiece parts by means of an arc with a seam guiding device
DE102007055453B4 (en) * 2007-11-19 2019-03-07 Coast Composites, Inc. Apparatus and method for laser welding
US9196169B2 (en) 2008-08-21 2015-11-24 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9318026B2 (en) 2008-08-21 2016-04-19 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US8915740B2 (en) 2008-08-21 2014-12-23 Lincoln Global, Inc. Virtual reality pipe welding simulator
US9965973B2 (en) 2008-08-21 2018-05-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US11521513B2 (en) 2008-08-21 2022-12-06 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US11715388B2 (en) 2008-08-21 2023-08-01 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US11030920B2 (en) 2008-08-21 2021-06-08 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US8851896B2 (en) 2008-08-21 2014-10-07 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US8834168B2 (en) 2008-08-21 2014-09-16 Lincoln Global, Inc. System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing
US10916153B2 (en) 2008-08-21 2021-02-09 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US10056011B2 (en) 2008-08-21 2018-08-21 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9928755B2 (en) 2008-08-21 2018-03-27 Lincoln Global, Inc. Virtual reality GTAW and pipe welding simulator and setup
US10204529B2 (en) 2008-08-21 2019-02-12 Lincoln Global, Inc. System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment
US10803770B2 (en) 2008-08-21 2020-10-13 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US10762802B2 (en) 2008-08-21 2020-09-01 Lincoln Global, Inc. Welding simulator
US9293057B2 (en) 2008-08-21 2016-03-22 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9293056B2 (en) 2008-08-21 2016-03-22 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9836995B2 (en) 2008-08-21 2017-12-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9330575B2 (en) 2008-08-21 2016-05-03 Lincoln Global, Inc. Tablet-based welding simulator
US9336686B2 (en) 2008-08-21 2016-05-10 Lincoln Global, Inc. Tablet-based welding simulator
US10629093B2 (en) 2008-08-21 2020-04-21 Lincoln Global Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US8911237B2 (en) 2008-08-21 2014-12-16 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US9818312B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9483959B2 (en) 2008-08-21 2016-11-01 Lincoln Global, Inc. Welding simulator
US9858833B2 (en) 2008-08-21 2018-01-02 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9691299B2 (en) 2008-08-21 2017-06-27 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9754509B2 (en) 2008-08-21 2017-09-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9761153B2 (en) 2008-08-21 2017-09-12 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US8747116B2 (en) 2008-08-21 2014-06-10 Lincoln Global, Inc. System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback
US10249215B2 (en) 2008-08-21 2019-04-02 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9779635B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9779636B2 (en) 2008-08-21 2017-10-03 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
US9792833B2 (en) 2008-08-21 2017-10-17 Lincoln Global, Inc. Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
US9818311B2 (en) 2008-08-21 2017-11-14 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system
DE102008054040A1 (en) 2008-10-31 2010-05-06 Audi Ag Method for the production of metal sheet connection through seam welding by laser beam, comprises galvanizing the metal sheet connection, where a welding device is associated to a pressure element influencing on one of the components
USRE47918E1 (en) 2009-03-09 2020-03-31 Lincoln Global, Inc. System for tracking and analyzing welding activity
USRE45398E1 (en) 2009-03-09 2015-03-03 Lincoln Global, Inc. System for tracking and analyzing welding activity
US10347154B2 (en) 2009-07-08 2019-07-09 Lincoln Global, Inc. System for characterizing manual welding operations
US9773429B2 (en) 2009-07-08 2017-09-26 Lincoln Global, Inc. System and method for manual welder training
US9685099B2 (en) 2009-07-08 2017-06-20 Lincoln Global, Inc. System for characterizing manual welding operations
US10522055B2 (en) 2009-07-08 2019-12-31 Lincoln Global, Inc. System for characterizing manual welding operations
US9230449B2 (en) 2009-07-08 2016-01-05 Lincoln Global, Inc. Welding training system
US10068495B2 (en) 2009-07-08 2018-09-04 Lincoln Global, Inc. System for characterizing manual welding operations
US9221117B2 (en) 2009-07-08 2015-12-29 Lincoln Global, Inc. System for characterizing manual welding operations
US9011154B2 (en) 2009-07-10 2015-04-21 Lincoln Global, Inc. Virtual welding system
US10991267B2 (en) 2009-07-10 2021-04-27 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US9911360B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US10134303B2 (en) 2009-07-10 2018-11-20 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9280913B2 (en) 2009-07-10 2016-03-08 Lincoln Global, Inc. Systems and methods providing enhanced education and training in a virtual reality environment
US9911359B2 (en) 2009-07-10 2018-03-06 Lincoln Global, Inc. Virtual testing and inspection of a virtual weldment
US10643496B2 (en) 2009-07-10 2020-05-05 Lincoln Global Inc. Virtual testing and inspection of a virtual weldment
US9836994B2 (en) 2009-07-10 2017-12-05 Lincoln Global, Inc. Virtual welding system
US10373524B2 (en) 2009-07-10 2019-08-06 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US9895267B2 (en) 2009-10-13 2018-02-20 Lincoln Global, Inc. Welding helmet with integral user interface
US9012802B2 (en) 2009-11-13 2015-04-21 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9050679B2 (en) 2009-11-13 2015-06-09 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8569646B2 (en) 2009-11-13 2013-10-29 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9050678B2 (en) 2009-11-13 2015-06-09 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8987628B2 (en) 2009-11-13 2015-03-24 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9468988B2 (en) 2009-11-13 2016-10-18 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9089921B2 (en) 2009-11-13 2015-07-28 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US8884177B2 (en) 2009-11-13 2014-11-11 Lincoln Global, Inc. Systems, methods, and apparatuses for monitoring weld quality
US9269279B2 (en) 2010-12-13 2016-02-23 Lincoln Global, Inc. Welding training system
US9767712B2 (en) 2012-07-10 2017-09-19 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US10748447B2 (en) 2013-05-24 2020-08-18 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10930174B2 (en) 2013-05-24 2021-02-23 Lincoln Global, Inc. Systems and methods providing a computerized eyewear device to aid in welding
US10198962B2 (en) 2013-09-11 2019-02-05 Lincoln Global, Inc. Learning management system for a real-time simulated virtual reality welding training environment
US11100812B2 (en) 2013-11-05 2021-08-24 Lincoln Global, Inc. Virtual reality and real welding training system and method
US10083627B2 (en) 2013-11-05 2018-09-25 Lincoln Global, Inc. Virtual reality and real welding training system and method
US10720074B2 (en) 2014-02-14 2020-07-21 Lincoln Global, Inc. Welding simulator
US9836987B2 (en) 2014-02-14 2017-12-05 Lincoln Global, Inc. Virtual reality pipe welding simulator and setup
US10475353B2 (en) 2014-09-26 2019-11-12 Lincoln Global, Inc. System for characterizing manual welding operations on pipe and other curved structures
DE102014017307A1 (en) * 2014-11-21 2016-05-25 Kuka Roboter Gmbh Method and system for processing a component with a robot-guided tool
DE102014017307B4 (en) 2014-11-21 2019-08-01 Kuka Roboter Gmbh Method and system for processing a component with a robot-guided tool
US10394216B2 (en) 2014-11-21 2019-08-27 Kuka Deutschland Gmbh Method and system for correcting a processing path of a robot-guided tool
CN105728630A (en) * 2016-02-24 2016-07-06 浙江大学 Pressure foot unit of automatic drilling and riveting machine
US10473447B2 (en) 2016-11-04 2019-11-12 Lincoln Global, Inc. Magnetic frequency selection for electromagnetic position tracking
US10913125B2 (en) 2016-11-07 2021-02-09 Lincoln Global, Inc. Welding system providing visual and audio cues to a welding helmet with a display
US10878591B2 (en) 2016-11-07 2020-12-29 Lincoln Global, Inc. Welding trainer utilizing a head up display to display simulated and real-world objects
US11475792B2 (en) 2018-04-19 2022-10-18 Lincoln Global, Inc. Welding simulator with dual-user configuration
US11557223B2 (en) 2018-04-19 2023-01-17 Lincoln Global, Inc. Modular and reconfigurable chassis for simulated welding training
US12136353B2 (en) 2023-06-05 2024-11-05 Lincoln Global, Inc. Importing and analyzing external data using a virtual reality welding system

Similar Documents

Publication Publication Date Title
DE19615069A1 (en) Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece
DE102006030130B3 (en) Workpiece machining method for, e.g., industrial robot, involves compensating deviation of determined actual-position from reference-movement path and deviation of determined actual-speed vector from measured reference-speed vector
DE69127121T3 (en) Device and method for automatically aligning a welding device for butt welding workpieces
EP1125672B2 (en) Method and apparatus for joining workpieces by using a beam of energy, especially a laserbeam
DE69333540T2 (en) Robotic movement of a laser beam over a workpiece surface
DE102009042986B3 (en) Welding head and method for joining a workpiece
DE102017126867A1 (en) Laser processing system and method for laser processing
DE102008049821B4 (en) Distance sensor and method for determining a distance and / or distance variations between a processing laser and a workpiece
EP0707920A2 (en) Compact laser processing head for laser processing of material, with an integrated on-line track control
EP2418040B1 (en) Method of controlling a device for laser welding
EP2353801A2 (en) Working device with robot on movable platform and working method
EP1238746A2 (en) Method and device for robotically controlled laser cutting and welding
DE202006005916U1 (en) Monitoring device for jet mechanisms e.g. remote lasers, has jet e.g. laser beam for treatment of workpiece and movable jet head e.g. laser head, where monitoring device has sensor unit attached to jet head, preferably at exit of jet optics
EP2091699B1 (en) Method and device for fine-positioning a tool having a handling device
EP3349938B1 (en) Method for guiding a machining head along a track to be machined
DE3413731A1 (en) Arrangement on an industrial robot
DE102008029063B4 (en) Method and device for applying an application structure to a workpiece and for monitoring the application structure
DE102020100803A1 (en) Follow-up robot and robot work system
EP4029641A1 (en) Laser processing system
EP2022595B1 (en) Method and apparatus for setting a processing position with determination of the real processing line in comparison with the programmed processing line of the processing tool
EP0037521B1 (en) Process and apparatus for automatically tracking a weld seam
DE102011117454B4 (en) Laser processing device
DE102016005592B4 (en) Method for laser beam joining and apparatus with a laser beam source for laser beam joining
DE3700190A1 (en) Laser-cutting apparatus and process
WO2020007984A1 (en) Method and device for checking a focus position of a laser beam in relation to a workpiece

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection