DE10347647A1 - Solarzellenanordnung - Google Patents
Solarzellenanordnung Download PDFInfo
- Publication number
- DE10347647A1 DE10347647A1 DE10347647A DE10347647A DE10347647A1 DE 10347647 A1 DE10347647 A1 DE 10347647A1 DE 10347647 A DE10347647 A DE 10347647A DE 10347647 A DE10347647 A DE 10347647A DE 10347647 A1 DE10347647 A1 DE 10347647A1
- Authority
- DE
- Germany
- Prior art keywords
- solar cell
- cell
- solar
- solar cells
- rounded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002156 mixing Methods 0.000 title abstract 2
- 230000007704 transition Effects 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- 238000009795 derivation Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
- H01L31/02245—Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/035281—Shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
- H01L31/182—Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Die Erfindung betrifft eine Solarzelle für eine Multizellenphotovoltaikanlage mit einer Mehrzahl im Multizellenmodul an andere Solarzellen angrenzender Kanten und gerundeten Übergängen dazwischen. Hierbei ist vorgesehen, dass wenigstens sechs Kanten vorgesehen sind und sich die gerundeten Kantenübergänge über einen Öffnungswinkel von zwischen 3 DEG und 55 DEG erstrecken.
Description
- Die vorliegende Erfindung betrifft das oberbegrifflich Beanspruchte und befasst sich somit mit Solarzellen für insbesondere Multizellenphotovoltaikanlagen.
- Photovoltaische Anlagen sind per se bekannt. Verwiesen wird beispielsweise auf „Photovoltaische Anlagen", herausgegeben von der Deutschen Gesellschaft für Sonnenenergie e. V., ISBN 3-9805738-3-4. In bekannten Multizellenphotovoltaikanlagen sind typisch eine Vielzahl von einzeln hergestellten Solarzellen zu Modulen zusammengefasst, die dann in Fassaden, Dächern usw. verbaut werden.
- Die einzelnen Solarzellen in einem Multizellenmodul einer Photovoltaikanlage können auf unterschiedliche Weise herge stellt werden. Es wird bei Siliziumsolarzellen entweder von multikristrallinen Wafern ausgegangen, die durch Zerschneiden eines gegossenen Siliziumblocks entstehen, wobei diese multikristallinen Waferblöcke eine tiegelabhängige Geometrie aufweisen und in der Regel quaderförmig sind.
- Alternativ dazu besteht z. B. die Möglichkeit, mono- oder trikristallines Silizium durch Aufzuschmelzen und Ziehen eines etwa säulenförmigen Siliziumgrundkörper aus der Schmelze zu bilden. Diese Siliziumsäule, die nahezu rund ist, kann am Rand bearbeitet werden und es können dann aus der so entstandenen Form Wafer herausgeschnitten werden. Typisch wird entweder ein kreisrunder Wafer verwendet, d. h. die Säule wird unbearbeitet belassen oder allenfalls zusätzlich noch weiter exakt rund gedreht, oder es werden für vollquadratische Wafer Randbereiche der Säule abgetrennt und danach die Säule in Wafer zertrennt. Dabei ist auch schon vorgeschlagen worden, die Säule für quadratische Zellen abzufasen. Aus derartig abgefasten Säulen gefertigte Solarzellen können auch zu Standardmodulen zusammengestellt werden.
- Weiter sind von Künstlern in Designprojekten auch schon Module vorgeschlagen worden, in denen sowohl runde als auch quadratische, unterschiedlich gefärbte Einzelzellen vorgesehen sind, sowie runde Module mit runden Zellen oder auch ein Modul mit hexagonalen Zellen. In dem diesbezüglichen Projekt kam es insbesondere auf die Form und die architektonische Erscheinung der Photovoltaikanlage an. Eine praktische Realisierung derartiger Gebrauchskunstobjekte ist diesseits nicht bekannt.
- Ein Problem bei praktischen Photovoltaikanlagen besteht darin, dass die Gesamtkosten für die erzeugte Energie immer noch hoch sind. Daher ist es wünschenswert, eine Anordnung zu schaffen, die preiswerter ist als bisher möglich.
- Die Aufgabe dieser Erfindung besteht darin, Neues für die gewerbliche Anwendung bereitzustellen.
- Die Lösung dieser Aufgabe wird in unabhängiger Form beansprucht. Bevorzugte Ausführungsformen finden sich in den Unteransprüchen.
- Die vorliegende Erfindung schlägt somit in einem ersten Grundgedanken eine Solarzelle für eine Einzel- oder Multizellenphotovoltaikanlage mit einer Mehrzahl im Multizellenmodul an andere Solarzellen angrenzender Kanten und gerundeten Übergängen dazwischen vor, bei welcher wenigstens sechs Kanten vorgesehen sind und sich die gerundeten Kantenübergänge über einen Öffnungswinkel von zwischen 3° und 55° erstrecken.
- Ein wesentlicher Aspekt der vorliegenden Erfindung ist somit in der Erkenntnis zu sehen, dass durch die Kombination von wenigstens sechs Kanten mit zwischengesetzten Bögen eine Solarzelle erhalten wird, die nicht nur eine gute Rohmaterialausbeute gewährleistet, sondern überdies auch durch die Abrundung an den Kantenübergängen zugleich weniger empfindlich gegen stoßende oder brechende Beschädigung ist und eine hinreichend dichte Packung auch in einer Photovoltaikanlage erlaubt. Der angegebene Öffnungswinkel von 3° bis 55° sieht so weit verrundete Übergangsbereiche vor, dass die Handhabung durch diesen Effekt bereits wesentlich erleichtert ist und zugleich eine gute Ausbeute erhalten wird. Zudem ist die An ordnung sehr wirtschaftlich. Ausschlaggebend für die hohe Wirtschaftlichkeit ist dabei unter anderem auch, dass bei den Pseudohexagonen und/oder Pseudooktagonen der Erfindung eine sehr enge Anordnung der Einzelzellen nebeneinander möglich ist, da Befestigungs- und/oder Anschlußelemente in die durch die abgerundeten Kantenübergänge freibleibenden Zwischenräume gesetzt werden können, was die Möglichkeit eröffnet, die Solarzellenkanten benachbarter Solarzellen enger aneinander zu setzen als im Stand der Technik möglich.
- Die Solarzelle kann aus monokristallinem oder trikristallinem Silizium hergestellt sein und wird so einen nach derzeitiger Produktionstechnologie hohen Wirkungsgrad gegenüber multikristallinen Solarzellen aufweisen, was die Wirtschaftlichkeit erhöht.
- In einer besonders bevorzugten Variante wird die Solarzelle sechs Kanten aufweisen und somit ein Pseudohexagon darstellen, dessen Kanten über gerundete Übergänge verbunden sind. Eine sechseckige Solarzelle mit derart gerundeten Übergängen wird eine noch hinreichend dichte Packung in einem Solarzellenmodul ergeben und zugleich eine hohe Ausbeute des Ausgangsmaterials. Dies bietet bezogen auf die Kosten pro Leistung massive Vorteile. Zudem erlaubt eine pseudohexagonale Ausbildung insbesondere im Fassadenbereich eine Resttransparenz des Gesamtmoduls ohne signifikaten Verlust der bei gegebener Quadratmeterfläche erzielbaren Spitzenleistung, während zugleich das Auge eine noch hinreichende Helligkeit erhalten kann. Alternativ zur pseudohexagonalen Form ist auch eine pseudooktagonale Form vorteilhaft, bei der gleichfalls gerundete Kantenübergänge vorgesehen sind.
- Besonders vorteilhaft ist zudem prinzipiell, dass in der Fertigung von gerundeten Solarzellen, die pseudohexagonal oder pseudooktagonal sind, in den Trägern für Prozeßapparaturen hinreichend viele klar definierte Auflagebereiche vorliegen, was Beeinträchtigungen der Prozessierung in den Randbereichen usw. sicher vermeiden hilft, während zugleich Bruch bei unachtsamer Handhabung vermieden wird. Dies erlaubt auch gegebenenfalls eine dünne Solarzellenwaferauslegung.
- In einer besonders bevorzugten Form werden die Solarzellenkantenübergänge eine zumindest allgemeine Kreisbogenform aufweisen. Allgemeine Kreisbogenform bedeutet hier, dass nicht zwingend eine exakte Rundung vorgesehen sein muss. Vielmehr wäre es sogar möglich, die gezogene Säule nicht rund zu drehen, bevor die Kanten abgesägt werden. Dies spart einen weiteren Arbeitsgang und erhöht, wenn auch lediglich geringfügig, die Materialausnutzung weiter. Möglich wird dies, indem ausgenutzt wird, dass in den Kreisbogenbereichen die Solarzellen ohnehin nicht zusammenstoßen werden. Es ist möglich, dass die allgemeine Kreisbogenform etwa denselben Durchmesser aufweist wie ein Ausgangswafer, der aus einer gezogenen Säule hergestellt ist, wobei wiederum einleuchtend sein wird, dass geringfügige Abweichungen von der idealen Kreisform den Grundgedanken der Erfindung nicht beeinträchtigen.
- In einer besonders bevorzugten Variante wird der Öffnungswinkel zwischen 5° und 40° liegen, was jeweils für hinreichend lange Kanten bzw. Übergänge sorgt, um die Effekte der Erfindung sicher zu gewährleisten. Besonders bevorzugt ist ein Öffnungswinkel zwischen 10° und 30°, da hierbei auch eine besonders gute Materialnutzung des Ausgangsmaterials bei gleichzeitig hoher Flächenbelegung erzielt wird. Eine noch bessere Wirtschaftlichkeit ergibt sich bei typischen Kostenparametern für 15° bis 25.°
- In einer besonders bevorzugten Variante wird der Öffnungswinkel des Bogens bei etwa 22° ± 3° liegen. Hierbei ergibt sich, weitgehend unabhängig von Preisänderungen für Ausgangsmaterial, Träger, Kosten usw. eine gute Wirtschaftlichkeit, d. h. niedrige Kosten für die gesamte Leistung. Diese Vorteile bleiben in den Bereichen von 10° bis 30° sowie 5° bis 40° für pseudohexagonale Zellen zumindest weitgehend erhalten.
- Schutz wird weiter beansprucht für ein Mehrzellenmodul mit einer Mehrzahl pseudohexagonaler Solarzellen, wie sie die Erfindung vorschlägt. Insbesondere ist es möglich, etwa neunzehn pseudohexagonale Zellen zu einem Mehrzellenmodul zu verarbeiten. Mit der herkömmlichen, am Anmeldetag verfügbaren Wafertechnologie ergeben sich damit noch gut handhabbare Gesamtmodule, die überdies leicht verschaltet werden können, beispielsweise spiralförmig. Einsichtig ist, daß auch große Wafer wie zum Beispiel um 300 mm verarbeitbar sind. Die einzelne pseudohexagonale Solarzelle kann dann eine Kontaktierung aufweisen, die jeweils sternförmige Busbalken (bus bars) umfasst, die sich in der Zelle, insbesondere in der Zellenmitte, treffen, von wo der Strom auf die Solarzellenseite durchgeführt werden kann. Wenn dabei für die Durchkontaktierung ein metallischer Stift verwendet wird, kann die Solarzelle zugleich unter Heranziehung desselben fixiert werden bzw. die durch ihn bewirkte Stabilität bei der Fixierung ausgenützt werden. Alternativ werden insbesondere pseudohexagonale Solarzellen zu rechteckigen Modulen verbaut, wobei in den Randbereichen halbe Module vorgesehen werden können. Auch hier ergibt sich eine sehr hohe Flächenbelegung und eine gute Handhabbarkeit. Die Solarzellen können über Leiterbahnen, die sich gerade über eine Solarzellenreihe erstrecken, kontaktiert werden.
- Die Erfindung wird im Folgenden nur beispielsweise an Hand der Zeichnungen beschrieben. In dieser zeigt:
-
1 eine Solarzelle gemäß der vorliegenden Erfindung, -
2a ein Multizellenmodul mit erfindungsgemäßen pseudohexagonalen Solarzellen und angedeutetem Kontaktierungsverlauf, -
2b mehrere kleinere Module mit pseudohexagonaler erfindungsgemäßer Solarzelle, -
3a ein rechteckiges Multizellenmodul mit pseudohexagonalen Solarzellen und randseitig halben pseudohexagonalen Solarzellen sowie hell angedeuteter Kontaktierung, -
3b ein rechteckiges Multizellenmodul mit pseudohexagonalen Solarzellen, -
4 eine Zeichnung zur Veranschaulichung der Öffnungswinkeldefinition, -
5a eine pseudohexagonale Solarzelle mit randseitig angeordneten Fixierungsanordnungen und sternförmigem Kontaktierungsverlauf, -
5b eine Veranschaulichung einer pseudohexagonalen Anordnung, -
5c ein Rastpin für Kontaktierung und Fixierung, -
6 eine alternative erfindungsgemäße Solarzelle mit Pseudohexagonalform, -
7 Kosten je erzeugter Leistung bei verschiedenen Kostenparametern als Funktion des Öffnungswinkels. - Nach
1 umfasst eine allgemein mit1 bezeichnete Solarzelle1 für eine Multizellenphotovoltaikanlage (vgl.2b ,3a ,3b ) mit einer Mehrzahl im Multizellenmodul an andere Solarzellen angrenzender Kanten2 und gerundeten Übergängen3 dazwischen wenigstens sechs Kanten2a ,2b ,2c ,2d ,2f ,2g , wobei sich die gerundeten Kantenübergänge3 jeweils über einen Öffnungswinkel4 erstrecken, der zwischen α = 3° und α = 55° liegt, im gezeichneten Beispiel α = 19°. - Die Solarzelle
1 ist im vorliegenden Beispiel aus monokristallinem Silizium gefertigt, das hier bereits für eine Wafergröße von 300 mm gezogen wurde. Die zugrundeliegende Kristallsäule hatte dabei vom Ziehen her eine nahezu kreisrunde Form ohne weitere Bearbeitung. - Die Kanten
2a bis2g sind aus der Rohkristahlsäulenform durch Absägen von Randbereichen entstanden, wie dies für den schraffierten Bereich2b' in4 dargestellt ist. Die Breite dieses Bereiches ist bestimmt durch den gewünschten Öffnungswinkel α. Es ist möglich, eine Rohkristallbearbeitung dergestalt vorzunehmen, dass für jede hexagonale Seite nur ein einziger Trennschnitt vorgenommen werden muss. Die Bogenbereiche3 sind bezüglich der Ziehform des Siliziumkristalls nicht weiter bearbeitet. Wie aus4 ersichtlich ergibt sich für den Fall α = 60° bei einer pseudohexagonalen Solarzelle ein in eine gedachte ideal kreisrunde Kristallziehform genau eingeschriebene Sechsecksäule, die in Wafer zerteilbar ist. Für einen Fall α = 0° ergibt sich die exakte Kreisform und für dazwischen liegende Werte ein Pseudohexagon mit mehr oder weniger langen Kreisbögen, wobei die erfindungsgemäßen Vorteile durch die entsprechende Winkelauswahl erhalten werden. - Auf der Solarzelle
1 sind weiter Stromsammelschienen5 vorgesehen, im in1 dargestellten Ausführungsbeispiel 3 Stromsammelschienen5a ,5b ,5c , hergestellt mit einer geeigneten Metallisierung, wie sie per se im Stand der Technik bekannt ist. Im mittleren Zentralbereich6 treffen diese Stromsammelschienen5a ,5b ,5c aufeinander und können dort zur Stromableitung von der Solarzelle1 weg kontaktiert werden. Um dieses zu erleichtern, ist mittig eine Bohrung6 vorgesehen und die Stromsammelschienen5a ,5b ,5c erweitern sich zu diesem Bereich hin, um dort eine bessere Kontaktierung durch die größere Fläche zu gewährleisten. In der Bohrung6 erfolgt eine Durchkontaktierung durch Paste, eingesetzte Stifte oder ähnliches, so daß Strom an der Rückseite ohne weiteres abgeleitet werden kann. Es sei erwähnt, daß eine Kontaktierung sowohl vorne als auch auf der Rückseite möglich ist. - Die zentrale Anordnung des Stromanschlusses ist auf der in
5b dargestellten Solarzellenunterseite besonders gut erkennbar. - Die Solarzellen können nebeneinander angeordnet werden, wie beispielsweise in
2a ,2b und3a ,3b dargestellt. Dabei können die Kontaktierungspunkte6 der einzelnen Solarzelle1 miteinander spiralförmig verbunden werden, wie durch die hellen Striche in2a innerhalb der Solarzellen angedeutet und/oder durch Leiterstreifen, wie in3a dargestellt.2a und2b zeigen, dass unterschiedliche Anzahlen von Solarzellen in einem Modul verarbeitet werden können.3a ,3b zeigen, dass es möglich ist, bei rechteckigen Modulen die Randbereiche mit halben Solarzellen aufzufüllen oder nicht, wie durch den Pfeil angedeutet. - Diese Module mit mehreren Zellen weisen ein Trägermaterial, eine Abdeckung und Zellen kontaktierende Leiter auf. Die Verbindung dieser Elemente mit der Zelle kann in per se herkömmlicher Weise, etwa durch Laminieren erfolgen und/oder durch Aufklipsen an den Durchbohrungen der Stromanschlußkontaktierung und gegebenenfalls weiteren Bohrungen. Fixierungselemente sind dabei bevorzugt, eventuell zusätzlich, in den von den Rundungen freigelassenen Zwischenräumen angeordnet. Alternativ und/oder zusätzlich ist eine Fixierung am elektrischen Kontakt, auch zentral, möglich.
- Wichtig ist dabei, dass mit der erfindungsgemäßen Ausbildung die erzeugten Module, bezogen auf die Kosten pro Leistung, günstig gefertigt werden können, und zwar ungeachtet verschiedener Variationen in den Kostenanteilen von Silizium, Trägermaterial der Module, wie z. B. Glas, etc. Dies ist für verschiedene Winkel in
7 dargestellt.
Claims (12)
- Solarzelle für eine Einzel- oder Multizellenphotovoltaikanlage mit einer Mehrzahl im Multizellenmodul an andere Solarzellen angrenzender Kanten und gerundeten Übergängen dazwischen, dadurch gekennzeichnet, dass wenigstens sechs Kanten vorgesehen sind und sich die gerundeten Kantenübergänge über einen Öffnungswinkel von zwischen 3° und 55° erstrecken.
- Solarzelle nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Solarzelle aus monokristallinem Silizium hergestellt ist.
- Solarzelle nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Solarzelle aus trikristallinem Silizium hergestellt ist.
- Solarzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Solarzelle als Pseudohexagon mit sechs geraden, durch gerundete Übergänge verbundene Kanten vorgesehen ist.
- Solarzelle nach einem der Ansprüche 1 – 3, dadurch gekennzeichnet, dass die Solarzelle als Pseudooktagon gebildet ist.
- Solarzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die gerundeten Kantenübergänge zumindest allgemein eine Kreisbogenform aufweisen.
- Solarzelle nach dem vorhergehenden Anspruch, worin die Solarzelle aus einem Wafer hergestellt ist und der Kreisbogendurchmesser einem Ausgangswaferdurchmesser entspricht.
- Solarzelle nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Öffnungswinkel zwischen 5° und 45°, bevorzugt zwischen 10° und 30°, insbesondere bevorzugt zwischen 22° ± 3° beträgt.
- Solarzelle nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Öffnungswinkel zumindest näherungsweise gleich sind.
- Mehrzellenmodul mit einer Mehrzahl an Solarzellen nach einem der vorhergehenden Ansprüche.
- Mehrzellenmodul nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass wenigstens 19 pseudohexagonale Solarzellen vorgesehen und zu einer allgemeinen Sechseckform zusammengestellt sind.
- Mehrzellenmodul nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Solarzellenmodule zu einer allgemein rechteckigen Form zusammengestellt sind, wobei Solarzellen über Kontaktstreifen, die sich über eine Vielzahl von Einzelsolarzellen gerade erstrecken, miteinander verbunden sind und/oder wobei zumindest an einigen Randbereichen halbe Solarzellen vorgesehen sind.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10347647A DE10347647A1 (de) | 2003-10-09 | 2003-10-09 | Solarzellenanordnung |
DE102005016140A DE102005016140A1 (de) | 2003-10-09 | 2005-04-07 | Solarzellenensemble |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10347647A DE10347647A1 (de) | 2003-10-09 | 2003-10-09 | Solarzellenanordnung |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10347647A1 true DE10347647A1 (de) | 2005-05-19 |
Family
ID=34441929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10347647A Withdrawn DE10347647A1 (de) | 2003-10-09 | 2003-10-09 | Solarzellenanordnung |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10347647A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005091378A2 (de) | 2004-03-19 | 2005-09-29 | Sunways Ag | Solarzellenmodule |
EP1770791A1 (de) * | 2005-09-30 | 2007-04-04 | Sanyo Electric Co., Ltd. | Rechteckiges Solarzellenmodul und sein Herstellungsverfahren aus hexagonal geformten Einzelsolarzellen |
WO2010057674A2 (de) * | 2008-11-18 | 2010-05-27 | Maximilian Scherff | Solarzellensystem, solarzellenmodul und verfahren zur elektrischen verschaltung rückseitenkontaktierter solarzellen |
EP1973174A3 (de) * | 2007-03-20 | 2010-07-21 | Sanyo Electric Co., Ltd. | Verfahren zur Frakturierung eines Halbleitersubstrats, Verfahren zur Frakturierung einer Solarzelle und Solarzelle |
EP1973168A3 (de) * | 2007-03-20 | 2011-11-09 | Sanyo Electric Co., Ltd. | Verfahren zur Herstellung einer Solarzelle durch Brechen entlang einer Trennlinie und entsprechende Solarzelle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089705A (en) * | 1976-07-28 | 1978-05-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Hexagon solar power panel |
DE2907935A1 (de) * | 1979-03-01 | 1980-09-04 | Siemens Ag | Solargenerator |
US4321416A (en) * | 1980-12-15 | 1982-03-23 | Amp Incorporated | Photovoltaic power generation |
DE4343296A1 (de) * | 1993-12-17 | 1995-06-22 | Siemens Ag | Neuartige Siliziumhalbleiterscheibe und Verfahren zu ihrer Herstellung |
-
2003
- 2003-10-09 DE DE10347647A patent/DE10347647A1/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4089705A (en) * | 1976-07-28 | 1978-05-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Hexagon solar power panel |
DE2907935A1 (de) * | 1979-03-01 | 1980-09-04 | Siemens Ag | Solargenerator |
US4321416A (en) * | 1980-12-15 | 1982-03-23 | Amp Incorporated | Photovoltaic power generation |
DE4343296A1 (de) * | 1993-12-17 | 1995-06-22 | Siemens Ag | Neuartige Siliziumhalbleiterscheibe und Verfahren zu ihrer Herstellung |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005091378A2 (de) | 2004-03-19 | 2005-09-29 | Sunways Ag | Solarzellenmodule |
EP1770791A1 (de) * | 2005-09-30 | 2007-04-04 | Sanyo Electric Co., Ltd. | Rechteckiges Solarzellenmodul und sein Herstellungsverfahren aus hexagonal geformten Einzelsolarzellen |
US8067295B2 (en) | 2005-09-30 | 2011-11-29 | Sanyo Electric Co., Ltd | Manufacturing method of solar cell module, and solar cell and solar cell module |
EP1973174A3 (de) * | 2007-03-20 | 2010-07-21 | Sanyo Electric Co., Ltd. | Verfahren zur Frakturierung eines Halbleitersubstrats, Verfahren zur Frakturierung einer Solarzelle und Solarzelle |
EP1973168A3 (de) * | 2007-03-20 | 2011-11-09 | Sanyo Electric Co., Ltd. | Verfahren zur Herstellung einer Solarzelle durch Brechen entlang einer Trennlinie und entsprechende Solarzelle |
US8389320B2 (en) | 2007-03-20 | 2013-03-05 | Sanyo Electric Co., Ltd. | Method for fracturing semiconductor substrate, method for fracturing solar cell, and the solar cell |
US8513047B2 (en) | 2007-03-20 | 2013-08-20 | Sanyo Electric Co., Ltd. | Method for fracturing semiconductor substrate, method for fracturing solar cell, and the solar cell |
WO2010057674A2 (de) * | 2008-11-18 | 2010-05-27 | Maximilian Scherff | Solarzellensystem, solarzellenmodul und verfahren zur elektrischen verschaltung rückseitenkontaktierter solarzellen |
WO2010057674A3 (de) * | 2008-11-18 | 2010-07-22 | Maximilian Scherff | Solarzellensystem, solarzellenmodul und verfahren zur elektrischen verschaltung rückseitenkontaktierter solarzellen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE202014011603U1 (de) | Solarzellenanordnung | |
DE1861066U (de) | Dreidimensional aufgebaute schaltungsanordnung mit blockfoermigen, in ein rahmengestell einschiebbaren schaltungsgruppen. | |
EP2533303A2 (de) | Solarmodul und Photovoltaik-Anlage | |
DE112012005983T5 (de) | Montage beziehungsweise Montagegruppe für die Fixierung eines Solarmoduldrahts sowie ein Solarmodul, das diesen verwendet | |
WO2011151048A2 (de) | Dünnschichtsolarmodul und herstellungsverfahren hierfür | |
DE10347647A1 (de) | Solarzellenanordnung | |
EP2475014A2 (de) | Photovoltaikmodul mit einlaminierter Bypassdiode | |
WO2022089947A1 (de) | Solarzellenmodul | |
DE102011010131A1 (de) | Rohmodul zur Herstellung eines Dünnschichtsolarmoduls und Dünnschichtsolarmodul | |
DE102004049722A1 (de) | Solarzellenanordung | |
DE102013226280A1 (de) | Organisches Photovoltaikelement, sowie Verfahren zur Herstellung eines solchen | |
DE102005016140A1 (de) | Solarzellenensemble | |
DE1248769B (de) | (V Si A) J Elektrodenverbindung lur elektrische Akkumulatoren-Batterien mit hohem Stromdurchgang | |
DE102008040332B4 (de) | Rückseitenkontaktierte Solarzelle und Solarmodul mit rückseitenkontaktierten Solarzellen | |
DE102010020974A1 (de) | Verfahren zum Herstellen von Spezialsolarzellen aus einem Wafer | |
EP2549552A2 (de) | Solarzellenbaustein und Solarzellenanordnung | |
DE102012216740B4 (de) | Silizium-Solarzelle, die durch Zerteilen einer auf einem Silizium-Wafer ausgebildeten Ausgangssolarzelle erzeugt ist, Photovoltaikmodul und Verfahren zur Herstellung einer Solarzelle | |
EP2947700A1 (de) | Kleinformatiges Photovoltaikmodul als glas-glas- oder glas-folie-laminat | |
DE102011003284B4 (de) | Leistungshalbleiterelement und Anordnung eines Leistungshalbleiterelements zu mindestens einer Solarzelle | |
EP3271947B1 (de) | Solarzelle mit metallischer ladungsträger-ableitstruktur | |
DE102009055675A1 (de) | Photovoltaik-Modulstrukturen und Verfahren zum Herstellen einer elektrisch leitenden Verbindung zwischen zwei voneinander beabstandeten Kontaktschichten, insbesondere in der Photovoltaik-Modulstruktur | |
DE102013202244A1 (de) | Zellverbinder zum elektrisch leitfähigen Kontaktieren einer Mehrzahl von Batteriezellterminals, Verfahren zum Herstellen eines solchen Zellverbinders und Batteriemodul mit wenigstens einem solchen Zellverbinder | |
DE102011079498A1 (de) | Solarzellenbaustein und Solarzellenanordnung | |
DE102021103099A1 (de) | Photovoltaikmodul und ein Verfahren zur dessen Herstellung | |
DE1113483B (de) | Schaltungsanordnung mit blockfoermigen, in ein Rahmengestell einschiebbaren Schaltungsgruppen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
R082 | Change of representative |
Representative=s name: PAE REINHARD, SKUHRA, WEISE & PARTNER GBR, 80801 M Representative=s name: PAE REINHARD, SKUHRA, WEISE & PARTNER GBR, DE Representative=s name: ISARPATENT PATENTANWAELTE BEHNISCH, BARTH, CHA, DE Representative=s name: ISARPATENT GBR PATENT- UND RECHTSANWAELTE, DE Representative=s name: ISARPATENT - PATENTANWAELTE- UND RECHTSANWAELT, DE |
|
R120 | Application withdrawn or ip right abandoned |
Effective date: 20111121 |