DE1030936B - Vacuum-tight radiation window made of beryllium for discharge vessels - Google Patents
Vacuum-tight radiation window made of beryllium for discharge vesselsInfo
- Publication number
- DE1030936B DE1030936B DEL11298A DEL0011298A DE1030936B DE 1030936 B DE1030936 B DE 1030936B DE L11298 A DEL11298 A DE L11298A DE L0011298 A DEL0011298 A DE L0011298A DE 1030936 B DE1030936 B DE 1030936B
- Authority
- DE
- Germany
- Prior art keywords
- vacuum
- tight
- beryllium
- radiation window
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J5/00—Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
- H01J5/02—Vessels; Containers; Shields associated therewith; Vacuum locks
- H01J5/18—Windows permeable to X-rays, gamma-rays, or particles
Landscapes
- X-Ray Techniques (AREA)
Description
DEUTSCHESGERMAN
Zum Vakuumabschluß von Entladungsgefäßen, insbesondere von Röntgenröhren, bei denen elektromagnetische Wellen kleiner Wellenlänge außerhalb des Gefäßes nutzbar gemacht werden sollen, wurden bisher bestimmte Glassorten, z. B. Lindemann-Glas, oder dünne Metallfolien verwendet. Wegen des Druckunterschiedes auf beiden Seiten der Wandung ist jedoch eine bestimmte Dicke der Folie erforderlich und die Oberflächengröße sehr begrenzt. Bekanntlich sinkt die Durchlässigkeit für Strahlen mit der Ordnungszahl des Elementes, so daß beispielsweise die Durchlässigkeit der häufig verwendeten Aluminiumfolie 17mal kleiner ist als die einer Berylliumfolie gleicher Stärke. Es können somit bei gleicher Strahlendurchlässigkeit bei leichtatomigem Material größere Dicken verwendet werden als bei höheratomigem, so daß die Verwendung eines Berylliumfensters stets angestrebt wurde und auch bereits bekannt ist. Das handelsübliche Beryllium ist aber in dünner Schicht nicht vakuumdicht, so daß bei Außenfenstern eine derart dicke Scheibe verwendet werden mußte, daß der Vorteil der durch die niedrige Ordnungszahl bedingten geringen Absorption durch die erforderliche Dicke der Scheibe fortfällt. Es ist zwar gelungen, vakuumdichtes Beryllium in dünnen Scheiben herzustellen, doch ist das Herstellungsverfahren sehr schwierig und kostspielig.For vacuum sealing of discharge vessels, especially X-ray tubes, where electromagnetic Waves of small wavelengths outside of the vessel are to be made usable, were previously certain types of glass, e.g. B. Lindemann glass, or thin metal foils are used. Because of the pressure difference However, a certain thickness of the film is required on both sides of the wall and the Surface size very limited. As is well known, the permeability for rays decreases with the ordinal number of the element, so that, for example, the permeability of the frequently used aluminum foil 17 times is smaller than that of a beryllium foil of the same thickness. It can thus with the same radiation permeability larger thicknesses are used for light atomic material are than with higher atomic, so that the use of a beryllium window is always sought was and is already known. The commercially available beryllium is not vacuum-tight in a thin layer, so that such a thick pane had to be used for exterior windows that the advantage of low absorption due to the low atomic number due to the required thickness of the pane no longer applies. It has been possible to produce vacuum-tight beryllium in thin slices, but it is Manufacturing process very difficult and expensive.
Es ist ferner bekannt, Beryllium zur Verstärkung von Metallfolienfenstern zu verwenden, die gleichzeitig zur Vakuumdichtung dienen, doch verringern die Metallfolien die Strahlendurchlässigkeit ganz beträchtlich. It is also known to use beryllium to reinforce metal foil windows, the same time serve for vacuum sealing, but the metal foils reduce the radiation permeability quite considerably.
Weiterhin ist es bekannt, bei den üblichen stärkeren Berylliumfenstern die Verbindungsstellen zwischen Berylliumfenster und Gefäßwand mit einem abdichtenden Lack oder Emailleüberzug zu versehen. Gegenstand der Erfindung ist ein vakuumdichtes Strahlenfenster aus Beryllium für Entladungsgefäße, insbesondere Röntgenröhren, bei dem eine Berylliumscheibe verwendet ist, die infolge ihrer geringen Dicke nicht vauumdicht und die auf mindestens einer Seite mit einem dünnen, leichtatomigen, vakuumdichten Überzug versehen ist.Furthermore, it is known in the usual stronger beryllium windows, the connection points between To provide the beryllium window and the vessel wall with a sealing lacquer or enamel coating. object The invention is a vacuum-tight radiation window made of beryllium for discharge vessels, in particular X-ray tubes in which a beryllium disc is used, which due to its small thickness is not vacuum-tight and on at least one side with a thin, light atomic, vacuum-tight coating is provided.
Es hat sich ein sehr dünner Überzug gewisser Emaillesorten oder ein dünner Lackanstrich als sehr
geeignet erwiesen. Wird beispielsweise ein dünnflüssiger Einbrennlack oder ein dünnflüssiger Silikonlack
benutzt, so ist es vorteilhaft, diesen nach dem Einsetzen des Berylliumabschlusses in die Röhre während
des Pumpprozesses aufzustreichen, so daß er tief in die Poren eindringt. Von der Gesamtoberfläche kann
der überflüssige Lack dann wieder abgerieben werden, so daß die Durchlässigkeit fast unverändert bleibt. Es
ist also vorteilhaft, den Überzug auf der dem Vakuum abgewandten Seite anzubringen. Die Figur zeigt
Vakuumdichtes Strahlenfenster
aus Beryllium für EntladungsgefäßeA very thin coating of certain types of enamel or a thin coat of varnish has proven to be very suitable. If, for example, a thin stoving lacquer or a thin silicone lacquer is used, it is advantageous to spread it on after the beryllium seal has been inserted into the tube during the pumping process so that it penetrates deep into the pores. The superfluous varnish can then be rubbed off again from the entire surface, so that the permeability remains almost unchanged. It is therefore advantageous to apply the coating on the side facing away from the vacuum. The figure shows a vacuum-tight radiation window
Made of beryllium for discharge vessels
Anmelder:Applicant:
LICENTIA Patent -Verwaltungs - G. m. b. H., Hamburg 36, Hohe Bleichen 22LICENTIA Patent Administration - G. m. B. H., Hamburg 36, Hohe Bleichen 22
Dr, phil. Wolfgang Rohde, Berlin-Britz,Dr. phil. Wolfgang Rohde, Berlin-Britz,
und Dr. phil. nat. habil. Rolf Hosemann, Berlin-Spandau,and Dr. phil. nat. habil. Rolf Hosemann, Berlin-Spandau,
sind als Erfinder genannt wordenhave been named as inventors
in zum Teil schematischer Darstellung ein Ausführungsbeispiel der Erfindung. In die Röhrenwandung 1 aus Metall ist das Berylliumfenster 2 eingelegt, das auf der dem Vakuum abgewandten Seite mit einem vakuumdichten Überzug 3 aus Emaille oder Lack versehen ist. Der Deutlichkeit halber ist dieser Überzug übertrieben stark dargestellt.in a partially schematic representation, an embodiment of the invention. In the tube wall 1 made of metal, the beryllium window 2 is inserted, the Provided on the side facing away from the vacuum with a vacuum-tight coating 3 made of enamel or lacquer is. For the sake of clarity, this coating is shown exaggerated.
Es kann sich auch empfehlen, den Überzug bis über die Verbindungsnaht zwischen Berylliumfenster und Gefäßwandung sich erstrecken zu lassen (Fig. 2).It may also be advisable to extend the coating over the joint between the beryllium window and To let the vessel wall extend (Fig. 2).
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEL11298A DE1030936B (en) | 1952-01-11 | 1952-01-11 | Vacuum-tight radiation window made of beryllium for discharge vessels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEL11298A DE1030936B (en) | 1952-01-11 | 1952-01-11 | Vacuum-tight radiation window made of beryllium for discharge vessels |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1030936B true DE1030936B (en) | 1958-05-29 |
Family
ID=7258796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEL11298A Pending DE1030936B (en) | 1952-01-11 | 1952-01-11 | Vacuum-tight radiation window made of beryllium for discharge vessels |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE1030936B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2449967A1 (en) * | 1979-01-24 | 1980-09-19 | Tokyo Shibaura Electric Co | IMAGE INTENSIFIER, ESPECIALLY X-RAY IMAGE |
EP1547116A1 (en) * | 2002-09-13 | 2005-06-29 | Moxtek, Inc. | Radiation window and method of manufacture |
US7382862B2 (en) | 2005-09-30 | 2008-06-03 | Moxtek, Inc. | X-ray tube cathode with reduced unintended electrical field emission |
US7428298B2 (en) | 2005-03-31 | 2008-09-23 | Moxtek, Inc. | Magnetic head for X-ray source |
US7737424B2 (en) | 2007-06-01 | 2010-06-15 | Moxtek, Inc. | X-ray window with grid structure |
US7756251B2 (en) | 2007-09-28 | 2010-07-13 | Brigham Young Univers ity | X-ray radiation window with carbon nanotube frame |
US7983394B2 (en) | 2009-12-17 | 2011-07-19 | Moxtek, Inc. | Multiple wavelength X-ray source |
US8247971B1 (en) | 2009-03-19 | 2012-08-21 | Moxtek, Inc. | Resistively heated small planar filament |
US8498381B2 (en) | 2010-10-07 | 2013-07-30 | Moxtek, Inc. | Polymer layer on X-ray window |
US8526574B2 (en) | 2010-09-24 | 2013-09-03 | Moxtek, Inc. | Capacitor AC power coupling across high DC voltage differential |
US8736138B2 (en) | 2007-09-28 | 2014-05-27 | Brigham Young University | Carbon nanotube MEMS assembly |
US8750458B1 (en) | 2011-02-17 | 2014-06-10 | Moxtek, Inc. | Cold electron number amplifier |
US8761344B2 (en) | 2011-12-29 | 2014-06-24 | Moxtek, Inc. | Small x-ray tube with electron beam control optics |
US8792619B2 (en) | 2011-03-30 | 2014-07-29 | Moxtek, Inc. | X-ray tube with semiconductor coating |
US8804910B1 (en) | 2011-01-24 | 2014-08-12 | Moxtek, Inc. | Reduced power consumption X-ray source |
US8817950B2 (en) | 2011-12-22 | 2014-08-26 | Moxtek, Inc. | X-ray tube to power supply connector |
US8929515B2 (en) | 2011-02-23 | 2015-01-06 | Moxtek, Inc. | Multiple-size support for X-ray window |
US8989354B2 (en) | 2011-05-16 | 2015-03-24 | Brigham Young University | Carbon composite support structure |
US8995621B2 (en) | 2010-09-24 | 2015-03-31 | Moxtek, Inc. | Compact X-ray source |
US9072154B2 (en) | 2012-12-21 | 2015-06-30 | Moxtek, Inc. | Grid voltage generation for x-ray tube |
US9076628B2 (en) | 2011-05-16 | 2015-07-07 | Brigham Young University | Variable radius taper x-ray window support structure |
US9177755B2 (en) | 2013-03-04 | 2015-11-03 | Moxtek, Inc. | Multi-target X-ray tube with stationary electron beam position |
US9174412B2 (en) | 2011-05-16 | 2015-11-03 | Brigham Young University | High strength carbon fiber composite wafers for microfabrication |
US9173623B2 (en) | 2013-04-19 | 2015-11-03 | Samuel Soonho Lee | X-ray tube and receiver inside mouth |
US9184020B2 (en) | 2013-03-04 | 2015-11-10 | Moxtek, Inc. | Tiltable or deflectable anode x-ray tube |
US9305735B2 (en) | 2007-09-28 | 2016-04-05 | Brigham Young University | Reinforced polymer x-ray window |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE578926C (en) * | 1926-09-15 | 1933-06-19 | Siemens Reiniger Werke Akt Ges | Radiation exit window for X-ray tubes |
-
1952
- 1952-01-11 DE DEL11298A patent/DE1030936B/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE578926C (en) * | 1926-09-15 | 1933-06-19 | Siemens Reiniger Werke Akt Ges | Radiation exit window for X-ray tubes |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2449967A1 (en) * | 1979-01-24 | 1980-09-19 | Tokyo Shibaura Electric Co | IMAGE INTENSIFIER, ESPECIALLY X-RAY IMAGE |
EP1547116A1 (en) * | 2002-09-13 | 2005-06-29 | Moxtek, Inc. | Radiation window and method of manufacture |
EP1547116A4 (en) * | 2002-09-13 | 2006-05-24 | Moxtek Inc | Radiation window and method of manufacture |
US7233647B2 (en) | 2002-09-13 | 2007-06-19 | Moxtek, Inc. | Radiation window and method of manufacture |
US7428298B2 (en) | 2005-03-31 | 2008-09-23 | Moxtek, Inc. | Magnetic head for X-ray source |
US7382862B2 (en) | 2005-09-30 | 2008-06-03 | Moxtek, Inc. | X-ray tube cathode with reduced unintended electrical field emission |
US7737424B2 (en) | 2007-06-01 | 2010-06-15 | Moxtek, Inc. | X-ray window with grid structure |
US7756251B2 (en) | 2007-09-28 | 2010-07-13 | Brigham Young Univers ity | X-ray radiation window with carbon nanotube frame |
US8736138B2 (en) | 2007-09-28 | 2014-05-27 | Brigham Young University | Carbon nanotube MEMS assembly |
US9305735B2 (en) | 2007-09-28 | 2016-04-05 | Brigham Young University | Reinforced polymer x-ray window |
US8247971B1 (en) | 2009-03-19 | 2012-08-21 | Moxtek, Inc. | Resistively heated small planar filament |
US7983394B2 (en) | 2009-12-17 | 2011-07-19 | Moxtek, Inc. | Multiple wavelength X-ray source |
US8995621B2 (en) | 2010-09-24 | 2015-03-31 | Moxtek, Inc. | Compact X-ray source |
US8526574B2 (en) | 2010-09-24 | 2013-09-03 | Moxtek, Inc. | Capacitor AC power coupling across high DC voltage differential |
US8948345B2 (en) | 2010-09-24 | 2015-02-03 | Moxtek, Inc. | X-ray tube high voltage sensing resistor |
US8498381B2 (en) | 2010-10-07 | 2013-07-30 | Moxtek, Inc. | Polymer layer on X-ray window |
US8964943B2 (en) | 2010-10-07 | 2015-02-24 | Moxtek, Inc. | Polymer layer on X-ray window |
US8804910B1 (en) | 2011-01-24 | 2014-08-12 | Moxtek, Inc. | Reduced power consumption X-ray source |
US8750458B1 (en) | 2011-02-17 | 2014-06-10 | Moxtek, Inc. | Cold electron number amplifier |
US8929515B2 (en) | 2011-02-23 | 2015-01-06 | Moxtek, Inc. | Multiple-size support for X-ray window |
US8792619B2 (en) | 2011-03-30 | 2014-07-29 | Moxtek, Inc. | X-ray tube with semiconductor coating |
US8989354B2 (en) | 2011-05-16 | 2015-03-24 | Brigham Young University | Carbon composite support structure |
US9076628B2 (en) | 2011-05-16 | 2015-07-07 | Brigham Young University | Variable radius taper x-ray window support structure |
US9174412B2 (en) | 2011-05-16 | 2015-11-03 | Brigham Young University | High strength carbon fiber composite wafers for microfabrication |
US8817950B2 (en) | 2011-12-22 | 2014-08-26 | Moxtek, Inc. | X-ray tube to power supply connector |
US8761344B2 (en) | 2011-12-29 | 2014-06-24 | Moxtek, Inc. | Small x-ray tube with electron beam control optics |
US9072154B2 (en) | 2012-12-21 | 2015-06-30 | Moxtek, Inc. | Grid voltage generation for x-ray tube |
US9351387B2 (en) | 2012-12-21 | 2016-05-24 | Moxtek, Inc. | Grid voltage generation for x-ray tube |
US9177755B2 (en) | 2013-03-04 | 2015-11-03 | Moxtek, Inc. | Multi-target X-ray tube with stationary electron beam position |
US9184020B2 (en) | 2013-03-04 | 2015-11-10 | Moxtek, Inc. | Tiltable or deflectable anode x-ray tube |
US9173623B2 (en) | 2013-04-19 | 2015-11-03 | Samuel Soonho Lee | X-ray tube and receiver inside mouth |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1030936B (en) | Vacuum-tight radiation window made of beryllium for discharge vessels | |
DE2832652C2 (en) | Thin-film electroluminescent element | |
DE2833718A1 (en) | LIGHT TRANSMISSION FIRE PROTECTION WALL | |
DE2052424B2 (en) | Process for making electrical line connections | |
DE2731100A1 (en) | METHOD OF BONDING METAL PARTS TO GLASS SURFACES | |
DE2624781B2 (en) | Electron-emitting electrode and process for its manufacture | |
DE3420903C2 (en) | ||
DE2909985C3 (en) | Process for the production of a semiconductor-glass composite material and the use of such a composite material | |
EP1775752A2 (en) | Etching process for manufacturing an electron exit window | |
DE2615686C2 (en) | Device for absorbing solar energy and converting it into thermal energy and a method for producing such a device | |
DE3030595A1 (en) | METHOD FOR PRODUCING INSIDE AND OUTSIDE PLASTIC-COVERED CORROSION-PROTECTED MULTIPLE PIPES | |
DE2203717C3 (en) | Process for applying a metallic film to a microchannel plate | |
DE1130937B (en) | Hole mask made of glass for cathode ray tubes | |
AT258546B (en) | Multiple pane of glass | |
DE2137142C3 (en) | Color cathode ray tube | |
DE2141621A1 (en) | METHOD FOR MANUFACTURING TUBULAR LADDERS, ESPECIALLY. FOR SUPRAL CABLES | |
DE886784C (en) | Method for sealing surfaces of objects, in particular of capacitor housings | |
DE744708C (en) | Process for the production of a moisture-proof termination of capacitors | |
DE1544318C3 (en) | Method for producing doped zones in semiconductor bodies | |
DE889630C (en) | Process for the production of tight penetrations | |
DE1945459C3 (en) | Method for manufacturing an electrical component | |
DE3306880C2 (en) | ||
DE2155269A1 (en) | CLOSED VESSEL CONTAINING A DIGITAL LIGHT DEFLECTING SYSTEM | |
DE3010892A1 (en) | Sandwich panel for buildings vehicle bodies or ships interiors - has steel facing plates hooked at edges and pref. polyurethane core | |
EP0036508B1 (en) | Profile for windows or doors |