DE10257423A1 - Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement - Google Patents
Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement Download PDFInfo
- Publication number
- DE10257423A1 DE10257423A1 DE10257423A DE10257423A DE10257423A1 DE 10257423 A1 DE10257423 A1 DE 10257423A1 DE 10257423 A DE10257423 A DE 10257423A DE 10257423 A DE10257423 A DE 10257423A DE 10257423 A1 DE10257423 A1 DE 10257423A1
- Authority
- DE
- Germany
- Prior art keywords
- illumination
- area
- microscope according
- beam path
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 60
- 238000001514 detection method Methods 0.000 title claims abstract description 53
- 230000005484 gravity Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 47
- 230000003287 optical effect Effects 0.000 description 7
- 239000012472 biological sample Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0036—Scanning details, e.g. scanning stages
- G02B21/0048—Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0056—Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0076—Optical details of the image generation arrangements using fluorescence or luminescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/26—Stages; Adjusting means therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
- G02B21/367—Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Mikroskop gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a microscope according to the preamble of claim 1.
Im Gegensatz zu der Arbeit an einzelnen Zellen sind lichtmikroskopische Untersuchungen an Embryonen und anderen entwicklungsbiologischen Proben mit den besonderen Problemen der Absorption und des Auflösungsverlustes behaftet. Zum Beispiel können biologische Fragestellungen im Zusammenhang mit Genexpressionsmustern in sich entwickelnden Organismen derzeit nur schwer mit lichtmikroskopischen Bildgebungsverfahren beantwortet werden, da diese oft zu langsam, zu gering auflösend oder technisch komplex sind oder vom freien Arbeitsabstand oder von der Probenhalterung her eine Beobachtung von millimetergroßen Objekten nicht gestatten. Eine akzeptable Lösung muß die Handhabung großer Proben und eine schnelle, hochauflösende Aufnahme der Daten erlauben und dabei technisch möglichst einfach zu realisieren sein.In contrast to working on individuals Cells are light microscopic examinations on embryos and other biological samples with special problems absorption and loss of resolution afflicted. For example, you can biological issues related to gene expression patterns in developing organisms currently difficult with light microscopic Imaging procedures are answered because these are often too slow, too low resolution or are technically complex or from the free working distance or from the Sample holder from an observation of millimeter-sized objects do not allow. An acceptable solution must be to handle large samples and a fast, high resolution Allow recording of the data and technically as possible be easy to implement.
Aus der wissenschaftlichen Literatur ist ein Mikroskop für die ozeanographische Forschung bekannt, das dadurch gekennzeichnet ist, dass es mit einem Laser eine Beleuchtungslichtebene in einer Probenkammer erzeugt und senkrecht zu dieser Ebene mit einer Kamera die in der Beleuchtungslichtebene erzeugten Fluoreszenzsignale detektiert [E. Fuchs et al., Opt. Express 10, 145 (2002)]. Dieses Mikroskop ähnelt dem Ultramikroskop von H. Siedentopf und R. Zsigmondy [Ann. Phys. 10(4), 1 (1903)] und wird für die Detektion einzelner freischwimmender Partikel wie Bakterien eingesetzt. Es ist nicht dafür geeignet, millimetergroße, beispielsweise entwicklungsbiologische Proben aufzunehmen, da eine Küvette als Probenhalter dient. Ebenso ist es nicht für dreidimensionale Aufnahmen geeignet, da es über keine Möglichkeit verfügt, die Probe relativ zur Beleuchtungslichtebene zu bewegen.From the scientific literature is a microscope for Oceanographic research is known for this is that there is an illuminating light plane in a sample chamber with a laser generated and perpendicular to this plane with a camera in the Illuminated light plane detected fluorescence signals detected [E. Fox et al., Opt. Express 10, 145 (2002)]. This microscope is similar to that Ultramicroscope by H. Siedentopf and R. Zsigmondy [Ann. Phys. 10 (4) 1 (1903)] and is used for the detection of individual free-floating particles such as bacteria used. It is not for that suitable, millimeter-sized, For example, to take samples of developmental biology, as a cell as Sample holder. Likewise, it is not for three-dimensional recordings suitable as there is no possibility features, to move the sample relative to the illuminating light plane.
Aus der
Ferner sind aus der technisch-wissenschaftlichen Literatur Aufbaue für optische Tomographie bekannt. Die optische Projektionstomographie wird beispielsweise in der Genexpressionsanalyse eingesetzt [J. Sharpe et al., Science 296, 541 (2002)]. Dabei handelt es sich um ein System, in dem Projektionen biologischer Proben aufgezeichnet werden, wobei die Probe um eine Achse senkrecht zur Detektionsrichtung gedreht wird. Da die Probe nicht senkrecht zur Detektionsachse durch eine Beleuchtungslichtebene selektiv beleuchtet wird, hat das Mikroskop im Gegensatz zum erfindungsgemäßen Mikroskop eine sehr große Schärfentiefe, durch den ein großer Teil der Probe erfaßt wird. Daher bietet das Mikroskop nicht die Möglichkeit, die Probe längs der Detektionsachse zu bewegen, um ein dreidimensionales Bild aufzunehmen. Ein dreidimensionales Bild der Probe mit räumlicher Auflösung ist somit nur durch die Rekonstruktion anhand der Projektionen möglich.Furthermore, from the technical-scientific Literature constructions for known optical tomography. Optical projection tomography is used, for example, in gene expression analysis [J. Sharpe et al., Science 296, 541 (2002)]. It refers to a system in which projections of biological samples are recorded with the sample around an axis perpendicular to the detection direction is rotated. Since the sample is not perpendicular to the detection axis the microscope has an illuminating light plane selectively illuminated in contrast to the microscope according to the invention a very big one Depth of field, through which a great Part of the sample recorded becomes. Therefore, the microscope does not offer the possibility of moving the sample along the detection axis to take a three-dimensional image. A three-dimensional Image of the sample with spatial resolution is therefore only possible through the reconstruction based on the projections.
Aus der
Dieses Theta-Mikroskop ist jedoch konfokal arrangiert, was hohe Anforderungen an die relative Justierung des Beleuchtungs- und des Detektionsbrennpunkts stellt. Außerdem ist es trotz eines großen Arbeitsabstands nicht ohne weiteres in der Lage, Aufnahmen von großen Objekten zu machen. Dies liegt daran, dass das Objekt im Theta-Mikroskop bei der Objektrasterung nicht genug Bewegungsfreiheit hat und dass es wegen der Punktdetektion in drei Richtungen gerastert werden muß, wodurch eine Aufnahme sehr lange dauert. Das Beleuchtungslicht wird zu einem Beleuchtungspunkt fokussiert.However, this theta microscope is arranged confocally, which places high demands on the relative adjustment of the lighting and detection focal points. Besides, is it despite a big one Working distance not easily able to take pictures of large objects close. This is because the object is in the theta microscope does not have enough freedom of movement when scanning objects and that it can be scanned in three directions because of point detection must what a recording takes a long time. The illuminating light becomes one Illumination point focused.
Die der vorliegenden Erfindung zugrundeliegende Aufgabe besteht darin, ein Mikroskop vorzuschlagen, das für die hochauflösende dreidimensionale Beobachtung von millimetergroßen biologischen Objekten geeignet ist, wobei eine schnelle Aufnahme der Daten möglich ist und der Aufbau technisch möglichst einfach zu realisieren ist.The basis of the present invention The task is to propose a microscope for high-resolution three-dimensional Observation of millimeters biological objects is suitable, with a quick absorption of the Data possible and the structure is technically possible is easy to implement.
Diese Aufgabe wird erfindungsgemäß durch das im Anspruch 1 angegebene Mikroskop gelöst. Die Probe wird durch einen dünnen Lichtstreifen beleuchtet und die Beobachtung erfolgt senkrecht zu diesem Objektbeleuchtungsbereich, der eine flächenartige Ausdehnung hat. Die Dicke des Beleuchtungslichtstreifens bestimmt somit zu wesentlichen Teilen die Schärfentiefe des Systems. Für die Bildaufnahme wird das Objekt durch den raumfesten Lichtstreifen bewegt, und Fluoreszenz- oder/und Streulicht werden in jeder Position der Rasterbewegung mit einem flächigen Detektor aufgenommen. Da das Objekt in der bevorzugten Ausführungsform rotiert werden kann, ist es möglich, solche dreidimensionalen Aufnahmen von mehreren Seiten zu machen und sie zu einer einzigen dreidimensionalen Aufnahme zu kombinieren, deren Auflösung nur noch durch die laterale Auflösung der einzelnen Aufnahmen bestimmt wird. Die hohe Auflösung dieser Aufnahme ist das Ergebnis der fokussierten Beleuchtung, der senkrechten Detektion, der Bewegung des Objekts und der Kombination der einzelnen Aufnahmen durch Bildverarbeitung.This object is achieved by the microscope specified in claim 1. The sample is illuminated by a thin strip of light and the observation is perpendicular to this object lighting area, which has an area-like extension. The thickness of the illuminating light strip thus largely determines the depth of field of the system. For the image acquisition, the object is moved by the spatially fixed light strip, and fluorescent or / and scattered light are recorded in any position of the raster movement with a flat detector. Since the object can be rotated in the preferred embodiment, it is possible to take such three-dimensional images from several sides and to combine them into a single three-dimensional image, the resolution of which is only determined by the lateral resolution of the individual images. The high resolution of this image is the result of focused lighting, vertical detection, the movement of the object and the combination of the individual images through image processing.
Das erfindungsgemäße Mikroskop verfügt über einen Beleuchtungslichtpfad und einen Detektionslichtpfad, die im Objektbeleuchtungsbereich vorzugsweise orthogonal zueinander stehen, wodurch die Detektionsrichtung senkrecht auf der Beleuchtungslichtebene steht. Jedoch werden die Vorteile der Erfindung in ausreichendem Maße auch dann noch erzielt, wenn der Winkel zwischen der Beleuchtungs- und der Detektionsrichtung bzw. zwischen der Beleuchtungslichtebene und der Detektionsrichtung in nicht zu großem Maße von einem rechten Winkel abweicht.The microscope according to the invention has a Illumination light path and a detection light path in the object lighting area are preferably orthogonal to each other, which means the detection direction is perpendicular to the illumination light level. However, the Sufficient advantages of the invention still achieved when the angle between the direction of illumination and the direction of detection or between the illuminating light plane and the detection direction in not too big Dimensions of deviates from a right angle.
Vorteilhafterweise wird als Lichtquelle ein Laser eingesetzt, der die selektive Anregung von Fluoreszenzemission in der Probe ermöglicht. Zum Fokussieren des Beleuchtungslichts zu einem dünnen Streifen wird vorzugsweise eine Zylinderlinse verwendet, es kann aber auch ein anderes fokussierendes Element (beispielsweise ein holographisches Element oder eine konische Linse (Axicon) oder eine Phasenplatte oder andere Elemente zur Erzeugung eines Bessel-Strahls) eingesetzt werden.It is advantageously used as a light source a laser is used that selectively excites fluorescence emission enabled in the sample. For focusing the illuminating light into a thin strip a cylindrical lens is preferably used, but it can also another focusing element (e.g. a holographic element or a conical lens (Axicon) or a phase plate or others Elements for generating a Bessel beam) are used.
Das detektierte Licht ist vorzugsweise Fluoreszenzlicht. Möglich ist aber auch die Detektion von Streulicht. Das Detektionslicht wird vorzugsweise mit einem telezentrischen System aus zwei Objektiven auf den Detektor abgebildet. Geeignet sind aber auch andere optische Baugruppen.The detected light is preferred Fluorescent light. Possible is also the detection of stray light. The detection light is preferably based on a telecentric system consisting of two lenses imaged the detector. However, other optical ones are also suitable Assemblies.
Die Detektion erfolgt vorzugsweise mit einem flächigen Detektor, der das ganze Feld detektiert, beispielsweise einer CCD-Kamera. Durch die Verwendung eines solchen Detektors ist eine schnelle Bildaufnahme möglich, und die Bewegung der Probe für eine dreidimensionale Aufnahme ist auf eine Richtung (nämlich längs der Detektionsachse) beschränkt. Die Auflösung des Systems wird durch die laterale Auflösung der Detektionsoptik bestimmt.The detection is preferably carried out with a flat Detector that detects the entire field, for example a CCD camera. By using such a detector, a quick image acquisition is possible possible, and the movement of the sample for a three-dimensional image is in one direction (namely along the Detection axis) limited. The resolution of the system is determined by the lateral resolution of the detection optics.
Da die Fläche der derzeit verfügbaren Detektoren im allgemeinen nicht ausreicht um eine vollständige, hochaufgelöste Aufnahme von mehreren Millimeter großen Objekten zu gewährleisten, besteht in einer Ausführungsform des erfindungsgemäßen Mikroskops die Möglichkeit, den Detektor in der Detektionsebene, also im Wesentlichen seitlich zur Detektionsrichtung, zu bewegen, um Bilder von Teilen des Objekts aufzunehmen, die zu einem Bild des gesamten Objekts zusammengesetzt werden können.Because the area of the detectors currently available generally not sufficient for a complete, high-resolution recording of several millimeters in size To ensure objects exists in one embodiment of the microscope according to the invention the possibility, the detector in the detection plane, i.e. essentially laterally to the detection direction, to move to images of parts of the object record that composed into an image of the entire object can be.
In einem einfachen, bevorzugten Aufbau werden keine optischen Elemente zur Führung der Strahlengänge verwendet. Es können aber beispielsweise Spiegel, dichroitische Spiegel, Strahlteiler oder optische Fasern für die Führung der Strahlengänge eingesetzt werden. Da in dem erfindungsgemäßen Mikroskop die Beleuchtungs- und Detektionsstrahlengänge getrennt sind, kann auf den in anderen Fluoreszenzmikroskopen üblichen Einsatz passiver Bauteile wie dichroitischer Spiegel oder aktiver, beispielsweise akusto-optischer Bauteile, für die Trennung von Beleuchtungs- und Fluoreszenzlicht verzichtet werden.In a simple, preferred setup no optical elements for guidance the ray paths used. It can but for example mirrors, dichroic mirrors, beam splitters or optical fibers for the leadership of the beam paths used become. Since in the microscope according to the invention the illumination and detection beam paths can be separated the usual use of passive components in other fluorescence microscopes like dichroic mirror or more active, for example acousto-optical Components, for the separation of illuminating and fluorescent light can be dispensed with.
Es besteht die Möglichkeit, den Aufbau zum Beispiel durch einen weiteren Beleuchtungslichtpfad zu ergänzen, dessen Licht zu einem Streifen bzw. Objektbeleuchtungsbereich fokussiert wird, der vorzugsweise in der gleichen Ebene wie der Objektbeleuchtungsbereich des ersten Beleuchtungslichtpfads liegt, so dass eine bessere Ausleuchtung der Probe erreicht wird. Das Licht für diesen weiteren Beleuchtungslichtpfad kann aus derselben Lichtquelle kommen. Vorteilhafterweise wird die Probe hierbei aus zwei gegenüberliegenden Richtungen beleuchtet. Im Gegensatz zu der 4Pi-konfokalen Mikroskopie [S. Hell und E.H.K. Stelzer, J. Opt. Soc. Am. A 9, 2159 (1992)] ist der Justieraufwand in dem erfindungsgemäßen Mikroskop gering, denn es müssen zwei nur mehrere Mikrometer dicke Lichtstreifen überlagert werden. Außerdem muß die Phase der Strahlen nicht berücksichtigt werden.There is a possibility of building for example to be supplemented by a further illuminating light path, the Focused light to a strip or object lighting area which is preferably in the same plane as the object lighting area of the first illuminating light path, so that better illumination the sample is reached. The light for this further illuminating light path can come from the same light source. Advantageously, the Sample from two opposite Directions illuminated. In contrast to 4Pi confocal microscopy [p. Hell and E.H.K. Stelzer, J. Opt. Soc. At the. A 9, 2159 (1992)] the adjustment effort in the microscope according to the invention is low, because there must be two only light strips several micrometers thick are superimposed. In addition, the phase the rays are not taken into account become.
Das erfindungsgemäße Mikroskop kann aber auch als nicht-konfokales 4Pi-Theta-Mikroskop betrieben werden. Hierbei wird die Probe wie in einem 4Pi(A)-konfokalen Mikroskop aus zwei entgegengesetzten Richtungen kohärent beleuchtet, so dass längs dieser Beleuchtungsachse ein Interferenzmuster auftritt, das die Intensität in der Beleuchtungslichtebene räumlich moduliert. Dadurch wird das Beleuchtungsvolumen halbiert, und durch ein Verschieben des Interferenzmusters (durch eine Verstellung der Phasendifferenz zwischen den Strahlen) ist es möglich, sich ergänzende Bereiche der Probe zu beleuchten, so dass ein Bild mit erhöhter Auflösung längs der Beleuchtungsachse rekonstruiert werden kann.The microscope according to the invention can also operated as a non-confocal 4Pi theta microscope become. The sample is like in a 4Pi (A) confocal microscope illuminated coherently from two opposite directions, so that along this An interference pattern occurs that reflects the intensity in the illumination axis Illumination light plane spatial modulated. This halves the lighting volume, and by shifting the interference pattern (by adjusting the Phase difference between the beams) it is possible to complement each other to illuminate the sample so that an image with increased resolution along the Illumination axis can be reconstructed.
Es ist zwar möglich, die Probe in dem erfindungsgemäßen Mikroskop auf einen Probentisch zu legen oder in Luft zu halten, jedoch wird die Probe vorzugsweise durch eine Halterung von oben in einer wassergefüllten Probenkammer gehalten und kann um die senkrechte, also in Schwerkraftrichtung liegende Achse gedreht werden. Dies hat den Vorteil, dass bei der Drehung der Probe für eine Aufnahme aus einer anderen Richtung keine Veränderung der auf die Probe wirkende Schwerkraft erfolgt und sie sich nicht verformt. Vorteilhafterweise wird bei einer solchen Drehung der Probe in der Probenkammer die Probenkammer nicht bewegt, so dass sich die optischen Weglängen (abgesehen von Unterschieden durch den Brechungsindex in der Probe selbst) während des Bewegungsvorgangs nicht ändern. Dies führt zu einer besseren Bildqualität. Vorteilhafterweise kann die auf diese Art gehaltene Probe so ausgerichtet werden, dass der Einfluß von stark streuenden oder absorbierenden Teilen der Probe bei der Bildaufnahme minimiert wird.Although it is possible to place the sample on a sample table in the microscope according to the invention or to hold it in air, the sample is preferably held by a holder from above in a water-filled sample chamber and can be rotated about the vertical axis, i.e. in the direction of gravity , This has the advantage that when the sample is rotated to take a picture from a different direction, there is no change in the gravity acting on the sample and it does not deform. With such a rotation of the sample in the sample chamber, the sample chamber is advantageously not moved, so that the optical path lengths (apart from differences due to the refractive index in the sample itself) do not change during the movement process. This leads to better image quality. The sample held in this way can advantageously be aligned in such a way that the influence of strongly scattering or absorbing parts of the sample during image recording is minimized.
Es ist in einer weiteren Ausführungsform des erfindungsgemäßen Mikroskops auch möglich, die Beleuchtungs- und Detektionspfade um das raumfeste zu untersuchende Objekt zu drehen. Dann muß jedoch die Probe bzw. das Objekt im allgemeinen nachgeführt werden, um in weiteren Aufnahmen abgebildet zu werden.It is in another embodiment of the microscope according to the invention also possible, the lighting and detection paths around the fixed object to be examined Object to rotate. Then, however the sample or the object in general to be tracked in further Pictures to be mapped.
Das zu untersuchende Objekt befindet sich bei einer Aufnahme in dem flächenartigen Objektbeleuchtungsbereich, wobei das Objekt wesentlich größer als die Dicke dieses Bereichs ist. Eine zweidimensionale Aufnahme der sich in diesem Bereich befindlichen Teile des Objekts erfolgt durch den flächigen Detektor. Eine dreidimensionale Aufnahme des Objekts erfolgt durch Rasterung des Objekts in Detektionsrichtung durch den raumfesten Beleuchtungsbereich (oder durch Rasterung des Beleuchtungsbereichs durch das Objekt), wobei in jeder Position des Objekts ein zweidimensionales Bild aufgenommen wird. Die Synchronisation von Bewegung, Beleuchtung und Detektion wird vorteilhafterweise optimiert, um die Probenbelastung zu minimieren.The object to be examined is located when shooting in the area-like object lighting area, the object being much larger than is the thickness of this area. A two-dimensional image of the parts of the object located in this area are made by the flat Detector. The object is recorded in three dimensions Rasterization of the object in the direction of detection by the fixed Illumination area (or by scanning the illumination area through the object), with a two-dimensional in each position of the object Picture is taken. The synchronization of movement, lighting and detection is advantageously optimized to the sample load to minimize.
Vorzugsweise wird die Drehung des Objekts (ebenso wie die lineare Rasterbewegung) elektronisch gesteuert, so dass die Aufnahme mehrerer Bilder aus verschiedenen Winkeln automatisiert werden kann und die Geschwindigkeit der Probenuntersuchung erhöht wird. Die Anzahl der Bilder und die Drehwinkel der Probe, die für eine Gesamtaufnahme mit einer bestimmten räumlichen Auflösung notwendig sind, können zugunsten einer kurzen Probenuntersuchungszeit und damit einer geringen Probenbelastung optimiert werden.Preferably the rotation of the Object (as well as the linear raster movement) electronically controlled, so that the taking of multiple images from different angles is automated can be and the speed of the sample examination is increased. The number of images and the angle of rotation of the sample taken for a total shot a certain spatial resolution are necessary in favor of a short sample examination time and thus a short one Sample loading can be optimized.
Vorteilhafterweise kann das zu untersuchende Objekt auch um die Beleuchtungsachse gekippt werden, so dass es noch aus zusätzlichen Richtungen beobachtet werden kann. In einer weiteren Ausführungsform des erfindungsgemäßen Mikroskops ist ein zweiter Detektionslichtpfad vorhanden, der die Detektion des nach unten emittierten Lichts erlaubt. Wird dann der Objektbeleuchtungsbereich um 90 Grad um die Beleuchtungsachse gedreht (beispielsweise durch die Drehung der Zylinderlinse), so kann die Probe horizontal optisch geschnitten werden (und durch eine vertikale Rasterbewegung kann eine dreidimensionale Aufnahme erzeugt werden).The item to be examined can advantageously be examined Object can also be tilted around the lighting axis so that it still from additional Directions can be observed. In another embodiment of the microscope according to the invention a second detection light path is present which enables the detection of the downward light allowed. Then the object lighting area rotated 90 degrees around the lighting axis (e.g. by the rotation of the cylindrical lens), so the sample can be optically horizontal can be cut (and by a vertical grid movement a three-dimensional image can be created).
Vorteilhafterweise kann in dem erfindungsgemäßen Mikroskop die Zylinderlinse vorzugsweise hochfrequent bewegt werden, beispielsweise im Beleuchtungslichtpfad hochfrequent längs der Zylinderachse und/oder der Beleuchtungsachse bewegt werden oder/und die Zylinderachse hochfrequent in Richtung der Beleuchtungsachse geneigt werden, so dass der Einfluß von Verschmutzungen auf der Zylinderlinse weniger stark ist und die Probe gleichmäßiger ausgeleuchtet wird.Advantageously, in the microscope according to the invention the cylindrical lens is preferably moved at high frequency, for example high-frequency in the illuminating light path along the cylinder axis and / or the lighting axis are moved and / or the cylinder axis is high-frequency be inclined in the direction of the illumination axis, so that the influence of contamination is less strong on the cylindrical lens and the sample is illuminated more evenly becomes.
Vorteilhafterweise kann die Halterung vieler biologischer Proben einfach durch Einbetten in ein Gel (ca. 99% Wasser) realisiert werden.The bracket can advantageously many biological samples simply by embedding them in a gel (approx. 99% water) can be realized.
Die durch Drehung des zu untersuchenden Objekts realisierten Aufnahmen aus verschiedenen Richtungen erlauben eine dreidimensionale Rekonstruktion desselben durch die Kombination der einzelnen dreidimensionalen Rohdatensätze. Da bei der bevorzugten Ausführungsform des erfindungsgemäßen Mikroskops nur ein Teil der Probe optimal abgebildet werden (im allgemeinen die beiden Oktanten, die innerhalb des rechten Winkels zwischen Beleuchtungs- und Detektionsachse liegen), sind mindestens vier Aufnahmen für eine gute Rekonstruktion notwendig. Diese Aufnahmen lassen sich so kombinieren, dass die Rekonstruktion eine höhere Auflösung bietet als die einzelnen Aufnahmen. Die Qualität des rekonstruierten Bilds läßt sich durch Aufnahmen entlang weiterer Winkel verbessern, so dass die toten Winkel der gemeinsamen optischen Übertragungsfunktion aufgefüllt werden.By rotating the object to be examined realized recordings from different directions allow one three-dimensional reconstruction of the same through the combination of the individual three-dimensional raw data sets. Because with the preferred embodiment of the microscope according to the invention only a part of the sample can be optimally imaged (in general the two octants that are within the right angle between Illumination and detection axis), are at least four Recordings for a good reconstruction is necessary. These shots can be combine in such a way that the reconstruction offers a higher resolution than the individual ones Recordings. The quality of the reconstructed image by shooting along wider angles so that the blind spots of the common optical transfer function can be filled.
Durch die Verwendung von Objektiven mit langen Brennweiten steht ein Arbeitsabstand von mehreren Millimetern zur Verfügung. Die Größe des Objekts wird dadurch in erster Linie durch ihre Lichtdurchlässigkeit begrenzt: Sofern man das Objekt vollständig (und nicht nur die Randschichten) untersuchen will, muß hinreichend Licht aus jedem Teil von ihm in der einen oder anderen Orientierung den Detektor erreichen.By using lenses with long focal lengths there is a working distance of several millimeters to disposal. The size of the object is primarily due to its translucency limited: provided that the object is completely (and not only the boundary layers) want to examine must be sufficient Light from every part of it in one orientation or another reach the detector.
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:The invention is illustrated below the attached Drawings closer explained. Show it:
Die
Durch die rechtwinklige Anordnung
(= 90 Grad) von Beleuchtungs-
Die Probe
Die
In der
Bei dieser Ausgestaltungsform besteht
die Möglichkeit,
die beiden Beleuchtungsstrahlengänge
In
Bei einem derartigen System ist es
beispielsweise möglich,
unter Einsatz von Spiegeln
Die Erfindung betrifft ein Mikroskop,
bei dem eine Schicht der Probe durch einen dünnen Lichtstreifen
Claims (15)
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10257423A DE10257423A1 (en) | 2002-12-09 | 2002-12-09 | Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement |
US10/538,081 US7554725B2 (en) | 2002-12-09 | 2003-06-06 | Microscope with a viewing direction perpendicular to the illumination direction |
EP09163734.8A EP2107408B1 (en) | 2002-12-09 | 2003-06-06 | Microscope with the viewing direction perpendicular to the illumination direction |
JP2004557847A JP5259916B2 (en) | 2002-12-09 | 2003-06-06 | A microscope having an observation direction perpendicular to the illumination direction |
AT03732549T ATE520049T1 (en) | 2002-12-09 | 2003-06-06 | MICROSCOPE WITH OBSERVATION DIRECTION PERPETUAL TO THE ILLUMINATION DIRECTION |
EP08000060.7A EP1912089B1 (en) | 2002-12-09 | 2003-06-06 | Microscope with the viewing direction perpendicular to the illumination direction |
EP03732549A EP1576404B1 (en) | 2002-12-09 | 2003-06-06 | Microscope with a viewing direction perpendicular to the illumination direction |
PCT/EP2003/005991 WO2004053558A1 (en) | 2002-12-09 | 2003-06-06 | Microscope with a viewing direction perpendicular to the illumination direction |
AU2003238484A AU2003238484B2 (en) | 2002-12-09 | 2003-06-06 | Microscope with a viewing direction perpendicular to the illumination direction |
EP10183679.9A EP2273300B8 (en) | 2002-12-09 | 2003-06-06 | Microscope with a viewing direction perpendicular to the illumination direction and a method of microscope inspection |
CA2509330A CA2509330C (en) | 2002-12-09 | 2003-06-06 | Microscope with a viewing direction perpendicular to the illumination direction |
US11/592,331 US8970950B2 (en) | 2002-12-09 | 2006-11-03 | Single plane illumination microscope |
US12/468,517 US20090225413A1 (en) | 2002-12-09 | 2009-05-19 | Microscope with a viewing direction perpendicular to the illumination direction |
AU2010200554A AU2010200554B2 (en) | 2002-12-09 | 2010-02-15 | Microscope with a viewing direction perpendicular to the illumination direction |
JP2011158280A JP5738108B2 (en) | 2002-12-09 | 2011-07-19 | microscope |
US13/746,597 US9857577B2 (en) | 2002-12-09 | 2013-01-22 | Microscope with a viewing direction perpendicular to the illumination direction |
US14/612,541 US9823455B2 (en) | 2002-12-09 | 2015-02-03 | Single plane illumination microscope |
US15/818,045 US11042015B2 (en) | 2002-12-09 | 2017-11-20 | Single plane illumination microscope |
US17/327,134 US20210278649A1 (en) | 2002-12-09 | 2021-05-21 | Single plane illumination microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10257423A DE10257423A1 (en) | 2002-12-09 | 2002-12-09 | Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10257423A1 true DE10257423A1 (en) | 2004-06-24 |
Family
ID=32336147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10257423A Ceased DE10257423A1 (en) | 2002-12-09 | 2002-12-09 | Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement |
Country Status (8)
Country | Link |
---|---|
US (7) | US7554725B2 (en) |
EP (4) | EP1912089B1 (en) |
JP (2) | JP5259916B2 (en) |
AT (1) | ATE520049T1 (en) |
AU (2) | AU2003238484B2 (en) |
CA (1) | CA2509330C (en) |
DE (1) | DE10257423A1 (en) |
WO (1) | WO2004053558A1 (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1944600A2 (en) | 2005-07-22 | 2008-07-16 | Carl Zeiss MicroImaging GmbH | Increased resolution luminescence microscopy |
EP1975669A2 (en) | 2007-03-29 | 2008-10-01 | Carl Zeiss MicroImaging GmbH | Optical device for creating a light leaf |
DE102007015061A1 (en) | 2007-03-29 | 2008-10-02 | Carl Zeiss Microimaging Gmbh | Sample holder for a microscope |
DE102007018862A1 (en) | 2007-04-18 | 2008-10-23 | Carl Zeiss Microimaging Gmbh | Objective change device for microscopes |
DE102007020577A1 (en) | 2007-04-26 | 2008-10-30 | Carl Zeiss Microimaging Gmbh | Sample holder for a microscope |
DE102007047461A1 (en) | 2007-09-28 | 2009-04-02 | Carl Zeiss Microimaging Gmbh | Method and optical arrangement for examining a sample |
DE102007047464A1 (en) | 2007-09-28 | 2009-04-02 | Carl Zeiss Microimaging Gmbh | Optical arrangement for photomanipulation |
DE102007048409A1 (en) | 2007-10-09 | 2009-04-16 | Carl Zeiss Microimaging Gmbh | Method for positioning biological samples in a microscopic arrangement |
DE102007063274A1 (en) | 2007-12-20 | 2009-06-25 | Albert-Ludwigs-Universität Freiburg | microscope |
DE102008009216A1 (en) | 2008-02-13 | 2009-08-20 | Carl Zeiss Microimaging Gmbh | Apparatus and method for spatially high resolution imaging of a structure of a sample |
DE102008018476A1 (en) | 2008-04-11 | 2009-10-15 | Carl Zeiss Microimaging Gmbh | microscopy apparatus |
DE102008027784A1 (en) | 2008-06-11 | 2009-12-17 | Carl Zeiss Microlmaging Gmbh | Method for positioning a sample in the detection area of an objective |
DE102008035933A1 (en) | 2008-07-31 | 2010-02-04 | Carl Zeiss Microlmaging Gmbh | Device for holding and positioning a sample relative to a microscope objective |
WO2011036095A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Microscope |
DE102009044987A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | microscope |
DE102009044986A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | microscope |
WO2011036094A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Microscope |
EP2317362A1 (en) | 2009-10-28 | 2011-05-04 | Carl Zeiss MicroImaging GmbH | Microscopic method and microscope with improved resolution |
DE202012007891U1 (en) | 2012-08-16 | 2012-11-23 | Carl Zeiss Microscopy Gmbh | Microscope and sample chamber for SPIM microscopy |
DE202011110077U1 (en) | 2011-10-28 | 2012-11-29 | Leica Microsystems Cms Gmbh | Arrangement for illuminating a sample |
DE102012015861A1 (en) | 2011-10-11 | 2013-04-11 | Carl Zeiss Microscopy Gmbh | Selective plane illumination microscopic method for detecting picture information, involves processing sample with constant velocity by sheet, and receiving images in time at periodic intervals by detection device of microscope |
WO2013053454A1 (en) | 2011-10-11 | 2013-04-18 | Carl Zeiss Microscopy Gmbh | Microscope and method for spim microscopy |
EP2587295A1 (en) | 2011-10-28 | 2013-05-01 | Leica Microsystems CMS GmbH | Method and device for illuminating a sample |
WO2014005682A2 (en) | 2012-07-02 | 2014-01-09 | Carl Zeiss Microscopy Gmbh | Microscope and method for spim microscopy |
DE102012214568A1 (en) | 2012-08-16 | 2014-02-20 | Leica Microsystems Cms Gmbh | Optical arrangement and a microscope |
DE102012019466A1 (en) | 2012-09-28 | 2014-04-03 | Carl Zeiss Microscopy Gmbh | Method for providing selective-plane-illumination-microscopy for determining speed of movement of biological sample, involves moving sample at constant speed by light sheet, and recording images at periodic time intervals |
DE102012020240A1 (en) | 2012-10-12 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
DE102012218920A1 (en) | 2012-10-17 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Device for illuminating a sample |
DE102012016347A1 (en) | 2012-08-16 | 2014-05-15 | Carl Zeiss Microscopy Gmbh | Microscope for single plane illumination microscopy (SPIM) has sample chamber having screw-in insert fittable annular opening in which sealing ring for fitting detector and/or illumination lens and/or lens mount or holder is placed |
DE102012024995A1 (en) | 2012-12-20 | 2014-06-26 | Carl Zeiss Microscopy Gmbh | Selective-plane illumination microscopy (SPIM) method for analyzing biological sample, involves changing brightness of image picked up by receiver during magnification change on drive unit |
US8830563B2 (en) | 2008-06-17 | 2014-09-09 | Carl Zeiss Microimaging Gmbh | Laser scanning microscope having a laser diode comprising a light modulation device |
DE102013213781A1 (en) | 2013-03-20 | 2014-09-25 | Leica Microsystems Cms Gmbh | Method and optical arrangement for manipulating and imaging a microscopic sample |
DE102013208872A1 (en) | 2013-05-14 | 2014-11-20 | Carl Zeiss Microscopy Gmbh | Method for generating an image of a sample |
DE102013105586A1 (en) | 2013-05-30 | 2014-12-04 | Carl Zeiss Ag | Device for imaging a sample |
DE102013211426A1 (en) | 2013-06-18 | 2014-12-18 | Leica Microsystems Cms Gmbh | Method and optical device for microscopically examining a plurality of samples |
DE102013106895A1 (en) * | 2013-07-01 | 2015-01-08 | Leica Microsystems Cms Gmbh | Light microscopic method for the localization of point objects |
DE102013107298A1 (en) | 2013-07-10 | 2015-01-15 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102013107297A1 (en) | 2013-07-10 | 2015-01-15 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102013112600A1 (en) | 2013-11-15 | 2015-05-21 | Carl Zeiss Microscopy Gmbh | Optical transmission system and microscope with such a transmission system |
DE102013112595A1 (en) | 2013-11-15 | 2015-05-21 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102013112596A1 (en) | 2013-11-15 | 2015-05-21 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102013021542A1 (en) | 2013-12-18 | 2015-06-18 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
USRE45575E1 (en) | 2007-03-29 | 2015-06-23 | Carl Zeiss Microscopy Gmbh | Optical arrangement for the production of a light-sheet |
DE102014104977A1 (en) | 2014-04-08 | 2015-10-08 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102014113827A1 (en) | 2014-09-24 | 2016-03-24 | Carl Zeiss Microscopy Gmbh | Device for imaging a sample |
DE102015114756A1 (en) | 2014-09-25 | 2016-03-31 | Leica Microsystems Cms Gmbh | mirror device |
WO2016071033A1 (en) | 2014-11-06 | 2016-05-12 | Carl Zeiss Microscopy Gmbh | Method for generating an image of a sample |
DE102014119255A1 (en) | 2014-12-19 | 2016-06-23 | Carl Zeiss Microscopy Gmbh | Method for light-sheet microscopic examination of a sample |
WO2016146503A1 (en) | 2015-03-16 | 2016-09-22 | Carl Zeiss Microscopy Gmbh | Method and assembly for light sheet microscopic analysis of a sample |
WO2016166374A1 (en) | 2015-04-17 | 2016-10-20 | Leica Microsystems Cms Gmbh | Method and device for the spim analysis of a sample |
WO2017032805A1 (en) | 2015-08-24 | 2017-03-02 | Leica Microsystems Cms Gmbh | Illumination arrangement for a light sheet microscope |
WO2017060506A1 (en) | 2015-10-09 | 2017-04-13 | Leica Microsystems Cms Gmbh | Method and apparatus for examining a sample using structured light-sheet illumination |
WO2017220699A1 (en) | 2016-06-23 | 2017-12-28 | Leica Microsystems Cms Gmbh | Illumination apparatus for a microscope |
WO2018007469A2 (en) | 2016-07-06 | 2018-01-11 | Leica Microsystems Cms Gmbh | Method for examining a sample, and device for carrying out such a method |
DE102005027077B4 (en) * | 2004-11-04 | 2018-02-08 | Leica Microsystems Cms Gmbh | Lens Microscope |
DE102017119169A1 (en) | 2016-08-22 | 2018-02-22 | Leica Microsystems Cms Gmbh | Method for SPIM examination of a sample |
DE102016120683A1 (en) | 2016-10-28 | 2018-05-03 | Carl Zeiss Microscopy Gmbh | Light sheet microscope |
DE102017118691A1 (en) * | 2017-08-16 | 2019-02-21 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin | Method for light-sheet microscopic examination of in particular biological samples and light-sheet microscope |
WO2019063539A1 (en) | 2017-09-29 | 2019-04-04 | Carl Zeiss Microscopy Gmbh | Method and device for optically examining a plurality of microscopic samples |
US10459209B2 (en) | 2016-04-08 | 2019-10-29 | Leica Microsystems Cms Gmbh | Method and microscope for examining a sample |
US10585271B2 (en) | 2015-04-13 | 2020-03-10 | Leica Microsystems Cms Gmbh | Method and device for examination of a sample |
US11194149B2 (en) | 2015-12-23 | 2021-12-07 | Leica Microsystems Cms Gmbh | Method for examining a sample by means of light sheet microscopy, and light sheet microscope |
DE102013002981B4 (en) | 2013-02-20 | 2022-04-28 | Hans-Ulrich Dodt | 3D microscope |
DE102020128524A1 (en) | 2020-10-29 | 2022-05-05 | Carl Zeiss Microscopy Gmbh | Light sheet microscope and method of light sheet microscopy |
US11366299B2 (en) | 2015-10-09 | 2022-06-21 | Leica Microsystems Cms Gmbh | Method and lighting arrangement for illuminating a sample layer with a light sheet |
DE102021104871A1 (en) | 2021-03-01 | 2022-09-01 | Carl Zeiss Microscopy Gmbh | Method and device for light sheet microscopic examination of a sample |
DE102022125117A1 (en) | 2022-09-29 | 2024-04-04 | Carl Zeiss Microscopy Gmbh | Light sheet microscope |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1537445B1 (en) * | 2002-09-05 | 2012-08-01 | Nanosys, Inc. | Nanocomposites |
DE10257423A1 (en) * | 2002-12-09 | 2004-06-24 | Europäisches Laboratorium für Molekularbiologie (EMBL) | Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement |
US7532749B2 (en) * | 2003-11-18 | 2009-05-12 | Panasonic Corporation | Light processing apparatus |
JP2005259221A (en) * | 2004-03-10 | 2005-09-22 | Pioneer Electronic Corp | Hologram reproducing device and method |
US7672209B2 (en) * | 2004-07-08 | 2010-03-02 | Pioneer Corporation | Hologram recording/reproducing apparatus, hologram reproducing apparatus and method, and computer program |
WO2006093255A1 (en) * | 2005-03-03 | 2006-09-08 | Pioneer Corporation | Marker selection method, marker selection device, marker, hologram recording device and method, hologram reproducing device and method, and computer program |
US7485875B2 (en) * | 2005-07-22 | 2009-02-03 | Carl Zeiss Microimaging Gmbh | Resolution-enhanced luminescence microscopy |
JP2007114542A (en) * | 2005-10-21 | 2007-05-10 | Olympus Corp | Microscope observation apparatus and microscope observation method |
WO2007065711A1 (en) * | 2005-12-09 | 2007-06-14 | Europäisches Laboratorium für Molekularbiologie (EMBL) | Miscroscope specimen holder |
WO2008021834A2 (en) * | 2006-08-11 | 2008-02-21 | The Regents Of The University Of California | High-resolution microscope using optical amplification |
DE102007017598A1 (en) | 2007-04-13 | 2008-10-16 | Carl Zeiss Microimaging Gmbh | Method and arrangement for positioning a light sheet in the focal plane of a detection optical system |
US8184364B2 (en) * | 2007-05-26 | 2012-05-22 | Zeta Instruments, Inc. | Illuminator for a 3-D optical microscope |
US7729049B2 (en) | 2007-05-26 | 2010-06-01 | Zeta Instruments, Inc. | 3-d optical microscope |
DE102007045897A1 (en) * | 2007-09-26 | 2009-04-09 | Carl Zeiss Microimaging Gmbh | Method for the microscopic three-dimensional imaging of a sample |
WO2010014244A2 (en) * | 2008-07-30 | 2010-02-04 | The Regents Of The University Of California, San Francisco | Multidirectional selective plane illumination microscopy |
GB0814039D0 (en) | 2008-07-31 | 2008-09-10 | Imp Innovations Ltd | Optical arrangement for oblique plane microscopy |
JP5311195B2 (en) * | 2008-09-16 | 2013-10-09 | 横河電機株式会社 | Microscope equipment |
US9116353B2 (en) | 2008-09-16 | 2015-08-25 | Yokogawa Electric Corporation | Microscope device |
JP5190886B2 (en) * | 2008-12-11 | 2013-04-24 | 株式会社ブイ・テクノロジー | Fluorescence microscope |
SG164292A1 (en) * | 2009-01-13 | 2010-09-29 | Semiconductor Technologies & Instruments Pte | System and method for inspecting a wafer |
DE102009022912B4 (en) * | 2009-05-27 | 2016-11-17 | Carl Zeiss Ag | Correlative optical and particle beam microscopy |
WO2011047053A2 (en) * | 2009-10-13 | 2011-04-21 | California Institute Of Technology | Holographically illuminated imaging devices |
WO2011046896A1 (en) * | 2009-10-13 | 2011-04-21 | Intelligent Imaging Innovations, Inc. | Supercontinuum laser source for full-field confocal microscopy, spim and tirf |
US8570649B2 (en) * | 2009-10-29 | 2013-10-29 | California Institute Of Technology | Dual-mode raster point scanning/light sheet illumination microscope |
US8970671B2 (en) * | 2010-02-23 | 2015-03-03 | California Institute Of Technology | Nondiffracting beam detection devices for three-dimensional imaging |
JP6029983B2 (en) | 2010-03-05 | 2016-11-24 | ザ ジェネラル ホスピタル コーポレイション | System, method and computer-accessible medium for providing a fine image of at least one anatomical structure at a specific resolution |
DE102010013223B4 (en) * | 2010-03-29 | 2016-05-12 | Lavision Biotec Gmbh | Method and arrangement for microscopy |
US9389408B2 (en) | 2010-07-23 | 2016-07-12 | Zeta Instruments, Inc. | 3D microscope and methods of measuring patterned substrates |
US8575570B2 (en) * | 2010-08-25 | 2013-11-05 | California Institute Of Technology | Simultaneous orthogonal light sheet microscopy and computed optical tomography |
DE102010060121C5 (en) | 2010-10-22 | 2023-09-28 | Leica Microsystems Cms Gmbh | SPIM microscope with sequential lightsheet |
DE102010044013A1 (en) * | 2010-11-16 | 2012-05-16 | Carl Zeiss Microimaging Gmbh | Depth resolution enhanced microscopy |
DE102010063412B4 (en) | 2010-12-17 | 2013-06-06 | Laser Zentrum Hannover E.V. | Technique for tomographic image acquisition |
US10908403B2 (en) * | 2011-02-14 | 2021-02-02 | European Molecular Biology Laboratory (Embl) | Light-pad microscope for high-resolution 3D fluorescence imaging and 2D fluctuation spectroscopy |
DE102011000835C5 (en) * | 2011-02-21 | 2019-08-22 | Leica Microsystems Cms Gmbh | Scanning microscope and method for light microscopic imaging of an object |
WO2012122398A2 (en) | 2011-03-09 | 2012-09-13 | California Institute Of Technology | Talbot imaging devices and systems |
US8946619B2 (en) | 2011-04-20 | 2015-02-03 | California Institute Of Technology | Talbot-illuminated imaging devices, systems, and methods for focal plane tuning |
US9964747B2 (en) | 2012-06-11 | 2018-05-08 | Helmholtz Zentrum Munchen Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) | Imaging system and method for imaging an object |
DE102012211462A1 (en) | 2012-07-03 | 2014-01-23 | Carl Zeiss Microscopy Gmbh | Method for preparing and performing image stacking of a sample from different orientation angles |
US9404869B2 (en) | 2012-10-09 | 2016-08-02 | Howard Hughes Medical Institute | Multiview light-sheet microscopy |
DE102012020241A1 (en) | 2012-10-12 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Image pickup device and method for taking a picture sequence |
DE102012020242A1 (en) | 2012-10-12 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Image pickup device and method for taking a picture sequence |
DE102012110077A1 (en) | 2012-10-23 | 2014-06-26 | Karlsruher Institut für Technologie | Microscope with at least one illumination beam in the form of a lens |
JP6086366B2 (en) * | 2013-04-05 | 2017-03-01 | 国立研究開発法人理化学研究所 | Microscope, focusing device, fluid holding device, and optical unit |
US9257260B2 (en) * | 2013-04-27 | 2016-02-09 | Kla-Tencor Corporation | Method and system for adaptively scanning a sample during electron beam inspection |
WO2014178514A1 (en) * | 2013-04-29 | 2014-11-06 | 한국식품연구원 | Scanning module, detection device using bessel beam, detection probe, and probe type detection device |
EP3605183A1 (en) | 2013-05-10 | 2020-02-05 | European Molecular Biology Laboratory | Microscope for selective plane illumination microscopy |
DE202013012727U1 (en) | 2013-05-10 | 2018-11-28 | European Molecular Biology Laboratory | Microscope module for imaging a sample |
US9581798B2 (en) | 2013-07-22 | 2017-02-28 | Fundacio Institut De Ciencies Fotoniques | Light sheet-based imaging device with extended depth of field |
DE102013110093B3 (en) * | 2013-09-13 | 2015-01-22 | Johann Wolfgang Goethe-Universität | Cuvette for inverse fluorescence assay |
US10539772B2 (en) * | 2013-10-09 | 2020-01-21 | Howard Hughes Medical Institute | Multiview light-sheet microscopy |
DE102013021222B4 (en) * | 2013-12-17 | 2023-05-04 | Carl Zeiss Microscopy Gmbh | Microscope and microscopy method |
DE102013226277A1 (en) * | 2013-12-17 | 2015-06-18 | Leica Microsystems Cms Gmbh | Method and device for examining a sample by means of optical projection tomography |
JP2015135463A (en) | 2013-12-19 | 2015-07-27 | オリンパス株式会社 | Microscope apparatus and microscope system |
EP3095004A4 (en) | 2014-01-14 | 2017-09-20 | Applied Scientific Instrumentation, Inc. | Light sheet generator |
CA2957941A1 (en) * | 2014-08-13 | 2016-02-18 | Daniel Summer Gareau | Line-scanning, sample-scanning, multimodal confocal microscope |
ES2567379B1 (en) | 2014-10-21 | 2017-02-03 | Universidad Carlos Iii De Madrid | Microscope and procedure for the generation of 3D images of a demonstration collection |
JP2016090766A (en) * | 2014-11-04 | 2016-05-23 | オリンパス株式会社 | microscope |
US10181190B2 (en) | 2014-11-04 | 2019-01-15 | Olympus Corporation | Microscope and microscope image acquisition method |
US10007100B2 (en) | 2014-11-04 | 2018-06-26 | Olympus Corporation | Light sheet illumination microscope and light sheet illumination method |
FR3031196B1 (en) | 2014-12-29 | 2017-01-13 | Karla Balaa | DEVICE FOR REALIZING THE LIGHT-SHEET MICROSCOPY |
WO2016125281A1 (en) * | 2015-02-05 | 2016-08-11 | 株式会社ニコン | Structured illumination microscope, observation method, and control program |
WO2016138003A1 (en) * | 2015-02-23 | 2016-09-01 | The Research Foundation For The State University Of New York | Method and apparatus for tiling light sheet selective plane illumination microscopy with real-time optimized light sheet |
CN104677871A (en) * | 2015-02-27 | 2015-06-03 | 中国科学院自动化研究所 | Multi-photon exciting, illuminating and micro-imaging system of X-ray plate |
JP6417262B2 (en) | 2015-04-15 | 2018-11-07 | オリンパス株式会社 | Sheet illumination microscope |
US10989661B2 (en) * | 2015-05-01 | 2021-04-27 | The Board Of Regents Of The University Of Texas System | Uniform and scalable light-sheets generated by extended focusing |
JP6503221B2 (en) | 2015-05-13 | 2019-04-17 | オリンパス株式会社 | Three-dimensional information acquisition apparatus and three-dimensional information acquisition method |
DE102015209758A1 (en) | 2015-05-28 | 2016-12-01 | Carl Zeiss Microscopy Gmbh | Arrangement and method for beam shaping and light sheet microscopy |
DE102015209756A1 (en) | 2015-05-28 | 2016-12-01 | Carl Zeiss Microscopy Gmbh | Arrangement and method for light-sheet microscopy |
JP6552881B2 (en) * | 2015-06-12 | 2019-07-31 | オリンパス株式会社 | Microscope and microscope image acquisition method |
JP6491578B2 (en) | 2015-09-07 | 2019-03-27 | オリンパス株式会社 | Sheet illumination microscope system, image processing apparatus, sheet illumination microscope method, and program |
JP6796917B2 (en) | 2015-09-18 | 2020-12-09 | シスメックス株式会社 | Particle imaging device and particle imaging method |
ITUB20153920A1 (en) | 2015-09-28 | 2017-03-28 | Milano Politecnico | Optofluidic device. |
US10802262B2 (en) | 2015-10-29 | 2020-10-13 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for imaging a biological sample |
JP6570427B2 (en) * | 2015-11-06 | 2019-09-04 | 浜松ホトニクス株式会社 | Image acquisition apparatus, image acquisition method, and spatial light modulation unit |
US10509215B2 (en) * | 2016-03-14 | 2019-12-17 | Olympus Corporation | Light-field microscope |
US10876970B2 (en) | 2016-04-12 | 2020-12-29 | The Board Of Regents Of The University Of Texas System | Light-sheet microscope with parallelized 3D image acquisition |
DE102016108384B3 (en) | 2016-05-04 | 2017-11-09 | Leica Microsystems Cms Gmbh | Device and method for light sheet-like illumination of a sample |
JP2017203822A (en) * | 2016-05-09 | 2017-11-16 | オリンパス株式会社 | Illumination setting method, sheet illumination microscopic device, and program |
JP2017227788A (en) * | 2016-06-23 | 2017-12-28 | オリンパス株式会社 | Microscope and microscope image acquisition method |
US11320640B2 (en) | 2016-06-24 | 2022-05-03 | Howard Hughes Medical Institute | Automated adjustment of light sheet geometry in a microscope |
EP4273594A3 (en) * | 2016-09-09 | 2024-01-10 | The University of North Carolina at Chapel Hill | Tilted illumination systems for fluoresence microscopes |
DE102016117675B4 (en) * | 2016-09-20 | 2018-07-05 | Leica Microsystems Cms Gmbh | Microscope with a lighting module |
US10310246B2 (en) * | 2016-09-28 | 2019-06-04 | SCREEN Holdings Co., Ltd. | Converter, illuminator, and light sheet fluorescence microscope |
JP6423841B2 (en) | 2016-10-11 | 2018-11-14 | 浜松ホトニクス株式会社 | Sample observation apparatus and sample observation method |
EP3538941A4 (en) * | 2016-11-10 | 2020-06-17 | The Trustees of Columbia University in the City of New York | Rapid high-resolution imaging methods for large samples |
JP2018128604A (en) | 2017-02-09 | 2018-08-16 | オリンパス株式会社 | Microscope device |
JP2018169502A (en) * | 2017-03-30 | 2018-11-01 | オリンパス株式会社 | Microscope apparatus |
US11156822B2 (en) | 2017-04-24 | 2021-10-26 | Igor Lyuboshenko | Selective plane illumination microscopy with multiple illumination units scanning an object in sync with a digital camera rolling shutter |
US10768400B2 (en) | 2017-04-24 | 2020-09-08 | Igor Lyuboshenko | Varying an illumination path of a selective plane illumination microscopy |
US10365464B1 (en) | 2017-04-24 | 2019-07-30 | Igor Lyuboshenko | Extending optical microscopes to provide selective plane illumination microscopy |
DE102017108874A1 (en) * | 2017-04-26 | 2018-10-31 | Carl Zeiss Ag | Material testing with structured lighting |
US11287627B2 (en) | 2017-06-30 | 2022-03-29 | Chrysanthe Preza | Multi-focal light-sheet structured illumination fluorescence microscopy system |
ES2695798B2 (en) | 2017-07-04 | 2019-12-04 | Univ Madrid Carlos Iii | Rotary lens shift device for flat laser beam microscope |
US11169092B2 (en) | 2017-07-11 | 2021-11-09 | Hamamatsu Photonics K.K. | Sample observation device and sample observation method |
US11579428B2 (en) * | 2017-07-20 | 2023-02-14 | Viventis Microscopy Sarl | Microscope, method of operating a microscope and method of imaging a sample |
PL233602B1 (en) * | 2017-10-16 | 2019-11-29 | Inst Biologii Doswiadczalnej Im M Nenckiego Polskiej Akademii Nauk | Device for imaging transparent objects |
EP3495865A1 (en) | 2017-12-07 | 2019-06-12 | European Molecular Biology Laboratory | A sample holder for imaging a plurality of samples |
WO2019148008A1 (en) | 2018-01-26 | 2019-08-01 | University Of Washington | Apparatuses and methods for multi-direction digital scanned light sheet microscopy |
DE102018102241B4 (en) * | 2018-02-01 | 2022-02-24 | Leica Microsystems Cms Gmbh | Method for imaging a sample using a light sheet microscope and a light sheet microscope |
JP7114272B2 (en) | 2018-02-28 | 2022-08-08 | 浜松ホトニクス株式会社 | Light sheet microscope and sample observation method |
US11262570B2 (en) | 2018-03-12 | 2022-03-01 | The University Of North Carolina At Chapel Hill | Mirror image microscopy for increased collection |
WO2019178090A1 (en) | 2018-03-12 | 2019-09-19 | The University Of North Carolina At Chapel Hill | Light disc microscopy for fluorescence microscopes |
US11209367B2 (en) * | 2018-08-27 | 2021-12-28 | Yale University | Multi-color imaging using salvaged fluorescence |
ES2749742B2 (en) | 2018-09-21 | 2021-04-06 | Univ Madrid Carlos Iii | Microscope and flat laser beam procedure for large samples |
WO2020161826A1 (en) | 2019-02-06 | 2020-08-13 | オリンパス株式会社 | Imaging device |
WO2022268325A1 (en) | 2021-06-24 | 2022-12-29 | Leica Microsystems Cms Gmbh | Calibration object for calibrating an imaging system |
WO2023057349A1 (en) | 2021-10-05 | 2023-04-13 | Leica Microsystems Cms Gmbh | Imaging system and method |
EP4413349A1 (en) | 2021-10-05 | 2024-08-14 | Leica Microsystems CMS GmbH | Sample carrier and method for imaging a sample |
CN118311030A (en) * | 2024-04-11 | 2024-07-09 | 东海实验室 | Marine plankton imager based on digital holography and data processing method |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1499882A (en) * | 1975-02-14 | 1978-02-01 | Rolls Royce | Sound attenuating structure |
JPS5324637U (en) * | 1976-08-09 | 1978-03-02 | ||
DE3424108A1 (en) * | 1984-06-29 | 1986-01-09 | Bernhard Prof. Dr.-Ing. 4300 Essen Schrader | SPECTROMETRY SAMPLE ARRANGEMENT, METHOD FOR MEASURING LUMINESCENCE AND SCATTERING AND USE OF THE SAMPLE ARRANGEMENT |
US4700298A (en) * | 1984-09-14 | 1987-10-13 | Branko Palcic | Dynamic microscope image processing scanner |
IE56166B1 (en) * | 1985-02-15 | 1991-05-08 | Tekscan Ltd | Manipulator means |
US4621911A (en) * | 1985-03-12 | 1986-11-11 | Carnegie-Mellon University | Standing wave luminescence microscopy |
NL8600785A (en) * | 1986-03-27 | 1987-10-16 | Asm Lithography Bv | POSITIONING DEVICE WITH A Z-MANIPULATOR AND AN O-MANIPULATOR. |
JPH07122694B2 (en) * | 1986-10-16 | 1995-12-25 | オリンパス光学工業株式会社 | Illumination device for microscope |
JPS63306413A (en) * | 1987-06-09 | 1988-12-14 | Olympus Optical Co Ltd | Scanning type optical microscope |
JPH0210230A (en) * | 1988-06-29 | 1990-01-16 | Fujitsu Ltd | Light-intensity measuring apparatus |
JPH0732184B2 (en) * | 1989-03-13 | 1995-04-10 | 株式会社東芝 | Method for evaluating compound semiconductor epitaxial film |
US5104218A (en) | 1989-11-09 | 1992-04-14 | General Atomics | Micropipette adaptor for spectrofluorimeters |
JP3102493B2 (en) * | 1990-09-19 | 2000-10-23 | 株式会社日立製作所 | Foreign matter inspection method and apparatus |
US5570228A (en) * | 1991-04-19 | 1996-10-29 | Edge Scientific Instrument Company Llc | Fiber optic illumination system and method for a high definition light microscope |
JPH05324637A (en) | 1992-05-15 | 1993-12-07 | Hitachi Ltd | Document preparing device |
DE4326473C2 (en) | 1993-08-06 | 1997-05-15 | European Molecular Biology Lab Embl | Confocal microscope |
JPH07174687A (en) * | 1993-12-20 | 1995-07-14 | Zexel Corp | Particle analysis method utilizing laser doppler method |
JPH07253309A (en) | 1994-03-14 | 1995-10-03 | Hitachi Electron Eng Co Ltd | Method of focusing lime sensor |
JP3412322B2 (en) | 1995-03-30 | 2003-06-03 | 横河電機株式会社 | Confocal microscope |
JPH08327947A (en) | 1995-06-02 | 1996-12-13 | Imeeji Joho Kagaku Kenkyusho | Stereoscopic display device using diffraction grating |
US5710625A (en) * | 1996-04-30 | 1998-01-20 | Hughes Electronics | Spectral oil immersion cell |
DE19720513A1 (en) | 1997-05-16 | 1998-11-19 | Daniel Huber | Thin light plane producing apparatus for photographic detection of objects |
US6294327B1 (en) * | 1997-09-08 | 2001-09-25 | Affymetrix, Inc. | Apparatus and method for detecting samples labeled with material having strong light scattering properties, using reflection mode light and diffuse scattering |
US6249341B1 (en) * | 1999-01-25 | 2001-06-19 | Amnis Corporation | Imaging and analyzing parameters of small moving objects such as cells |
JP3734010B2 (en) * | 1999-06-28 | 2006-01-11 | 横河電機株式会社 | Confocal light scanner |
DE10026830A1 (en) * | 2000-05-30 | 2001-12-06 | Zeiss Carl Jena Gmbh | Optical sensor for measuring the distance and / or the inclination of a surface |
JP3929717B2 (en) * | 2001-03-30 | 2007-06-13 | 株式会社ニデック | Corneal microscope |
KR20020084786A (en) * | 2001-05-04 | 2002-11-11 | 이재웅 | Confocal image forming apparatus and method using linear line-scanning |
GB0112392D0 (en) | 2001-05-22 | 2001-07-11 | Medical Res Council | Optical imaging appartus and associated specimen support means |
JP3938343B2 (en) | 2002-08-09 | 2007-06-27 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Task management system, program, and control method |
DE10257423A1 (en) * | 2002-12-09 | 2004-06-24 | Europäisches Laboratorium für Molekularbiologie (EMBL) | Microscope used in molecular biology comprises a focussing arrangement producing an extended planar object illumination region, a detection device, and a movement arrangement |
JP4127152B2 (en) | 2003-08-05 | 2008-07-30 | ソニー株式会社 | Data recording / reproducing apparatus and method |
US7538879B2 (en) * | 2004-03-30 | 2009-05-26 | Power Joan F | Light profile microscopy apparatus and method |
DE102004034962A1 (en) * | 2004-07-16 | 2006-02-16 | Carl Zeiss Jena Gmbh | Microscope with increased resolution |
DE102007063274B8 (en) | 2007-12-20 | 2022-12-15 | Albert-Ludwigs-Universität Freiburg | microscope |
WO2010014244A2 (en) * | 2008-07-30 | 2010-02-04 | The Regents Of The University Of California, San Francisco | Multidirectional selective plane illumination microscopy |
US10051240B2 (en) | 2010-06-14 | 2018-08-14 | Howard Hughes Medical Institute | Structured plane illumination microscopy |
US8711211B2 (en) | 2010-06-14 | 2014-04-29 | Howard Hughes Medical Institute | Bessel beam plane illumination microscope |
US8575570B2 (en) * | 2010-08-25 | 2013-11-05 | California Institute Of Technology | Simultaneous orthogonal light sheet microscopy and computed optical tomography |
CN102710489B (en) | 2011-03-28 | 2015-07-29 | 日电(中国)有限公司 | Dynamic shunt dispatching patcher and method |
US9404869B2 (en) * | 2012-10-09 | 2016-08-02 | Howard Hughes Medical Institute | Multiview light-sheet microscopy |
DE102012020240A1 (en) * | 2012-10-12 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
-
2002
- 2002-12-09 DE DE10257423A patent/DE10257423A1/en not_active Ceased
-
2003
- 2003-06-06 JP JP2004557847A patent/JP5259916B2/en not_active Expired - Lifetime
- 2003-06-06 EP EP08000060.7A patent/EP1912089B1/en not_active Expired - Lifetime
- 2003-06-06 AU AU2003238484A patent/AU2003238484B2/en not_active Expired
- 2003-06-06 AT AT03732549T patent/ATE520049T1/en active
- 2003-06-06 CA CA2509330A patent/CA2509330C/en not_active Expired - Lifetime
- 2003-06-06 WO PCT/EP2003/005991 patent/WO2004053558A1/en active Application Filing
- 2003-06-06 EP EP03732549A patent/EP1576404B1/en not_active Expired - Lifetime
- 2003-06-06 US US10/538,081 patent/US7554725B2/en not_active Expired - Lifetime
- 2003-06-06 EP EP09163734.8A patent/EP2107408B1/en not_active Expired - Lifetime
- 2003-06-06 EP EP10183679.9A patent/EP2273300B8/en not_active Expired - Lifetime
-
2006
- 2006-11-03 US US11/592,331 patent/US8970950B2/en active Active
-
2009
- 2009-05-19 US US12/468,517 patent/US20090225413A1/en not_active Abandoned
-
2010
- 2010-02-15 AU AU2010200554A patent/AU2010200554B2/en not_active Expired
-
2011
- 2011-07-19 JP JP2011158280A patent/JP5738108B2/en not_active Expired - Lifetime
-
2013
- 2013-01-22 US US13/746,597 patent/US9857577B2/en not_active Expired - Lifetime
-
2015
- 2015-02-03 US US14/612,541 patent/US9823455B2/en not_active Expired - Lifetime
-
2017
- 2017-11-20 US US15/818,045 patent/US11042015B2/en not_active Expired - Lifetime
-
2021
- 2021-05-21 US US17/327,134 patent/US20210278649A1/en not_active Abandoned
Cited By (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005027077C5 (en) * | 2004-11-04 | 2021-01-28 | Leica Microsystems Cms Gmbh | Light disk microscope |
DE102005027077B4 (en) * | 2004-11-04 | 2018-02-08 | Leica Microsystems Cms Gmbh | Lens Microscope |
EP1944600A2 (en) | 2005-07-22 | 2008-07-16 | Carl Zeiss MicroImaging GmbH | Increased resolution luminescence microscopy |
USRE45575E1 (en) | 2007-03-29 | 2015-06-23 | Carl Zeiss Microscopy Gmbh | Optical arrangement for the production of a light-sheet |
EP1975669A2 (en) | 2007-03-29 | 2008-10-01 | Carl Zeiss MicroImaging GmbH | Optical device for creating a light leaf |
DE102007015063A1 (en) | 2007-03-29 | 2008-10-02 | Carl Zeiss Microimaging Gmbh | Optical arrangement for generating a light sheet |
DE102007015061A1 (en) | 2007-03-29 | 2008-10-02 | Carl Zeiss Microimaging Gmbh | Sample holder for a microscope |
EP1975669A3 (en) * | 2007-03-29 | 2012-12-26 | Carl Zeiss Microscopy GmbH | Optical device for creating a light leaf |
DE102007015063B4 (en) | 2007-03-29 | 2019-10-17 | Carl Zeiss Microscopy Gmbh | Optical arrangement for generating a light sheet |
US7787179B2 (en) | 2007-03-29 | 2010-08-31 | Carl Ziess MicroImaging GmbH | Optical arrangement for the production of a light-sheet |
DE102007018862A1 (en) | 2007-04-18 | 2008-10-23 | Carl Zeiss Microimaging Gmbh | Objective change device for microscopes |
US8213081B2 (en) | 2007-04-18 | 2012-07-03 | Carl Zeiss Microimaging Gmbh | Objective replacement device for microscopes |
DE102007020577B4 (en) | 2007-04-26 | 2021-09-09 | Carl Zeiss Microscopy Gmbh | Sample holder for a microscope and use of a microscope with such a sample holder |
DE102007020577A1 (en) | 2007-04-26 | 2008-10-30 | Carl Zeiss Microimaging Gmbh | Sample holder for a microscope |
US8699133B2 (en) | 2007-04-26 | 2014-04-15 | Carl Zeiss Microscopy Gmbh | Sample holding system for a microscope with magnetic coupling |
DE102007047461A1 (en) | 2007-09-28 | 2009-04-02 | Carl Zeiss Microimaging Gmbh | Method and optical arrangement for examining a sample |
WO2009043485A1 (en) | 2007-09-28 | 2009-04-09 | Carl Zeiss Microimaging Gmbh | Method and optical assembly for analysing a sample |
DE102007047464B4 (en) | 2007-09-28 | 2023-03-02 | Carl Zeiss Microscopy Gmbh | Optical arrangement for photomanipulation |
DE102007047464A1 (en) | 2007-09-28 | 2009-04-02 | Carl Zeiss Microimaging Gmbh | Optical arrangement for photomanipulation |
WO2009043473A1 (en) | 2007-09-28 | 2009-04-09 | Carl Zeiss Microimaging Gmbh | Optical arrangement for photomanipulation |
DE102007048409A8 (en) * | 2007-10-09 | 2009-11-05 | Carl Zeiss Microimaging Gmbh | Method for positioning biological samples in a microscopic arrangement |
DE102007048409A1 (en) | 2007-10-09 | 2009-04-16 | Carl Zeiss Microimaging Gmbh | Method for positioning biological samples in a microscopic arrangement |
US8228499B2 (en) | 2007-10-09 | 2012-07-24 | Carl Zeiss Microimaging Gmbh | Method for positioning biological samples in a microscopic arrangement |
EP3528029A1 (en) * | 2007-12-20 | 2019-08-21 | Carl Zeiss Microscopy GmbH | Microscope |
US10054780B2 (en) | 2007-12-20 | 2018-08-21 | Carl Zeiss Microscopy Gmbh | Microscope |
DE102007063274A1 (en) | 2007-12-20 | 2009-06-25 | Albert-Ludwigs-Universität Freiburg | microscope |
DE102007063274B4 (en) | 2007-12-20 | 2022-03-10 | Albert-Ludwigs-Universität Freiburg | microscope |
EP2235577B1 (en) * | 2007-12-20 | 2019-06-05 | Carl Zeiss Microscopy GmbH | Microscope |
DE102007063274B8 (en) | 2007-12-20 | 2022-12-15 | Albert-Ludwigs-Universität Freiburg | microscope |
EP3754402A1 (en) | 2007-12-20 | 2020-12-23 | Carl Zeiss Microscopy GmbH | Microscope |
US8362448B2 (en) | 2008-02-13 | 2013-01-29 | Carl Zeiss Microscopy Gmbh | Apparatus and method for high spatial resolution imaging of a structure of a sample |
DE102008009216A1 (en) | 2008-02-13 | 2009-08-20 | Carl Zeiss Microimaging Gmbh | Apparatus and method for spatially high resolution imaging of a structure of a sample |
DE102008018476A1 (en) | 2008-04-11 | 2009-10-15 | Carl Zeiss Microimaging Gmbh | microscopy apparatus |
US8921809B2 (en) | 2008-04-11 | 2014-12-30 | Carl Zeiss Microscopy Gmbh | Device for microscopy having selective illumination of a plane |
DE102008018476B4 (en) | 2008-04-11 | 2022-12-15 | Carl Zeiss Microscopy Gmbh | microscopy device |
DE102008027784A1 (en) | 2008-06-11 | 2009-12-17 | Carl Zeiss Microlmaging Gmbh | Method for positioning a sample in the detection area of an objective |
US9733160B2 (en) | 2008-06-11 | 2017-08-15 | Carl Zeiss Microscopy Gmbh | Method for embedding a biological sample in a transparent matrix for analysis using single plane illumination microscopy |
US8830563B2 (en) | 2008-06-17 | 2014-09-09 | Carl Zeiss Microimaging Gmbh | Laser scanning microscope having a laser diode comprising a light modulation device |
DE102008035933A1 (en) | 2008-07-31 | 2010-02-04 | Carl Zeiss Microlmaging Gmbh | Device for holding and positioning a sample relative to a microscope objective |
WO2011036097A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Microscope |
DE102009044987A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | microscope |
DE102009044983A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | microscope |
US9110301B2 (en) | 2009-09-24 | 2015-08-18 | Carl Zeiss Microscopy Gmbh | Microscope with a sheet of light |
US8848268B2 (en) | 2009-09-24 | 2014-09-30 | Carl Zeiss Microscopy Gmbh | Microscope with light sheet illumination |
US9239454B2 (en) | 2009-09-24 | 2016-01-19 | Carl Zeiss Microscopy Gmbh | Microscope having light sheet illumination of a sample region |
WO2011036095A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Microscope |
WO2011036094A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Microscope |
US9500849B2 (en) | 2009-09-24 | 2016-11-22 | Carl Zeiss Microscopy Gmbh | Microscope with a light sheet |
DE102009044984A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | microscope |
DE102009044986A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | microscope |
WO2011036096A1 (en) | 2009-09-24 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Microscope |
US8792162B2 (en) | 2009-09-24 | 2014-07-29 | Carl Zeiss Microscopy Gmbh | Microscope with illumination switching for capturing sample images during detector integration time |
EP2317362A1 (en) | 2009-10-28 | 2011-05-04 | Carl Zeiss MicroImaging GmbH | Microscopic method and microscope with improved resolution |
EP3667391A1 (en) | 2009-10-28 | 2020-06-17 | Carl Zeiss Microscopy GmbH | Microscopic method and microscope with improved resolution |
DE102010049627A1 (en) | 2009-10-28 | 2011-05-05 | Carl Zeiss Microimaging Gmbh | Microscopic method and microscope with increased resolution |
DE102012015861A1 (en) | 2011-10-11 | 2013-04-11 | Carl Zeiss Microscopy Gmbh | Selective plane illumination microscopic method for detecting picture information, involves processing sample with constant velocity by sheet, and receiving images in time at periodic intervals by detection device of microscope |
WO2013053454A1 (en) | 2011-10-11 | 2013-04-18 | Carl Zeiss Microscopy Gmbh | Microscope and method for spim microscopy |
US9772481B2 (en) | 2011-10-28 | 2017-09-26 | Leica Microsystems Cms Gmbh | Arrangement for use in the illumination of a specimen in SPIM microscopy |
WO2013060644A1 (en) | 2011-10-28 | 2013-05-02 | Leica Microsystems Cms Gmbh | Arrangement for use in the illumination of a specimen in spim microscopy |
DE102012109577A1 (en) | 2011-10-28 | 2013-05-02 | Leica Microsystems Cms Gmbh | Arrangement for illuminating sample in selective plane illumination microscope, has light source for generating light beam and unit for generating light strip from light beam, particularly for planar-like illumination of sample |
DE202011110077U1 (en) | 2011-10-28 | 2012-11-29 | Leica Microsystems Cms Gmbh | Arrangement for illuminating a sample |
EP2587295A1 (en) | 2011-10-28 | 2013-05-01 | Leica Microsystems CMS GmbH | Method and device for illuminating a sample |
US9104020B2 (en) | 2011-10-28 | 2015-08-11 | Leica Microsystems Cms Gmbh | Method and system for illuminating a sample |
DE102011054914A1 (en) | 2011-10-28 | 2013-05-02 | Leica Microsystems Cms Gmbh | Method and arrangement for illuminating a sample |
DE102012013163B4 (en) | 2012-07-02 | 2022-08-25 | Carl Zeiss Microscopy Gmbh | Microscope and method of light sheet microscopy |
US10698225B2 (en) | 2012-07-02 | 2020-06-30 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
WO2014005682A2 (en) | 2012-07-02 | 2014-01-09 | Carl Zeiss Microscopy Gmbh | Microscope and method for spim microscopy |
DE102012013163A1 (en) | 2012-07-02 | 2014-04-10 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
US9709788B2 (en) | 2012-08-16 | 2017-07-18 | Leica Microsystems Cms Gmbh | Optical arrangement and a microscope |
DE202012007891U1 (en) | 2012-08-16 | 2012-11-23 | Carl Zeiss Microscopy Gmbh | Microscope and sample chamber for SPIM microscopy |
DE102012214568A1 (en) | 2012-08-16 | 2014-02-20 | Leica Microsystems Cms Gmbh | Optical arrangement and a microscope |
WO2014026683A1 (en) | 2012-08-16 | 2014-02-20 | Leica Microsystems Cms Gmbh | Optical arrangement and a microscope |
DE102012016347A1 (en) | 2012-08-16 | 2014-05-15 | Carl Zeiss Microscopy Gmbh | Microscope for single plane illumination microscopy (SPIM) has sample chamber having screw-in insert fittable annular opening in which sealing ring for fitting detector and/or illumination lens and/or lens mount or holder is placed |
DE102012016347B4 (en) | 2012-08-16 | 2022-09-08 | Carl Zeiss Microscopy Gmbh | Microscope for SPIM microscopy |
DE102012019466A1 (en) | 2012-09-28 | 2014-04-03 | Carl Zeiss Microscopy Gmbh | Method for providing selective-plane-illumination-microscopy for determining speed of movement of biological sample, involves moving sample at constant speed by light sheet, and recording images at periodic time intervals |
US9645378B2 (en) | 2012-10-12 | 2017-05-09 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
DE102012020240A1 (en) | 2012-10-12 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
WO2014056992A1 (en) | 2012-10-12 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Microscope and method for spim microscopy |
DE102012218920A1 (en) | 2012-10-17 | 2014-04-17 | Carl Zeiss Microscopy Gmbh | Device for illuminating a sample |
DE102012024995A1 (en) | 2012-12-20 | 2014-06-26 | Carl Zeiss Microscopy Gmbh | Selective-plane illumination microscopy (SPIM) method for analyzing biological sample, involves changing brightness of image picked up by receiver during magnification change on drive unit |
DE102013002981B4 (en) | 2013-02-20 | 2022-04-28 | Hans-Ulrich Dodt | 3D microscope |
US10012826B2 (en) | 2013-03-20 | 2018-07-03 | Leica Microsystems Cms Gmbh | Method and optical arrangement for manipulating and imaging a microscopic sample |
DE102013213781A1 (en) | 2013-03-20 | 2014-09-25 | Leica Microsystems Cms Gmbh | Method and optical arrangement for manipulating and imaging a microscopic sample |
DE102013208872B4 (en) | 2013-05-14 | 2023-08-17 | Carl Zeiss Microscopy Gmbh | Method of generating an image of a sample |
DE102013208872A1 (en) | 2013-05-14 | 2014-11-20 | Carl Zeiss Microscopy Gmbh | Method for generating an image of a sample |
US10073256B2 (en) | 2013-05-30 | 2018-09-11 | Carl Zeiss Microscopy Gmbh | Device for imaging sample |
DE102013105586B4 (en) | 2013-05-30 | 2023-10-12 | Carl Zeiss Ag | Device for imaging a sample |
DE102013105586A1 (en) | 2013-05-30 | 2014-12-04 | Carl Zeiss Ag | Device for imaging a sample |
DE102013211426A1 (en) | 2013-06-18 | 2014-12-18 | Leica Microsystems Cms Gmbh | Method and optical device for microscopically examining a plurality of samples |
US10234672B2 (en) | 2013-07-01 | 2019-03-19 | Leica Microsystems Cms Gmbh | Light-microscopic method of localization microscopy for localizing point objects |
DE102013106895B4 (en) * | 2013-07-01 | 2015-09-17 | Leica Microsystems Cms Gmbh | Light microscopic method for the localization of point objects |
DE102013106895A1 (en) * | 2013-07-01 | 2015-01-08 | Leica Microsystems Cms Gmbh | Light microscopic method for the localization of point objects |
DE102013107297A1 (en) | 2013-07-10 | 2015-01-15 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
US10712553B2 (en) | 2013-07-10 | 2020-07-14 | Carl Zeiss Microscopy Gmbh | Assembly for light sheet microscopy |
DE202013012338U1 (en) | 2013-07-10 | 2016-04-29 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
US10620419B2 (en) | 2013-07-10 | 2020-04-14 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy |
DE102013107298A1 (en) | 2013-07-10 | 2015-01-15 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
US10048482B2 (en) | 2013-11-15 | 2018-08-14 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy |
DE102013112596B4 (en) | 2013-11-15 | 2023-12-28 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy |
US9804378B2 (en) | 2013-11-15 | 2017-10-31 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy |
DE102013112595A1 (en) | 2013-11-15 | 2015-05-21 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
US10048478B2 (en) | 2013-11-15 | 2018-08-14 | Carl Zeiss Microscopy Gmbh | Optical transmission system for correcting image errors and microscope with such a transmission system |
DE102013112596A1 (en) | 2013-11-15 | 2015-05-21 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102013112595B4 (en) | 2013-11-15 | 2024-08-01 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy |
DE102013112600A1 (en) | 2013-11-15 | 2015-05-21 | Carl Zeiss Microscopy Gmbh | Optical transmission system and microscope with such a transmission system |
EP2887117A1 (en) | 2013-12-18 | 2015-06-24 | Carl Zeiss Microscopy GmbH | Microscope and method of SPIM microscopy |
DE102013021542A1 (en) | 2013-12-18 | 2015-06-18 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
US9791687B2 (en) | 2013-12-18 | 2017-10-17 | Carl Zeiss Microscopy Gmbh | Microscope and method for SPIM microscopy |
DE102014104977B4 (en) | 2014-04-08 | 2023-11-30 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy and microscope objective for light sheet microscopy |
US10302926B2 (en) | 2014-04-08 | 2019-05-28 | Carl Zeiss Microscopy Gmbh | Arrangement for light sheet microscopy |
DE102014104977A1 (en) | 2014-04-08 | 2015-10-08 | Carl Zeiss Microscopy Gmbh | Arrangement for light-sheet microscopy |
DE102014113827A1 (en) | 2014-09-24 | 2016-03-24 | Carl Zeiss Microscopy Gmbh | Device for imaging a sample |
US10477124B2 (en) | 2014-09-24 | 2019-11-12 | Carl Zeiss Microscopy Gmbh | Device for imaging a sample with detection of an asymmetrically distributed angular range |
WO2016046384A1 (en) | 2014-09-25 | 2016-03-31 | Leica Microsystems Cms Gmbh | Mirror device |
US10768399B2 (en) | 2014-09-25 | 2020-09-08 | Leica Microsystems Cms Gmbh | Mirror device |
DE102015114756B4 (en) | 2014-09-25 | 2021-07-22 | Leica Microsystems Cms Gmbh | Mirror device |
DE102015114756A1 (en) | 2014-09-25 | 2016-03-31 | Leica Microsystems Cms Gmbh | mirror device |
DE102014116174A1 (en) | 2014-11-06 | 2016-05-12 | Carl Zeiss Microscopy Gmbh | Method for generating an image of a sample |
WO2016071033A1 (en) | 2014-11-06 | 2016-05-12 | Carl Zeiss Microscopy Gmbh | Method for generating an image of a sample |
US10247934B2 (en) | 2014-12-19 | 2019-04-02 | Carl Zeiss Microscopy Gmbh | Method for examining a specimen by means of light sheet microscopy |
DE102014119255A1 (en) | 2014-12-19 | 2016-06-23 | Carl Zeiss Microscopy Gmbh | Method for light-sheet microscopic examination of a sample |
WO2016096303A1 (en) | 2014-12-19 | 2016-06-23 | Carl Zeiss Microscopy Gmbh | Method for examining a specimen by means of light sheet microscopy |
US10642015B2 (en) | 2015-03-16 | 2020-05-05 | Carl Zeiss Microscopy Gmbh | Light sheet microscope with a phase-selective element for illumination |
DE102015103802A1 (en) | 2015-03-16 | 2016-09-22 | Carl Zeiss Microscopy Gmbh | Method and arrangement for light-sheet microscopic examination of a sample |
WO2016146503A1 (en) | 2015-03-16 | 2016-09-22 | Carl Zeiss Microscopy Gmbh | Method and assembly for light sheet microscopic analysis of a sample |
DE202016009206U1 (en) | 2015-04-13 | 2024-03-11 | Leica Microsystems CMS GmbH | Device for examining a sample |
US10585271B2 (en) | 2015-04-13 | 2020-03-10 | Leica Microsystems Cms Gmbh | Method and device for examination of a sample |
US11016277B2 (en) | 2015-04-13 | 2021-05-25 | Leica Microsystems Cms Gmbh | Method and device for examination of a sample |
EP4220270A1 (en) | 2015-04-13 | 2023-08-02 | Leica Microsystems CMS GmbH | Method and device for examining a sample |
EP3283917B1 (en) * | 2015-04-13 | 2022-11-30 | Leica Microsystems CMS GmbH | Method and device for examination of a sample |
US10495865B2 (en) | 2015-04-17 | 2019-12-03 | Leica Microsystems Cms Gmbh | Method and device for the SPIM analysis of a sample |
WO2016166374A1 (en) | 2015-04-17 | 2016-10-20 | Leica Microsystems Cms Gmbh | Method and device for the spim analysis of a sample |
US10866396B2 (en) | 2015-08-24 | 2020-12-15 | Leica Microsystems Cms Gmbh | Illumination arrangement for a light sheet microscope |
WO2017032805A1 (en) | 2015-08-24 | 2017-03-02 | Leica Microsystems Cms Gmbh | Illumination arrangement for a light sheet microscope |
US11366299B2 (en) | 2015-10-09 | 2022-06-21 | Leica Microsystems Cms Gmbh | Method and lighting arrangement for illuminating a sample layer with a light sheet |
US11092792B2 (en) | 2015-10-09 | 2021-08-17 | Leica Microsystems Cms Gmbh | Method and apparatus for examining a sample using structured light-sheet illumination |
WO2017060506A1 (en) | 2015-10-09 | 2017-04-13 | Leica Microsystems Cms Gmbh | Method and apparatus for examining a sample using structured light-sheet illumination |
US11194149B2 (en) | 2015-12-23 | 2021-12-07 | Leica Microsystems Cms Gmbh | Method for examining a sample by means of light sheet microscopy, and light sheet microscope |
US10459209B2 (en) | 2016-04-08 | 2019-10-29 | Leica Microsystems Cms Gmbh | Method and microscope for examining a sample |
WO2017220699A1 (en) | 2016-06-23 | 2017-12-28 | Leica Microsystems Cms Gmbh | Illumination apparatus for a microscope |
LU93117B1 (en) * | 2016-06-23 | 2018-01-24 | Leica Microsystems | Lighting device for a microscope |
US11022788B2 (en) | 2016-06-23 | 2021-06-01 | Leica Microsystems Cms Gmbh | Illumination apparatus for a microscope |
WO2018007469A2 (en) | 2016-07-06 | 2018-01-11 | Leica Microsystems Cms Gmbh | Method for examining a sample, and device for carrying out such a method |
US11835701B2 (en) | 2016-07-06 | 2023-12-05 | Leica Microsystems Cms Gmbh | Method for examining a sample, and device for carrying out such a method |
US10983321B2 (en) | 2016-07-06 | 2021-04-20 | Leica Microsystems Cms Gmbh | Method for examining a sample, and device for carrying out such a method |
DE102017119169B4 (en) | 2016-08-22 | 2023-07-27 | Leica Microsystems Cms Gmbh | Method and device for SPIM analysis of a sample |
DE102017119169A1 (en) | 2016-08-22 | 2018-02-22 | Leica Microsystems Cms Gmbh | Method for SPIM examination of a sample |
US11719922B2 (en) | 2016-10-28 | 2023-08-08 | Carl Zeiss Microscopy Gmbh | Single plane illumination microscope |
DE102016120683A1 (en) | 2016-10-28 | 2018-05-03 | Carl Zeiss Microscopy Gmbh | Light sheet microscope |
US10983322B2 (en) | 2016-10-28 | 2021-04-20 | Carl Zeiss Microscopy Gmbh | Single plane illumination microscope |
WO2018077738A1 (en) | 2016-10-28 | 2018-05-03 | Carl Zeiss Microscopy Gmbh | Single plane illumination microscope |
DE102017118691A1 (en) * | 2017-08-16 | 2019-02-21 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin | Method for light-sheet microscopic examination of in particular biological samples and light-sheet microscope |
US11371927B2 (en) | 2017-09-29 | 2022-06-28 | Carl Zeiss Microscopy Gmbh | Method and device for optically examining a plurality of microscopic samples |
WO2019063539A1 (en) | 2017-09-29 | 2019-04-04 | Carl Zeiss Microscopy Gmbh | Method and device for optically examining a plurality of microscopic samples |
DE102017122718A1 (en) | 2017-09-29 | 2019-04-04 | Carl Zeiss Microscopy Gmbh | Method and apparatus for optically examining a plurality of microscopic samples |
DE102020128524A1 (en) | 2020-10-29 | 2022-05-05 | Carl Zeiss Microscopy Gmbh | Light sheet microscope and method of light sheet microscopy |
DE102021104871A1 (en) | 2021-03-01 | 2022-09-01 | Carl Zeiss Microscopy Gmbh | Method and device for light sheet microscopic examination of a sample |
DE102022125117A1 (en) | 2022-09-29 | 2024-04-04 | Carl Zeiss Microscopy Gmbh | Light sheet microscope |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1576404B1 (en) | Microscope with a viewing direction perpendicular to the illumination direction | |
EP2535754B1 (en) | Sampling microscope and method for imaging an object using a light microscope | |
DE102010060121B4 (en) | SPIM microscope with sequential light sheet | |
DE102006027836B4 (en) | Microscope with auto focus device | |
DE10257120B4 (en) | Scanning microscope for imaging an object | |
WO2016189012A1 (en) | Light sheet microscopy arrangement and method | |
EP3283917B1 (en) | Method and device for examination of a sample | |
LU92925B1 (en) | Method for examining a sample by means of light-sheet microscopy and light-sheet microscope | |
WO2015091713A1 (en) | Method and device for the examination of a sample using optical projection tomography | |
WO2015032497A1 (en) | Method for creating a microscope image, microscopy device, and deflecting device | |
EP3992687B1 (en) | Microscope and method for light field microscopy with light sheet excitation and confocal microscopy | |
WO2016166374A1 (en) | Method and device for the spim analysis of a sample | |
EP2784564A1 (en) | Light microscope and method for examining a microscopic sample | |
DE102014118025B4 (en) | Light sheet microscopy device | |
WO2020126419A1 (en) | Method for operating a sample chamber for microscopic imaging, apparatus, and sample chamber | |
DE19950225A1 (en) | Arrangement for the optical scanning of an object | |
DE102022203632A1 (en) | Image capture methods in light field microscopy and light field microscope | |
EP4453627A1 (en) | Microscope and method for microscopy | |
EP1049952A2 (en) | Arrangement for optically scanning an object | |
DE102017116436A1 (en) | Arrangement for coupling illumination radiation and decoupling radiation returning from a sample into a microscope beam path |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
R002 | Refusal decision in examination/registration proceedings | ||
R003 | Refusal decision now final |