Nothing Special   »   [go: up one dir, main page]

DE102013206581A1 - Wärmeübertragerbauteil - Google Patents

Wärmeübertragerbauteil Download PDF

Info

Publication number
DE102013206581A1
DE102013206581A1 DE201310206581 DE102013206581A DE102013206581A1 DE 102013206581 A1 DE102013206581 A1 DE 102013206581A1 DE 201310206581 DE201310206581 DE 201310206581 DE 102013206581 A DE102013206581 A DE 102013206581A DE 102013206581 A1 DE102013206581 A1 DE 102013206581A1
Authority
DE
Germany
Prior art keywords
heat exchanger
exchanger component
layer
component according
carrier material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201310206581
Other languages
English (en)
Inventor
Caroline SCHMID
Michael Moser
Nikolaus Daubitzer
Heiko Neff
Alexandra Schnaars
Dominique RAIBLE
Volker Schall
Nic Sautter
Stefan Hirsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Priority to DE201310206581 priority Critical patent/DE102013206581A1/de
Priority to PCT/EP2014/056207 priority patent/WO2014166756A1/de
Priority to CN201480020030.7A priority patent/CN105122539B/zh
Priority to EP14713464.7A priority patent/EP2984700A1/de
Priority to US14/783,430 priority patent/US20160056512A1/en
Publication of DE102013206581A1 publication Critical patent/DE102013206581A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Wärmeübertragerbauteil (1) eines Temperierungssystems eines elektrischen Energiespeichers (18). Erfindungswesentlich ist dabei, dass das Wärmeübertragerbauteil (1) aus einem Trägermaterial (2) und zumindest zwei Schichten (3, 4) aufgebaut ist, wovon eine erste Schicht (3) elektrisch isolierend wirkt und eine zweite Schicht (4) eine Temperierung, das heißt ein Kühlen und/oder ein Beheizen des elektrischen Energiespeichers (18) ermöglicht. Hierdurch ist ein flexibler und zugleich gewichtsreduzierter Aufbau möglich.

Description

  • Die vorliegende Erfindung betrifft ein Wärmeübertragerbauteil eines Temperierungssystems eines elektrischen Energiespeichers gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft außerdem einen elektrischen Energiespeicher mit einem derartigen Wärmeübertragerbauteil.
  • Für die Temperierung von Batterien moderner Hybrid- und Elektrofahrzeuge werden üblicherweise fluiddurchströmte Kühlplatten und/oder eine zusätzliche Heizung verwendet. Aufgrund der in der Regel besseren Wärmeleiteigenschaften werden diese Kühlplatten meist aus metallischen oder elektrisch leitenden Werkstoffen hergestellt. Da die verwendeten Batteriezellen üblicherweise ein Gehäuse aus einem metallischen Werkstoff besitzen, ist zur Vermeidung von Kurzschlüssen und Kriechströmen eine zusätzliche elektrische Isolierung zwischen den Kühlplatten und den Batteriezellen erforderlich. Um diese Isolierung gewährleisten zu können, werden üblicherweise dünne Kunststofffolien oder aufgebrachte Schichten aus wärmeleitfähigem Material, wie bspw. Silikon, verwendet. Das Aufbringen derartiger Isolierschichten ist jedoch zumeist mit erheblichem Aufwand verbunden, bspw. Vorbearbeitung, Reinigung und Partikelminimierung, wobei Beschichtungen aus Silikon zumeist sehr teuer und aufgrund ihrer viskosen Eigenschaften in der Verarbeitung problematisch sind. Hinzu kommt eine notwendige Aushärtezeit, die sich negativ auf die Herstellungskosten auswirkt.
  • Eine zusätzliche Heizung erfordert ein zusätzliches Bauteil oder eine zusätzliche Beschichtung, das/die ähnlich wie die oben genannte Isolationsschicht aufgebracht werden oder als zusätzliches externes Bauteil im Kühlkreislauf integriert werden muss. Hierdurch entstehen weitere Kosten, wobei diese Lösung zudem auch nachteilig hinsichtlich des zur Verfügung stehenden Bauraums ist.
  • Die vorliegende Erfindung beschäftigt sich daher mit dem Problem, für ein Wärmeübertragerbauteil der gattungsgemäßen Art eine verbesserte oder zumindest eine alternative Ausführungsform anzugeben, die insbesondere die aus dem Stand der Technik bekannten Nachteile vermeidet, zumindest aber reduziert.
  • Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, eine bisher bekannte Kühlplatte eines Temperierungssystems eines elektrischen Energiespeichers mit bspw. zusätzlichen Heizschichten, erfindungsgemäß nunmehr als mehrschichtiges Wärmeübertragerbauteil auszubilden, wobei jeder Schicht nunmehr eine eigene Funktion zugewiesen wird. Erfindungsgemäß ist somit das Wärmeübertragerbauteil aus einem Trägermaterial und zumindest zwei Schichten ausgebildet, wovon eine erste Schicht elektrisch isolierend wirkt und eine zweite Schicht eine Temperierung, das heißt ein Kühlen und/oder ein Beheizen des elektrischen Energiespeichers ermöglicht. Die elektrisch isolierende Schicht, welche rein theoretisch auch durch das Trägermaterial selbst gebildet sein kann, ermöglicht eine direkte Kopplung des Wärmeübertragerbauteils mit einem Gehäuse des Energiespeichers bzw. mit Batteriezellen desselben, wodurch zudem eine kompakte Bauweise und eine optimale Wärmeübertragung, insbesondere eine Kühlung, erzielt werden können. Durch den mehrschichtigen Aufbau des erfindungsgemäßen Wärmeübertragerbauteils kann darüber hinaus das bisher erforderliche separate und aufwendige Aufbringen der isolierenden Kunststofffolie vermieden werden, wodurch sich erhebliche Vorteile hinsichtlich des Fertigungsprozesses ergeben. Der mehrschichtige Aufbau des erfindungsgemäßen Wärmeübertragerbauteils erlaubt zudem eine komplett separate Fertigung desselben und zwar darüber hinaus angepasst an individuelle Anforderungen, so dass generell Wärmeübertragerbauteile hergestellt werden können, die durch eine individuell festgelegte Schichtanzahl bzw. einen individuell festgelegten Schichtaufbau die jeweiligen Anforderungen optimal erfüllen. Darüber hinaus lässt das erfindungsgemäße Wärmeübertragerbauteil dem Konstrukteur höchste Freiheiten bezüglich der Formgestaltung bei gleichzeitiger Reduzierung von Gewicht und Kosten.
  • Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung weist das Trägermaterial faserverstärkten Kunststoff auf, wobei das Trägermaterial bspw. als Organoblech, als faserverstärktes Tape bzw. faserverstärktes Organoblech oder als Kunststofflaminat mit integrierten Metallschichten, insbesondere Bewehrungsschichten zur mechanischen Versteifung, ausgebildet sein kann. Als Fasern können hierbei insbesondere Kohlefasern, Aramidfasern oder Glasfasern aber auch Fasermatten und -gewebe, wie bspw. Rowings, zum Einsatz kommen. Derartige Fasermatten sind bspw. aus dem Kunststoffformenbau hinlänglich bekannt. Die Fasern selbst können dabei kurz, lang oder als Endlosfasern ausgebildet sein, wobei die Fasern selbst aufgrund ihrer vergleichsweise hohen Zugfestigkeit eine deutliche Versteifung des erfindungsgemäßen Wärmeübertragerbauteils bei gleichzeitig äußerst geringem Gewicht bewirken können. Dabei ist es generell auch möglich, Schichten mit mehreren so genannten Tapes aufzubauen, wobei die einzelnen Tapes mit verschiedenen Fasern bzw. Funktionswerkstoffen gefüllt sein können. Dadurch können einzelne Funktionen, wie bspw. mechanische Festigkeit, Heizung, Isolierung und Diffusionsdichtheit aufgeteilt werden, um so einerseits eine optimale Variabilität in der Erreichung der Anforderungen zu erhalten und andererseits die Kosten zu begrenzen, indem der Schichtaufbau anforderungsgerecht und mit maximal notwendiger Effektivität zusammengestellt wird.
  • Die Integration von Funktionswerkstoffen kann dabei auch schon in der Halbteilherstellung von z. Bsp. faserverstärkten Verbundwerkstoffen oder Prepregs, wie bspw. Organoblechen oder -tapes stattfinden. Hierdurch können spätere Formen für z. Bsp. eine Fluidführung, wie bspw. Fluidkanäle, bereits vorgefertigt werden, wodurch der hierfür erforderliche spätere Formgebungsprozess entfallen kann. Mögliche Herstellungsverfahren sind hierbei insbesondere Weben oder Stricken der Fasern, die dann in einem weiteren Arbeitsschritt von dem Trägermaterial, bspw. einer Kunststoffmatrix, umgeben werden. Desweiteren können solche Strukturen auch aus einem metallischen bzw. wärmeleitenden Material (z. Bsp. in Form von Geweben, Gestricken, Gittern oder Umformteilen) bestehen und nachträglich mit an- oder umspritzten Kunststoffflächen oder geformten Kunststoffteilen eine entsprechende Fluidführung generieren. Des weiteren können auch sog. Hybridgewebe, bestehend aus verschiedenen Faserwerkstoffen o.g. Funktionalisierung übernehmen.
  • Darüber hinaus ist denkbar, dass diese Strukturen die aufgebrachte Kunststoffoberfläche auch durchdringen und in direktem Kontakt mit der zu kühlenden Komponente, das heißt bspw. dem elektrischen Energiespeicher, stehen. Damit würde sich die Wärmeübertragung im Vergleich zu einer Kunststoffoberfläche deutlich erhöhen. In einer weiteren Ausgestaltung könnten die durchdringenden Bauteile in Kontakt zur äußeren Umgebung stehen und damit das im Inneren des Wärmeübertragerbauteils befindliche Kühlfluid bzw. Kühlmedium kühlen. Hierdurch ist eine weitere Nutzung des erfindungsgemäßen Wärmeübertragerbauteils mit umgekehrtem Wärmeleitpfad möglich. Eine entsprechende Formgebung der durchdringenden Elemente mit großer Oberflächenstruktur verbessert dabei den Wärmeaustausch mit der äußeren Umgebung. Insbesondere kann somit bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Wärmeübertragerbauteils die zweite Schicht eine vergrößerte Oberfläche aufweisen, die bspw. durch Dorne bzw. Flossen gebildet wird.
  • Zweckmäßig weist die zweite oder eine weitere Schicht Fluidkanäle auf, die von einem Wärmetauscherfluid bzw. einem Wärmetauschermedium durchströmbar sind. Generell dient somit der mehrschichtige Aufbau zur Integration eines Kanalsystems für das Wärmetauschermedium welches vorzugsweise einen direkten wärmeübertragenden Kontakt mit dem zu temperierenden elektrischen Energiespeicher aufweist. Die geformten Fluidkanäle können dabei zusätzlich Elemente zur Steigerung der mechanischen Festigkeit beinhalten, die bspw. aus Metall oder aus Kunststoff bestehen und während des Fertigungsprozesses eingelegt und/oder form- oder stoffschlüssig in das Trägermaterial eingebunden werden.
  • Generell können auch an die zweite Schicht angeformte, insbesondere angespritzte, Stutzen zur Ver-/Entsorgung der zweiten Schicht mit Wärmetauscherfluid vorgesehen sein, wobei diese Fluidführung, die nicht direkt aus dem Schichtaufbau gebildet ist, aus unterschiedlichsten Materialien bestehen kann, bspw. Kunststoff, Metall, Schaumstoff. Die Fertigung der externen Fluidführung, wie bspw. Stutzen, kann unter anderem durch folgende Fertigungsverfahren realisiert werden: Spritzgießen (Anspritzen/Umspritzen, im Spritzgusswerkzeug umformen, Sonderverfahren, wie bspw. Gasinjektion, Fluidinjektion), Kleben, Thermoformen, Stanzen, Blasformen, Zerspanen oder Druckgießen. Eine weitere Möglichkeit bietet das Prägen bzw. Pressen von sog. Organoblechen in bestimmte Formen. Dadurch kann auf der einen Seite eine ebene Oberfläche und auf der anderen Seite eine Fluidführung ohne zusätzlich notwendiges Material geformt werden. Dies wird dadurch realisiert, dass vorhandenes Matrixmaterial aus dem faserverstärkten Verbundwerkstoff in entsprechende Kavitäten eines Presswerkzeuges gedrückt wird. Dies erspart den zusätzlichen Prozessschritt des Anspritzens oder zusätzliche Bauteile und/ oder Material.
  • Außerdem kann im Formgebungsprozess zusätzlich eine stutzenförmige Öffnung angeformt werden, die die Möglichkeit einer Verstärkung eines später angespritzten oder eingefügten Stutzens (Ein- oder Auslass) bietet oder die angeformte stutzenförmige Öffnung kann selbst diesen Ein- bzw. Auslass darstellen. Ein Vorteil dieses Verfahrens ist die Ausrichtung der Fasern in den mechanisch höher belasteten Übergang vom Wärmetauscherbauteil in die jeweilige Anschlussgeometrie. Um eine noch bessere Faserausrichtung zu erhalten und um eine nachträglich angespritzte Stutzengeometrie noch besser mit dem Wärmeübertragerbauteil zu verbinden, kann bspw. ein Organoblech bereits bei der Herstellung eine Aussparung enthalten, die nicht mit dem Trägermaterial versehen wird. Diese Aussparung kann bspw. mit einem Stempel freigehalten werden. Die offenliegenden Fasern können anschließend durchbrochen und durch Formgebung den Ansatz des Stutzens darstellen, der anschließend mit Kunststoff an die Fasern angespritzt wird. Hierdurch können auch weitere Bauteile, wie bspw. Positionierlaschen und Befestigungselemente integriert werden. Ebenfalls besteht die Möglichkeit, den Stutzen nachträglich an ein sich im Schichtaufbau befindliches Loch anzubinden, bspw. Überschweißen, Kleben, Spritzgießen oder Ähnliches. Die Herstellung des Loches im Schichtaufbau kann sowohl während der Herstellung des Schichtaufbaus als auch durch nachträglich mechanische Bearbeitung erfolgen. Desweiteren können Bauteile mit z. Bsp. Rohrgeometrien als Ein- bzw. Auslassstutzen mit tellerförmigen Boden im Schichtaufbau integriert und mit oben genanntem Verfahren mit einem Wärmeübertragerbauteil fixiert werden. Die Integration der elektrisch isolierenden Schicht erfolgt durch den Werkstoff selbst, bspw. durch das Trägermaterial, wobei eine Integration einer Heizung bspw. durch Einbringen von bestrombaren Metallschichten zwischen einzelne Lage des Trägermaterials erfolgt. Selbstverständlich ist aber auch ein Einbringen einer Folie oder ein Aufdrucken auf das Trägermaterial oder die Verwendung von leitenden Fasern denkbar. Durch insbesondere die zuletzt genannten Zusatzmaterialien kann der Wärmedurchgang durch den Schichtaufbau verbessert und dadurch die Kühlleistung optimiert werden, da die in diesem Aufbau verwendeten Materialien in der Regel eine geringere Wandstärke erlauben. Desweiteren kann das Trägermaterial mit Partikeln zur Verbesserung des Wärmedurchgangs, bspw. Metallpartikel, angereichert werden. Durch den individuell wählbaren Schichtaufbau ist es zudem möglich, nur bestimmte Schichten mit derartigen Partikeln zu befüllen, um bspw. die durch diese Partikel eintretende Verringerung der mechanischen Festigkeit durch andere Schichten wieder auszugleichen.
  • Darüber hinaus können auch weitere Schichten zur Diffusionsdichtheit gegenüber Medien im Wärmeübertrager Verwendung finden, wobei selbstverständlich auch ein zusätzliches Verdichten der Kunststoffschichten durch bspw. chemische, chemisch-elektrische oder physikalische (Plasma-)Verfahren Anwendung finden können. Durch die Auswahl entsprechender Kunststoffe für das Trägermaterial bzw. für das Material weiterer Schichten, kann auch eine Membranfunktion mit einer gezielten gerichteten Diffusion erreicht werden, bspw. von der Oberfläche des Wärmeübertragerbauteils in dieses selbst und weiter in ein dort strömendes Kühlmedium. Durch den individuell frei wählbaren Schichtaufbau ist die Temperierung des elektrischen Energiespeichers, insbesondere dessen Kühlung, variabel und äußerst flexibel herstellbar. Einzelne Schichten können dabei abhängig von den Anforderungen in unterschiedlichsten Kombinationen hergestellt bzw. weggelassen werden.
  • Mit dem erfindungsgemäßen Wärmeübertragerbauteil lässt sich insbesondere das bisher aufwendige elektrische Isolieren einsparen sowie der Aufwand für zusätzliche Bauteile und Bearbeitungsschritte reduzieren, wodurch Kosten und Gewicht gesenkt werden können.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch,
  • 1 eine schematische Schnittdarstellung durch ein erfindungsgemäßes Wärmeübertragerbauteil mit mehreren Schichten,
  • 2 eine weitere Ausführungsform des erfindungsgemäßen Wärmeübertragerbauteils in einem Fluidkanal und einer wärmeleitenden Struktur sowie einer vergrößerten Oberfläche zum verbesserten Wärmetausch,
  • 3a eine weitere mögliche Ausführungsform einer Schicht des erfindungsgemäßen Wärmeübertragerbauteils mit integriertem Fluidkanal,
  • 3b eine Darstellung wie in 3a, jedoch von der anderen Seite,
  • 3c eine Detaildarstellung eines an die Schicht angeformten Stutzens,
  • 4a eine Detaildarstellung einer Bewehrung zur mechanischen Verstärkung einer Schicht des erfindungsgemäßen Wärmeübertragerbauteils,
  • 4b eine Schnittansicht auf das erfindungsgemäße Wärmeübertragerbauteil mit mehreren bewährten Schichten,
  • 5 eine Möglichkeit zum Einbringen einer Aussparung für einen späteren Ein- oder Auslass,
  • 6 eine mögliche Ausführungsform einer Schicht des erfindungsgemäßen Wärmeübertragerbauteils mit elektrischen betreibbaren Heizeinrichtung,
  • 7a bis 7d mögliche Verfahrensschritte zur Herstellung eines Stutzens, bspw. eines Ein- oder Auslasses in eine Schicht des Wärmeübertragerbauteils,
  • 8 das Integrieren eines Stutzens mit einem tellerförmigen Boden in ein Gelege einer Schicht des erfindungsgemäßen Wärmeübertragerbauteils,
  • 9 eine Darstellung wie in 8, jedoch bei integriertem Stutzen.
  • Entsprechend der 1, weist ein erfindungsgemäßes Wärmeübertragerbauteil 1 eines im Übrigen nicht gezeigten Temperierungssystems eines elektrischen Energiespeichers 18, bspw. eines Kühlsystems für eine Traktionsbatterie eines Elektro- oder eines Hybridfahrzeugs, ein Trägermaterial 2, bspw. einen faserverstärkten Kunststoff, sowie zumindest zwei Schichten 3, 4 auf. Die erste Schicht 3 wirkt dabei elektrisch isolierend, wogegen die zweite Schicht 4 eine Temperierung, das heißt ein Kühlen und/oder ein Beheizen des elektrischen Energiespeichers 18 ermöglicht. Die erste Schicht 3 kann rein theoretisch aus dem Trägermaterial 2 selbst gebildet sein oder aber von diesem umschlossen werden. Gemäß der 1 zeigt das erfindungsgemäße Wärmeübertragerbauteil 1 weitere Schichten 5, 6, die bspw. durch jeweils eine Schicht des Trägermaterials 2 voneinander getrennt sind. Generell kann das Trägermaterial 2 aus Kunststoff ausgebildet sein, insbesondere aus faserverstärktem Kunststoff, oder als Organoblech, als faserverstärktes Tape bzw. Organoblech oder als Kunststofflaminat mit integrierten Metallschichten, bspw. einer metallischen Bewehrung. Eine Herstellung des Wärmeübertragerbauteils 1 kann dabei bspw. mittels Laminieren, Kaschieren, Verpressen, Pultrusieren, Sintern, Thermoformen, Spritzgießen oder Blasextrudieren erfolgen.
  • Wie bereits erwähnt, können für das Trägermaterial 2 Kunststoffe bzw. faserverstärkte Verbundwerkstoffe verwendet werden, die nicht nur eine vergleichsweise hohe Festigkeit, sondern zudem auch ein vergleichsweise geringes Gewicht des Wärmeübertragerbauteils 1 ermöglichen. Durch den mehrschichtigen Aufbau des erfindungsgemäßen Wärmeübertragerbauteils 1 ist es zudem möglich, einzelnen Schichten individuelle Funktionen, wie bspw. Heizung/Kühlung, elektrische Isolierung oder thermische Isolierung bzw. Diffusionsdichtheit zuzuordnen. Die Integration von Funktionswerkstoffen wie bspw. Kohlefasern, Glasfasern oder generell Fasern, kann dabei schon in der Halbzeugherstellung stattfinden, wodurch spätere Formen bzw. Umformungen, für bspw. einen Fluidkanal 7 (vgl. 3), entfallen können. Die Fasern können dabei gerichtet in der jeweiligen Schicht bzw. im Trägermaterial 2 angeordnet werden oder aber eine isotrope Verteilung aufweisen, wodurch die jeweilige Schicht isotrope Festigkeitseigenschaften, das heißt richtungsunabhängige Eigenschaften, besitzt.
  • Betrachtet man die Schicht 4 gemäß der 2, so kann man erkennen, dass in dieser ein Fluidkanal 7 verläuft, durch welchen ein Wärmetauschermedium, bspw. ein Kühlmittel, strömt. Um dabei eine Wärmeübertragung zum temperierenden Gegenstand, bspw. zum Energiespeicher, verbessern zu können, kann eine wärmeleitende Struktur 8 integriert werden, bspw. in Form eines gut wärmeleitfähigen Gewebes, Gestricks, Gitters oder ähnlichem, welches in das Trägermaterial 2 bzw. in das den Fluidkanal 7 umgebende Material, eingebunden ist. Hierfür eignen sich insbesondere metallische Gewebe bzw. Gestricke. Mittels der wärmeleitenden Struktur 8 kann eine besonders hohe Wärmeübertragungsrate von den im Fluidkanal 7 strömenden Wärmetauschermedium an eine Oberfläche 9 der zweiten Schicht 4 bzw. des Wärmeübertragerbauteils 1 erreicht werden, wobei an dieser Oberfläche 9 bspw. Rippen, Zehen, Dorne oder Flossen zur Vergrößerung der Oberfläche und damit zur Erhöhung der Wärmeübertragungsrate angeordnet sein können. Hierdurch kann die Wärmeleitfähigkeit und auch die Wärmeübertragung und damit die Kühlwirkung im Vergleich zu einer Kunststoffoberfläche deutlich erhöht werden. Ist die wärmeleitende Struktur 8 als Metallgitter ausgebildet, so kann diese auch die Aufgabe einer Bewehrung, das heißt einer mechanischen Versteifung der jeweiligen Schicht 4, übernehmen.
  • Betrachtet man die 3, so kann man erkennen, dass in die zweite Schicht 4 besagter Fluidkanal 7 integriert ist, in welchem das Wärmetauschermedium strömen kann. Der Fluidkanal 7 ist dabei von zwei Teilschichten 4a und 4d der zweiten Schicht 4 begrenzt, wobei die beiden Teilschichten 4a und 4d (vgl. 3a und 3b) mittels Kleben bzw. Schweißen miteinander verbunden sein können. An die zweite Schicht 4 bzw. die Teilschicht 4b kann darüber hinaus ein Stutzen 11 (vgl. 3b und 3c) angeformt, insbesondere angespritzt sein, über welchen eine Ver-/Entsorung des Fluidkanals 7 mit Wärmetauschermedium erfolgen kann. Soll der Stutzen 11 länger ausgebildet werden, so kann bspw. ein Einlegeteil 12 mit einem tellerförmigen Boden 13 (vgl. 8) in den Stutzen 11 der Teilschicht 4b eingeschoben und bspw. damit durch Verschweißen bzw. Verkleben dicht verbunden werden.
  • Betrachtet man die 4a und 4d, so kann man eine Bewehrung 14 in einzelnen Schichten des Wärmeübertragerbauteils 1 erkennen, wobei die Bewehrung 14 bspw. als metallisches Gestrick bzw. Gewebe oder Matte ausgebildet sein kann und die mechanische Versteifung des Wärmeübertragerbauteils 1 bewirkt.
  • Zur Herstellung des Stutzens 11 muss bei Vorliegen einer Bewehrung 14 diese unter Umständen im Bereich des Stutzens 11 entfernt werden, wozu gemäß der 5 bspw. ein Stempel 15 verwendet werden kann, der eine entsprechende Öffnung in die Bewehrung 14 stanzt.
  • Das Herstellen einer derartigen Öffnung bzw. eines entsprechenden Stutzens 11, 12 ist in den Verfahrensschritten gemäß den 7a bis 7d dargestellt. Zunächst wird im ersten Verfahrensschritt gemäß der 7a mittels des Stempels 15 die Kunststoffmatrix 16, in welche die Bewehrung 14 eingelegt ist, ausgestanzt. Die Kunststofffasern bzw. die Bewehrung 14 wird dabei, wie dies gemäß der 7b dargestellt ist, nicht beschädigt. Anschließend wird im Verfahrensschritt aus der 7c die Bewehrung 14, das heißt die einzelnen Fasern, umgeformt, um im daran anschließenden Verfahrensschritt, der gemäß der 7d dargestellt ist, den Stutzen 11 anspritzen zu können. Selbstverständlich kann dabei die Kunststoffmatrix 16 auch als Organoblech bzw. Tape ausgestaltet sein.
  • Blickt man zurück auf die 6, so kann man dort eine elektrisch betreibbare Heizeinrichtung 17 erkennen, die ebenfalls in der Schicht 4 angeordnet werden kann. Alternativ kann zum Beheizen des elektrischen Energiespeichers selbstverständlich auch ein entsprechendes Wärmetauschermedium verwendet werden, welches in den zugehörigen Fluidkanal 7 strömt.
  • Mit dem erfindungsgemäßen Wärmeübertragerbauteil 1 ist es erstmals möglich, ein bisher aufwendiges separates Fertigen von wärmeübertragenden Schichten und zusätzlichen elektrischen Isolierungen nunmehr zu ersetzen. Das erfindungsgemäße Wärmeübertragerbauteil 1 ist zudem im Vergleich zu herkömmlichen wärmeübertragenden Bauteilen deutlich gewichtsreduziert.

Claims (10)

  1. Wärmeübertragerbauteil (1) eines Temperierungssystems eines elektrischen Energiespeichers (18), dadurch gekennzeichnet, dass das Wärmeübertragerbauteil (1) aus einem Trägermaterial (2) und zumindest zwei Schichten (3, 4) aufgebaut ist, wovon eine erste Schicht (3) elektrisch isolierend wirkt und eine zweite Schicht (4) eine Temperierung, das heißt ein Kühlen und/oder ein Beheizen des elektrischen Energiespeichers (18) ermöglicht.
  2. Wärmeübertragerbauteil nach Anspruch 1, dadurch gekennzeichnet, – dass das Trägermaterial (2) faserverstärkten Kunststoff aufweist, und/oder – dass das Trägermaterial (2) als Organoblech, als faserverstärktes Tape/Organoblech oder als Kunststofflaminat mit integrierten Metallschichten (8, 14) ausgebildet ist.
  3. Wärmeübertragerbauteil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Schicht (4) oder eine weitere Schicht (5, 6) eine wärmeleitende Struktur (8) aufweist, beispielsweise ein metallisches Gewebe oder Gestrick.
  4. Wärmeübertragerbauteil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Schicht (4) oder eine weitere Schicht (5, 6) eine elektrisch betreibbare Heizeinrichtung (17) aufweist.
  5. Wärmeübertragerbauteil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweite oder eine weitere Schicht (4, 5, 6) Fluidkanäle (7) aufweist, die von einem Wärmetauschermedium durchströmbar sind.
  6. Wärmeübertragerbauteil nach Anspruch 5, dadurch gekennzeichnet, dass an der zweiten Schicht (4), insbesondere angespritzte, Stutzen (11) zur Ver-/Entsorgung der zweiten Schicht (4) mit Wärmetauschermedium angeordnet sind.
  7. Wärmeübertragerbauteil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Wärmeübertragerbauteil (1) eine Bewehrung (14) zur mechanischen Verstärkung aufweist.
  8. Wärmeübertragerbauteil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die zweite Schicht (4) eine vergrößerte Oberfläche (9), insbesondere gebildet durch Rippen (10), Dorne oder Flossen, aufweist.
  9. Wärmeübertragerbauteil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Wärmeübertragerbauteil (1) mittels Laminieren, Kaschieren, Verpressen, Pultrusieren, Sintern, Thermoformen, Spritzgießen, Blasextruieren hergestellt ist.
  10. Elektrischer Energiespeicher (18), insbesondere eine Traktionsbatterie eines Kraftfahrzeugs, mit einem Wärmeübertragerbauteil (1) nach einem der Ansprüche 1 bis 9, welches in wärmeübertragendem Kontakt mit einem Gehäuse des Energiespeichers steht oder ein Gehäuseteil desselben bildet.
DE201310206581 2013-04-12 2013-04-12 Wärmeübertragerbauteil Withdrawn DE102013206581A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE201310206581 DE102013206581A1 (de) 2013-04-12 2013-04-12 Wärmeübertragerbauteil
PCT/EP2014/056207 WO2014166756A1 (de) 2013-04-12 2014-03-27 Wärmeübertragerbauteil
CN201480020030.7A CN105122539B (zh) 2013-04-12 2014-03-27 热交换组件
EP14713464.7A EP2984700A1 (de) 2013-04-12 2014-03-27 Wärmeübertragerbauteil
US14/783,430 US20160056512A1 (en) 2013-04-12 2014-03-27 Heat exchanger component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310206581 DE102013206581A1 (de) 2013-04-12 2013-04-12 Wärmeübertragerbauteil

Publications (1)

Publication Number Publication Date
DE102013206581A1 true DE102013206581A1 (de) 2014-10-16

Family

ID=50390094

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201310206581 Withdrawn DE102013206581A1 (de) 2013-04-12 2013-04-12 Wärmeübertragerbauteil

Country Status (5)

Country Link
US (1) US20160056512A1 (de)
EP (1) EP2984700A1 (de)
CN (1) CN105122539B (de)
DE (1) DE102013206581A1 (de)
WO (1) WO2014166756A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065516A1 (de) * 2016-10-05 2018-04-12 Johnson Controls Advanced Power Solutions Gmbh Energiespeichermodul mit einem temperaturmanagement-system und ein energiespeichersystem
DE102017104709A1 (de) 2017-03-07 2018-09-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul zur Verwendung bei einem Hochvolt-Energiespeicher
DE202019101687U1 (de) * 2019-03-25 2020-06-26 Reinz-Dichtungs-Gmbh Temperierplatte mit einem mikrostrukturierten Flüssigkeitskanal, insbesondere für Kraftfahrzeuge

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210094A1 (de) * 2013-04-12 2014-10-16 Behr Gmbh & Co. Kg Wärmeübertragerbauteil
US20170194679A1 (en) * 2015-12-30 2017-07-06 GM Global Technology Operations LLC Composite Heat Exchanger for Batteries and Method of Making Same
US10601088B2 (en) * 2016-10-28 2020-03-24 Tiveni Mergeco, Inc. Battery module endplate with sealed hole for cooling tube connection
CN112740469A (zh) * 2018-09-20 2021-04-30 乐金华奥斯株式会社 电动汽车用电池外壳
DE102018127665A1 (de) * 2018-11-06 2020-05-07 Bayerische Motoren Werke Aktiengesellschaft Kühlvorrichtung für eine elektrische Antriebseinheit eines elektrisch antreibbaren Kraftfahrzeugs, Antriebseinheit sowie Kraftfahrzeug
CN111916876A (zh) * 2019-05-10 2020-11-10 大众汽车有限公司 调节电化学存储器温度的系统和具有这种系统的交通工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69725499T2 (de) * 1996-05-09 2004-07-29 Hughes Electronics Corp., El Segundo Batteriesystem mit integrierter Tragstruktur mit hoher thermischer Leitfähigkeit
WO2012059565A2 (de) * 2010-11-03 2012-05-10 Behr Gmbh & Co. Kg Wärmeübertragungselement zur wärmeleitung zwischen einer oberfläche eines wärmetauschers und auf dem wärmetauscher angeordneten festkörpern
US20120321928A1 (en) * 2011-06-16 2012-12-20 Coda Automotive, Inc. Mechanism to reduce thermal gradients in battery systems
DE102011053439A1 (de) * 2010-09-09 2013-01-03 Hs Systemtechnik Gmbh Temperiermodul für eine Energiespeichereinrichtung, Stapelmodul für eine Energiespeichereinrichtung oder für eine elektrische Maschine sowie Energiespeichereinrichtung
WO2013050450A1 (de) * 2011-10-04 2013-04-11 Behr Gmbh & Co. Kg Thermische übergangsvorrichtung, temperierplatte und energiespeichervorrichtung
WO2013110406A1 (de) * 2012-01-23 2013-08-01 Robert Bosch Gmbh Batteriemodul mit zumindest einer batteriezelle eine wärmedämmung aufweisend sowie kraftfahrzeug

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223782B4 (de) * 2002-05-29 2005-08-25 Daimlerchrysler Ag Batterie mit wenigstens einer elektrochemischen Speicherzelle und einer Kühleinrichtung und Verwendung einer Batterie
JP2006250383A (ja) * 2005-03-08 2006-09-21 Denso Corp 熱交換器
US7658224B2 (en) * 2005-09-19 2010-02-09 Dana Canada Corporation Flanged connection for heat exchanger
KR100813246B1 (ko) * 2006-10-12 2008-03-13 삼성에스디아이 주식회사 실링 구조가 개선된 스택을 구비한 연료전지
DE102008059952B4 (de) * 2008-12-02 2011-07-07 Daimler AG, 70327 Batterie mit mehreren parallel und/oder seriell miteinander elektrisch verschalteten Batteriezellen und einer Kühlvorrichtung und Verwendung einer Batterie
DE102009005854A1 (de) * 2009-01-23 2010-07-29 Li-Tec Battery Gmbh Batteriezelle mit Umhüllung
DE102009042270A1 (de) * 2009-09-22 2011-03-31 Behr Gmbh & Co. Kg Isolationsvorrichtung und Verfahren zur Herstellung einer Isolationsvorrichtung
TWI419391B (zh) * 2009-12-25 2013-12-11 Ind Tech Res Inst 電池系統中的散熱與熱失控擴散防護結構
JP5464168B2 (ja) * 2010-06-04 2014-04-09 株式会社デンソー 電源装置
CN106816673B (zh) * 2010-10-04 2019-12-24 达纳加拿大公司 用于电池的保形的流体冷却热交换器
DE102011003296A1 (de) * 2011-01-28 2012-08-02 Behr Gmbh & Co. Kg Wärmeübertrager
DE102011003535A1 (de) * 2011-02-02 2012-08-02 Behr Gmbh & Co. Kg Verspannungsvorrichtungen
CN103443953B (zh) * 2011-03-18 2016-04-06 达纳加拿大公司 电池单元冷却器
DE102011075820B4 (de) * 2011-05-13 2018-06-28 Lisa Dräxlmaier GmbH Traktionsbatterie
DE102013210094A1 (de) * 2013-04-12 2014-10-16 Behr Gmbh & Co. Kg Wärmeübertragerbauteil
CN107078367B (zh) * 2014-09-05 2019-08-30 达纳加拿大公司 用于电池单元的可展开堆叠板式热交换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69725499T2 (de) * 1996-05-09 2004-07-29 Hughes Electronics Corp., El Segundo Batteriesystem mit integrierter Tragstruktur mit hoher thermischer Leitfähigkeit
DE102011053439A1 (de) * 2010-09-09 2013-01-03 Hs Systemtechnik Gmbh Temperiermodul für eine Energiespeichereinrichtung, Stapelmodul für eine Energiespeichereinrichtung oder für eine elektrische Maschine sowie Energiespeichereinrichtung
WO2012059565A2 (de) * 2010-11-03 2012-05-10 Behr Gmbh & Co. Kg Wärmeübertragungselement zur wärmeleitung zwischen einer oberfläche eines wärmetauschers und auf dem wärmetauscher angeordneten festkörpern
US20120321928A1 (en) * 2011-06-16 2012-12-20 Coda Automotive, Inc. Mechanism to reduce thermal gradients in battery systems
WO2013050450A1 (de) * 2011-10-04 2013-04-11 Behr Gmbh & Co. Kg Thermische übergangsvorrichtung, temperierplatte und energiespeichervorrichtung
WO2013110406A1 (de) * 2012-01-23 2013-08-01 Robert Bosch Gmbh Batteriemodul mit zumindest einer batteriezelle eine wärmedämmung aufweisend sowie kraftfahrzeug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065516A1 (de) * 2016-10-05 2018-04-12 Johnson Controls Advanced Power Solutions Gmbh Energiespeichermodul mit einem temperaturmanagement-system und ein energiespeichersystem
US11050099B2 (en) 2016-10-05 2021-06-29 Clarios Advanced Solutions Gmbh Energy storage module comprising a temperature management system, and energy storage system
DE102017104709A1 (de) 2017-03-07 2018-09-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul zur Verwendung bei einem Hochvolt-Energiespeicher
DE202019101687U1 (de) * 2019-03-25 2020-06-26 Reinz-Dichtungs-Gmbh Temperierplatte mit einem mikrostrukturierten Flüssigkeitskanal, insbesondere für Kraftfahrzeuge

Also Published As

Publication number Publication date
CN105122539A (zh) 2015-12-02
EP2984700A1 (de) 2016-02-17
CN105122539B (zh) 2019-04-02
WO2014166756A1 (de) 2014-10-16
US20160056512A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
EP2984701B1 (de) Wärmeübertragerbauteil
DE102013206581A1 (de) Wärmeübertragerbauteil
EP3295509B1 (de) Energiespeicher eines kraftfahrzeugs
DE102011075820B4 (de) Traktionsbatterie
DE102016222550B4 (de) Bodenanordnung für ein temperierbares Batteriegehäuse
EP2742558A2 (de) Batteriegehäuseteil zur aufnahme einer traktionsbatterie eines elektrofahrzeugs und verfahren zur herstellung des batteriegehäuseteils
DE102017206185B4 (de) Batterie für ein Kraftfahrzeug und Kraftfahrzeug
DE102011076583A1 (de) Energiespeichermodul aus mehreren insbesondere prismatischen Speicherzellen und Verfahren zur Herstellung eines Energiespeichermoduls
DE102014101358A1 (de) Verfahren zum Herstellen eines plattenförmigen Wärmetauschers, plattenförmiger Wärmetauscher und Verbund mit plattenförmigen Wärmetauschern
DE102014206861A1 (de) Temperiervorrichtung für eine elektrische Energieversorgungseinheit
DE112019001894T5 (de) Verfahren zur Herstellung von Komponenten für eine elektro-chemische Zelle und eine elektrochemische Zelle und Zellstapel
WO2013156162A2 (de) Elektrische heizvorrichtung, bauelement sowie verfahren zu deren herstellung
WO2018065163A1 (de) Elektrischer energiespeicher mit zwischen den zellen angeordneten kühlplatten zur notkühlung
EP3365616A1 (de) Wärmeübertrager, insbesondere thermoelektrische wärmepumpe, zum temperieren einer batterie
DE102018122582A1 (de) Vaskuläre strukturen und verfahren für das wärmemanagement
DE102018205070A1 (de) Gehäuse für eine zum Speichern von elektrischer Energie ausgebildete Speichereinrichtung eines Kraftfahrzeugs, Speichereinrichtung für ein Kraftfahrzeug, Verfahren zum Herstellen eines solchen Gehäuses sowie Kraftfahrzeug
EP3199899A1 (de) Wärmeübertragerplatte
DE102010016501A1 (de) Homogen beheizbarer Formkörper zur Herstellung von Formteilen aus faserverstärktem Kunststoff
DE102017221347A1 (de) Hybridbauteil mit Temperierraum
DE102017128501A1 (de) Verfahren zum Herstellen eines Verbundbauteils
EP2986444A1 (de) Bearbeitungswerkzeug zum thermischen bearbeiten von bauteilen
DE102011106662A1 (de) Kühlkörper für einen Energiespeicher, insbesondere eine Hochvoltbatterie
DE102021118632A1 (de) Batteriegehäuse und Verfahren zur Herstellung eines Batteriegehäuses
DE102020209059A1 (de) Separatorstrukturvorrichtung für eine Bipolarplatte und Verfahren zur Herstellung einer Separatorstrukturvorrichtung
WO2017211423A1 (de) Elektrodenplatte und verfahren zur herstellung

Legal Events

Date Code Title Description
R163 Identified publications notified
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0010500000

Ipc: H01M0010650000

R081 Change of applicant/patentee

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

R082 Change of representative

Representative=s name: BRP RENAUD UND PARTNER MBB RECHTSANWAELTE PATE, DE

R005 Application deemed withdrawn due to failure to request examination