Nothing Special   »   [go: up one dir, main page]

DE102012203688A1 - Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen - Google Patents

Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen Download PDF

Info

Publication number
DE102012203688A1
DE102012203688A1 DE102012203688A DE102012203688A DE102012203688A1 DE 102012203688 A1 DE102012203688 A1 DE 102012203688A1 DE 102012203688 A DE102012203688 A DE 102012203688A DE 102012203688 A DE102012203688 A DE 102012203688A DE 102012203688 A1 DE102012203688 A1 DE 102012203688A1
Authority
DE
Germany
Prior art keywords
weight
acid
und
fatty acid
soap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012203688A
Other languages
English (en)
Inventor
Heike Schelges
Claus-Peter Thiessies
B. P. Khedkar
Rashmin B. Joshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102012203688A priority Critical patent/DE102012203688A1/de
Priority to EP13704761.9A priority patent/EP2823027A1/de
Priority to PCT/EP2013/052455 priority patent/WO2013131708A1/de
Publication of DE102012203688A1 publication Critical patent/DE102012203688A1/de
Priority to US14/479,495 priority patent/US20140378363A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • C11D10/042Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap based on anionic surface-active compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/006Detergents in the form of bars or tablets containing mainly surfactants, but no builders, e.g. syndet bar
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Abstract

Die Erfindung betrifft geformte Seifenprodukte, z.B. Stückseifen, mit verbesserter Glätte und erhöhtem Kalkseifendispergiervermögen, welche sich durch einen verringerten Gehalt an Fettsäureseifen auszeichnen und dennoch eine verbesserte Glätte und einen erhöhtes Kalkseifensdispergierverhalten sowie verbesserte Versumpfungseigenschaften und eine ausreichende Härte bei einem gleichzeitigen geringen Abrieb sowie eine geringere Rissbildung aufweisen. Überraschenderweise wurde nunmehr festgestellt, daß sich Stückseifen mit einem reduzierten Gehalt an Fettsäureseifen herstellen lassen, welche die zuvor genannten Anforderungen erfüllen. Gegenstand der vorliegenden Anmeldung sind daher Stückseifen mit einem reduzierten Gehalt an Fettsäureseifen, enthaltend, jeweils bezogen auf das Gesamtgewicht des Seifenstückes, a) Fettsäureseifen in einer Gesamtmenge von 20 bis 60 Gew.%, vorzugsweise 30 bis 60 Gew.%, bevorzugter 30 bis 50 Gew. %, höchst bevorzugt 35 bis 55 Gew.% und insbesondere von 30 bis 50 Gew.%, b) Talkum in einer Gesamtmenge von 3 bis 40 Gew.%, vorzugsweise 5 bis 35 Gew.%, bevorzugter 10 bis 35 Gew.%, noch bevorzugter 15 bis 35 Gew.%, höchst bevorzugt 15 bis 30 Gew.%, c) Silikate in einer Gesamtmenge von 0,5 bis 30 Gew.%, vorzugsweise 1,0 bis 30 Gew.%, noch bevorzugter von 1,0 bis 20,0 Gew.% und höchst bevorzugt von 3,0 bis 20,0 Gew.%, d) synthetische Tenside, ausgewählt aus den anionischen, amphoteren, zwitterionischen, nichtionischen und/oder kationischen Tensiden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% und e) Stärke in einer Gesamtmenge von 0,1 bis 10,0 Gew.%, vorzugsweise von 0,5 bis 10,0 Gew.%, bevorzugter 1,0 bis 8,0 Gew.%, besonders bevorzugt 2,0 bis 8,0 Gew.%, ganz besonders bevorzugt 2,0 bis 5,0 Gew.% und höchst bevorzugt kleiner als 5,0 Gew.%.

Description

  • Die Erfindung betrifft geformte Seifenprodukte, z.B. Stückseifen, mit verbesserter Glätte und erhöhtem Kalkseifendispergiervermögen, welche sich durch einen verringerten Gehalt an Fettsäureseifen auszeichnen und dennoch eine verbesserte Glätte und einen erhöhtes Kalkseifensdispergierverhalten sowie verbesserte Versumpfungseigenschaften und eine ausreichende Härte bei einem gleichzeitigen geringen Abrieb sowie eine geringere Rissbildung aufweisen.
  • Seifenstücke werden heute immer weniger verwendet, obwohl sie aus ökologischer Sicht sehr gute Reinigungsprodukte sind. Selbst in typischen Seifenmärkten, wie den USA, ist der Absatz an Seifenstücken rückläufig. Dies liegt einerseits an den Kosten der Seifenstücke als auch andererseits an veränderten Verbrauchergewohnheiten. Die Kosten der Seifenstücke werden zu einem großen Teil durch die Kosten der Rohstoffe bestimmt. Es ist daher ein Ziel in der Entwicklung von Seifenstücken die Rohstoffkosten zu reduzieren. Hierzu müssen insbesondere die Mengen an Fettsäureseifen reduziert werden. Dies ist jedoch nicht ohne weiteres möglich. Die Zusammensetzungen von Seife enthalten heute eine Vielzahl von Hilfs- und Wirkstoffen, damit die Seifenstücke schnell und in großen Stückzahlen hergestellt werden können. Gleichzeitig erwartet der Verbraucher, daß insbesondere die Eigenschaften wie Kalkseifendispergiervermögen, Versumpfung beim Liegen am Waschbecken, der Ergiebigkeit sowie dem Hautgefühl beim Reinigen mit dem Seifenstück mindestens vergleichbar zu herkömmlichen Seifenstücken sind.
  • Ein Weg zur Lösung der Aufgabe könnte in der Reduktion des Gehaltes an Fettsäuren und Triglyceriden in den Seifenstücken sein. Gleichzeitig ließe sich der Gehalt an Füllstoffen erhöhen oder durch teilweise Zugabe von flüssigen Tensiden zusammen mit Gel bildenden Substanzen ausgleichen. Diese Wege haben sich jedoch in der Vergangenheit als nicht praktikabel innerhalb des Produktionsprozesses erwiesen oder es zeigten sich erhebliche Schwächen in den Gebrauchseigenschaften derartiger Seifenstücke. Beispielsweise werden durch einen hohen Füllstoffgehalt kleinere Seifenstücke erhalten, welche zudem nach der Herstellung durch das Verdunsten von Wasser weiter Schrumpfen. Beispielsweise wird die Verwendung von amorphem Aluminium oder anorganischem Aluminiumsilicaten in der WO 01/42418 und der WO 2006/094586 beschrieben. Weiterhin beschreibt die US 6440908 die Verwendung von Boraten als Füllstoffe. Schließlich empfehlen die WO 98/18896 und die US 2007/0021314 und US 2007/0155639 die erhöhte Verwendung von Stärke und synthetischen Tensiden sowie Kohlenwasserstoffen, Moisturizern und freier Fettsäure sowie deren Mischungen. Schließlich beschreiben die GB 806340.6 und die GB 901953.0 Seifenstücke mit einem erhöhten Gehalt an Stärke sowie spezifisch ausgewählten Polyolen. In keiner der genannten Verbindungen werden jedoch Seifenstücke mit einem reduzierten Gehalt an Fettsäureseifen offenbart, welche die Gebrauchseigenschaften der herkömmlichen Seifen aufweisen. Keine der vorgeschlagenen Lösungen ist in der Lage, die Anforderungen an eine wirtschaftliche und kostengünstige Herstellung und gleichzeitig eine verbesserte Glätte und ein erhöhtes Kalkseifendispergiervermögen, sowie verbesserte Versumpfungseigenschaften und eine ausreichende Härte bei einem gleichzeitigen geringen Abrieb sowie eine geringere Rissbildung mit einem reduzierten Gehalt an Fettsäureseifen zu lösen.
  • Überraschenderweise wurde nunmehr festgestellt, daß sich Stückseifen mit einem reduzierten Gehalt an Fettsäureseifen herstellen lassen, welche die zuvor genannten Anforderungen erfüllen. Gegenstand der vorliegenden Anmeldung sind daher Stückseifen mit einem reduzierten Gehalt an Fettsäureseifen, enthaltend, jeweils bezogen auf das Gesamtgewicht des Seifenstückes,
    • a) Fettsäureseifen in einer Gesamtmenge von 20 bis 60 Gew.%, vorzugsweise 30 bis 60 Gew.%, bevorzugter 30 bis 55 Gew. %, höchst bevorzugt 35 bis 55 Gew.% und insbesondere von 30 bis 50 Gew.%,
    • b) Talkum in einer Gesamtmenge von 3 bis 40 Gew.%, vorzugsweise 5 bis 35 Gew.%, bevorzugter 10 bis 35 Gew.%, noch bevorzugter 15 bis 35 Gew.%, höchst bevorzugt 15 bis 30 Gew.%,
    • c) Silikate in einer Gesamtmenge von 0,5 bis 30 Gew.%, vorzugsweise 1,0 bis 30 Gew.%, noch bevorzugter von 1,0 bis 20,0 Gew.% und höchst bevorzugt von 3,0 bis 20,0 Gew.%,
    • d) synthetische Tenside, ausgewählt aus den anionischen, amphoteren, zwitterionischen, nichtionischen und/oder kationischen Tensiden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% und
    • e) Stärke in einer Gesamtmenge von 0,1 bis 10,0 Gew.%, vorzugsweise von 0,5 bis 10,0 Gew.%, bevorzugter 1,0 bis 8,0 Gew.%, besonders bevorzugt 2,0 bis 8,0 Gew.%, ganz besonders bevorzugt 2,0 bis 5,0 Gew.% und höchst bevorzugt kleiner als 5,0 Gew.%.
  • Die erfindungsgemäßen geformten Seifenprodukte besitzen nach der mechanischen Verformung eine besonders glatte Oberfläche. Bei der Anwendung erzeugen sie einen cremigen, stabilen Schaum. Der in hartem Wasser gebildete Kalkseifenniederschlag bleibt im Wasser dispergiert und führt nicht zu den grau-schmierigen Belägen auf der Oberfläche von Sanitärobjekten.
  • Die zwingenden Inhaltsstoffe der Seifenstücke werden im Folgenden beschrieben.
  • Fettsäureseifen:
  • Als Fettsäureseifen werden die Natrium-, Kalium- oder Ammoniumsalze von Fettsäuren bezeichnet. Als Fettsäuren werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 bis 30 C-Atomen, z.B. Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, die Laurin-, Myristin-, Palmitin-, Stearin-, Arachin- und Behensäure, Erucasäure, Isostearinsäure, Isotridecansäure aber auch Elaidinsäure, Petroselinsäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Palmitolein-, Öl-, Linol-, Linolen-, und Arachidonsäure verwendet. Bevorzugt werden technische Gemische, wie sie aus pflanzlichen und tierischen Fetten und Ölen erhältlich sind, eingesetzt, z.B. Kokosölfettsäure und Talgfettsäure. Es wird insbesondere bei technischen Mischungen auch von „Lauricseifen“ mit einer vorzugsweisen C-Kettenlänge von C12 bis C14, welcher überwiegend gesättigt ist, gesprochen. Vorzugsweise bedeutet, daß selbstverständlich technisch bedingt auch Anteile an beispielsweise C10 Fettsäure enthalten sein kann. Eine weitere derartige Fettsäurefraktion sind die sogenannten „Stearicseifen“. Diese enthalten vorzugsweise C16 bis C18 Fettsäuren, welche vorzugsweise gesättigt sind. Auch in diesem Falle können kürzere oder längere Fettsäuren, beispielsweise C20 Fettsäuren enthalten sein. Technische ungesättigte Fettsäureseifen sind beispielsweise die Oleics. Oleicseifen enthalten ungesättigte Fettsäureseifen, vorzugsweise Ölsäure (C18:1), Linolsäureseifen (C18:2) und Myristoleinsäureseife (C14:1) und Palmitoleinsäure (C16:1) sowie kleine Anteile an längeren und kürzeren gesättigten und ungesättigten sowie mehrfach ungesättigten Fettsäureseifen. Oleics werden im allgemeinen aus der Hydrolyse der Triglyceridöle von Talg, Palmöl, Sonnenblumenöl und Sojaöl erhalten. Schließlich sind noch die sogenannten Kokosnussöle bekannt. Sie werden oft durch die sogenannten Lauric – reichen Öle ersetzt. Letztere enthalten mindestens 45 Gew.% der gesamten Fettsäuren zusammengesetzt aus Laurinsäure, Myristinsäure und Mischungen hieraus. Kokosöle werden insbesondere gewonnen aus tropischen Nüssen der Klasse der Kokosöle. Hierunter fallen beispielsweise Palmkernöl, Babassuöl, Ouricuiöl, Tucumöl, Cohunnussöl, Murumuruöl, Jabotykernöl, Khakankernöl, Dikanussöl und Ucuhubabutter. Besonders bevorzugt sind Gemische aus Kokos- und Talgfettsäureschnitten, insbesondere ein Gemisch aus 50–80 Gew.-% C16-C18-Talgfettsäure und 20–50 Gew.-% C12-C14-Kokosfettsäure.
  • Bevorzugt sind Fettsäuren mit 10–22 Kohlenstoffatomen. Die Gesamtmenge an Fettsäureseifen beträgt 20 bis 60 Gew.%, bezogen auf das Gesamtgewicht des Seifenstückes. Bevorzugt beträgt die Gesamtmenge an Fettsäureseifen 30–60 Gew.%, bevorzugter 30 bis 55 Gew. %, höchst bevorzugt 35 bis 55 Gew.% und insbesondere von 30 bis 50 Gew.%.
  • Ein gewisser Gehalt an freier, unverseifter Fettsäure in Feinseifen bedingt anwendungstechnische Vorteile, insbesondere ein cremiges, feinblasiges Schäumen und ein angenehmes Hautgefühl. Bei der Herstellung solcher mit freier Fettsäure "überfetteter" Seifen kann man so vorgehen, daß bei der Verseifung das Alkali in leichtem Unterschuß eingesetzt wird. Erfindungsgemäße Seifenstücke zeichnen sich daher dadurch aus, daß sie – in bezug auf das Gesamtgewicht des Seifenstückes – 0,01 bis 10,0 Gew.%, vorzugsweise 0,1 bis 8 Gew.%, bevorzugter 0,5 bis 8 Gew.%, höchst bevorzugt 1,0 bis 5,0 Gew.% an freier Fettsäure enthalten.
  • Talkum:
  • Unter Talkum im Sinne der Erfindung wird ein hydratisiertes Magnesiumsilikat der theoretischen Zusammensetzung 3MgO·4SiO2·H2O bzw. Mg3(Si4O10)·(OH)2, das jedoch Anteile an hydratisiertem Magnesiumaluminiumsilikat von bis zu 12 Gew.-% Al2O3, bezogen auf das gesamte Produkt, enthalten kann. Der Teilchendurchmesser (equivalent spherical diameter) des Talkums sollte im Bereich von 0,5–50 µm liegen. Im allgemeinen haben sich solche Talkumqualitäten bewährt, die nicht mehr als 5 Gew.-% an Teilchen unter 1 µm und nicht mehr als 5 Gew.-% an Teilchen über 50 µm Größe enthalten. Vorzugsweise ist der Anteil an Teilchen, die größer als 40 µm im Durchmesser sind (Siebrückstand), höchstens 2 Gew.-%. Der mittlere Teilchendurchmesser (D 50) liegt bevorzugt bei 5–15 µm. Der Gehalt an Begleitstoffen sollte nicht mehr als 1,6 Gew.-% Fe2O3, 1 Gew.-% CaO und 1 Gew.-% an ungebundenem Wasser (Trockenverlust bei 105° C) ausmachen. Der Gehalt an hydratisiertem Magnesiumaluminiumsilikat kann bis zu 60 Gew.-%, berechnet als Al2O3, bis zu 12 Gew.-% liegen. Talkum wird in einer Menge von 3 bis 40 Gew.%, vorzugsweise 5 bis 35 Gew.%, bevorzugter 10 bis 35 Gew.%, noch bevorzugter 15 bis 35 Gew.%, höchst bevorzugt 15 bis 30 Gew.% verwendet.
  • Silikate:
  • Als Builder enthalten die erfindungsgemäßen Seifen feinteilige, wasserunlösliche Alkalialuminiumsilicate, wobei die Verwendung von synthetischen, gebundenes Wasser enthaltenden kristallinen Natriumalumosilicaten und hierbei insbesondere Zeolith A besonders bevorzugt ist. Zeolith NaX sowie dessen Mischungen mit Zeolith NaA können ebenfalls eingesetzt werden. Geeignete Zeolithe besitzen ein Calciumbindevermögen im Bereich von 100 bis 200 mg CaO/g, bestimmt nach den Angaben in der DE 24 12 837 . Bevorzugt kommt der mit dem Handelsnamen Wessalith P (Degussa) erhältliche Zeolith NaA mit einem Gehalt von ca. 20 Gew.-% gebundenem Wasser zur Anwendung. Die Silikate werden in einer Gesamtmenge von 0,5 bis 30 Gew.%, vorzugsweise 1,0 bis 30 Gew.%, noch bevorzugter von 1,0 bis 20,0 Gew.% und höchst bevorzugt von 3,0 bis 20,0 Gew.% verwendet.
  • Besonders bevorzugt sind Seifen, bei welchen das Talkum und die Silikate in einem Verhältnis von 10:1 bis 1:3, bevorzugter von 7:1 bis 1:2, noch bevorzugter von 6:1 bis 1:2 und höchst bevorzugt von 5:1 bis 2:1 verwendet werden. Zusätzlich zum Talkum und den Silikaten als Struktur gebenden Komponente ist es erfindungsgemäß weiterhin möglich, daß weitere anorganische Substanzen zur Strukturgebung verwendet werden können. Zu diesen Substanzen zählen Calciumcarbonate wie Calcit, Aragonit und Valerit, Borate, Kaolin, Phosphate und Sulfate. Alle anorganischen Substanzen müssen eine Partikelgröße von kleiner als 300 µm, vorzugsweise kleiner als 100 µm, besonders bevorzugt kleiner als 50 µm und höchst bevorzugt kleiner als 20 µm aufweisen. Dies ist besonders wichtig, damit die Teilchen nicht als Teilchen spürbar empfunden werden und ein kratzendes Gefühl bei der Anwendung verursachen. Für den Fall, daß diese weiteren anorganischen Verbindungen verwendet werden, ist insbesondere das Verhältnis zwischen Talkum und Silikat mit mindestens 5:1 bis 2:1 einzuhalten. Talkum wird in diesem Falle in einer Menge von 10 bis 35 Gew.%, noch bevorzugter 15 bis 35 Gew.%, höchst bevorzugt 15 bis 30 Gew.% verwendet. In diesem Falle der Verwendung weiterer anorganische Substanzen wird das Silikat in einer Menge von 1,0 bis 20,0 Gew.% und höchst bevorzugt von 3,0 bis 20,0 Gew.% verwendet.
  • Synthetische Tenside:
  • Als besonders vorteilhaft zur Formulierung von Seifenstücken mit stärker reinigendem Charakter hat sich die Verwendung von Tensiden erwiesen. Als anionische Tenside (Tanion) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Typische Beispiele für anionische Tenside sind:
    • – Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist und deren Salze,
    • – Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen.
    • – lineare Alkansulfonate mit 8 bis 24 C-Atomen,
    • – lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
    • – Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
    • – Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
    • – Hydroxysulfonate im wesentlichen entsprechend mindestens einer der beiden folgenden Formeln oder deren Mischungen sowie deren salzen, CH3-(CH2)y-CHOH-(CH2)p-(CH-SO3M)-(CH2)z-CH2-O-(CnH2nO)x-H, und/oder CH3-(CH2)y-(CH-SO3M)-(CH2)p-CHOH-(CH2)z-CH2-O-(CnH2nO)x-H wobei in beiden Formeln y und z = 0 oder ganze Zahlen von 1 bis 18, p = 0, 1 oder 2 und die Summe (y + z + p) eine Zahl von 12 bis 18, x = 0 oder eine Zahl von 1 bis 30 und n eine ganze Zahl von 2 bis 4 sowie M = H oder Alkali-, insbesondere Natrium, Kalium, Lithium, Erdalkali-, insbesondere Magnesium, Calcium, Zink und/oder einem Ammoniumion, welches gegebenenfalls substituiert sein kann, insbesondere Mono-, Di-, Tri- oder Tetraammoniumionen mit C1 bis C4 Alkyl-, Alkenyl- oder Arylresten,
    • – sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether der Formel R1-(CHOSO3M)-CHR3-(OCHR4-CH2)n-OR2 mit R1, einem linearen Alkylrest mit 1 bis 24 C-Atomen, R2 für einen linearen oder verzweigten, gesättigten Alkylrest mit 1 bis 24 C-Atomen, R3 für Wasserstoff oder einen linearen Alkylrest mit 1 bis 24 C-Atomen, R4 für Wasserstoff oder einen Methylrest und M für Wasserstoff, Ammonium, Alkylammonium, Alkanolammonium, worin die Alkyl- und Alkanolreste je 1 bis 4 C-Atome aufweisen, oder ein Metallatom ausgewählt aus Lithium, Natrium, Kalium, Calcium oder Magnesium und n für eine Zahl im Bereich von 0 bis 12 stehen und weiterhin die Gesamtzahl der in R1 und R3 enthaltenen C-Atome 2 bis 44 beträgt,
    • – Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen,
    • – Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2–15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
    • – Alkyl- und/oder Alkenyletherphosphate der Formel, R1(OCH2CH2)n-O-(PO-OX)-OR2, in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht,
    • – sulfatierte Fettsäurealkylenglykolester der Formel RCO(AlkO)nSO3M in der RCO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Metall steht, wie Alkalimetall, insbesondere Natrium, Kalium, Lithium, Erdalkalimetall, insbesondere Magnesium, Calcium, Zink, oder Ammoniumion, wie +NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest,
    • – Monoglyceridsulfate und Monoglyceridethersulfate der Formel R8OC-(OCH2CH2)x-OCH2-[CHO(CH2CH2O)yH]-CH2O(CH2CH2O)z-SO3X, in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht,
    • – Amidethercarbonsäuren, R1-CO-NR2-CH2CH2-O-(CH2CH2O)nCH2COOM, mit R1 als geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit einer Zahl an Kohlenstoffatomen in der Kette von 2 bis 30, n steht für eine ganze Zahl von 1 bis 20 und R2 steht für Wasserstoff, einen Methyl-, Ethyl-, Propyl-, Isopropyl-, n-Butyl-, t-Butyl- oder iso-Butylrest und M steht für Wasserstoff oder ein Metall wie Alkalimetall, insbesondere Natrium, Kalium, Lithium, Erdalkalimetall, insbesondere Magnesium, Calcium, Zink, oder ein Ammoniumion, wie +NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest. Derartige Produkte sind beispielsweise von der Firma Chem-Y unter der Produktbezeichnung Akypo® erhältlich.
    • – Acylglutamate der Formel XOOC-CH2CH2CH(C(NH)OR)-COOX, in der RCO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen und X für Wasserstoff, ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht,
    • – Kondensationsprodukte aus einem wasserlöslichen Salz eines wasserlöslichen Eiweißhydrolysats mit einer C8-C30-Fettsäure. Solche Produkte sind unter dem Warenzeichen Lamepon®, Maypon®, Gluadin®, Hostapon® KCG oder Amisoft® seit langem im Handel erhältlich.
    • – Alkyl- und/oder Alkenyl-Oligoglykosidcarboxylate, -sulfate, -phosphate und/oder -isethionate,
    • – Acyllactylate und
    • – Hydroxymischethersulfate,
    • – sowie deren Mischungen.
  • Sofern die milden anionischen Tenside Polyglycoletherketten enthalten, ist es ganz besonders bevorzugt, dass diese eine eingeengte Homologenverteilung aufweisen. Weiterhin ist es im Falle von milden anionischen Tensiden mit Polyglycolethereinheiten bevorzugt, dass die Zahl der Glykolethergruppen 1 bis 20 beträgt, bevorzugt 2 bis 15, besonders bevorzugt 2 bis 12. Besonders milde anionische Tenside mit Polyglykolethergruppen ohne eingeschränkte Homologenverteilung können beispielsweise auch erhalten werden, wenn einerseits die Zahl der Polyglykolethergruppen 4 bis 12 beträgt und als Gegenion Zn- oder Mg-ionen gewählt werden. Ein Beispiel hierfür ist das Handelsprodukt Texapon® ASV. Besonders bevorzugt sind Seifenstücke enthaltend mindestens ein anionisches Tensid ausgewählt aus: Acylsarcosiden mit 8 bis 24 C-Atomen in der Acylgruppe, Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist und deren Salze, Acyltauriden mit 8 bis 24 C-Atomen in der Acylgruppe, Acylisethionaten mit 8 bis 24 C-Atomen in der Acylgruppe, Alkylsulfaten und Alkylpolyglykolethersulfaten der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist, Alkyl- und/oder Alkenyletherphosphaten der Formel, R1(OCH2CH2)n-O-(PO-OX)-OR2, in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht, Monoglyceridsulfaten und Monoglyceridethersulfaten der Formel R8OC-(OCH2CH2)x-OCH2-[CHO(CH2CH2O)yH]-CH2O(CH2CH2O)z-SO3X, in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, Acylglutamaten der Formel XOOC-CH2CH2CH(C(NH)OR)-COOX, in der RCO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen und X für Wasserstoff, ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht, Kondensationsprodukten aus einem wasserlöslichen Salz eines wasserlöslichen Eiweißhydrolysats mit einer C8-C30-Fettsäure, sowie deren Mischungen. Ganz besonders bevorzugt sind Seifenstücke enthaltend mindestens ein anionisches Tensid ausgewählt aus: Alkylsulfaten und Alkylpolyglykolethersulfaten der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist, Alkyl- und/oder Alkenyletherphosphate der Formel, R1(OCH2CH2)n-O-(PO-OX)-OR2, in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht, Acylglutamaten der Formel XOOC-CH2CH2CH(C(NH)OR)-COOX, in der RCO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen und X für Wasserstoff, ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht, sowie deren Mischungen. Höchst bevorzugt sind Seifenstücke enthaltend mindestens ein anionisches Tensid ausgewählt aus den: Alkylsulfaten und Alkylpolyglykolethersulfaten der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist, sowie deren Mischungen. Die anionischen Tenside werden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% eingesetzt.
  • Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat sowie Coco Betaine. Unter ampholytischen Tensiden (Tampho) werden solche oberflächenaktiven Verbindungen verstanden, die zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18-Acylsarcosin. Die amphoteren und zwitterionischen Tenside werden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% eingesetzt.
  • Nichtionische Tenside (Tnio) sind beispielsweise
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 6 bis 30 C-Atomen, die Fettalkoholpolyglykolether bzw. die Fettalkoholpolypropylenglykolether bzw. gemischte Fettalkoholpolyether,
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettsäuren mit 6 bis 30 C-Atomen, die Fettsäurepolyglykolether bzw. die Fettsäurepolypropylenglykolether bzw. gemischte Fettsäurepolyether,
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, die Alkylphenolpolyglykolether bzw. die Alkylpolypropylenglykolether, bzw. gemischte Alyklphenolpolyether,
    • – mit einem Methyl- oder C2-C6-Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
    • – C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol® – Typen (Cognis),
    • – alkoxilierte Triglyceride,
    • – alkoxilierte Fettsäurealkylester der Formel (Tnio-1) R1CO-(OCH2CHR2)wOR3 (Tnio-1) in der R1CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
    • – Aminoxide,
    • – Hydroxymischether, R1O[CH2CH(CH3)O]x(CH2CHR2O)y[CH2CH(OH)R3]z mit R1 stehend für einen linearen oder verzweigten, gesättigten oder ungesättigten Alkyl- und/oder Alkenylrest mit 2 bis 30 C-Atomen, R2 stehend für Wasserstoff, einen Methyl-, Ethyl-, Propyl- oder iso-Propylrest, R3 stehend für einen linearen oder verzweigten Alkylrest mit 2 bis 30 C-Atomen, x stehend für 0 oder eine Zahl von 1 bis 20, Y für eine Zahl von 1 bis 30 und z stehend für die Zahl 1, 2, 3, 4 oder 5.
    • – Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
    • – Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
    • – Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
    • – Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside,
    • – Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide,
    • – Fettsäureamidpolyglycolether, Fettaminpolyglycolether,
    • – Mischether bzw. Mischformale
    • – sowie deren Mischungen.
  • Besonders bevorzugte nichtionische Tenside sind die Sorbitanfettsäureester, Alkyl- und Alkenyloligoglucoside, beispielsweise die Alkyloligoglucoside mit den INCI-Bezeichnungen Lauryl Glucoside, Decyl Glucoside, Coco Glucoside, Fettsäure-N-alkylpolyhydroxyalkylamide sowie deren Mischungen. Die nichtionischen Tenside werden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% eingesetzt. Ganz besonders bevorzugte Seifenstücke enthalten mindestens ein Tensid ausgewählt aus den anionischen, den amphoteren und/oder zwitterionischen und/oder den nichtionischen Tensiden. Höchst bevorzugt werden dabei die jeweiligen Tenside aus den bevorzugten anionischen, amphoteren und/oder zwitterionischen und/oder den nichtionischen Tensiden. Die besten Ergebnisse werden erzielt, wenn in den erfindungsgemäßen Seifenstücken mindestens ein anionisches Tensid ausgewählt ist aus Alkylsulfaten und Alkylpolyglykolethersulfaten der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist, und weiterhin mindestens eines der amphoteren oder zwitterionsichen Tenside Cocamidopropyl Betaine oder Coco Betaine enthalten ist, sowie weiterhin mindestens ein nichtionisches Tensid ausgewählt aus den Alkyloligoglucosiden enthalten ist.
  • Im vorstehenden Falle wird das anionische Tensid in einer Menge von 0,5 bis 10,0 Gew.%, bevorzugt von 2,0 bis 6,0 Gew.%, das Cocamidopropyl Betaine oder Coco Betaine in einer Menge von 0,5 bis 10,0 Gew.% bevorzugt in einer Menge von 0,5 bis 6,0 Gew.% und das Alkyloligoglucosid in einer Menge von 0,1 bis 6,0 Gew.%, bevorzugt in einer Menge von 0,5 bis 5,0 Gew.%, jeweils bezogen auf das Gesamtgewicht des Seifenstückes, verwendet. Selbstverständlich werden die nach der Diskussion der kationischen Tenside genannten Gesamtmengen an Tensiden dabei keinesfalls über- oder unterschritten.
  • Kationische Tenside können in den erfindungsgemäßen Seifenstücken ebenfalls als Tenside verwendet werden. Beispiele hierfür sind quartäre Imidazolinverbindungen der Formel I.
    Figure 00120001
  • Die Reste R stehen unabhängig voneinander jeweils für einen gesättigten oder ungesättigten, linearen oder verzweigten Kohlenwasserstoffrest mit einer Kettenlänge von 8 bis 30 Kohlenstoffatomen. Die bevorzugten Verbindungen der Formel I enthalten für R jeweils den gleichen Kohlenwasserstoffrest. Die Kettenlänge der Reste R beträgt bevorzugt 12 bis 21 Kohlenstoffatome. Besonders erfindungsgemäße Beispiele sind beispielsweise unter den INCII-Bezeichnungen Quaternium-27, Quaternium-72, Quaternium-83 und Quaternium-91 erhältlich. Weiterhin können die folgenden kationischen Tenside gemäß der Formel (Tkat-2) verwendet werden. RCO-X-N+R1R2R3A (Tkat-2) R steht hierin für einen substituierten oder unsubstituierten, verzweigten oder geradkettigen Alkyl- oder Alkenylrest mit 11 bis 35 Kohlenstoffatomen in der Kette,
    X steht für -O- oder -NR5-,
    R1 steht für eine Alkylengruppe mit 2 bis 6 C-Atomen, welche nicht substituiert oder substituiert sein kann, wobei im Falle einer Substitution die Substitution mit einer -OH- oder -NH-Gruppe bevorzugt ist,
    R2, R3 jeweils unabhängig voneinander stehen für eine Alkyl oder Hydroxyalkylgruppe mit 1 bis zu 6 C-Atomen in der Kette, wobei die Kette geradlinig oder verzweigt sein kann.
    R5 steht für Wasserstoff oder einen C1 bis C6 geradkettigen oder verzweigten, Alkyl- oder Alkenylrest, welcher auch durch eine Hydroxygruppe substituiert sein kann.
  • Innerhalb dieser Strukturklasse werden bevorzugt die Verbindungen einer der folgenden Strukturen verwendet:
    CH3(CH2)20CONH(CH2)3-N+(CH3)2-CH2CH3A (Tkat-3)
    CH3(CH2)20CONH(CH2)3-N+(CH3)2-CH2(CHOH)CH2OHA (Tkat-4)
    CH3(CH2)20COOCH2CHOHCH2-N+(CH3)3A (Tkat-5)
    CH3(CH2)20CONH(CH2)3-N+(CH3)2-CH2CH2OHA (Tkat-6)
  • Beispiele für derartige Handelsprodukte sind Schercoquat BAS, Lexquat AMG-BEO, Akypoquat 131 oder Incroquat Behenyl HE. Weiterhin können Esterquats gemäß der Formel (Tkat1-2) verwendet werden.
    Figure 00130001
  • Hierin sind die Reste R1, R2 und R3 jeweils unabhängig voneinander und können gleich oder verschieden sein. Die Reste R1, R2 und R3 bedeuten:
    • – ein verzweigter oder unverzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen, welcher mindestens eine Hydroxylgruppe enthalten kann, oder
    • – ein gesättigter oder ungesättigter, verzweigter oder unverzweigter oder ein cyclischer gesättigter oder ungesättigter Alkylrest mit 6 bis 30 Kohlenstoffatomen, welcher mindestens eine Hydroxylgruppe enthalten kann, oder
    • – ein Aryl oder Alkarylrest, beispielsweise Phenyl oder Benzyl,
    • – den Rest(-A-R4), mit der Maßgabe, daß höchstens 2 der Reste R1, R2 oder R3 für diesen Rest stehen können:
  • Der Rest-(A-R4) ist mindestens 1 bis 3 mal enthalten. Hierin steht A für:
    • 1) -(CH2)n- mit n = 1 bis 20, vorzugsweise n = 1 bis 10 und besonders bevorzugt n = 1–5, oder
    • 2) -(CH2-CHR5-O)n- mit n = 1 bis 200, vorzugsweise 1 bis 100, besonders bevorzugt 1 bis 50, und besonders bevorzugt 1 bis 20 mit R5 in der Bedeutung von Wasserstoff, Methyl oder Ethyl,
    und R4 steht für:
    • 1) R6-O-CO-, worin R6 einen gesättigten oder ungesättigten, verzweigten oder unverzweigten oder einen cyclischen gesättigten oder ungesättigten Alkylrest mit 6 bis 30 Kohlenstoffatomen ist, welcher mindestens eine Hydroxygruppe enthalten kann, und welcher gegebenenfalls weiterhin mit 1 bis 100 Ethylenoxideinheiten und/oder 1 bis 100 Propylenoxideinheiten oxethyliert sein kann, oder
    • 2) R7-CO-, worin R7 einen gesättigten oder ungesättigten, verzweigten oder unverzweigten oder einen cyclischen gesättigten oder ungesättigten Alkylrest mit 6 bis 30 Kohlenstoffatomen ist, welcher mindestens eine Hydroxygruppe enthalten kann, und welcher gegebenenfalls weiterhin mit 1 bis 100 Ethylenoxideinheiten und/oder 1 bis 100 Propylenoxideinheiten oxethyliert sein kann,
    und Q steht für ein physiologisch verträgliches organisches oder anorganisches Anion. Solche Produkte werden beispielsweise unter den Warenzeichen Rewoquat®, Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammonium-chlorid, sowie Dehyquart® F-75, Dehyquart®C-4046, Dehyquart® L80, Dehyquart® F-30, Dehyquart® AU-35, Rewoquat® WE18, Rewoquat® WE38 DPG und Stepantex® VS 90 sind Beispiele für solche Esterquats. Weitere erfindungsgemäß besonders bevorzugte Verbindungen der Formel (Tkat1-2) zählen zur Formel (Tkat1-2.1), den kationischen Betainestern.
    Figure 00140001
  • R8 entspricht in seiner Bedeutung R7. Als weiterer Inhaltsstoff können Monoalkyltrimethylammoniumsalze mit einer Kettenlänge des Alkylrestes von 16 bis 24 Kohlenstoffatomen enthalten sein. Diese Verbindungen weisen die in der Formel (Tkat1-1) dargestellte Struktur auf,
    Figure 00140002
  • Wobei R1, R2 und R3 für jeweils eine Methylgruppe stehen und R4 für einen gesättigten, verzweigten oder unverzweigten Alkylrest mit einer Kettenlänge von 16 bis 24 Kohlenstoffatomen. Beispiele für Verbindungen der Formel (Tkat1-1) sind Cetyltrimethylammoniumchlorid, Cetyltrimethylammoniumbromid, Cetyltrimethylammoniummethosulfat, Stearyltrimethylammoniumchlorid, Behenyltrimethylammoniumchlorid, Behenyltrimethylammoniumbromid und Behenyltrimethylammoniummethosulfat. In einer besonders bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen Mittel weiterhin mindestens ein Amin und/oder kationisiertes Amin, insbesondere ein Amidoamin und/oder ein kationisiertes Amidoamin mit den folgenden Strukturformeln:
    R1-NH-(CH2)n-NR2R3 (Tkat7) und/oder
    R1-NH-(CH2)n-NR2R3R4 (Tkat8)
    worin R1 ein Acyl- oder Alkylrest mit 6 bis 30 C-Atomen, welche verzweigt oder unverzweigt, gesättigt oder ungesättigt sein können, und wobei der Acylrest und/oder der Alkylrest mindestens eine OH-Gruppe enthalten können, und
    R2, R3 und R4 jeweils unabhängig voneinander Wasserstoff oder ein Alkylrest mit 1 bis 4 C-Atomen, welcher gleich oder verschieden, gesättigt oder ungesättigt sein kann, und
    X ein Anion und
    n eine ganze Zahl zwischen 1 und 10 bedeuten.
  • Bevorzugt wird eine Zusammensetzung, in welcher das Amin und/oder das quaternisierte Amin gemäß allgemeiner Formeln (Tkat7) und/oder (Tkat8) ein Amidoamin und/oder ein quaternisiertes Amidoamin ist, worin R1 ein verzweigter oder unverzweigter, gesättigter oder ungesättigter Acylrest mit 6 bis 30 C-Atomen, welcher mindestens eine OH-Gruppe enthalten kann, bedeutet. Bevorzugt ist hierbei ein Fettsäurerest aus Ölen und Wachsen, insbesondere aus natürlichen Ölen und Wachsen, ist. Als Beispiele hierfür kommen Lanolin, Bienen- oder Candellilawachse in Betracht. Bevorzugt sind auch solche Amidoamine und/oder quaternisierte Amidoamine, in denen R2, R3 und/oder R4 in Formeln (Tkat7) und/oder (Tkat8) ein Rest gemäß der allgemeinen Formel CH2CH2OR5 bedeuten, worin R5 die Bedeutung von Alkylresten mit 1 bis 4 Kohlenstoffatomen, Hydroxyethyl oder Wasserstoff haben kann. Die bevorzugte Größe von n in den allgemeinen Formeln (Tkat7) und/oder (Tkat8) ist eine ganze Zahl zwischen 2 und 5. Weiterhin bevorzugt sind Amidoamine und/oder quaternisierte Amidoamine der allgemeinen Formeln (Tkat7) und/oder (Tkat8), in denen das Anion X ein Halogenidion oder eine Verbindung der allgemeinen Formel RSO3 ist, worin R die Bedeutung von gesättigtem oder ungesättigtem Alkylresten mit 1 bis 4 Kohlenstoffatomen hat. Der Alkylrest mit 1 bis 4 Kohlenstoffatomen von R2, R3 und R4 und/oder der Alkylrest mit 1 bis 4 Kohlenstoffatomen von RSO3 in der allgemeinen Formel (Tkat7) und/oder (Tkat8) können mindestens eine Hydroxylgruppe enthalten. Die Alkylamidoamine können sowohl als solche vorliegen und durch Protonierung in entsprechend saurer Lösung in eine quaternäre Verbindung in der Zusammensetzung überführt werden. Erfindungsgemäß bevorzugt sind die kationischen Alkylamidoamine. Als erfindungsgemäß zu verwendende Amidoamine, welche gegebenenfalls quaternisiert sein können, kommen beispielsweise in Betracht als Amidoamine: Witcamine 100 (Witco, INCI-Bezeichnung: Cocamidopropyl Dimethylamine), Incromine BB (Croda, INCI-Bezeichnung: Behenamidopropyl Dimethylamine), Mackine 401 (McIntyre, INCI-Bezeichnung: Isostearylamidopropyl Dimethylamine) und andere Mackine-Typen, Adogen S18V (Witco, INCI-Bezeichnung: Stearylamidopropyl Dimethylamine), und als permanent kationische Aminoamine: Rewoquat RTM 50 (Witco Surfactants GmbH, INCI-Bezeichnung: Ricinoleamidopropyltrimonium Methosulfate), Empigen CSC (Albright&Wilson, INCI-Bezeichnung: Cocamidopropyltrimonium Chlorid), Swanol Lanoquat DES-50 (Nikko, INCI-Bezeichnung: Quatemium-33), Rewoquat UTM 50 (Witco Surfactants GmbH, Undecyleneamidopropyltrimonium Methosulfate). Schließlich können kationische Tenside der Formel (Tkat1-1) können verwendet werden.
  • Figure 00160001
  • In der Formel (Tkat1) stehen R1, R2, R3 und R4 für jeweils unabhängig voneinander für Wasserstoff, eine Methylgruppe, eine Phenylgruppe, eine Benzylgruppe, für einen gesättigten, verzweigten oder unverzweigten Alkylrest mit einer Kettenlänge von 8 bis 30 Kohlenstoffatomen, welcher gegebenenfalls mit einer oder mehreren Hydroxygruppen substituiert sein kann. A steht für ein physiologisch verträgliches Anion, beispielsweise Halogenide wie Chlorid oder Bromid sowie Methosulfate. Beispiele für Verbindungen der Formel (Tkat1) sind Lauryltrimehtylammoniumchlorid, Cetyltrimethylammoniumchlorid, Cetyltrimethylammoniumbromid, Cetyltrimethylammoniummethosulfat, Dicetyldimethylammoniumchlorid, Tricetylmethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid, Behenyltrimethylammoniumchlorid, Behenyltrimethylammoniumbromid, Behenyltrimethylammoniummethosulfat. Das Anion der aller kationischen Verbindungen ist ausgewählt aus den physiologisch verträglichen Anionen. Beispielhaft hierfür seien die Halogenidionen, Fluorid, Chlorid, Bromid, Sulfat der allgemeinen Formel RSO3 , worin R die Bedeutung von gesättigtem oder ungesättigtem Alkylresten mit 1 bis 4 Kohlenstoffatomen hat, oder anionische Reste organischer Säuren wie Maleat, Fumarat, Oxalat, Tartrat, Citrat, Lactat oder Acetat, genannt. Die zuvor genannten kationischen Tenside können einzeln oder in beliebigen Kombinationen miteinander verwendet werden, wobei Mengen zwischen 0,01 bis 20 Gew.%, bevorzugt in Mengen von 0,01 bis 10 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 bis 7,5 Gew.% enthalten. Die allerbesten Ergebnisse werden dabei mit Mengen von 0,1 bis 5 Gew.% jeweils bezogen auf die Gesamtzusammensetzung des jeweiligen Mittels erhalten. Die Tenside werden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% eingesetzt.
  • Stärke als Gerüststoff:
  • Die Stückseifen können als Gerüststoffe Strukturanten wie Polysaccharide enthalten. Als Polysaccharide werden beispielsweise Stärke, vorzugsweise Weizen- oder Maisstärke, Kartoffelstärke, Reisstärke, Stärke aus Tapioca usw. sowie Cellulose verwendet. Besonders bevorzugt ist der Einsatz von Stärke, die unbehandelt oder in aufgeschlossener, d.h. partiell hydrolysierter oder säureabgebauter Form eingesetzt werden kann. Unbehandelte Stärke weist den Vorteil auf, daß sie in den Stückseifen in Form kleiner fester Körner vorliegt, die bei der Anwendung einen sanften abrasiven Effekt bewirken und das Hautgefühl verbessern. Hydrolysierte Stärke führt zu Produkten mit besserer Verformbarkeit und Homogenität. Selbstverständlich können auch Mischungen verschiedener Stärken verwendet werden. Weiterhin kann die Stärke auch chemisch modifiziert sein. Bevorzugt wird natürliche, das heißt eine unveränderte Stärke aus einer natürlichen Quelle verwendet. Diese Stärken weisen unterschiedliche Gehälter an Amylose und Amylopektin auf. Vorgelatinisierte Stärke kann erfindungsgemäß bevorzugt sein. Bevorzugte Cellulosen sind mikrokristalline Cellulosen. Höchst bevorzugte Polysaccahride sind Stärke, insbesondere natürliche Stärke, pregelatiniseierte Stärke und chemisch modifizierte Stärke sowie deren Mischungen. Die Verwendung von Stärke ist eine besonders kritische Größe. Durch die Stärke wird die Seifenmasse plastisch. Eine gewisse Plastizität ist für den Prozess der Seifenherstellung vorteilhaft. Wenn jedoch die sogenannte Gummielastizität der Seifenmasse erreicht wird, dann ist die Seifenmasse nicht mehr verarbeitbar. Daher darf muß ein gummiartiges Verhalten der Seifenmasse unbedingt vermieden werden. Die Masse ist dann viel zu weich und klebrig. Die Mengen an Polysacchariden sind daher kritisch und sehr genau einzuhalten. Erfindungsgemäß wird Stärke in einer Gesamtmenge von 0,1 bis 10,0 Gew.%, vorzugsweise von 0,5 bis 10,0 Gew.%, bevorzugter 1,0 bis 8,0 Gew.%, besonders bevorzugt 2,0 bis 8,0 Gew.%, ganz besonders bevorzugt 2,0 bis 5,0 Gew.% und höchst bevorzugt kleiner als 5,0 Gew.%.
  • Im folgenden werden weitere Inhaltsstoffe beschrieben, welche vorzugsweise zur Erzielung bestimmter zusätzlichen Eigenschaften, wie beispielsweise eine Wirkung als Deodorans, oder zur Verbesserung der Eigenschaften der erfindungsgemäßen Seifenstücke verwendet werden können.
  • Als Plastifikatoren und Bindemittel können die erfindungsgemäßen Seifenstücke alle für solche Zwecke bekannten Stoffe enthalten. Dies sind z. B. neutrale Fettstoffe, bevorzugt solche aus der Gruppe der Fettalkohole mit 12–22 C-Atomen, der Fettsäureglyceride von C12-C22-Fettsäuren oder der Fettsäure (C12-C22)-Fettalkohol(C12-C22)-ester. Als Fettalkohole (Fatal) können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6-C30-, bevorzugt C10-C22- und ganz besonders bevorzugt C12-C22-Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer
  • Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1–30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1–20 Gew.-% eingesetzt. Als natürliche oder synthetische Wachse (Fatwax) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau. Die Einsatzmenge beträgt 0,1–50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1–20 Gew.% und besonders bevorzugt 0,1–15 Gew.% bezogen auf das gesamte Mittel. Zu den natürlichen und synthetischen kosmetischen Ölen sind beispielsweise zu zählen:
    • – pflanzliche Öle. beispielsweise Acaiöl, Algenöl, Amaranthsamenöl, Anisöl, Annattoöl, Aprikosenkernöl, Apfelkernöl, Arganöl, Avellanaöl, Avocadoöl, Babacuöl, Babassuöl, Baobaböl, Baumwollsaatöl, Bittermandelöl, Borretschsamenöl, Brokkolisamenöl, Camelinaöl, Cashewöl, Cupuacuöl, Distelöl, Erdnußöl, Eukalyptusöl, Fenchelöl, Fischöl, Granatapfelkernöl, Grapefruitsamenöl, Hagebuttenkernöl, Hanföl, Haselnussöl, Himbeersamenöl, Holundersamenöl, Honigmelonenöl, Jatrophaöl, Johannesbeersamenöl, Johanniskrautöl, Jojobaöl, Kakaobutter, Kakaoöl, Kaffeeöl, Kamelienöl, Kirschkernöl, Kokosöl, Kürbiskernöl, Lachsöl, Leinöl, Leinsamenöl, Leindotteröl, Lorbeeeröl, Macadamianussöl, Maiskeimöl, Mandelöl, Mangobutter, Maracujaöl, Marulaöl, Melonenöl, Mohnöl, Nachtkerzenöl, Nerzöl, Olivenöl, Olivenkernöl, Palmöl, Palmkernöl, Papayasamenöl, Patchouilliöl, Pfirsichkernöl, Pflaumenkernöl, Pekannussöl, Perillaöl, Pistazienöl, Preiselbeersamenöl, Rambutanöl, Rapsöl, Reiskeimöl, Reisöl, Ricinusöl, Sacha Inchiöl, Sanddornfruchtfleischöl, Sanddornkernöl, Schwarzkümmelöl, Senföl, Sesamöl, Sheabutter, Sojaöl, Sonnenblumenöl, Squalonöl, Süßmandelöl, Teebaumöl, Thymianöl, Traubenkernöl, Tungöl, Ucuubabutter, Vassouraöl, Walnußöl, Wassermelonenöl, Weizenkeimöl, Wiesenschaumkrautöl, Wildrosenöl, Yakhaaröl, Ylang-ylangöl oder Zibetöl. Diese Aufzählung ist beispielhaft zu verstehen. Jedes natürliche Öl, insbesondere jedes Öl, welches als Nahrungsmittel oder aus dem Bereich der Naturheilkunde bekannt ist, und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
    • – flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n-alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen 1,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n-octylether (Cetiol® OE) können bevorzugt sein.
    • – Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
    • – Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),
      Figure 00190001
      in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m + n + q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m + n + q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
    • – Esteröle, die im folgenden beschrieben sind: unter Esterölen sind zu verstehen die Ester von C6-C30-Fettsäuren mit C2-C30-Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen.
  • Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V). Selbstverständlich können die Esteröle auch mit Etyhlenoxid, Propylenoxid oder Mischungen aus Ethylenoxid und Propylenoxid alkoxiliert sein. Die Alkoxylierung kann dabei sowohl am Fettalkoholpart als auch am Fettsäurepart als auch an beiden Teilen der Esteröle zu finden sein. Bevorzugt ist erfindungsgemäß jedoch, wenn zunächst der Fettalkohol alkoxyliert wurde und anschließend mit Fettsäure verestert wurde. In der Formel (D4-II) sind allgemein diese Verbindungen dargestellt.
    Figure 00200001
    R1 steht hierbei für einen gesättigten oder ungesättigten, verzweigten oder unverzweigten, cyclischen gesättigten cyclischen ungesättigten Acylrest mit 6 bis 30 Kohlenstoffatomen,
    AO steht für Ethylenoxid, Propylenoxid oder Butylenoxid,
    X steht für eine Zahl zwischen 1 und 200, vorzugsweise 1 und 100, besonders bevorzugt zwischen 1 und 50, ganz besonders bevorzugt zwischen 1 und 20, höchst bevorzugt zwischen 1 und 10 und am bevorzugtesten zwischen 1 und 5,
    R2 steht für einen gesättigten oder ungesättigten, verzweigten oder unverzweigten, cyclischen gesättigten cyclischen ungesättigten Alkyl-, Alkenyl-, Alkinyl-, Phenyl- oder Benzylrest mit 6 bis 30 Kohlenstoffatomen. Beispiele für eingesetzte Fettsäurenanteile als Rest R1 in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Beispiele für die Fettalkoholanteile als Rest R2 in den Esterölen sind Benzylalkohol, Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Ein erfindungsgemäß besonders bevorzugtes Esteröl ist beispielsweise unter der INCI-Bezeichnung PPG-3 Benzyl Ether Myristate erhältlich. Weiterhin sind unter Esterölen zu verstehen:
    • – Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)-succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol-di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat, sowie
    • – symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
    • – Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
    • – Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
  • Die natürlichen und synthetischen Öle werden in den erfindungsgemäßen Zusammensetzungen in einer Menge von 0,01 bis 20 Gew.%, bevorzugt 0,01 bis 10,0 Gew.%, besonders bevorzugt 0,01 bis 7,5 Gew.%, höchst bevorzugt von 0,1 bis 5,0 Gew.% verwendet. Selbstverständlich ist es erfindungsgemäß auch möglich mehrere Esteröle gleichzeitig zu verwenden.
  • Ein weiterer bevorzugter Inhaltsstoff in der vorliegenden Erfindung kann ein Silikonpolymer sein. Bevorzugt ist mindestens ein Silikonpolymer ausgewählt aus der Gruppe der Dimethiconole und/oder der Gruppe der aminofunktionellen Silikone und/oder der Gruppe der Dimethicone und/ oder der Gruppe der Cyclomethicone in der erfindungsgemäßen Seifenzusammensetzung enthalten. Diese Silikonploymere werden im folgenden beschrieben. Die erfindungsgemäßen Dimethicone können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethicone können durch die folgende Strukturformel (Si1) dargestellt werden: (SiR1 3)-O-(SiR2 2-O-)x-(SiR1 3) (Si1)
  • Verzweigte Dimethicone können durch die Strukturformel (Si1.1) dargestellt werden:
    Figure 00220001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25 °C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, ganz besonders bevorzugte Viskositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs. Höchst bevorzugt sind Viskositäten um den Bereich von etwa 60.000 cPs herum. Beispielhaft sei hier auf das Produkt „Dow Corning 200 mit 60000cSt“ verwiesen. Besonders bevorzugte erfindungsgemäße kosmetische oder dermatologische Zubereitungen sind dadurch gekennzeichnet, dass sie mindestens ein Silikon der Formel (Si1.2) (CH3)3Si-[O-Si(CH3)2]x-O-Si(CH3)3 (Si1.2), enthalten, in der x für eine Zahl von 0 bis 100, vorzugsweise von 0 bis 50, weiter bevorzugt von 0 bis 20 und insbesondere 0 bis 10, steht. Die Dimethicone (Si1) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% bezogen auf die gesamte Zusammensetzung enthalten. Schließlich werden unter den Silikonverbindungen die Dimethiconole (Si8) verstanden. Die erfindungsgemäßen Dimethiconole können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethiconole können durch die folgende Strukturformel (Si8-I) dargestellt werden: (SiOHR1 2)-O-(SiR2 2-O-)x-(SiOHR1 2) (Si8-I)
  • Verzweigte Dimethiconole können durch die Strukturformel (Si8-II) dargestellt werden:
  • Figure 00230001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethiconole liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25 °C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, ganz besonders bevorzugte Viskositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs. Als Beispiele für derartige Produkte werden die folgenden Handelsprodukte genannt: Dow Corning 1-1254 Fluid, Dow Corning 2-9023 Fluid, Dow Corning 2-9026 Fluid, Abil OSW 5 (Degussa Care Specialties), Dow Corning 1401 Fluid, Dow Corning 1403 Fluid, Dow Corning 1501 Fluid, Dow Corning 1784 HVF Emulsion, Dow Corning 9546 Silicone Elastomer Blend, SM555, SM2725, SM2765, SM2785 (alle vier zuvor genannten GE Silicones), Wacker-Belsil CM 1000, Wacker-Belsil CM 3092, Wacker-Belsil CM 5040, Wacker-Belsil DM 3096, Wacker-Belsil DM 3112 VP, Wacker-Belsil DM 8005 VP, Wacker-Belsil DM 60081 VP (alle zuvor genannten Wacker-Chemie GmbH). Die Dimethiconole (Si8) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Dimethiconol bezogen auf die Zusammensetzung. Besonders bevorzugte erfindungsgemäße Mittel enthalten ein oder mehrere aminofunktionelle Silikone. Solche Silikone können z.B. durch die Formel (Si-2) M(RaQbSiO(4-a-b)/2)x(RcSiO(4-c)/2)yM (Si-2)
  • Beschrieben werden, wobei in der obigen Formel
    R ein Kohlenwasserstoff oder ein Kohlenwasserstoffrest mit 1 bis etwa 6 Kohlenstoffatomen ist,
    Q ein polarer Rest der allgemeinen Formel -R1HZ ist,
    worin
    R1 eine zweiwertige, verbindende Gruppe ist, die an Wasserstoff und den Rest Z gebunden ist, zusammengesetzt aus Kohlenstoff- und Wasserstoffatomen, Kohlenstoff-, Wasserstoff- und Sauerstoffatomen oder Kohlenstoff-, Wasserstoff- und Stickstoffatomen, und
    Z ein organischer, aminofunktioneller Rest ist, der mindestens eine aminofunktionelle Gruppe enthält;
    a Werte im Bereich von etwa 0 bis etwa 2 annimmt,
    b Werte im Bereich von etwa 1 bis etwa 3 annimmt,
    a + b kleiner als oder gleich 3 ist, und
    c eine Zahl im Bereich von etwa 1 bis etwa 3 ist, und
    x eine Zahl im Bereich von 1 bis etwa 2.000, vorzugsweise von etwa 3 bis etwa 50 und am bevorzugtesten von etwa 3 bis etwa 25 ist, und
    y eine Zahl im Bereich von etwa 20 bis etwa 10.000, vorzugsweise von etwa 125 bis etwa 10.000 und am bevorzugtesten von etwa 150 bis etwa 1.000 ist, und
    M eine geeignete Silikon-Endgruppe ist, wie sie im Stande der Technik bekannt ist, vorzugsweise Trimethylsiloxy.
  • Z ist gemäß Formel (Si-2) ein organischer, aminofunktioneller Rest, enthaltend mindestens eine funktionelle Aminogruppe. Eine mögliche Formel für besagtes Z ist NH(CH2)zNH2, worin z eine ganze Zahl von größer gleich 1 ist. Eine andere mögliche Formel für besagtes Z ist -NH(CH2)z(CH2)zzNH, worin sowohl z als auch zz unabhängig voneinander eine ganze Zahl von größer gleich 1 sind, wobei diese Struktur Diamino-Ringstrukturen umfasst, wie Piperazinyl. Besagtes Z ist am bevorzugtesten ein -NHCH2CH2NH2-Rest. Eine andere mögliche Formel für besagtes Z ist -N(CH2)z(CH2)zzNX2 oder -NX2, worin jedes X von X2 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und Alkylgruppen mit 1 bis 12 Kohlenstoffatomen, und zz 0 ist. Q gemäß Formel (Si-2) ist am bevorzugtesten ein polarer aminofunktioneller Rest der Formel -CH2CH2CH2NHCH2CH2NH2. In der Formel (Si-2) nimmt a Werte im Bereich von 0 bis 2 an, b nimmt Werte im Bereich von 2 bis 3 an, a + b ist kleiner als oder gleich 3, und c ist eine Zahl im Bereich von 1 bis 3. Erfindungsgemäß geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Dow Corning (DC) 929 Emulsion, DC 2-2078, DC 5-7113, SM-2059 (General Electric) sowie SLM-55067 (Wacker). Besonders bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, dass sie mindestens es ein aminofunktionelles Silikon der Formel (Si3-a)
    Figure 00240001
    enthalten, worin m und n Zahlen sind, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
  • Diese Silikone werden nach der INCI-Deklaration als Trimethylsilylamodimethicone bezeichnet und sind beispielsweise unter der Bezeichnung Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon) erhältlich. Besonders bevorzugt sind auch erfindungsgemäße Mittel, die mindestens ein aminofunktionelles Silikon der Formel (Si-3b)
    Figure 00250001
    enthalten, worin
    R für -OH, eine (gegebenenfalls ethoxylierte und/oder propoxylierte) (C1 bis C20)-Alkoxygruppe oder eine -CH3-Gruppe steht,
    R’ für -OH, eine (C1 bis C20)-Alkoxygruppe oder eine -CH3-Gruppe und
    m, n1 und n2 Zahlen sind, deren Summe (m + n1 + n2) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei die Summe (n1 + n2) vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
  • Diese Silikone werden nach der INCI-Deklaration als Amodimethicone, bzw. als funktionalisierte Amodimethicone, wie beispielsweise Bis(C13-15 Alkoxy) PG Amodimethicone (beispielsweise als Handelsprodukt: DC 8500 der Firma Dow Corning erhältlich), Trideceth-9 PG-Amodimethicone (beispielsweise als Handelsprodukt Silcare Silicone SEA der Firma Clariant erhältlich) bezeichnet. Geeignete diquaternäre Silikone sind ausgewählt aus Verbindungen der allgemeinen Formel (Si3c) [R1R 2R3N+-A-SiR7R8-(O-SiR9R10)n-O-SiR11R12-A-N+R4R5R6]2X (Si3c) wobei die Reste R1 bis R6 unabhängig voneinander C1-bis C22-Alkylreste bedeuten, welche Hydroxygruppen enthalten können und wobei vorzugsweise mindestens einer der Reste mindestens 8 C-Atome aufweist und die übrigen Reste 1 bis 4 C-Atome aufweisen, die Reste R7 bis R12 unabhängig voneinander gleich oder verschieden sind und C1- bis C10-Alkyl oder Phenyl bedeuten, A eine divalente organische Verbindungsgruppe bedeutet, n eine Zahl von 0 bis 200, vorzugsweise von 10 bis 120, besonders bevorzugt von 10 bis 40 ist, und X ein Anion ist. Die divalente Verbindungsgruppe ist vorzugsweise eine C1- bis C12-Alkylen- oder Alkoxyalkylengruppe, die mit einer oder mehreren Hydroxylgruppen substituiert sein kann. Besonders bevorzugt ist die Gruppe -(CH2)3-O-CH2-CH(OH)-CH2-. Das Anion X kann ein Halogenidion, ein Acetat, ein organisches Carboxylat oder eine Verbindung der allgemeinen Formel RSO3 sein, worin R die Bedeutung von C1- bis C4-Alkylresten hat. Ein bevorzugtes diquaternäres Silikon hat die allgemeine Formel (Si3d) [RN+Me2-A-(SiMe2O)n-SiMe2-A-N+Me2R]2CH3COO (Si3d), wobei A die Gruppe -(CH2)3-O-CH2-CH(OH)-CH2- ist,
    R ein Alkylrest mit mindestens 8 C-Atomen und n eine Zahl von 10 bis 120 ist. Geeignete Silikonpolymere mit zwei endständigen, quaternären Ammoniumgruppen sind unter der INCI-Bezeichnung Quaternium-80 bekannt. Hierbei handelt es sich um Dimethylsiloxane mit zwei endständigen Trialkylammoniumgruppen. Derartige diquaternäre Polydimethylsiloxane werden von der Firma Evonik unter den Handelsnamen Abil® Quat 3270, 3272 und 3474 vertrieben.
  • Erfindungsgemäß bevorzugte Mittel sind dadurch gekennzeichnet, dass sie, bezogen auf ihr Gewicht, 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,2 bis 5 Gew.% aminofunktionelle(s) Silikon(e) und/oder diquaternäres Silikon enthalten. Ein weiteres erfindungsgemäßes Silikon mit Aminofunktionen sind Polyammonium-Polysiloxan Verbindungen. Die Polyammonium-Polysiloxan Verbindungen können beispielsweise unter der Handelsbezeichnung Baysilone® von GE Bayer Silicones bezogen werden. Die Produkte mit den Bezeichnungen Baysilone TP 3911, SME 253 und SFE 839 sind dabei bevorzugt. Ganz besonders bevorzugt ist die Verwendung von Baysilone TP 3911 als Wirkkomponente der erfindungsgemäßen Zusammensetzungen. Die Polyammonium-Polysiloxan Verbindungen werden in dem erfindungsgemäßen Zusammensetzungen in einer Menge von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 7,5, besonders bevorzugt 0,01 bis 5,0 Gew.%, ganz besonders bevorzugt von 0,05 bis 2,5 Gew.% jeweils in Bezug auf die Gesamtzusammensetzung verwendet. Die EP 1887024 A1 beschreibt neuartige kationische aminofunktionelle Silikone, welche insbesondere den Glanz in Mitteln zur Pflege von Oberflächen, beispielsweise menschlichen Haaren, verbessern. Diese kationischen Silikonpolymere zeichnen sich dadurch aus, dass sie ein Silikongerüst sowie mindestens einen Polyetherteil und weiterhin mindestens einen Teil mit Ammoniumstruktur aufweisen. Beispiele für die bevorzugten kationischen Silikonpolymere im Sinne der vorliegenden Erfindung sind neben den Verbindungen der zuvor genannten EP 1887024 A1 weiterhin insbesondere die Verbindungen mit den INCI-Bezeichnungen: Silicone Quaternium-1, Silicone Quaternium-2, Silicone Quaternium-3, Silicone Quaternium-4, Silicone Quaternium-5, Silicone Quaternium-6, Silicone Quaternium-7, Silicone Quaternium-8, Silicone Quaternium-9, Silicone Quaternium-10, Silicone Quaternium-11, Silicone Quaternium-12, Silicone Quaternium-15, Silicone Quaternium-16, Silicone Quaternium-17, Silicone Quaternium-18, Silicone Quaternium-20, Silicone Quaternium-21, Silicone Quaternium-22 sowie Silicone Quaternium-2 Panthenol Succinate und Silicone Quaternium-16/Glycidyl Dimethicone Crosspolymer. Am bevorzugtesten ist insbesondere Silicone Quaternium-22. Dieser Rohstoff wird beispielsweise von der Firma Evonik unter der Handelsbezeichnung Abil® T-Quat 60 vertrieben. Die kationischen aminofunktionellen Silikonpolymere sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 20 Gew.%, bevorzugt in Mengen von 0,05 bis 10
  • Gew.% und ganz besonders bevorzugt in Mengen von 0,1 bis 7,5 Gew.% enthalten. Die allerbesten Ergebnisse werden dabei mit Mengen von 0,1 bis 5 Gew.% jeweils bezogen auf die Gesamtzusammensetzung des jeweiligen Mittels erhalten. Ein weiteres erfindungsgemäßes Silikon ist Trimethylsiloxysilicat. Trimethylsiloxysilicat ist ein Co-Hydrolyseprodukt von Tetraalkoxysilan und Trimethylethoxysilan. Dieses Produkt bildet ein dreidimensionales Netzwerk von Polykieselsäureeinheiten, die mit Trimethylsiliylgruppen terminiert sind, wobei es unter Umständen einen geringen Anteil an Ethoxy- und Hydroxy-Funktionen enthält. Das mittlere Molekulargewicht des Trimethylethoxysilans kann aus dem Verhältnis der Tetraalkoxysi-lan-Einheiten zu den Trimethylethoxysilan-Einheiten bestimmt werden. Vorzugsweise beträgt dieses Verhältnis 0,5 bis 1,0, besonders bevorzugt 0,66. Ein Beispiel eines Trimethylethoxysilans mit einem Verhältnis von 0,66 ist Wacker-Belsil TMS 803 der Wacker-Chemie GmbH, München. Eine beispielhafte Formel für Trimethylsiloxysilicat ist
    Figure 00270001
    Trimethylsiloxysilicat ist ein wasserfestes Additiv, das als Filmbildner und Fixativ verwendet werden kann. Erfindungsgemäß bevorzugte Mittel enthalten Trimethylsiloxysilicat innerhalb engerer Mengenbereiche. Bevorzugte erfindungsgemäße Seifenstücke sind dadurch gekennzeichnet, daß sie – bezogen auf ihr Gewicht – 0,001 bis 4 Gew.-%, vorzugsweise 0,01 bis 3,5 Gew.-%, weiter bevorzugt 0,1 bis 3 Gew.-%, noch weiter bevorzugt 0,1 bis 2,5 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-% und insbesondere 0,2 bis 1 Gew.-% Trimethylsiloxysilicat enthalten. Neben den Trimethylsiloxysilicaten kann der Wirkstoffkomplex der erfindungsgemäßen Seifenstücke Polyalkylsilsesquioxan enthalten. Polyalkylsilsesquioxane sind Verbindungen aus der Gruppe der polyedrischen oligomeren Silsesquioxane (POSS), welche durch die empirische Formel RSiO1,5 beschrieben werden, wobei R ein organischer Substituent ist, wie zum Beispiel Wasserstoff, Siloxy- oder cyclische oder lineare aliphatische oder aromatische Gruppe, welche zusätzlich reaktive funktionelle Gruppen enthalten kann, zum Beispiel Alkohol-, Ester-, Amin-, Keto-, Olefin-, Ether- oder Halogenidgruppen. Die Basisstruktur von POSS-Verbindungen weist eine polyedrisches Si-O-Rückgrat auf, an welches die R-Gruppen gebunden sind. Homoleptische POSS-Verbindungen enthaltend lediglich eine einzige Art von R-Gruppen, und heteroleptische POSS-Chemikalien, enthaltend jeweils unterschiedlich R-Gruppen, sind bekannt. Erfindungsgemäß werden Polyalkylsilsesquioxane eingesetzt, d.h. die Reste R sind Alkylreste. Besonders bevorzugt werden erfindungsgemäß homoleptische Polyalkylsilsesquioxane eingesetzt, d.h. im Molekül ist nur eine Art Alkylrest enthalten. Erfindungsgemäß einsetzbar sind beispielsweise die folgenden Polyalkylsilsesquioxane: Isooctyl-POSS [Me3CCH2CH(Me)CH2]nTn, wobei n = 8, 10 oder 12 ist, Octacyclohexyl-POSS C48H88O12Si8, Octacyclopentyl-POSS C40H72O12Si8, Octaisobutyl-POSS C32H72O12Si8, Octamethyl-POSS C8H24O12Si8. Ganz besonders bevorzugt ist der Einsatz von Polypropylsilsesquioxan, d.h. der Rest R in der Formel RSiO1,5 ist ein Propylrest, wobei unter „Propylrest“ sowohl n-Propyl- als auch Isopropylreste verstanden werden. Ganz besonders bevorzugte erfindungsgemäße Seifenstücke enthalten – bezogen auf ihr Gewicht – 0,001 bis 4 Gew.-%, vorzugsweise 0,01 bis 3,5 Gew.-%, weiter bevorzugt 0,1 bis 3 Gew.-%, noch weiter bevorzugt 0,1 bis 2,5 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-% und insbesondere 0,2 bis 1 Gew.-% Polypropylsilsesquioxan. Auch die nach INCI als Cyclomethicone bezeichneten cyclischen Dimethicone sind erfindungsgemäß mit Vorzug einsetzbar. Hier sind erfindungsgemäße kosmetische oder dermatologische Zubereitungen bevorzugt, die mindestens ein Silikon der Formel (Si-4)
    Figure 00280001
    enthalten, in der x für eine Zahl von 3 bis 200, vorzugsweise von 3 bis 10, weiter bevorzugt von 3 bis 7 und insbesondere 3, 4, 5 oder 6, steht. Erfindungsgemäß ebenfalls bevorzugte Mittel sind dadurch gekennzeichnet, dass sie mindestens ein Silikon der Formel (Si-5) R3Si-[O-SiR2]x-(CH2)n-[O-SiR2]y-O-SiR3 (Si-5), enthalten, in der R für gleiche oder verschiedene Reste aus der Gruppe -H, -Phenyl, -Benzyl, -CH2-CH(CH3)Ph, der C1-20-Alkylreste, vorzugsweise -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2H3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3)3, steht, x bzw. y für eine Zahl von 0 bis 200, vorzugsweise von 0 bis 10, weiter bevorzugt von 0 bis 7 und insbesondere 0, 1, 2, 3, 4, 5 oder 6, stehen, und n für eine Zahl von 0 bis 10, bevorzugt von 1 bis 8 und insbesondere für 2, 3, 4, 5, 6 steht.
  • Als weitere Silikone neben den erfindungsgemäßen Dimethiconen, Dimethiconolen, Amodimethiconen und/oder Cyclomethiconen können wasserlösliche Silikone in den erfindungsgemäßen Zusammensetzungen enthalten sein.
  • Entsprechende hydrophile Silikone werden beispielsweise aus den Verbindungen der Formeln (Si-6) und/oder (Si-7) ausgewählt. Insbesondere bevorzugte wasserlösliche Tenside auf Silikonbasis sind ausgewählt aus der Gruppe der Dimethiconcopolyole die bevorzugt alkoxyliert, insbesondere polyethoxyliert oder polypropoxyliert sind. Unter Dimethiconcopolyolen werden erfindungsgemäß bevorzugt Polyoxyalkylen-modifizierte Dimethylpolysiloxane der allgemeinen Formeln (Si-6) oder (Si-7) verstanden:
    Figure 00290001
    worin der Rest R steht für ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 12 C-Atomen, eine Alkoxygruppe mit 1 bis 12 C-Atomen oder eine Hydroxylgruppe, die Reste R‘ und R‘‘ bedeuten Alkylgruppen mit 1 bis 12 C-Atomen, x steht für eine ganze Zahl von 1 bis 100, bevorzugt von 20 bis 30, y steht für eine ganze Zahl von 1 bis 20, bevorzugt von 2 bis 10 und a und b stehen für ganze Zahlen von 0 bis 50, bevorzugt von 10 bis 30. Besonders bevorzugte Dimethiconcopolyole im Sinne der Erfindung sind beispielsweise die kommerziell unter dem Handelsnamen SILWET (Union Carbide Corporation) und DOW CORNING vertriebenen Produkte. Erfindungsgemäß besonders bevorzugte Dimethiconcopolyole sind Dow Corning 190 und Dow Corning 193. Die Dimethiconcopolyole sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Dimethiconcopolyol bezogen auf die Zusammensetzung.
  • Vorteilhaft können in den erfindungsgemäßen Seifenstücken auch Polymere verwendet werden. Die kationischen und/oder amphoteren Polymere können Homo- oder Copolymere oder Polymere auf Basis natürlicher Polymere sein, wobei die quaternären Stickstoffgruppen entweder in der Polymerkette oder vorzugsweise als Substituent an einem oder mehreren der Monomeren enthalten sind. Die Ammoniumgruppen enthaltenden Monomere können mit nicht kationischen Monomeren copolymerisiert sein. Geeignete kationische Monomere sind ungesättigte, radikalisch polymerisierbare Verbindungen, welche mindestens eine kationische Gruppe tragen, insbesondere ammoniumsubstituierte Vinylmonomere wie zum Beispiel Trialkylmethacryloxyalkylammonium, Trialkylacryloxyalkylammonium, Dialkyldiallylammonium und quaternäre Vinylammoniummonomere mit cyclischen, kationische Stickstoffe enthaltenden Gruppen wie Pyridinium, Imidazolium oder quaternäre Pyrrolidone, z.B. Alkylvinylimidazolium, Alkylvinylpyridinium, oder Alyklvinylpyrrolidon Salze. Die Alkylgruppen dieser Monomere sind vorzugsweise niedere Alkylgruppen wie zum Beispiel C1- bis C7-Alkylgruppen, besonders bevorzugt C1- bis C3-Alkylgruppen. Die Ammoniumgruppen enthaltenden Monomere können mit nicht kationischen Monomeren copolymerisiert sein. Geeignete Comonomere sind beispielsweise Acrylamid, Methacrylamid; Alkyl- und Dialkylacrylamid, Alkyl- und Dialkylmethacrylamid, Alkylacrylat, Alkylmethacrylat, Vinylcaprolacton, Vinylcaprolactam, Vinylpyrrolidon, Vinylester, z.B. Vinylacetat, Vinylalkohol, Propylenglykol oder Ethylenglykol, wobei die Alkylgruppen dieser Monomere vorzugsweise C1- bis C7-Alkylgruppen, besonders bevorzugt C1- bis C3-Alkylgruppen sind. Aus der Vielzahl dieser Polymere haben sich als besonders wirkungsvolle Bestandteile des erfindungsgemäßen Wirkstoffkomplexes erwiesen: Homopolymere der allgemeinen Formel -{CH2-[CR1COO-(CH2)mN+R2R3R4]}nX, in der R1=-H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus C1-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X ein physiologisch verträgliches organisches oder anorganisches Anion ist. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R1 steht für eine Methylgruppe, R2, R3 und R4 stehen für Methylgruppen, m hat den Wert 2. Als physiologisch verträgliches Gegenionen X kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Methosulfate und Halogenidionen, insbesondere Chlorid. Weitere bevorzugte kationische Polymere sind beispielsweise Copolymere der Formel (I). Die erfindungsgemäßen Seifenstücke enthalten bevorzugt, – bezogen auf ihr Gewicht – 0,001 bis 5 Gew.-%, vorzugsweise 0,0025 bis 2,5 Gew.-%, besonders bevorzugt 0,005 bis 1 Gew.-%, weiter bevorzugt 0,0075 bis 0,75 Gew.-% und insbesondere 0,01 bis 0,5 Gew.-% mindestens eines Copolymers A der allgemeinen Formel (I),
    Figure 00300001
    in der gilt: x + y + z = Q Q steht für Werte von 3 bis 55000, vorzugsweise von 10 bis 25000, besonders bevorzugt von 50 bis 15000, weiter bevorzugt von 100 bis 10000, noch weiter bevorzugt von 500 bis 8000 und insbesondere von 1000 bis 5000,
    x steht für (0 bis 0,5) Q, vorzugsweise für (0 bis 0,3) Q und insbesondere für die Werte 0, 1, 2, 3, 4, 5, wobei der Wert 0 bevorzugt ist,
    y steht für (0,1 bis 0,95) Q, vorzugsweise für (0,5 bis 0,7) Q und insbesondere für Werte von 1 bis 24000, vorzugsweise von 5 bis 15000, besonders bevorzugt von 10 bis 10000 und insbesondere von 100 bis 4800,
    z steht für (0,001 bis 0,5) Q, vorzugsweise für (0,1 bis 0,5) Q und insbesondere für Werte von 1 bis 12500, vorzugsweise von 2 bis 8000, besonders bevorzugt von 3 bis 4000 und insbesondere von 5 bis 2000.
  • Bevorzugte Copolymere A der Formel (I) sind erfindungsgemäß dadurch gekennzeichnet, daß das Verhältnis von (y:z) 4:1 bis 1:2, vorzugsweise 4:1 bis 1:1 beträgt und eine Molmasse von 10000 bis 20 Millionen gmol–1, vorzugsweise von 100000 bis 10 Millionen gmol–1, weiter bevorzugt von 500000 bis 5 Millionen gmol–1und insbesondere von 1,1 Millionen bis 2,2 Millionen gmol–1 aufweist. Ein höchst bevorzugtes Polymer, welches wie zuvor dargestellt aufgebaut ist, ist unter der Bezeichnung Polyquaternium-74 im Handel erhältlich. Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Solche Produkte sind beispielsweise unter den Bezeichnungen Rheocare® CTH (Cosmetic Rheologies) und Synthalen® CR (3V Sigma) im Handel erhältlich. Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 und Salcare® SC 96 im Handel erhältlich. Geeignete kationische Polymere, die von natürlichen Polymeren abgeleitet sind, sind kationische Derivate von Polysacchariden, beispielsweise kationische Derivate von Cellulose, Stärke oder Guar. Geeignet sind weiterhin Chitosan und Chitosanderivate. Kationische Polysaccharide haben die allgemeine Formel G-O-B-N+RaRbRcA
    G ist ein Anhydroglucoserest, beispielsweise Stärke- oder Celluloseanhydroglucose;
    B ist eine divalente Verbindungsgruppe, beispielsweise Alkylen, Oxyalkylen, Polyoxyalkylen oder Hydroxyalkylen;
    Ra, Rb und Rc sind unabhängig voneinander Alkyl, Aryl, Alkylaryl, Arylalkyl, Alkoxyalkyl oder Alkoxyaryl mit jeweils bis zu 18 C-Atomen, wobei die Gesamtzahl der C-Atome in Ra, Rb und Rc vorzugsweise maximal 20 ist;
    A ist ein übliches Gegenanion und ist vorzugsweise Chlorid.
  • Kationische, also quaternisierte Cellulosen sind mit unterschiedlichem Substitutionsgrad, kationischer Ladungsdichte, Stickstoffgehalt und Molekulargewichten auf dem Markt erhältlich. Beispielsweise wird Polyquaternium-67 im Handel unter den Bezeichnungen Polymer® SL oder Polymer® SK (Amerchol) angeboten. Unter der Handelsbezeichnung Mirustyle® CP der Fa. Croda wird eine weitere höchst bevorzugte Cellulose angeboten. Diese ist eine Trimonium and Cocodimonium Hydroxyethylcellulose als derivatisierte Cellulose mit der INCI-Bezeichnung Polyquaternium-72. Polyquaternium-72 kann sowohl in fester Form als auch bereits in wässriger Lösung vorgelöst verwendet werden. Weitere kationische Cellulosen sind unter den Bezeichnungen Polymer JR® 400 (Amerchol, INCI-Bezeichnung Polyquaternium-10) sowie Polymer Quatrisoft® LM-200 (Amerchol, INCI-Bezeichnung Polyquaternium-24). Weitere Handelsprodukte sind die Verbindungen Celquat® H 100 und Celquat® L 200. Schließlich liegt unter der Handelsbezeichnung Mirustyle® CP der Fa. Croda mit Trimonium and Cocodimonium Hydroxyethylcellulose eine weitere derivatisierte Cellulose mit der INCI-Bezeichnung Polyquaternium-72 vor. Polyquaternium-72 kann sowohl in fester Form als auch bereits in wässriger Lösung vorgelöst verwendet werden. Besonders bevorzugte kationische Cellulosen sind Polyquaternium-10, Polyquaternium-24, Polyquaternium-67 und Polyquaternium-72. Geeignete kationische Guarderivate werden unter der Handelsbezeichnung Jaguar® vertrieben und haben die INCI-Bezeichnung Guar Hydroxypropyltrimonium Chloride. Weiterhin sind besonders geeignete kationische Guarderivate auch von der Fa. Hercules unter der Bezeichnung N-Hance® im Handel. Weitere kationische Guarderivate werden von der Fa. Cognis unter der Bezeichnung Cosmedia® vertrieben. Ein bevorzugtes kationisches Guarderivat ist das Handelsprodukt AquaCat® der Fa. Hercules. Bei diesem Rohstoff handelt es sich um ein bereits vorgelöstes kationisches Guarderivat. Die kationischen Guar-Derivate sind erfindungsgemäß bevorzugt. Ein geeignetes Chitosan wird beispielsweise von der Firma Kyowa Oil& Fat, Japan, unter dem Handelsnamen Flonac® vertrieben. Ein bevorzugtes Chitosansalz ist Chitosoniumpyrrolidoncarboxylat, welches beispielsweise unter der Bezeichnung Kytamer® PC von der Firma Amerchol, USA, vertrieben wird. Weitere Chitosanderivate sind unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF und Chitolam® NB/101 im Handel frei verfügbar. Weitere bevorzugte kationische Polymere sind beispielsweise
    • – kationische Alkylpolyglycoside,
    • – kationisierter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
    • – polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere mit der INCI-Bezeichnung Polyquaternium-7,
    • – Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550 und der INCI-Bezeichnung Polyquaternium-16 sowie FC 905 und HM 552 angeboten werden,
    • – quaternisiertes Vinylpyrrolidon/Dimethylaminoethylmethacrylat, zum Beispiel Vinylpyrrolidon/Dimethylaminoethylmethacrylatmethosulfat Copolymer, das unter den Handelsbezeichnungen Gafquat® 755 N und Gafquat® 734 von der Firma Gaf Co., USA vertrieben wird und die INCI-Bezeichnung Polyquaternium-11,
    • – quaternierter Polyvinylalkohol,
    • – sowie die unter den Bezeichnungen Polyquaternium-2, Polyquaternium-17, Polyquaternium-18 und Polyquaternium-27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette,
    • – Vinylpyrrolidon-Vinylcaprolactam-Acrylat-Terpolymere, wie sie mit Acrylsäureestern und Acrylsäureamiden als dritter Monomerbaustein im Handel beispielsweise unter der Bezeichnung Aquaflex® SF 40 angeboten werden.
  • Erfindungsgemäße amphotere Polymere sind solche Polymerisate, in denen sich eine kationische Gruppe ableitet von mindestens einem der folgenden Monomere:
    • (i) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (Mono1), R1-CH=CR2-CO-Z-(CnH2n)-N(+)R2R3R4A(–) (Mono1) in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3, R4und R5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoff-Atomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A(–) das Anion einer organischen oder anorganischen Säure ist,
    • (ii) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (Mono2),
      Figure 00330001
      worin R6 und R7 unabhängig voneinander stehen für eine (C1 bis C4)-Alkylgruppe, insbesondere für eine Methylgruppe und A das Anion einer organischen oder anorganischen Säure ist,
    • (iii) monomeren Carbonsäuren der allgemeinen Formel (Mono3), R8-CH=CR9-COOH (Mono3) in denen R8 und R9 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
  • Besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (i) eingesetzt werden, bei denen R3, R4 und R5 Methylgruppen sind, Z eine NH-Gruppe und A(–) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (i). Als Monomeres (ii) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet. Besonders bevorzugte amphotere Polymere sind Copolymere, aus mindestens einem Monomer (Mono1) bzw. (Mono2) mit dem Momomer (Mono3), insbesondere Copolymere aus den Monomeren (Mono2) und (Mono3). Erfindungsgemäß ganz besonders bevorzugt verwendete amphotere Polymere sind Copolymerisate aus Diallyl-dimethylammoniumchlorid und Acrylsäure. Diese Copolymerisate werden unter der INCI-Bezeichnung Polyquaternium-22 unter anderem mit dem Handelsnamen Merquat® 280 (Nalco) vertrieben. Darüber hinaus können die erfindungsgemäßen amphoteren Polymere neben einem Monomer (Mono1) oder (Mono2) und einem Monomer (Mono3) zusätzlich ein Monomer (Mono4)
    • (iv) monomere Carbonsäureamide der allgemeinen Formel (Mono4),
      Figure 00340001
      in denen R10 und R11 unabhängig voneinander Wasserstoff oder Methylgruppen sind und R12 für ein Wasserstoffatom oder eine (C1- bis C8)-Alkylgruppe steht, enthalten.
  • Erfindungsgemäß ganz besonders bevorzugt verwendete amphotere Polymere auf Basis eines Comonomers (Mono4) sind Terpolymere aus Diallyldimethylammoniumchlorid, Acrylamid und Acrylsäure. Diese Copolymerisate werden unter der INCI-Bezeichnung Polyquaternium-39 unter anderem mit dem Handelsnamen Merquat® Plus 3330 (Nalco) vertrieben. Die amphoteren Polymere können generell sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Die zuvor genannten kationischen Polymere können einzeln oder in beliebigen Kombinationen miteinander verwendet werden, wobei Mengen zwischen 0,01 bis 10 Gew.%, bevorzugt, Mengen von 0,01 bis 7,5 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 bis 5,0 Gew.% enthalten sind. Die allerbesten Ergebnisse werden dabei mit Mengen von 0,1 bis 3,0 Gew.% jeweils bezogen auf die Gesamtzusammensetzung des jeweiligen Mittels erhalten. Gelegentlich kann es erforderlich sein anionische Polymere zu verwenden. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2-methylpropansulfonsäure und Acrylsäure. Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann. Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfon-säure, das beispielsweise unter der Bezeichnung Rheothik®11-80 im Handel erhältlich ist. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester. Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC enthalten. Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich. Beispiele sind Carbopol® 934, Carbopoly® 940, Carbopoll® ETD 2020, Carbopol® Ultrez, Carbopol® 941 oder Carbopol® 981. Schließlich kann Carboxymethylcellulose in den erfindungsgemäßen Zusammensetzungen mit Vorzug verwendet werden. Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, können ebenfalls Verwendung finden. Ein mit 1,9-Decadiene vernetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnung Stabileze® QM im Handel erhältlich. Die anionischen Polymere sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt. Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere enthalten. Geeignete nichtionogene Polymere sind beispielsweise:
    • – Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
    • – Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) und Natrosol®-Typen (Hercules) vertrieben werden.
    • – Stärke und deren Derivate, insbesondere Stärkeether, beispielsweise Structure® XL (National Starch), eine multifunktionelle, salztolerante Stärke;
    • – Schellack
    • – Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
  • Die Polymere sind in den erfindungsgemäßen Zusammensetzungen bevorzugt in Mengen von 0,01 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt und Mengen von 0,1 bis 3 Gew.-%, sind höchst bevorzugt.
  • Ein weiterer erfindungsgemäßer Inhaltsstoff in den erfindungsgemäßen Zusammensetzungen sind Proteinhydrolysate und/oder dessen Derivate. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben. Weiterhin sind erfindungsgemäß bevorzugte pflanzliche Proteinhydrolysaten wie beispielsweise Soja-, Mandel-, Erbsen-, Moringa-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda), Crotein® (Croda) und Puricare® LS 9658 von der Fa. Laboratoires Sérobiologiques erhältlich. Weitere erfindungsgemäß bevorzugte Proteinhydrolysate sind maritimen Ursprunges. Hierzu zählen beispielsweise Kollagenhydrolysate von Fischen oder Algen sowie Proteinhydrolysate von Muscheln bzw. Perlenhydrolysate. Beispiele für erfindungsgemäße Perlenextrakte sind die Handelsprodukte Pearl Protein Extract BG® oder Crodarom® Pearl. Weiterhin sind kationisierte Proteinhydrolysate zu den Proteinhydrolysaten und deren Derivaten zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt. Die Proteinhydrolysate sind in den Zusammensetzungen in Konzentrationen von 0,001 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,05 Gew.% bis zu 5 Gew.% enthalten. Eine weitere bevorzugte Gruppe von Inhaltsstoffen der erfindungsgemäßen Zusammensetzungen sind Vitamine, Provitamine oder Vitaminvorstufen. Vitamine, Pro-Vitamine und Vitaminvorstufen sind dabei besonders bevorzugt, die den Gruppen A, B, C, E, F und H zugeordnet werden.
  • Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das β-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäßen Mittel enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05–1 Gew.-%, bezogen auf die gesamte Zubereitung. Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.:
    Vitamin B1 (Thiamin)
    Vitamin B2 (Riboflavin)
    Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist. Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie kationische Panthenolderivate. Pantothensäure wird bevorzugt als Derivat in Form der stabileren Calciumsalze und Natriumsalze (Ca-Pantothenat, Na-Pantothenat) in der vorliegenden Erfindung eingesetzt. Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal). Die genannten Verbindungen des Vitamin B-Typs insbesondere Vitamin B3, B5 und B6, sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05–10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1–5 Gew.-% sind besonders bevorzugt. Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein. Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05–1 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Vitamin F. Unter dem Begriff “Vitamin F” werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden. Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S,6aR)-2-Oxohexahydrothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
  • Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H. Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt. Eine besonders bevorzugte Gruppe von Inhaltsstoffen in den erfindungsgemäßen kosmetischen Zusammensetzungen sind die im folgenden genannten Betaine: Carnitin, Carnitintartrat, Carnitin Magnesiumcitrat, Acetylcarnitin, Betalaine, 1,1-Dimethyl-Prolin, Cholin, Cholinchlorid, Cholinbitartrat, Cholindihydrogencitrat und die in der Literatur als Betain bezeichnete Verbindung N,N,N-trimethylglycin. Bevorzugt werden Carnitin, Histidin, Cholin sowie Betain verwendet. In einer besonders bevorzugten Ausführungsform der Erfindung wird als Wirkstoff L-Carnitintartrat eingesetzt. In einer weiteren erfindungsgemäß bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zusammensetzungen Biochinone. In den erfindungsgemäßen Mitteln sind unter geeigneten Biochinonen ein oder mehrere Ubichinon(e) und/oder Plastochinon(e) zu verstehen. Die erfindungsgemäß bevorzugten Ubichinone weisen die folgende Formel auf:
    Figure 00380001
  • Das Coenzym Q-10 ist hierbei am bevorzugtesten. Bevorzugte erfindungsgemäße Zusammensetzungen enthalten Purin und/oder Purinderivate in engeren Mengenbereichen. Hier sind erfindungsgemäß bevorzugte kosmetische Mittel dadurch gekennzeichnet, daß sie – bezogen auf ihr Gewicht – 0,001 bis 2,5 Gew.-%, vorzugsweise 0,0025 bis 1 Gew.-%, besonders bevorzugt 0,005 bis 0,5 Gew.-% und insbesondere 0,01 bis 0,1 Gew.-% Purin(e) und/oder Purinderivat(e) enthalten. Erfindungsgemäß bevorzugte Seifenstücke sind dadurch gekennzeichnet, daß sie Purin, Adenin, Guanin, Harnsäure, Hypoxanthin, 6-Purinthiol, 6-Thioguanin, Xanthin, Coffein, Theobromin oder Theophyllin enthalten. In erfindungsgemäßen Zubereitungen ist Coffein am bevorzugtesten. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthält das kosmetische Mittel Ectoin ((S)-2-Methyl-1,4,5,6-tetrahydro-4-pyrimidincarbonsäure. Erfindungsgemäß besonders bevorzugt sind Mittel, die – bezogen auf ihr Gewicht – 0,00001 bis 10,0 Gew.-%, vorzugsweise 0,0001 bis 5,0 Gew.-% und insbesondere 0,001 bis 3 Gew.-% der Wirkstoffe aus der Gruppe, die gebildet wird von Carnitin, Coenzym Q-10, Ectoin, ein Vitamin der B-Reihe, einem Purin und deren Derivaten oder physiologisch vertretbaren Salze enthalten. Ein ganz besonders bevorzugter Pflegezusatz in den erfindungsgemäßen Seifenstücken ist Taurin. Unter Taurin wird ausschließlich 2-Aminoethansulfonsäure und unter einem Derivat die explizit genannten Derivate des Taurines verstanden. Unter den Derivaten des Taurines werden N-Monomethyltaurin, N,N-Dimethyltaurin, Taurinlysylat, Taurintartrat, Taurinornithat, Lysyltaurin und Ornithyltaurin verstanden. Besonders bevorzugt sind erfindungsgemäße Mittel, die – bezogen auf ihr Gewicht – 0,0001 bis 10,0 Gew.-%, vorzugsweise 0,0005 bis 5,0 Gew.-%, besonders bevorzugt 0,001 bis 2,0 Gew.-% und insbesondere 0,001 bis 1,0 Gew.-% Taurin und/oder eines Derivates des Taurines enthalten. Die Wirkung der erfindungsgemäßen Zusammensetzungen kann weiterhin durch eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.%. Durch die Verwendung von Pflanzenextrakten als Inhaltsstoffe können die erfindungsgemäßen Seifenstücke besonders naturnah und dennoch sehr effektiv in ihrer Pflegeleistung formuliert werden. Gegebenenfalls kann dabei sogar auf ansonsten übliche Konservierungsmittel verzichtet werden. Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Baldrian, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng, Kaffee, Kakao, Moringa, Ingwerwurzel und ayurvedische Pflanzenextrakte wie beispielsweise Aegle Marmelos (Bilwa), Cyperus Rotundus (Nagar Motha), Emblica Officinalis (Amalki), Morida Citrifolia (Ashyuka), Tinospora Cordifolia (Guduchi), Santalum album, (Chandana), Crocus Sativus (Kumkuma), Cinnamonum Zeylanicum und Nelumbo Nucifera (Kamala), Süßgräser wie Weizen, Gerste, Roggen, Hafer, Dinkel, Mais, die verschiedenen Sorten der Hirse (Rispenhirse, Fingerhirse, Kolbenhirse als Beispiele), Zuckerrohr, Weidelgras, Wiesenfuchsschwanz, Glatthafer, Straußgras, Wiesenschwingel, Pfeifengras, Bambus, Baumwollgras, Lampenputzergräser, Andropogonodeae (Imperata Cylindrica auch Flammengras oder Cogon Gras genannt), Büffelgras, Schlickgräser, Hundszahngräser, Liebesgräser, Cymbopogon (Zitronengras), Oryzeae (Reis), Zizania (Wildreis), Strandhafer, Staudenhafer, Honiggräser, Zittergräser, Rispengräser, Quecken und Echinacea, insbesondere Echinacea purpurea (L.) Moench, aller Arten von Wein sowie Perikarp von Litchie chinensis bevorzugt. Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2–80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
  • In einer weiteren Ausführungsform sollten die erfindungsgemäßen Mittel zusätzlich mindestens einen UV-Lichtschutzfilter enthalten. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
    • – 3-Benzylidencampher, z.B. 3-(4-Methylbenzyliden)campher;
    • – 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
    • – Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 2-Cyano-3-phenylzimtsäure-2-ethylhexylester (Octocrylene);
    • – Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben-zylester, Salicylsäurehomomenthylester;
    • – Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-meth-oxy-4‘-methylbenzophenon, 2,2‘-Dihydroxy-4-methoxybenzophenon;
    • – Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
    • – Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2‘-ethyl-1‘-hexyloxy)-1,3,5-triazin und Octyltriazon.
    • – Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4‘methoxyphenyl)propan-1,3-dion;
  • Als wasserlösliche Substanzen kommen in Frage:
    • – 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
    • – Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sul-fonsäure und ihre Salze;
    • – Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzolsul-fonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
  • Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4‘-tert.Butylphenyl)-3-(4‘-methoxyphenyl)propan-1,3-dion oder 1-Phenyl-3-(4‘-isopropylphenyl)-propan-1,3-dion. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Pigmente, insbesondere feindisperse Metalloxide bzw. Salze in Frage, wie beispielsweise Titandioxid, Zinkoxid, Eisenoxid, Aluminiumoxid, Ceroxid, Zirkoniumoxid, Silicate (Talk), Bariumsulfat und Zinkstearat. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen.
  • Als weiteren Inhaltsstoff können die erfindungsgemäßen Mittel mit besonderem Vorzug eine oder mehrere Aminosäuren enthalten. Erfindungsgemäß besonders bevorzugt einsetzbare Aminosäuren stammen aus der Gruppe Glycin, Alanin, Valin, Leucin, Isoleucin, Phenylalanin, Tyrosin, Tryptophan, Prolin, Asparaginsäure, Glutaminsäure, Asparagin, Glutamin, Serin, Threonin, Cystein, Methionin, Lysin, Arginin, Histidin, β-Alanin, 4-Aminobuttersäure (GABA), Betain, L-Cystin (L-Cyss), L-Carnitin, L-Citrullin, L-Theanin, 3′,4′-Dihydroxy-L-phenylalanin (L-Dopa), 5′-Hydroxy-L-tryptophan, L-Homocystein, S-Methyl-L-methionin, S-Allyl-L-cystein-sulfoxid (L-Alliin), L-trans-4-Hydroxyprolin, L-5-Oxoprolin (L-Pyroglutaminsäure), L-Phosphoserin, Kreatin, 3-Methyl-L-histidin, L-Ornithin, wobei sowohl die einzelnen Aminosäuren als auch Mischungen eingesetzt werden können.
  • Bevorzugte erfindungsgemäße Mittel enthalten eine oder mehrere Aminosäuren in engeren Mengenbereichen. Hier sind erfindungsgemäß bevorzugte Mittel dadurch gekennzeichnet, daß sie als Pflegestoff – bezogen auf ihr Gewicht – 0,01 bis 5 Gew.-%, vorzugsweise 0,02 bis 2,5 Gew.-%, besonders bevorzugt 0,05 bis 1,5 Gew.-%, weiter bevorzugt 0,075 bis 1 Gew.-% und insbesondere 0,1 bis 0,25 Gew.-% Aminosäure(n), vorzugsweise aus der Gruppe Glycin und/oder Alanain und/oder Valin und/oder Lysin und/oder Leucin und/oder Threonin enthalten.
  • Als weiteren Bestandteil können die erfindungsgemäßen Mittel mindestens ein Kohlenhydrat aus der Gruppe der Monosaccharide, Disaccharide und/oder Oligosaccharide enthalten. Hier sind erfindungsgemäß bevorzugte Mittel dadurch gekennzeichnet, daß sie als Pflegestoff – bezogen auf ihr Gewicht – 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 4,5 Gew.-%, besonders bevorzugt 0,1 bis 4 Gew.-%, weiter bevorzugt 0,5 bis 3,5 Gew.-% und insbesondere 0,75 bis 2,5 Gew.-% Kohlenhydrat(e), ausgewählt aus Monosacchariden, Disacchariden und/oder Oligosacchariden enthalten, wobei bevorzugte Kohlenhydrate ausgewählt sind aus
    • – Monosachhariden, insbesondere – D-Ribose und/oder – D-Xylose und/oder – L-Arabinose und/oder – D-Glucose und/oder – D-Mannose und/oder – D-Galactose und/oder – D-Fructose und/oder – Sorbose und/oder – L-Fucose und/oder – L-Rhamnose
    • – Disacchariden, insbesondere – Saccharose und/oder – Maltose und/oder – Lactose und/oder – Trehalose und/oder – Cellobiose und/oder – Gentiobiose und/oder – Isomaltose.
  • Weitere ganz besonders bevorzugter Inhaltsstoffe der erfindungsgemäßen Mittel sind Polyhydroxyverbindungen. In einer besonders bevorzugten Ausführungsform ist daher mindestens eine Polyhydroxyverbindung mit mindestens 2 OH-Gruppen enthalten. Unter diesen Verbindungen sind diejenigen mit 2 bis 12 OH-Gruppen und insbesondere diejenigen mit 2, 3, 4, 5, 6 oder 10 OH-Gruppen bevorzugt.
  • Polyhydroxyverbindungen mit 2 OH-Gruppen sind beispielsweise Glycol (CH2(OH)CH2OH) und andere 1,2-Diole wie H-(CH2)n-CH(OH)CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Auch 1,3-Diole wie H-(CH2)n-CH(OH) CH2CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 sind erfindungsgemäß einsetzbar. Die (n, n + 1)- bzw. (n, n + 2)-Diole mit nicht endständigen OH-Gruppen können ebenfalls eingesetzt werden.
  • Wichtige Vertreter von Polyhydroxyverbindungen mit 2 OH-Gruppen sind auch die Polyethylen- und Polypropylenglycole.
  • Unter den Polyhydroxyverbindungen mit 3 OH-Gruppen hat das Glycerin eine herausragende Bedeutung.
  • Erfindungsgemäße Mittel, bei denen die Polyhydroxyverbindung ausgewählt ist aus Ethylenglycol, Propylenglycol, Polyethylenglycol, Polypropylenglycol und Glycerin und ihren Mischungen, können bevorzugt sein. Unabhängig vom Typ der eingesetzten Polyhydroxyverbindung mit mindestens 2 OH-Gruppen, wobei Glycerin in der vorliegenden Erfindung an dieser Stelle ausdrücklich ausgenommen ist, sind erfindungsgemäße Mittel bevorzugt, die, bezogen auf das Gewicht des Seifenstückes, 0,01 bis 20 Gew.%, vorzugsweise 0,01 bis 10 Gew.%, besonders bevorzugt 0,05 bis 7,5 Gew.% und insbesondere 0,1 bis 5,0 Gew.% Polyhydroxyverbindung(en) enthalten.
  • Eine höchst bevorzugte Polyhydroxyverbindung ist Glycerin. Insbesondere im Falle von Seifen fällt Glycerin bereits während des Verseifungsprozesses an. Üblicherweise wird nach der Verseifung das Glycerin ausgewaschen, um die Mengen an Glycerin in der fertigen Seife bei Mengen von kleiner als 3,0 Gew.% zu halten. In der vorliegenden Erfindung wird die Verseifung so gesteuert, daß das entstehende Glycerin anschließend nicht ausgewaschen werden muß. Vielmehr verbleibt das entstehende Glycerin in der Rohseife. Der Gehalt an Glycerin in den erfindungsgemäßen Zusammensetzungen beträgt daher mindestens 3,0 Gew.% bis 10,0 Gew.%, vorzugsweise 3,0 bis 8,5 Gew.%, besonders bevorzugt 3,0 bis 7,5 Gew.% und höchst bevorzugt 3,5 bis 7,0 Gew.% bezogen auf das Gewicht der Seifenstücke.
  • Während der Verseifung entsteht jedoch nicht nur Glycerin bereits im Prozess, sondern auch Salze wie Natriumchlorid durch die Verseifung mit Natriumhydroxid und anschließender Neutralisierung beispielsweise mit Salzsäure. Entsprechend entsteht Kaliumchlorid oder entstehen Ammoniumsalze. Üblicherweise liegt der Salzgehalt, insbesondere Natriumchloridgehalt, bei Mengen von kleiner 0,3 Gew.%. Im Falle der vorliegenden Seifenstücke mit einem geringen Gehalt an Fettsäureseifen hat sich herausgestellt, daß die Gebrauchseigenschaften der Seifenstücke, insbesondere die Härte sowie die Verfestigungseigenschaften der Seifenmasse beim Durchlaufen des Herstellprozesses deutlich mit zunehmendem Salzgehalt verbessern. Erfindungsgemäß ist daher ein Salzgehalt von 0,3 bis 2,5 Gew.% – bezogen auf das Gesamtgewicht des Seifenstückes – bevorzugt von 0,35 bis 2,0 Gew.%, besonders bevorzugt von 0,4 bis 2,0 Gew.%, ganz besonders bevorzugt von 0,45 bis 1,8 Gew.%, höchst bevorzugt von 0,5 bis 1,5 Gew.%.
  • Als Deowirkstoffe kommen z.B. Antiperspirantien wie etwa Aluminiumchlorhydate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiß- und/oder Polysaccharidfällung [vgl. J.Soc.Cosm.Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [Al2(OH)5Cl]·2,5 H2O entspricht und dessen Einsatz besonders bevorzugt ist [vgl. J.Pharm.Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhydroxylactate sowie saure Aluminium/Zirkoniumsalze eingesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäureesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, daß dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakterien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Seifenstücken enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingluconat. Besonders wirkungsvoll hat sich auch 5-Chlor-2-(2,4-dichlorphen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der Ciba-Geigy, Basel/CH vertrieben wird.
  • Zur Verbesserung der Verarbeitbarkeit können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Selbstverständlich können als Hydrotrope auch zahlreiche der bereits unter den Polyhydroxyverbindungen beschriebenen Verbindungen verwendet werden. Typische Beispiele sind
    • • Glycerin;
    • • Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
    • • technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
    • • Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
    • • Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
    • • Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
    • • Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
    • • Aminozucker, wie beispielsweise Glucamin.
  • Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als Pigmente kommen feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische.
  • Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt. Weitere Beispiele für Riechstoffe in den Parfümöle für die erfindungsgemäßen Seifenstücke enthalten sind finden sich z. B. in S. Arctander, Perfume and Flavor Materials, Vol. I und II, Montclair, N. J., 1969, Selbstverlag oder K. Bauer, D. Garbe und H. Surburg, Common Fragrance and Flavor Materials, 3rd. Ed., Wiley-VCH, Weinheim 1997.
  • Die Parfümöle werden im allgemeinen in einer Menge von 0.05 bis 5 Gew.-%, bevorzugt von 0.1 bis 2.5 Gew.-%, insbesondere bevorzugt von 0.2 bis 1.5 Gew.-%, bezogen auf die Seifengrundmasse, der Seifengrundmasse zugesetzt.
  • Die Parfümöle können in flüssiger Form, unverdünnt oder mit einem Lösungsmittel verdünnt für Parfümierungen der Seifengrundmasse zugesetzt werden. Geeignete Lösungsmittel hierfür sind z. B. Ethanol, Isopropanol, Diethylenglycolmonoethylether, Glycerin, Propylenglycol, 1,2-Butylenglycol, Dipropylenglycol, Diethylphthalat, Triethylcitrat, Isopropylmyristat usw.
  • Desweiteren können die Parfümöle für die erfindungsgemäßen Seifenstücke an einem Trägerstoff adsorbiert sein, der sowohl für eine feine Verteilung der Riechstoffe im Produkt als auch für eine kontrollierte Freisetzung bei der Anwendung sorgt. Derartige Träger können poröse anorganische Materialien wie Leichtsulfat, Kieselgele, Zeolithe, Gipse, Tone, Tongranulate, Gasbeton usw. oder organische Materialien wie Hölzer und Cellulose-basierende Stoffe sein.
  • Die Parfümöle für die Seifenstücke können auch mikroverkapselt, sprühgetrocknet, als Einschluss-Komplexe oder als Extrusions-Produkte vorliegen und in dieser Form der zu parfümierenden Seifengrundmasse hinzugefügt werden.
  • Gegebenenfalls können die Eigenschaften der derart modifizierten Parfümöle durch sog "Coaten" mit geeigneten Materialien im Hinblick auf eine gezieltere Duftfreisetzung weiter optimiert werden, wozu vorzugsweise wachsartige Kunststoffe wie z. B. Polyvinylalkohol verwendet werden.
  • Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81–106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
  • Der pH-Wert der erfindungsgemäßen Seifenstücke liegt bevorzugt in einem Bereich von 5 bis 11, besonders bevorzugt von 6 bis 11 und höchst bevorzugt von 7 bis 10. Zur Einstellung des pH-Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N‘,N‘-Tetrakis-(2-hydroxypropyl)-ethylendiamin.
  • Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Malonsäure, Fumarsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure, Weinsäure und Milchsäure besonders bevorzugt.
  • Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
    • – Kosmetische Inhaltsstoffe für die erfindungsgemäßen Mehrphasenseifen sind an sich bekannt (Soaps and Detergents, Luis Spitz, ISBN 0-935315-72-1 und Production of Toilet Soap, D. Osteroth, ISBN 3-921956-55-2).
    • – Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
    • – Dimethylisosorbid und Cyclodextrine,
    • – Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
    • – Wirkstoffe wie Allantoin und Bisabolol,
    • – Komplexbildner wie EDTA, NTA, β-Alanindiessigsäure, Iminodibernsteinsäure und deren Salze sowie Phosphonsäuren,
    • – Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
    • – Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere
    • – Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
    • – Pigmente,
    • – Antioxidantien,
    • – Menthol und Mentholderivate,
    • – wärmende Wirkstoffe wie z. B. Capsaicin,
  • Auch Wasser kann in den erfindungsgemäßen Seifenmassen enthalten sein. Mengen von 0,1 bis 20,0 Gew.%, vorzugsweise 1 bis 20,0 Gew.%, besonders bevozugt 3 bis 18 Gew.%, ganz besonders bevorzugt 7 bis 18 Gew.% und höchst bevorzugt 10 bis 18 Gew.% Wasser, jeweils bezogen auf das Gesamtgewicht des Seifenstückes, enthalten sein.
  • Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K. H. Schrader oder die Monografie „Soaps and Detergents, Luis Spitz, ISBN 0-935315-71-2 und Production of Toilet Soap, D. Osteroth, ISBN 3-921956-55-2".
  • Die Herstellung der erfindungsgemäßen Seifenstücke kann in der für solche Produkte üblichen Weise erfolgen, wobei insbesondere durch die erfindungsgemäße Kombination eine besonders gut formbare, in der Wärme ausreichend plastische, jedoch nicht gummielastische und nach dem Erkalten harte Masse entsteht und wobei die geformten Produkte ein glatte Oberfläche aufweisen. Übliche Verfahren zum Mischen bzw. Homogenisieren, Kneten, gegebenenfalls Pilieren, Strangpressen, gegebenenfalls Pelettieren, Extrudieren, Schneiden und Stückpressen sind dem Fachmann geläufig und können zur Herstellung der erfindungsgemäßen Seifenstücke herangezogen werden. Die Herstellung erfolgt vorzugsweise im Temperaturbereich von 40 bis 90°C, wobei die schmelzbaren Einsatzstoffe in einem heizbaren Kneter oder Mischer vorgelegt werden und die nicht schmelzenden Komponenten eingerührt werden. Zur Homogenisierung kann die Mischung anschließend durch ein Sieb gegeben werden, ehe sich die Formgebung anschließt. In einer bevorzugten Ausführungsform der Erfindung werden die Komponenten in wasserfreier, granularer Form eingesetzt, wie man sie nach Trocknung in einem sogenannten Flashdryer erhält. Hierbei sei auf die Lehre der deutschen Patentschrift DE-C1 19534371 verwiesen. Geformte Seifenprodukte im Sinne der Erfindung können aber auch als Nudeln, Nadeln, Granulate, Extrudate, Schuppen und in jeder anderen für Seifenprodukte üblichen Formgebung vorliegen. Weiterhin können mit die erfindungsgemäßen Seifenstücke beispielsweise durch Einspritzen von Farbstofflösungen während der Extrusion ein marmoriertes Aussehen erhalten. Ebenfalls können die erfindungsgemäßen Seifenstücke als Mehrphasenseifen, insbesondere auch mit einer Pflegephase versehenen Seifenstück verarbeitet werden. Der Fachmann kennt hierzu zahlreiche Möglichkeiten, wie beispielsweise ein Verkleben der Seifenphase mit der Pflegephase, aber auch weitere Möglichkeiten wie die Koextrusion von Seifen- und Pflegephase. Schließlich können die erfindungsgemäßen Seifenstücke sogar eine gewisse Transparenz aufweisen. Hierzu werden die anorganischen Bestandteile besonders feinteilig gewählt. Dann können wenigstens halbtransparente Seifen erhalten werden.
  • Die erfindungsgemäßen Seifenstücke zeichnen sich durch eine besonders glatte Oberfläche aus. Bei Gebrauch bildet sich reichlich feinblasiger, cremiger Schaum. In hartem Wasser bilden sich zwar auch Kalkseifenausfällungen, diese bleiben aber in der Lösung dispergiert und schlagen sich auf harten Oberflächen nicht als schmierig-graue Flecken oder käsiger Rand, sondern allenfalls als leichter, feinteiliger Schleier nieder.
  • Die folgenden Beispiele sollen den Erfindungsgegenstand näher erläutern:
  • Beispiele
  • Alle Angaben sind in Gew.% und die Inhaltsstoffe sind in der INCI-Nomenklatur genannt
    S1 S2 S3 S4 S5 S6 S7
    Sodium Palm Stearate 7,0 9,0 ----- ----- ----- 10,0 -----
    Sodium Palmate 29,0 31,0 ----- ----- ----- 30,0 -----
    Sodium Tallowate ----- ----- 34,0 ----- 20,0 ----- 30,0
    Sodium Cocoate 6,0 ----- 6,0 ----- 6,0 ----- 12,0
    Sodium Olivate ----- ----- ----- 45,0 ----- ----- -----
    Sodium Palm Kernelate ----- ----- ----- ----- ----- 6,0 -----
    Sodium Lardate ----- ----- ----- ----- 20,0 ----- -----
    Coconut Oil ----- 7,0 ----- ----- ----- ----- -----
    Coconut Acid ----- ----- 1,0 ----- ----- ----- -----
    Tallow Acid ----- ----- 1,0 ----- ----- ----- -----
    Talc 25,0 20,4 25,0 20,0 21,0 21,0 25,0
    Corn Starch 5,4 2,0 ----- 6,0 5,4 5,0 -----
    Wheat Starch ----- ----- 5,0 ----- ----- ----- 5,4
    Sodium Silicate 4,0 4,0 5,0 5,0 4,0 4,0 4,0
    Sodium Lauryl Sulfate 4,6 4,0 4,0 ----- 4,6 4,6 -----
    Sodium Laureth Sulfate ----- ----- ----- ----- ----- ----- 4,6
    Cocamidopropyl Betaine ----- ----- ----- 4,0 ----- ----- -----
    Decyl Glucoside ----- ----- ----- ----- ----- ----- -----
    Water 13,0 14,0 13,07 14,0 13,0 12,9 13,0
    Glycerin 4,5 5,1 4,5 5,1 4,5 4,5 4,5
    Perfume 1,2 1,3 1,0 0,5 1,2 1,2 1,2
    Tetrasodium EDTA 0,1 0,1 0,1 0,1 0,1 0,1 0,1
    Tetrasodium Etidonate 0,1 0,1 0,1 0,1 0,1 0,1 0,1
    Titanium Dioxide 0,1 ----- 0,2 0,2 0,1 0,1 0,1
    Sodium Lactate ----- ----- ----- ----- ----- 0,5 -----
    CI 11680 ----- ----- 0,03 ----- ----- ----- -----
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 01/42418 [0003]
    • WO 2006/094586 [0003]
    • US 6440908 [0003]
    • WO 98/18896 [0003]
    • US 2007/0021314 [0003]
    • US 2007/0155639 [0003]
    • GB 806340 [0003]
    • GB 901953 [0003]
    • DE 2412837 [0011]
    • EP 1887024 A1 [0044]
    • DE 19534371 C1 [0087]
  • Zitierte Nicht-Patentliteratur
    • “International Cosmetic Ingredient Dictionary and Handbook”, (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) [0055]
    • J.Soc.Cosm.Chem. 24, 281 (1973) [0072]
    • J.Pharm.Pharmacol. 26, 531 (1975) [0072]
    • S. Arctander, Perfume and Flavor Materials, Vol. I und II, Montclair, N. J., 1969, Selbstverlag [0075]
    • K. Bauer, D. Garbe und H. Surburg, Common Fragrance and Flavor Materials, 3rd. Ed., Wiley-VCH, Weinheim 1997 [0075]
    • "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81–106 [0081]
    • Soaps and Detergents, Luis Spitz, ISBN 0-935315-72-1 [0084]
    • Production of Toilet Soap, D. Osteroth, ISBN 3-921956-55-2 [0084]
    • K. H. Schrader oder die Monografie „Soaps and Detergents, Luis Spitz, ISBN 0-935315-71-2 [0086]
    • Production of Toilet Soap, D. Osteroth, ISBN 3-921956-55-2“ [0086]

Claims (10)

  1. Seifenstücke, enthaltend, jeweils bezogen auf das Gesamtgewicht des Seifenstückes, a) Fettsäureseifen in einer Gesamtmenge von 20 bis 60 Gew.%, vorzugsweise 30 bis 60 Gew.%, bevorzugter 30 bis 55 Gew. %, höchst bevorzugt 35 bis 55 Gew.% und insbesondere von 30 bis 50 Gew.%, b) Talkum in einer Gesamtmenge von 3 bis 40 Gew.%, vorzugsweise 5 bis 35 Gew.%, bevorzugter 10 bis 35 Gew.%, noch bevorzugter 15 bis 35 Gew.%, höchst bevorzugt 15 bis 30 Gew.%, c) Silikate in einer Gesamtmenge von 0,5 bis 30 Gew.%, vorzugsweise 1,0 bis 30 Gew.%, noch bevorzugter von 1,0 bis 20,0 Gew.% und höchst bevorzugt von 3,0 bis 20,0 Gew.%, d) synthetische Tenside, ausgewählt aus den anionischen, amphoteren, zwitterionischen, nichtionischen und/oder kationischen Tensiden in einer Gesamtmenge von 0,1 bis 20,0 Gew.%, bevorzugt von 0,1 bis 15,0 Gew.%, bevorzugter 0,2 bis 10,0 Gew.%, noch bevorzugter von 0,5 bis 10,0 Gew.%, höchst bevorzugt von 2,0 bis 10,0 Gew.% und insbesondere kleiner als 8,0 Gew.% und e) Stärke in einer Gesamtmenge von 0,1 bis 10,0 Gew.%, vorzugsweise von 0,5 bis 10,0 Gew.%, bevorzugter 1,0 bis 8,0 Gew.%, besonders bevorzugt 2,0 bis 8,0 Gew.%, ganz besonders bevorzugt 2,0 bis 5,0 Gew.% und höchst bevorzugt kleiner als 5,0 Gew.%.
  2. Seifenstücke nach Anspruch 1, dadurch gekennzeichnet, daß die synthetischen Tenside ausgewählt sind aus den anionischen, amphoteren, zwitterionischen und/oder nichtionischen Tensiden.
  3. Seifenstücke nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das synthetische Tensid ausgewählt ist aus den anionischen Tensiden.
  4. Seifenstücke nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das anionische Tensid ausgewählt ist aus: Acylsarcosiden mit 8 bis 24 C-Atomen in der Acylgruppe, Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist und deren Salze, Acyltauriden mit 8 bis 24 C-Atomen in der Acylgruppe, Acylisethionaten mit 8 bis 24 C-Atomen in der Acylgruppe, Alkylsulfaten und Alkylpolyglykolethersulfaten der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist, Alkyl- und/oder Alkenyletherphosphaten der Formel, R1(OCH2CH2)n-O-(PO-OX)-OR2, in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht, Monoglyceridsulfaten und Monoglyceridethersulfaten der Formel R8OC-(OCH2CH2)x-OCH2-[CHO(CH2CH2O)yH]-CH2O(CH2CH2O)z-SO3X, in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht, Acylglutamaten der Formel XOOC-CH2CH2CH(C(NH)OR)-COOX, in der RCO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen und X für Wasserstoff, ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht, Kondensationsprodukten aus einem wasserlöslichen Salz eines wasserlöslichen Eiweißhydrolysats mit einer C8-C30-Fettsäure, sowie deren Mischungen.
  5. Seifenstücke nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es mindestens ein Alkyloligoglucosid enthält.
  6. Seifenstücke nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es mindestens ein amphoteres und/oder zwitterionisches Tensid enthält.
  7. Seifenstücke nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Fettsäureseife ein Gemisch aus Talgfettsäureseife und Kokosfettsäureseife verwendet wird.
  8. Seifenstücke nach Anspruch 8, dadurch gekennzeichnet, daß das Gemisch aus Fettsäureseifen 50–80 Gew.% Talgfettsäureseifen und 20–50 Gew.% Kokosfettsäureseifen enthält.
  9. Seifenstücke nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß weiterhin 0,1 bis 20,0 Gew.%, vorzugsweise 1 bis 20,0 Gew.%, besonders bevorzugt 3 bis 18 Gew.%, ganz besonders bevorzugt 7 bis 18 Gew.% und höchst bevorzugt 10 bis 18 Gew.% Wasser enthalten sind.
  10. Seifenstücke nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß – in bezug auf das Gesamtgewicht des Seifenstückes – 0,01 bis 10,0 Gew.%, vorzugsweise 0,1 bis 8 Gew.%, bevorzugter 0,5 bis 8 Gew.%, höchst bevorzugt 1,0 bis 5,0 Gew.% an freier Fettsäure enthalten sind.
DE102012203688A 2012-03-08 2012-03-08 Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen Withdrawn DE102012203688A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102012203688A DE102012203688A1 (de) 2012-03-08 2012-03-08 Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen
EP13704761.9A EP2823027A1 (de) 2012-03-08 2013-02-07 Geformte seifenprodukte mit einem verringerten gehalt an fettsäureseifen
PCT/EP2013/052455 WO2013131708A1 (de) 2012-03-08 2013-02-07 Geformte seifenprodukte mit einem verringerten gehalt an fettsäureseifen
US14/479,495 US20140378363A1 (en) 2012-03-08 2014-09-08 Shaped soap products with a reduced content of fatty acid soaps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012203688A DE102012203688A1 (de) 2012-03-08 2012-03-08 Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen

Publications (1)

Publication Number Publication Date
DE102012203688A1 true DE102012203688A1 (de) 2013-09-12

Family

ID=47722258

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012203688A Withdrawn DE102012203688A1 (de) 2012-03-08 2012-03-08 Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen

Country Status (4)

Country Link
US (1) US20140378363A1 (de)
EP (1) EP2823027A1 (de)
DE (1) DE102012203688A1 (de)
WO (1) WO2013131708A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554085B2 (en) 2019-07-16 2023-01-17 Henkel Ag & Co. Kgaa Combar for skin and hair treatment
WO2024115736A1 (fr) * 2022-12-01 2024-06-06 Capsum Composition solide non pulvérulente comprenant au moins 8% en poids d'agent(s) désintégrant(s)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013407319B2 (en) * 2013-12-10 2016-12-15 Colgate-Palmolive Company Soap bar
WO2016089422A1 (en) * 2014-12-05 2016-06-09 Colgate-Palmolive Company Cleansing bars with taurine
US10485751B2 (en) * 2017-11-09 2019-11-26 Rachel Rohlman Anti-soap formulation
KR101933182B1 (ko) * 2017-11-30 2018-12-31 (주)코스포유 피부세정용 고형 비누 조성물 및 상기 조성물을 이용하여 제조된 치즈 모양 비누
US11555165B2 (en) * 2017-11-30 2023-01-17 Henkel Ag & Co. Kgaa Solid cleaner with benzalkonium chloride, PEG-8, and Guar
DE102018221041A1 (de) * 2018-12-05 2020-07-02 Henkel Ag & Co. Kgaa bei Raumtemperatur festes natürliches kosmetisches Reinigungsmittel
CA3130010A1 (en) 2019-02-19 2020-08-27 Unilever Global Ip Limited An extruded soap bar with high water content
CA3130013A1 (en) 2019-02-19 2020-08-27 Unilever Global Ip Limited High water hard bars comprising combination of type and amount of electrolytes
DE102019210153A1 (de) * 2019-07-10 2021-01-14 Henkel Ag & Co. Kgaa Feste kosmetische Haarkonditioniermittel (Schäume)
DE102019210154A1 (de) * 2019-07-10 2021-01-14 Henkel Ag & Co. Kgaa Feste Haarkosmetikzusammensetzung
DE102019210159A1 (de) * 2019-07-10 2021-01-14 Henkel Ag & Co. Kgaa Feste Haarkosmetikzusammensetzung
US11104870B1 (en) * 2020-04-01 2021-08-31 Jonathan Diaz Automatic flush activated toilet odor prevention tablet
US20240279575A1 (en) 2021-06-10 2024-08-22 Conopco, Inc., D/B/A Unilever High moisture silica gel soap bars and process for preparing the same
WO2025056485A1 (en) 2023-09-11 2025-03-20 Unilever Ip Holdings B.V. Low tfm high moisture polymeric silica soap bars
WO2025056483A1 (en) * 2023-09-11 2025-03-20 Unilever Ip Holdings B.V. Coloured soap bar composition comprising starch
GB202315956D0 (en) * 2023-10-18 2023-11-29 Innospec Performance Chemicals Italia Srl Compositions, method and uses

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB806340A (en) 1956-06-28 1958-12-23 Hedley Thomas & Co Ltd Improved detergent compositions
GB901953A (en) 1961-03-28 1962-07-25 Woodworth Co N A Improvements in or relating to pressure operated work clamping fixtures
DE2412837A1 (de) 1973-04-13 1974-10-31 Henkel & Cie Gmbh Verfahren zum waschen und reinigen der oberflaechen von festen werkstoffen, insbesondere von textilien, sowie mittel zur durchfuehrung des verfahrens
DE19534371C1 (de) 1995-09-15 1997-02-20 Henkel Kgaa Verfahren zur Herstellung wasser- und staubfreier Zuckertensidgranulate
WO1998018896A1 (en) 1996-10-31 1998-05-07 The Procter & Gamble Company High moisture laundry bar compositions with improved physical properties
WO2001042418A1 (en) 1999-12-08 2001-06-14 Unilever Plc Improved detergent bar composition
US6440908B2 (en) 1999-11-30 2002-08-27 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. High moisture retaining bars compositions comprising borax as water structurant
WO2006094586A1 (en) 2005-03-04 2006-09-14 Unilever Plc A low tfm detergent bar
US20070021314A1 (en) 2005-06-18 2007-01-25 Salvador Charlie R Cleansing bar compositions comprising a high level of water
US20070155639A1 (en) 2005-06-18 2007-07-05 Salvador Charlie R Cleansing bar compositions comprising a high level of water
EP1887024A1 (de) 2006-07-31 2008-02-13 Evonik Goldschmidt GmbH Neuartige Polysiloxane mit quaternären Ammoniumgruppen, Verfahren zu deren Herstellung und deren Verwendung in reinigenden und pflegenden Formulierungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL254807A (de) * 1959-08-12
US5039453A (en) * 1989-04-14 1991-08-13 Colgate-Palmolive Company Detergent laundry bars having improved hardness and process for manufacture thereof
US5262079A (en) * 1992-03-20 1993-11-16 The Procter & Gamble Company Framed neutral pH cleansing bar
DE10035208A1 (de) * 2000-07-20 2002-01-31 Beiersdorf Ag Geformtes Seifenprodukt, enthaltend Talkum, eine oder mehrere Fettsäuren in Form ihrer Alkaliseifen und ein oder mehrere anionische Tenside bei gleichzeitiger Abwesenheit von Alkyl-(oligo)-glycosiden
US20070212323A1 (en) * 2006-03-07 2007-09-13 Conopco, Inc., D/B/A Unilever Hydrophilic structured predominantly soap-based bar compositions comprising individually coated flat platy particles, each having surface deposition chemistry mechanism

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB806340A (en) 1956-06-28 1958-12-23 Hedley Thomas & Co Ltd Improved detergent compositions
GB901953A (en) 1961-03-28 1962-07-25 Woodworth Co N A Improvements in or relating to pressure operated work clamping fixtures
DE2412837A1 (de) 1973-04-13 1974-10-31 Henkel & Cie Gmbh Verfahren zum waschen und reinigen der oberflaechen von festen werkstoffen, insbesondere von textilien, sowie mittel zur durchfuehrung des verfahrens
DE19534371C1 (de) 1995-09-15 1997-02-20 Henkel Kgaa Verfahren zur Herstellung wasser- und staubfreier Zuckertensidgranulate
WO1998018896A1 (en) 1996-10-31 1998-05-07 The Procter & Gamble Company High moisture laundry bar compositions with improved physical properties
US6440908B2 (en) 1999-11-30 2002-08-27 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. High moisture retaining bars compositions comprising borax as water structurant
WO2001042418A1 (en) 1999-12-08 2001-06-14 Unilever Plc Improved detergent bar composition
WO2006094586A1 (en) 2005-03-04 2006-09-14 Unilever Plc A low tfm detergent bar
US20070021314A1 (en) 2005-06-18 2007-01-25 Salvador Charlie R Cleansing bar compositions comprising a high level of water
US20070155639A1 (en) 2005-06-18 2007-07-05 Salvador Charlie R Cleansing bar compositions comprising a high level of water
EP1887024A1 (de) 2006-07-31 2008-02-13 Evonik Goldschmidt GmbH Neuartige Polysiloxane mit quaternären Ammoniumgruppen, Verfahren zu deren Herstellung und deren Verwendung in reinigenden und pflegenden Formulierungen

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702)
"Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106
J.Pharm.Pharmacol. 26, 531 (1975)
J.Soc.Cosm.Chem. 24, 281 (1973)
K. Bauer, D. Garbe und H. Surburg, Common Fragrance and Flavor Materials, 3rd. Ed., Wiley-VCH, Weinheim 1997
K. H. Schrader oder die Monografie "Soaps and Detergents, Luis Spitz, ISBN 0-935315-71-2
Production of Toilet Soap, D. Osteroth, ISBN 3-921956-55-2
Production of Toilet Soap, D. Osteroth, ISBN 3-921956-55-2"
S. Arctander, Perfume and Flavor Materials, Vol. I und II, Montclair, N. J., 1969, Selbstverlag
Soaps and Detergents, Luis Spitz, ISBN 0-935315-72-1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554085B2 (en) 2019-07-16 2023-01-17 Henkel Ag & Co. Kgaa Combar for skin and hair treatment
WO2024115736A1 (fr) * 2022-12-01 2024-06-06 Capsum Composition solide non pulvérulente comprenant au moins 8% en poids d'agent(s) désintégrant(s)
FR3142667A1 (fr) * 2022-12-01 2024-06-07 Capsum Composition solide non pulvérulente comprenant au moins 8% en poids d’agent(s) désintégrant

Also Published As

Publication number Publication date
US20140378363A1 (en) 2014-12-25
EP2823027A1 (de) 2015-01-14
WO2013131708A1 (de) 2013-09-12

Similar Documents

Publication Publication Date Title
DE102012203688A1 (de) Geformte Seifenprodukte mit einem verringerten Gehalt an Fettsäureseifen
DE102012216293A1 (de) Haarpflegemittel mit Antischuppenwirkstoffen und ausgewählten kationischen Tensiden auf pflanzlicher Basis
DE102012219583A1 (de) Haarpflegemittel mit ausgewählten aminofunktionalen Silikonen und ausgewähltem kationischen Keratinhydrolysat
DE102010063590A1 (de) Haarbehandlungsmittel enthaltend Dicocoyl Pentaerythrityl Distearyl Citrate
DE102012222771A1 (de) Haarpflegemittel mit Antischuppenmitteln und ausgewählten Silikonen enthaltend Zuckerstrukturen
DE102012219585A1 (de) Haarpflegemittel mit ausgewählten Aminosäuren und/oder ausgewählten Oligopeptiden und einem ausgewählten kationischen Keratinhydrolysat
DE102015223028A1 (de) Haarkonditionierende Mittel
DE102012222768A1 (de) Haarpflegemittel mit ausgewählten und/oder ausgewählten Oligopeptiden und/oder ausgewählten kationischen Proteinhydrolysaten und Silikonen enthaltend Zuckerstrukturen
DE102012205083A1 (de) Haarbehandlungsmittel enthaltend ausgewählte Fettsäureamide und ausgewählte quaternäre Ammoniumverbindungen
DE102012205082A1 (de) Haarbehandlungsmittel enthaltend ausgewählte Fettsäureamide und ausgewählte UV-Filter
EP2931245A1 (de) Haarpflegemittel mit ausgewählten quarternären ammoniumverbindungen und silikonen enthaltend zuckerstrukturen
DE102015223454A1 (de) Kosmetische Mittel zur Reinigung und Konditionierung
DE102010062643A1 (de) Haarbehandlungsmittel enthaltend Rote Beete Saftkonzentrat
DE102012214139A1 (de) Haarpflegemittel mit ausgewählten Proteinhydrolysaten und ausgewählten Komplexen aus sauren Proteinhydrolysaten und basischen Fettsäureamidoaminen
DE102012219581A1 (de) "Haarpflegemittel mit ausgewählten kationischen Alkyloligoglucosiden und einem ausgewählten kationischen Keratinhydrolysat"
DE102012216294A1 (de) Haarpflegemittel mit ausgewählten aminofunktionalen Silikonen und ausgewählten kationischen Tensiden auf pflanzlicher Basis
DE102012205089A1 (de) Haarbehandlungsmittel enthaltend ausgewählte Fettsäureamide und ausgewählte Ölkörper
DE102010062639A1 (de) Haarbehandlungsmittel enthaltend Ximenia-Öl
DE102010062640A1 (de) Haarbehandlungsmittel enthaltend Mongongo-Öl
EP2830580A1 (de) Haarbehandlungsmittel enthaltend ausgewählte fettsäureamide und ausgewählte silikone
DE102012216296A1 (de) Haarpflegemittel mit ausgewählten Aminosäuren und/oder ausgewählten Oligopeptiden und ausgewählten kationischen Tensiden auf pflanzlicher Basis
DE102012205088A1 (de) Haarbehandlungsmittel enthaltend ausgewählte Fettsäureamide und ausgewählte quaternäre Ammoniumverbindungen
DE102012205092A1 (de) Haarbehandlungsmittel enthaltend ausgewählte Fettsäureamide und ausgewählte Hydroxycarbonsäuren
DE102011086636A1 (de) Haarpflegemittel mit Aminosäuren und kationischen Silikonen
DE102014224802A1 (de) Selbsterwärmende Haarbehandlungsmittel

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee