-
Die Erfindung betrifft ein Verfahren zur Raildruckregelung einer Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge nach dem Oberbegriff von Anspruch 1.
-
Brennkraftmaschinen in V-Anordnung haben auf der A- und der B-Seite ein Rail zur Zwischenspeicherung des Kraftstoffs. Am Rail angeschlossen sind die Injektoren, über welche der Kraftstoff in die Brennräume eingespritzt wird. In einer ersten Bauform des Common-Railsystems fördert eine einzelne Hochdruckpumpe den Kraftstoff unter Druckerhöhung parallel in beide Rails. Es herrscht daher der gleiche Raildruck in beiden Rails. Eine zweite Bauform des Common-Railsystems unterscheidet sich dadurch, dass eine erste Hochdruckpumpe in ein erstes Rail und eine zweite Hochdruckpumpe in ein zweites Rail fördern. Beide Bauformen sind beispielsweise aus der
DE 43 35 171 C1 bekannt.
-
Da die Güte der Verbrennung entscheidend vom Druckniveau im Rail abhängt, wird dieses geregelt. Typischerweise umfasst ein Raildruck-Regelkreis einen Druckregler, die Saugdrossel mit Hochdruckpumpe und das Rail als Regelstrecke sowie ein Softwarefilter im Rückkopplungszweig. In diesem Raildruck-Regelkreis entspricht das Druckniveau im Rail der Regelgröße. Die gemessenen Rohwerte des Raildrucks werden über das Filter in einen Ist-Raildruck gewandelt und mit einem Soll-Raildruck verglichen. Die sich hieraus ergebende Regelabweichung wird dann über den Druckregler in ein Stellsignal für die Saugdrossel gewandelt. Das Stellsignal entspricht einem Volumenstrom mit der Einheit Liter/Minute, welches elektrisch als PWM-Signal (pulsweitenmoduliert) ausgeführt ist. Ein entsprechender Raildruck-Regelkreis ist aus der
DE 10 2006 049 266 B3 bekannt.
-
Aus der
DE 10 2007 034 317 A1 ist eine Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge und einem eigenständigen A-seitigen sowie einem eigenständigen B-seitigen Common-Railsystem bekannt. Eine ungleiche Zündfolge ist dann gegeben, wenn beispielsweise der Zylinder A1, also der erste Zylinder auf der A-Seite, gezündet wird und im Anschluss der Zylinder A2, also der zweite Zylinder auf der A-Seite, gezündet wird. Die ungleiche Zündfolge wiederum verursacht Druckschwankungen im Rail. Zur Lösung dieser Problematik schlägt die
DE 10 2007 034 317 A1 in einer ersten Lösung eine Ausgleichsleitung zwischen den beiden Rails vor. Bei einer zweiten Lösung wird der A-seitige Raildruck in einem A-seitigen Raildruck-Regelkreis mit einem PI-Regler und der B-seitige Raildruck in einem B-seitigen Raildruck-Regelkreis mit einem P-Regel geregelt. Aufgrund des fehlenden B-seitigen I-Anteils beim Regler ist diese Lösung hinsichtlich einer bleibenden Regelabweichung kritisch.
-
Der Erfindung liegt daher die Aufgabe zu Grunde, eine verbesserte Raildruckregelung bei einer Brennkraftmaschine in V-Anordnung mit einer ungleichen Zündfolge zu entwerfen.
-
Die Erfindung löst diese Aufgabe durch ein Verfahren zur Raildruckregelung mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.
-
Nach der Erfindung wird der Ist-Raildruck über ein Mittelwertfilter aus dem gemessenen Raildruck berechnet, indem unterhalb einer Grenzdrehzahl der Raildruck über eine konstante Zeit gemittelt wird und oberhalb der Grenzdrehzahl der Raildruck über ein Arbeitsspiel der Brennkraftmaschine gemittelt wird. Unter Arbeitsspiel sind zwei Umdrehungen der Kurbelwelle zu verstehen. Besonders bewährt hat sich diese Lösung bei einer Brennkraftmaschinen-Generatoranwendung, bei der die Motordrehzahl während des Motorbetriebs verschiedene Drehzahlbereiche durchläuft. Im stationären Drehzahlbereich, zum Beispiel bei einer konstanten Motordrehzahl von 1500 Umdrehung pro Minute zur Erzeugung einer 50 Hz Netzfrequenz, werden die arbeitsspielperiodischen Raildruckschwingungen dadurch heraus gefiltert, dass der Raildruck über ein Arbeitsspiel der Brennkraftmaschine gemittelt wird. In einem Drehzahlbereich unterhalb des stationären Drehzahlbereiches, zum Beispiel von Null Umdrehungen bis zu einer Grenzdrehzahl von 1000 Umdrehungen pro Minute, wird der Raildruck hingegen über eine konstante Zeit gemittelt. Durch diese Maßnahme wird bewirkt, dass das Signal des Ist-Raildrucks unterhalb der Grenzdrehzahl nicht zu stark verzögert wird, was wiederum erst eine zufriedenstellende Regelung des Raildrucks ermöglicht. Von Vorteil ist daher eine Stabilisierung des Raildruck-Regelkreises unterhalb der Grenzdrehzahl.
-
Bei einer Brennkraftmaschinen-Generatoranwendung ist damit also sichergestellt, dass im stationär fahrbaren Betriebsbereich eine Mittelung des Raildrucks über ein Arbeitsspiel zuverlässig erfolgt, da die Raildruckschwingungen arbeitsspielperiodisch sind. Im Drehzahlbereich unterhalb der Grenzdrehzahl hingegen ist eine exakte Mittelung über ein Arbeitsspiel und damit auch eine exakte Herausfilterung der arbeitsspielperiodischen Raildruckschwingungen nicht erforderlich, da der Bereich unterhalb der Grenzdrehzahl nur dynamisch durchfahren wird und sich deshalb Raildruckschwingungen hier erst gar nicht nachhaltig entwickeln können.
-
In einer Ausgestaltung ist das Mittelwertfilter mit einem Tiefpassfilter kombiniert, wodurch hochfrequente Raildruckschwingungen, welche nicht arbeitsspielperiodisch sind, bedämpft werden.
-
Angewendet werden kann das Verfahren sowohl bei einer Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge und mit einem eigenständigen A-seitigen sowie einem eigenständigen B-seitigen Common-Railsystem als auch bei einer Brennkraftmaschine in V-Anordnung mit ungleicher Zündfolge, bei der eine einzige Hochdruckpumpe den Kraftstoff gleichzeitig in das A-seitige und das B-seitige Rail fördert.
-
In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
-
1 ein Systemschaubild,
-
2 ein Blockschaltbild des Raildruck-Regelkreises,
-
3 eine Kennlinie,
-
4 ein Zeitdiagramm und
-
5 einen Programm-Ablaufplan.
-
Die 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem auf der A-Seite und einem Common-Railsystem auf der B-Seite. Das Common-Railsystem auf der A-Seite umfasst als mechanische Komponenten eine Niederdruckpumpe 3A zur Forderung von Kraftstoff aus einem Tank 2, eine Saugdrossel 4A zur Beeinflussung des Volumenstroms, eine Hochdruckpumpe 5A, ein Rail 6A und Injektoren 7A zum Einspritzen von Kraftstoff in die Brennräume der Brennkraftmaschine 1. Das Common-Railsystem auf der B-Seite umfasst dieselben mechanischen Komponenten, welche durch den Zusatz B bei den Bezugszeichen gekennzeichnet sind.
-
Gesteuert wird die Brennkraftmaschine 1 über ein elektronisches Motorsteuergerät 10 (ECU). In der 1 sind als Eingangsgrößen des elektronischen Motorsteuergeräts 10 exemplarisch ein A-seitiger Raildruck pCR(A), ein B-seitiger Raildruck pCR(B) und eine Größe EIN dargestellt. Der A-seitige Raildruck pCR(A) wird über einen A-seitigen Raildrucksensor 9A erfasst. Der B-seitige Raildruck pCR(B) wird über einen B-seitigen Raildrucksensor 9B erfasst. Die Größe EIN steht stellvertretend für die weiteren Eingangssignale, beispielsweise für eine Motordrehzahl oder für einen Leistungswunsch des Bedieners. Die dargestellten Ausgangsgrößen des elektronischen Motorsteuergeräts 10 sind ein PWM-Signal SD(A) zur Ansteuerung der A-seitigen Saugdrossel 4A, ein leistungsbestimmendes Signal ve(A) zur Ansteuerung der A-seitigen Injektoren 7A, zum Beispiel Spritzbeginn/Spritzende, ein PWM-Signal SD(B) zur Ansteuerung der B-seitigen Saugdrossel 46, ein leistungsbestimmendes Signal ve(B) zur Ansteuerung der B-seitigen Injektoren 7B und eine Größe AUS. Letztere steht stellvertretend für die weiteren Stellsignale zur Steuerung der Brennkraftmaschine 1, beispielsweise ein Stellsignal zur Ansteuerung eines AGR-Ventils. Das dargestellte Common-Railsystem kann auch als Common-Railsystem mit Einzelspeichern ausgeführt sein. In diesem Fall sind dann im Injektor 7A ein Einzelspeicher 8A und im Injektor 7B ein Einzelspeicher 8B als zusätzliche Puffervolumina für den Kraftstoff integriert. Die Einzelspeicherdrücke pE(A) und pE(B) sind dann weitere Eingangsgrößen des elektronischen Motorsteuergeräts 10. Kennzeichnendes Merkmal der dargestellten Ausführungsform ist die von einander unabhängige Regelung des A-seitigen Raildrucks pCR(A) und die unabhängige Regelung des B-seitigen Raildrucks pCR(B).
-
Die 2 zeigt ein Blockschaltbild des A-seitigen Raildruck-Regelkreises, welcher in der Figur durch den Zusatz A bei den Bezugszeichen gekennzeichnet ist. Beide Regelkreise sind identisch aufgebaut. Im Folgenden wird der A-seitige Raildruck-Regelkreis 11A beschrieben, wobei dessen Beschreibung auch sinngemäß auf den B-seitigen Raildruck-Regelkreis zutrifft. Die Führungsgröße ist für beide Raildruck-Regelkreise identisch, hier: ein gemeinsamer Soll-Raildruck pCR(SL). Berechnet wird der Soll-Raildruck in Abhängigkeit eines Soll-Moments oder in Abhängigkeit der Soll-Einspritzmenge und der Motordrehzahl.
-
Die Eingangsgrößen des Raildruck-Regelkreises 11A sind der Soll-Raildruck pCR(SL), eine Grund-Frequenz fPWM für das PWM-Signal, eine Größe E1, die Motordrehzahl nMOT, eine Zeitkonstante T1 und eine Zeitkonstante T2. Die Eingangsgröße E1 umfasst die Batterie-Spannung und den ohmschen Widerstand der Saugdrossel einschließlich Zuleitung, welche in die Berechnung des Ansteuersignals SD(A) für die Saugdrossel 4A eingehen. Die Ausgangsgröße des A-seitigen Raildruck-Regelkreises sind die Rohwerte des Raildrucks pCR(A). Gemessen werden die Rohwerte des Raildrucks pCR(A) vom A-seitigen Raildrucksensor 9A, Dessen Ausgangssignal pMESS wird anschließend über ein Hardwarefilter 16A mit PT1-Verhalten und einer Eckfrequenz von 20 Hz gefiltert. Die Ausgangswerte pHW werden durch einen A/D-Wandler 17A digitalisiert. Die Ausgangswerte pAD des A/D-Wandlers 17A werden dann über zwei Informationspfade weiterverarbeitet. Ein erster Informationspfad umfasst ein Mittelwertfilter 18A und ein optionales Tiefpassfilter 19A. Der erste Informationspfad entspricht einer langsamen Filterung, über welche der Ist-Raildruck pIST(A) bestimmt wird. Das Mittelwertfilter 18A hat als weitere Eingangsgrößen die Motordrehzahl nMOT und die Grenzdrehzahl nLi. Über das Mittelwertfilter 18A wird festgelegt, ob die Mittelung des Raildrucks entweder über ein Arbeitsspiel, also zwei Umdrehungen der Kurbelwelle, erfolgt oder über eine konstante Zeit. Die Umschaltung zwischen den beiden Methoden der Mittelwertbildung erfolgt dabei bei der Grenzdrehzahl nLi. Die Ausgangsgröße pMW des Mittelwertfilters 18A wird dann – wie dargestellt – vom Tiefpassfilter 19A weiterverarbeitet. Dieses hat eine Zeitkonstante T1 als Eingangsgröße. In der Praxis wird für die Zeitkonstante ein Wert von T1 = 16 ms verwendet, was einer Frequenz von 10 Hz entspricht. Über das Tiefpassfilter 19A werden hochfrequente Raildruckschwingungen, welche nicht arbeitsspielperiodisch sind, bedämpft. Ein zweiter Informationspfad beinhaltet ein schnelles Filter 20A mit PT1-Verhalten. Das schnelle Filter 20A besitzt hierbei eine kleinere Zeitkonstante und damit einen geringeren Phasenverzug als das Mittelwertfilter 18A und das optionale Tiefpassfilter 19A. Der Ausgangswert pDYN(A) des schnellen Filters 20A wird unter anderem verwendet, um eine Schnellbestromung der Saugdrossel durchzuführen, wodurch eine höhere Dynamik bei einem Lastabwurf erzielt wird.
-
An einem Punkt A wird der Ist-Raildruck pIST(A) mit dem Soll-Raildruck pCR(SL) verglichen. Hieraus resultiert die Regelabweichung ep(A), aus welcher ein Druckregler 12A mit zumindest PID-Verhalten einen Soll-Volumenstrom VSL als Stellgröße berechnet. Der Soll-Volumenstrom VSL hat die physikalische Einheit Liter/Minute. Danach wird der Soll-Volumenstrom begrenzt (nicht dargestellt) und dem Soll-Volumenstrom VSL über eine Pumpen-Kennlinie 13A ein elektrischer Soll-Strom iSL zugeordnet. Der Soll-Strom iSL wird in einer Berechnung 14A in ein PWM-Signal SD(A) umgerechnet. Das PWM-Signal SD(A) ist die Einschaltdauer und die Frequenz fPWM entspricht der Grundfrequenz des PWM-Signals SD(A). Bei der Umrechnung werden unter anderem die Schwankungen der Betriebsspannung und der ohmsche Widerstand der Saugdrossel einschließlich der elektrischen Zuleitungen mitberücksichtigt. Mit dem PWM-Signal SD(A) wird dann die Magnetspule der A-seitigen Saugdrossel beaufschlagt. Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Die Hochdruckpumpe 5A, die Saugdrossel 4A und das Rail 6A entsprechen einer A-seitigen Regelstrecke 15A. Damit ist der A-seitige Regelkreis 11A geschlossen.
-
Die 3 zeigt eine Kennlinie 21. Über die Kennlinie 21 wird in Abhängigkeit der Motordrehzahl nMOT eine Mittelungszeit dT berechnet. Die Mittelungszeit dT entspricht also der Zeit über welche die Raildruckwerte vom Mittelwertfilter (2: 18A) gemittelt werden. Die Kennlinie 21 setzt sich aus einer abszissenparallelen Geraden 22 und einer Hyperbel 23 zusammen. Bei kleineren Motordrehzahlwerten als eine Grenzdrehzahl nLi = 1000 1/min wird über die Gerade 22 eine konstante Mittelungszeit dT = 120 ms bestimmt. Dieser Bereich ist in der 3 schraffiert dargestellt. Die Mittelungszeit dT = 120 ms errechnet sich aus der Dauer eines Arbeitsspiels bei einer Drehzahl von 1000 1/min. Ein Arbeitsspiel entspricht zwei Umdrehungen der Kurbelwelle der Brennkraftmaschine, also 720° Kurbelwellenwinkel. Unterhalb der Grenzdrehzahl nLi wird der Raildruck mit einer konstanten Mittelungszeit dT = 120 ms gefiltert. Bei größeren Motordrehzahlwerten nMOT als die Grenzdrehzahl nLi = 1000 1/min entspricht die Mittelungszeit dT einem Arbeitsspiel, was die Hyperbel 23 ergibt. So berechnet sich zum Beispiel bei einer Motordrehzahl nMOT = 1500 1/min eine Mittelungszeit dT = 80 ms oder bei einer Motordrehzahl nMOT = 2000 1/min eine Mittelungszeit von dT = 60 ms.
-
Die 4 besteht aus den Teilfiguren 4A bis 4C, welche verschiedene Zustandsgrößen zeigen. Über der Zeit t sind dargestellt: die Motordrehzahl nMOT in 4A, die Mittelungszeit dT in 4B und der gemittelte Raildruck pMW in 4C.
-
In der 4A sind der Startvorgang und eine Lastaufschaltung bei einer Brennkraftmaschinen-Generatoranordnung dargestellt. Die Soll-Drehzahl nSL ist als strichpunktiert Linie und die Grenzdrehzahl nLi als gestrichelte Linie in der 4A eingezeichnet. Die Soll-Drehzahl bleibt konstant bei nSL = 1500 1/min, was einer Frequenz von 50 Hz entspricht. Die Motordrehzahl nMOT erreicht zum Zeitpunkt t1 die Grenzdrehzahl von nLi = 1000 1/min. Zum Zeitpunkt t2 wird die Soll-Drehzahl von nSL = 1500 1/min erreicht. Nach einem Drehzahlüberschwinger ist die Motordrehzahl nMOT zum Zeitpunkt t4 auf der Soll-Drehzahl nSL eingeschwungen. Zum Zeitpunkt t6 erfolgt eine Lastaufschaltung, was zu einem Einbrechen der Motordrehzahl nMOT führt. Im Zeitraum t7 bis t8 unterschreitet die Motordrehzahl die Grenzdrehzahl nLi. Aufgrund der Soll-Istabweichung der Motordrehzahl wird nun mehr Kraftstoff eingespritzt, wodurch sich die Motordrehzahl nMOT wieder erhöht. Zum Zeitpunkt t9 erreicht die Motordrehzahl nMOT wieder das Drehzahlniveau der Soll-Drehzahl nSL und ist zum Zeitpunkt t10 auf der Soll-Drehzahl nSL eingeschwungen.
-
Die 4B zeigt die Mittelungszeit dT, über welche die Raildruckwerte, beispielsweise der A-seitige Raildruck pCR(A), gemittelt werden. Bis zum Zeitpunkt t1 ist die Motordrehzahl nMOT kleiner als die Grenzdrehzahl nLi. Über die Kennlinie der 3 wird daher eine konstante Mittelungszeit dT = 120 ms berechnet. im Drehzahlbereich unterhalb der Grenzdrehzahl nLi ist eine exakte Mittelung über ein Arbeitsspiel nicht erforderlich, da dieser Bereich nur dynamisch durchfahren wird und sich deshalb Raildruckschwingungen hier erst gar nicht entwickeln. Die Mittelung über eine konstante Zeit wirkt sich stabilisierend auf die Raildruck-Regelung aus, da das Signal des Ist-Raildrucks nicht zu stark verzögert wird. Nach dem Zeitpunkt t1 ist die Motordrehzahl nMOT größer als die Grenzdrehzahl nLi. Jetzt wird die Mittlungszeit dT in Abhängigkeit der Motordrehzahl nMOT berechnet und zwar über die Hyperbel der 3. Demzufolge sinkt die Mittelungszeit dT mit zunehmender Motordrehzahl nMOT. Da der Raildruck nunmehr über ein Arbeitsspiel der Brennkraftmaschine gemittelt wird, werden die arbeitsspielperiodischen Schwankungen des Raildrucks herausgefiltert.
-
Zum Zeitpunkt t4 ist die Motordrehzahl nMOT auf der Soll-Drehzahl nSL = 1500 1/min eingeschwungen. Damit ist auch die Mittelungszeit auf den Wert dT = 80 ms eingeschwungen. Erfolgt nun zum Zeitpunkt t6 eine Lastaufschaltung, so steigt die Mittelungszeit dT aufgrund der sinkenden Motordrehzahl an. Im Zeitraum t7/t8 unterschreitet die Motordrehzahl die Grenzdrehzahl nLi = 1000 1/min. Nunmehr wird über die Kennlinie der 3, hier: Gerade 22, eine konstante Mittelungszeit von dT = 120 ms berechnet. Ab dem Zeitpunkt t8 übersteigt die Motordrehzahl nMOT wieder die Grenzdrehzahl nLi, sodass die Mittelungszeit nunmehr wieder in Abhängigkeit der Motordrehzahl (3: Hyperbel 23) berechnet wird.
-
Das Diagramm der 4C zeigt den gemittelten Raildruck pMW, welcher zunächst ansteigt und zum Zeitpunkt t3 den konstanten Soll-Raildruck pCR(SL) = 800 bar erreicht. Nach einem Überschwinger pendelt sich der gemittelte Raildruck pMW zum Zeitpunkt t5 auf dem Soll-Raildruck pCR(SL) ein. Wie dargestellt wirkt sich der Drehzahleinbruch infolge der Lastaufschaltung nur geringfügig auf den gemittelten Raildruck pMW aus.
-
In der 5 ist das Verfahren in einem Programm-Ablaufplan als Unterprogramm dargestellt. Bei S1 wird geprüft, ob die Motordrehzahl nMOT größer/gleich der Grenzdrehzahl nLi ist. In der Praxis wird nL1 = 1000 1/min gewählt. Liegt die Motordrehzahl nMOT oberhalb der Grenzdrehzahl nLi, Abfrageergebnis S1: ja, so wird bei S2 die Anzahl der Werte N, über welche der Raildruck gemittelt wird, entsprechend der Motordrehzahl nMOT und der Abtastzeit tS berechnet. Für nMOT = 1500 1/min und einer Abtastzeit tS = 1 ms ergibt dies eine Anzahl von N = 80 Werten, Ist die Motordrehzahl nMOT kleiner als die Grenzdrehzahl nLi, Abfrageergebnis S1: nein, so wird bei S3 die Anzahl N nicht in Abhängigkeit der Motordrehzahl nMOT berechnet, sondern anhand der konstant vorgegebenen Grenzdrehzahl nLi. Für eine Grenzdrehzahl nLi = 1000 1/min sind dies N = 120 Werte. Danach ist der Programm-Ablaufplan beendet.
-
Bezugszeichenliste
-
- 1
- Brennkraftmaschine
- 2
- Tank
- 3A, 3B
- Niederdruckpumpe
- 4A, 4B
- Saugdrossel
- 5A, 5B
- Hochdruckpumpe
- 6A, 6B
- Rail
- 7A, 7B
- Injektor
- 8A, 8B
- Einzelspeicher (optional)
- 9A, 9B
- Raildrucksensor
- 10
- elektronisches Motorsteuergerät (ECU)
- 11A, 11B
- Raildruck-Regelkreis
- 12A, 12B
- Druckregler
- 13A, 13B
- Pumpen-Kennlinie
- 14A, 14B
- Berechnung PWM-Signal
- 15A, 15B
- Regelstrecke
- 16A, 16B
- Hardwarefilter
- 17A, 17B
- A/D-Wandler
- 18A, 18B
- Mittelwertfilter
- 19A, 19B
- Tiefpassfilter (PT1-Filter, optional)
- 20A, 20B
- schnelles Filter (PT1-Filter)
- 21
- Kennlinie
- 22
- Gerade
- 23
- Hyperbel
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- DE 4335171 C1 [0002]
- DE 102006049266 B3 [0003]
- DE 102007034317 A1 [0004, 0004]