DE102016204957A1 - Automated lane change in dynamic traffic based on driving dynamics restrictions - Google Patents
Automated lane change in dynamic traffic based on driving dynamics restrictions Download PDFInfo
- Publication number
- DE102016204957A1 DE102016204957A1 DE102016204957.7A DE102016204957A DE102016204957A1 DE 102016204957 A1 DE102016204957 A1 DE 102016204957A1 DE 102016204957 A DE102016204957 A DE 102016204957A DE 102016204957 A1 DE102016204957 A1 DE 102016204957A1
- Authority
- DE
- Germany
- Prior art keywords
- lane change
- trajectory
- vehicle
- equation
- maneuver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000008859 change Effects 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000004422 calculation algorithm Methods 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 238000004088 simulation Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0953—Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18163—Lane change; Overtaking manoeuvres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
- B62D15/0255—Automatic changing of lane, e.g. for passing another vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0004—In digital systems, e.g. discrete-time systems involving sampling
- B60W2050/0005—Processor details or data handling, e.g. memory registers or chip architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/40—Coefficient of friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Verfahren zur Entscheidungsfindung sowie Planung der Fahrtrajektorie eines automatisierten Fahrstreifenwechsels eines Landfahrzeuges im dynamischen Verkehr nach
a) einem Verfahren zur Entscheidung ob der umgebende Verkehr und die fahrdynamischen Einschränkungen durch das Fahrzeug sowie die Straßenverhältnisse einen Fahrstreifenwechsel zulässt und eine Fahrstreifenwechselzeit dafür vorschlägt
und
b) einem Verfahren zur Planung des Fahrstreifenwechsels welches als Sollvorgabe die Trajektorie für den darauffolgenden automatisierten Fahrstreifenwechsels vorgibt und es erlaubt – bei entsprechend geänderten Bedingungen des Verkehrs, der Umgebung und des Fahrzeugs – die vorgegebene Trajektorie während des Fahrstreifenwechsels zu ändern. Method for decision-making and planning of the driving trajectory of an automated lane change of a land vehicle in dynamic traffic
a) a method for deciding whether the surrounding traffic and the driving dynamics restrictions by the vehicle as well as the road conditions allows a lane change and proposes a lane change time for it
and
b) a method for planning the lane change which predetermines the trajectory for the subsequent automated lane change and allows it - to change the predetermined trajectory during the lane change - in accordance with changed conditions of traffic, the environment and the vehicle.
Description
Die Erfindung betrifft eine Methodik zur automatisierten Entscheidung und Vorgaben für die Ausführung eines automatisierten komfortorientierten Fahrstreifenwechsels eines Straßenfahrzeugs. The invention relates to a method for automated decision and specifications for the execution of an automated comfort-oriented lane change of a road vehicle.
Die Erfindung ist unterteilt in ein
- a) Trajektorien-Entscheidungsmodul (TEM) das die Entscheidung für einen Fahrstreifenwechsel durchführt
- b) Trajektorien Planung Algorithmus (TPA), der eine Soll-Trajektorie plant, die nachfolgend von einem Automatisierungssystem des Fahrzeugs ausgeführt wird
- a) Trajectory decision module (TEM) which makes the decision for a lane change
- b) trajectory planning algorithm (TPA), which plans a target trajectory, which is subsequently executed by an automation system of the vehicle
Die Aufgabenstellung der Erfindung ist Bestandteil eines automatisierten Führens eines Straßenfahrzeugs. The object of the invention is part of an automated guidance of a road vehicle.
Die
Die vollständigen Definitionen der einzelnen Stufen und auch der kursiv geschriebenen Bezeichnungen findet man im
Die Erfindung betrifft einen automatisierten Fahrstreifenwechsel, der unter verschiedenen Levels der Automatisierung angewandt werden kann. Insbesondere Systeme ab Level 3, wo der Fahrer nicht mehr die Umgebung beobachten muss sind hierbei relevant, es ist aber auch eine Anwendung unter Level 2 denkbar. The invention relates to an automated lane change that can be applied under different levels of automation. In particular, systems from
Im Folgenden wird der Stand der Technik zu den beiden wesentlichen Neuerungen des Trajektorien-Entscheidungsmodul (TEM) und der Trajektorienplanung als Sollvorgabe (TPA) für das Regelsystem nach beschrieben. In the following, the prior art will be described to the two major innovations of the trajectory decision module (TEM) and the trajectory planning as a target specification (TPA) for the control system according to.
In
- a) Stand der Technik Trajektorien-Entscheidungsmodul (TEM)
- a) Prior Art Trajectory Decision Module (TEM)
In den letzten dreißig Jahren beschäftigen sich diverse Forschungen mit dem Thema Fahrstreifenwechsel, wie z.B. [1]. In [2] wurden anhand von 16 Fahrern die Charakteristiken eines Fahrstreifenwechsels, wie z.B. die Dauer und der notwendige Abstand als auch die Ausgangsposition des Fahrzeugs, untersucht. Es wurde auch gezeigt, dass das Alter des Fahrers und die Ausrichtung des Fahrstreifenwechsels keine Auswirkung auf diesen Charakteristiken haben. Eine andere Untersuchung, die mithilfe eines Fahrsimulators Lenkwinkel während dem Fahrstreifenwechsel aufgezeichnet hat, zeigt, dass die Art des vorderen Fahrzeuges nicht die Dauer des Manövers und den maximalen Einschlagwinkel des Lenkrads beeinflusst. Anderseits beeinflusst die Geschwindigkeit des vorderen Fahrzeuges sehr wohl die genannten Charakteristiken [3]. In [4] wurde ein weiteres Fahrstreifenwechsel-Modell basierend auf „cellular automaton“ (CA) entwickelt. Dabei konzentriert man sich auf einige Systemgrenzen des Fahrzeugs, wie z.B. maximale Beschleunigung und maximale Verzögerung. Die dabei verwendeten Gesetzmäßigkeiten wurden in einer weiteren Studie [5] für die Verkehrssimulation der Zwei- und Dreifachspurigen-Autobahnen benutzt um zu zeigen, dass das entwickelte Modell auch realistische Simulationen erlaubt. In the last thirty years various researches have been working on lane change, such as [1]. In [2] the characteristics of a lane change, such as the duration and the necessary distance as well as the starting position of the vehicle were examined on the basis of 16 drivers. It has also been shown that the age of the driver and the orientation of the lane change have no effect on these characteristics. Another study that used a driving simulator to record steering angles during lane changes shows that the type of front vehicle does not affect the duration of the maneuver and the steering wheel's maximum steering angle. On the other hand, the speed of the front vehicle very well influences the mentioned characteristics [3]. In [4] became one developed another lane change model based on "cellular automaton" (CA). It focuses on some system limits of the vehicle, such as maximum acceleration and maximum deceleration. The laws used here were used in another study [5] for the traffic simulation of the two- and three-lane highways to show that the developed model also allows realistic simulations.
Ein Fahrmanöver wird in [6] mit einem voraussagenden Kontrollmodel (MPC) interpretiert, mit der Fähigkeit einen doppelten Fahrstreifenwechselmanöver mithilfe einer ISO standardisierten Fuzzy-Regelung zu regeln und zu stabilisieren. Gleiche Vorgehensweise wurde in einem weiteren Projekt [7] um die Geschwindigkeit des Fahrzeugs zusammen mit dem Fahrstreifenwechsel zu kontrollieren, angewandt. Die Experimente, die auf im zweispurigen Richtungsverkehr durchgeführt wurden, zeigten eine passende longitudinale und laterale Fahrzeugführung in Hinblick auf den vorherrschenden Verkehr. A driving maneuver is interpreted in [6] with a predictive control model (MPC) with the ability to control and stabilize a double lane change maneuver using ISO standardized fuzzy control. The same procedure was used in another project [7] to control the speed of the vehicle together with the lane change. The experiments carried out in the two-lane directional traffic showed a suitable longitudinal and lateral vehicle guidance with regard to the prevailing traffic.
In [8] wurden einige Modelle für Fahrstreifenwechsel bei Pkws und Lkws vorgestellt. Durch Einbeziehung des Verhaltens bei Verfolgen eines weiteren Fahrzeugs und durch Anwendung der dynamischen Systemgrenzen wurde ein neues Modell entwickelt, bei welchem eine Geschwindigkeitsänderung während des Manövers möglich ist [9]. Dieses Modell ist einfach und näher dem realen Verhalten eines Fahrers beim Fahrstreifenwechsel. Die Untersuchung der einen Fahrstreifenwechsel beeinflussenden Parameter hat gezeigt, dass die Art, die Größe und der Dauer des Manövers nicht von dem vorfahrenden Fahrzeug abhängig sind sondern nur von dem Startpunkt des Fahrstreifenwechsels [10]. Weiterhin wurde in dieser Arbeit ein einfaches mathematisches Modell basierend auf dem optimierten Manöver-Kraftstoffverbrauch hergeleitet. In [8] some models for lane changes in cars and trucks were presented. By incorporating the behavior of tracking another vehicle and applying the dynamic system boundaries, a new model was developed in which a speed change during the maneuver is possible [9]. This model is simple and closer to the real behavior of a driver when changing lanes. The investigation of the parameters influencing a lane change has shown that the type, the size and the duration of the maneuver are not dependent on the preceding vehicle but only on the starting point of the lane change [10]. Furthermore, in this work a simple mathematical model based on the optimized maneuver fuel consumption was derived.
Innovation der Erfindung bei TEM Innovation of the Invention at TEM
Der Vorteile und innovative Anteile des in weiterer Folgevorgestellten Algorithmus sind:
- (1) Einbeziehung der Effekte der lateralen Verschiebung und der Reifenreibung,
- (2) Beachtung der Fahrdynamik und
- (3) die Echtzeit-Fähigkeit.
- (4) Weiterhin, sollte sich die Verkehrssituation während des Manövers ändern, wird der ursprünglich geplante Fahrschlauch dynamisch geändert. Diese Flexibilität beim Entscheidungsprozess ist der nächste große Vorteil des Algorithmus. Dadurch, dass die Algorithmus Parameter durch plötzlich strengere Anforderungen geändert werden, wird auch die Sicherheit des Manövers erhöht.
- (1) incorporating the effects of lateral displacement and tire friction,
- (2) consideration of driving dynamics and
- (3) the real-time capability.
- (4) Furthermore, if the traffic situation changes during the maneuver, the originally planned route is changed dynamically. This flexibility in the decision making process is the next big advantage of the algorithm. The fact that the algorithm parameters are changed by suddenly stricter requirements also increases the safety of the maneuver.
b) Stand der Technik Trajektorien Planung Algorithmus (TPA) b) Prior Art Trajectory Planning Algorithm (TPA)
In [11] wird die mögliche Änderung der Fahrstrecke unter Berücksichtigung der Dynamik für das naheliegende Zeitfenster errechnet. Danach wird die Fahrstreifenwechselstrecke so geplant um Kollisionen während des Manövers zu vermeiden. Chen benutzt die Piecewice Quadratic Bezier Kurven für die Streckenplanung [12]. Dabei ist der niedrige Bedarf an der Rechenleistung der Hauptvorteil der Methode. Die Einhaltung der dynamischen Grenzen als auch die Komfort der Passagiere werden durch die Berechnungen der maximalen Streckenkrümmung und der Gierrate untersucht. In einer anderen Untersuchung wurden einige Modelle basierend auf Fahrdynamik und auch Fahrerstrategien während des Fahrstreifenwechselwechselmanövers entwickelt. Experimentelle Evaluierungen mithilfe realer Fahrversuche zeigen, dass die vorgestellten Modelle im Vergleich mit solchen, die die polynomische Fahrstreifenwechselplanung anwenden, besser und genauer sind [13, 14]. Weiteres wurden auch Risk-maps benutzt um den Fahrstreifenwechsel zu planen [15]. Experimente zeigen, dass diese Methode bei verschiedenen Manövern benutzt werden kann, wie z. B. Planung der kürzesten Strecke beim Fahrstreifenwechsel, ohne dabei Kollisionen zu riskieren. Die sogenannte Celldecomposition ist eine weitere Methode für die Auswahl und Konstruktion der Fahrstrecke [16]. Hierbei wird die Straße in kleineren Zellen geteilt und anschließend eine optimierte Suchmethode angewandt um die Fahrstrecke zur Zielposition zu finden ohne dabei zu kollidieren. Intelligente Steuerungstechnologien, wie z. B. Fuzzy-Control [17], Neuronale Netzwerke [18] und Swarm-Intelligence [19], werden auch für die Trajektorienplanung eingesetzt. In einer Studie von Feng wurde ein Algorithmus entworfen wobei der Fahrstreifenwechsel durch Ruckreduzierung, d.h. auch Komfortgewinn, realisiert wurde [20]. Bei diesem Modell werden fuzzy neuronale Netzwerke und genetische Algorithmen angewendet um einen robusten Regler für die Lenkung auf der Strecke zu erhalten. Die Simulationsergebnisse zeigen, dass der Kontroller glatte und genaue Streckenwechsel-Manöver erzeugt. In [11] the possible change of the driving distance is calculated taking into account the dynamics for the obvious time window. Thereafter, the lane change lane is planned to avoid collisions during the maneuver. Chen uses the Piecewice Quadratic Bezier curves for route planning [12]. The low need for computing power is the main advantage of the method. The adherence to the dynamic limits as well as the comfort of the passengers are examined by the calculation of the maximum line curvature and the yaw rate. In another study, some models were developed based on driving dynamics and also driver strategies during the lane change maneuver. Experimental evaluations using real driving tests show that the presented models are better and more accurate compared to those using polynomial lane change planning [13, 14]. Further, risk maps were used to plan the lane change [15]. Experiments show that this method can be used in various maneuvers, such. B. Planning the shortest route when changing lanes without risking collisions. The so-called celldecomposition is another method for the selection and construction of the route [16]. Here, the road is divided into smaller cells and then applied an optimized search method to find the route to the target position without colliding. Intelligent control technologies, such as For example, fuzzy control [17], neural networks [18] and swarm intelligence [19] are also used for trajectory planning. In a study by Feng, an algorithm was devised whereby the lane change by jerk reduction, i. comfort gain was also realized [20]. This model uses fuzzy neural networks and genetic algorithms to provide a robust steering control on the track. The simulation results show that the controller produces smooth and accurate route change maneuvers.
Innovation der Erfindung bei TPA Innovation of the Invention at TPA
Die Erfindung stellt ein Algorithmus dar, der Dynamik des Umgebungsverkehrs beim Entwurf der Fahrstreifenwechseltrajektorie einbezieht. Sollten sich die Verkehrsbedingungen während des Fahrstreifenwechsels so ändern, dass der ursprünglich generierte Fahrstreifen nicht mehr sicher ist, wird er passend zu den neuen Bedingungen geändert. Bei der Entwicklung wurde eine Kombination aus polynomialen und trigonometrischen Funktionen benutzt um die Wechselfahrstrecke zu erzeugen. Dabei wurden die Parameter und Koeffizienten der Streckenfunktion aus den physikalischen Zusammenhängen und Systemgrenzen gewonnen. Simulationsergebnisse bestätigen eine zufriedenstellende Leistung des Algorithmus bei der Einleitung und der Änderung der Trajektorie. Zusätzlich wird das Umsteigen auf die geänderte Trajektorie kontinuierlich und glatt, ohne Verletzung der Systemgrenzen, durchgeführt. The invention provides an algorithm that incorporates dynamics of the surrounding traffic in the design of the lane change trajectory. If the traffic conditions change during the lane change so that the originally generated lane is no longer safe, it will be changed to suit the new conditions. During development, a combination of polynomial and trigonometric functions was used to generate the alternate route. The parameters and coefficients of the path function were derived from the physical relationships and system boundaries. Simulation results confirm a satisfactory performance of the algorithm when initiating and changing the trajectory. In addition, the changeover to the changed trajectory is carried out continuously and smoothly, without violation of the system boundaries.
Beschreibung der Erfindung Description of the invention
a) Beschreibung Trajektorien Entscheidungsmodul (TEM) a) Description Trajectories Decision Module (TEM)
Die Entscheidung für einen Fahrstreifenwechsel muss mit Präsenz anderer Fahrzeuge und in einer dynamischen Verkehrssituation getroffen werden. In
Während des Manövers muss der laterale Abstand zwischen dem rechten vorderen Eck E des Fahrzeugs und dem rechten hinteren Eck B des Fahrzeugs mindestens C1 sein (
During the maneuver, the lateral distance between the right front corner E of the vehicle and the right rear corner B of the vehicle must be at least C 1 (
Am Ende der Manöverbewegung muss der Abstand zu B mindestens C2 sein (
Während des Manövers muss der laterale Abstand zwischen dem rechten hinteren Eck E des Fahrzeugs und dem linken vorderen Eck D des Fahrzeugs mindestens C3 sein. Weiters muss nach dem Manöver die longitudinale Distanz zwischen E und D mindestens C4 sein (
Die vorgegebene laterale Geschwindigkeit des Egofahrzeugs muss während des Manövers und unter der Berücksichtigung der potenziell herrschenden Reifenreibung erreichbar sein. The given lateral speed of the ego vehicle must be achievable during the maneuver and taking into account the potentially prevalent tire friction.
Das beschriebene Verfahren untersucht die Möglichkeiten für die Erzeugung einer Trajektorie unter der Berücksichtigung aller aufgezählten Bedingungen. Falls die Trajektorie realisierbar ist, wird das Manöver innerhalb der vordefinierten Zeit zugelassen; ansonsten wird das Ego-Fahrzeug im gleichen Fahrstreifen gehalten bis die passende Situation für einen Fahrstreifenwechsel vorhanden ist. Der Entscheidungslgorithmus benutzt die Zeit als Hauptentscheidungsmerkmal. Als erstes wird die Zeitdauer der kritischsten Trajektorie unter Berücksichtigung von Nebenbedingungen ermittelt. Danach wird die Zeitdauer der weiteren Trajektorien berechnet und untereinander verglichen um über die Durchführbarkeit eines Fahrstreifenwechsels zu entscheiden. In weiterer Folge wird die Methode der Berechnung der kritischen Trajektorien basierend auf einzelnen Bedingungen erklärt. The method described examines the possibilities for generating a trajectory taking into account all the enumerated conditions. If the trajectory is feasible, the maneuver is allowed within the predefined time; otherwise the ego vehicle is kept in the same lane until the appropriate situation for a lane change exists. The decision algorithm uses time as the main decision feature. First, the duration of the most critical trajectory is determined taking into account constraints. Thereafter, the duration of the other trajectories is calculated and compared with each other to decide on the feasibility of a lane change. Subsequently, the method of calculating the critical trajectories is explained based on individual conditions.
Fall 1: Vorausfahrendes Fahrzeug am gleichen Fahrstreifen, Fig. 2-a und Fig. 3Case 1: Vehicle driving ahead on the same lane, Figs. 2-a and Fig. 3
Unter Berücksichtigung des Sicherheitsabstandes C1 zwischen den Fahrzeugen wird der laterale Abstand zwischen Fahrzeugen A und E berechnet: Taking into account the safety distance C 1 between the vehicles, the lateral distance between vehicles A and E is calculated:
Mithilfe numerischer Methoden kann man die Gleichung (1) auflösen und daraus unter Einhalten des Abstandes C1 die Zeitdauer t1 des Manövers berechnen. By means of numerical methods one can solve the equation (1) and calculate the time duration t 1 of the maneuver while maintaining the distance C 1 .
Fall 2: Ein vorausfahrendes und ein weiteres Fahrzeug auf dem Zielfahrstreifen, Fig. 2-bCase 2: A preceding vehicle and another vehicle on the target lane, Fig. 2-b
In einer solchen Situation der Sicherheitsabstand C2 folgendermaßen bestimmt: In such a situation, the safety distance C 2 is determined as follows:
Durch Substitution aller notwendigen Parameter in (2) kann man C2 und weiter die Manöverzeit, bezeichnet mit t2, berechnen. By substituting all necessary parameters in (2) one can calculate C 2 and further the maneuver time, denoted by t 2 .
Fall 3: Ein überholtes Fahrzeug auf dem Zielfahrstreifen, Fig. 2-c und Fig. 4Case 3: An overhauled vehicle on the target lane, Figs. 2-c and Fig. 4
Dieser Fall stellt eine Kombination der ersten beiden Fällen dar. Um den Dauer des Fahrstreifenwechsels zu bestimmen, wird zunächst die passende Manöverzeit basierend auf dem sicheren lateralen Abstand und mithilfe der Gleichung (3) berechnet. Danach wird eine weitere passende Manöverzeit basierend auf dem sicheren longitudinalen Abstand am Ende des Manövers und mithilfe der Gleichung (4) berechnet. Zuletzt wird die längere von den beiden Zeiten ausgewählt und als t3 bezeichnet:
Fall 4: Der aggressivste Fahrstreifenwechsel Case 4: The most aggressive lane change
Die erzeugte Trajektorie muss unter Berücksichtigung der Fahrdynamik machbar sein. Es muss sichergestellt werden, dass die ermittelte laterale Beschleunigung während dem Manöver bezüglich Reifen-Fahrbahn-Kontakt und unter Einhaltung der Stabilität des Fahrzeugs erreichbar ist. Um das sicherzustellen, wird die Dauer des heftigsten Manövers berechnet und dann die Trajektorie erzeugt.
Der untere Raumbereich sind die unzulässigen Zeiten, da sie die vorhin erläuterten Stabilitätskriterien nicht erfüllen. Die Punkte der dargestellten Fläche stellen das Minimum der zulässigen Zeiten dar. Die Ergebnisse der einzelnen Simulationen werden mithilfe (5) approximiert, wobei die minimale Manöverdauer tm durch Reifenreibungskoeffizient μ und Fahrzeug Geschwindigkeit vx ermittelt wird. The lower room area are the inadmissible times, since they do not fulfill the stability criteria explained earlier. The points of the displayed surface represent the minimum of the permissible times. The results of the individual simulations are approximated by (5), whereby the minimum maneuvering time t m is determined by tire friction coefficient μ and vehicle speed v x .
Entscheidung für den Fahrstreifenwechsel Decision for the lane change
Die Entscheidung für einen Fahrstreifenwechsel kann man durch die Zeitberechnungen der t1, t2, und t3 und durch Einsetzen von min(tm) = t4. In der Tabelle 1 sind die möglichen Fälle für einen Fahrstreifenmanöver zusammen mit den zulässigen Manöverzeiten oder Zeitintervallen dargestellt. Tabelle 1: Mögliche Fälle für einen Fahrstreifenwechsel
Beispielhaft wird der Fall 2 aus der Tabelle 1 als Beispiel erläutert. Dabei ist t1 > t2 > t3 > t4, wie in
b) Beschreibung Trajektorienplanung (TPA) b) Description Trajectory Planning (TPA)
Der wichtigste Vorteil der Erfindung ist die Vorstellung eines Algorithmus, der die Umgebungszustände und Verkehrsdynamik bei der Planung des Fahrstreifenwechsels in die Rechnung miteinbezieht. Im Falle einer Änderung der Verkehrssituation während des Manöververlaufs, sodass die ursprünglich erzeugte Trajektorie kritisch wird, kann das Modell die Trajektorie ändern. Der Wechsel auf die neu konstruierte Trajektorie wird kontinuierlich und glatt umgesetzt, sodass die fahrdynamischen und Komfort Bedingungen erfüllt bleiben. The most important advantage of the invention is the conception of an algorithm that incorporates the environmental conditions and traffic dynamics in planning the lane change into the bill. In the event of a change in the traffic situation during the course of the maneuver so that the originally generated trajectory becomes critical, the model can change the trajectory. The change to the newly constructed trajectory is implemented continuously and smoothly, so that the driving dynamics and comfort conditions remain met.
Die Lösung des oben beschriebenen Problems erfolgt unter Annahme einer konstanten Längsgeschwindigkeit durch folgende Gleichung zur Erzeugung der Trajektorie:
Dabei werden die Parameter a, b, c, d, e, g, h mit folgendem Verfahren bestimmt:
Unter Einhaltung der im Folgenden beschriebenen Nebenbedingungen, die unterschiedlich sein können in Abhängigkeit davon ob das Ziel entweder
- (A) die ursprüngliche Form der Trajektorie am Manöveranfang (Start bei t1 in der
2 ) oder - (B) die geänderte Trajektorie während des Manövers (Start bei t2 in der
2 ) ist.
In compliance with the constraints described below, which may vary depending on whether the destination is either
- (A) the original shape of the trajectory at the beginning of the maneuver (start at t 1 in the
2 ) or - (B) the changed trajectory during the maneuver (start at t 2 in the
2 ).
Die beiden Fälle werden näher in der
- A) Hier ist die laterale Geschwindigkeit und die Beschleunigung am Anfang und am Ende des Manövers als Null angenommen. Gleichzeitig wird auch die laterale Position am Anfang des Manövers als Null angenommen.
- A) Here the lateral speed and the acceleration at the beginning and at the end of the maneuver are assumed to be zero. At the same time, the lateral position at the beginning of the maneuver is assumed to be zero.
Insgesamt sind es folgende fünf Bedingungen:
- B) Hierbei muss die Kontinuität der lateralen Position, die Geschwindigkeit und die Beschleunigung des Fahrzeugs bei der Umplanung der Trajektorie berücksichtigt werden. Die Variationen der aufgezählten Faktoren müssen homogenisiert und ohne etwaigen Sprüngen bei den jeweiligen Werten verlaufen. Daraus kann man folgende fünf mathematische Bedingungen herleiten:
- B) The continuity of the lateral position, the speed and the acceleration of the vehicle must be taken into account when planning the trajectory. The variations of the listed factors must be homogenized and without any jumps in the respective values. From this one can derive the following five mathematical conditions:
In beiden Fällen sind fünf Koeffizienten für Trajektorien Gleichung aus den fünf Bedingungen zu gewinnen. Die zwei übrigen Parameter, b und e, werden hergeleitet um folgende Kostenfunktion zu minimisieren:
Die Gleichungen 10 und 11 stellen den Arbeitsbereich des Algorithmus für eine sichere Planung der geänderten Trajektorie: Equations 10 and 11 set the working range of the algorithm for safe planning of the changed trajectory:
In den Gleichungen stehen (tf2)max und (tf2)min für maximale und minimale Zeiten, die vom Algorithmus als die Endzeit für die umgeänderte Trajektorie benutzt werden können. Die Koeffizienten kp und ks sind mithilfe fahrdynamischer Simulationen hergeleitet und in den Gleichungen (12) und (13) dargestellt: In the equations, (t f2 ) max and (t f2 ) min represent maximum and minimum times that the algorithm can use as the end time for the changed trajectory. The coefficients k p and k s are derived by means of dynamic driving simulations and are shown in equations (12) and (13):
In den Gleichungen (12) und (13) steht pt nach Gleichung (14) für die „Bewegungsreibung“ der Trajektorie und zwar zum Zeitpunkt ts2, wo die geänderte Trajektorie beginnt. In der
Die erfolgreiche Konstruktion der neuen Trajektorie ist in den früheren Manöverphasen wahrscheinlicher. Die Wahrscheinlichkeit für eine erfolgreiche Umstrukturierung der Trajektorie fällt mit dem Manöverzeitverlauf. In equations (12) and (13), p t according to equation (14) stands for the "movement friction" of the trajectory, specifically at time t s2 , where the changed trajectory begins. In the
The successful construction of the new trajectory is more likely in the earlier maneuver phases. The probability of a successful restructuring of the trajectory coincides with the maneuver time course.
Falls die umgeänderte Trajektorie zu längeren Manöverzeiten neigt (tf2 > tf1), muss der Startpunkt unter der Zeit von 45% der gesamten Manöverdauer liegen. Anderseits, falls der schnellere Fahrstreifenwechselmanöver angestrebt wird (tf2 > tf1), der Startpunkt muss vor dem Zeit von 85% der gesamten Manöverdauer liegen. If the modified trajectory is prone to longer maneuver times (t f2 > t f1 ), the starting point must be less than 45% of the total maneuver time. On the other hand, if the faster lane change maneuver is desired (t f2 > t f1 ), the starting point must be before the time of 85% of the total maneuver time.
Literaturverzeichnis bibliography
-
[1]
P. G. Gipps, "A Model for the Structure of Lane-changing Decisions", Transportation Research Part B: Methodological, vol. 20, pp. 403–414, 10, 1986 PG Gipps, "A Model for the Structure of Lane-Changing Decisions," Transportation Research Part B: Methodological, vol. 20, pp. 403-414, 10, 1986 -
[2]
S. Hetrick, "Examination of Driver Lane Change Behavior and the Potential Effectivness of Warning Onset Rules for Lane Change or "Side" S. Hetrick, "Examination of Driver Lane Change Behavior and the Potential Effectiveness of Warning Onset Rules for Lane Change or" Side " -
[3]
L. Penghui, H. Mengxia, Z. Wenhui, X. Xiaoqing and L. Yibing, "Steering Behavior during Overtaking on Freeways", in 5th International Conference on Computing for Geospatial Research and Application, Washington DC, 2014, pp. 117-118 L. Penghui, H. Mengxia, Z. Wenhui, X. Xiaoqing and L. Yibing, "Steering Behavior During Overtaking on Freeways," in 5th International Conference on Computing for Geospatial Research and Application, Washington DC, 2014, p. 117-118 -
[4]
H. K. Lee, R. Barlovic, M. Schreckenberg and D. Kim, "Mechanical Restriction Versus Human Overreaction Triggering Congested Traffic States", PH YSICA L R EV I EW L ET T ERS, vol. 92, pp. 238702-1-238702-4, 2004 HK Lee, R. Barlovic, M. Schreckenberg and D. Kim, "Mechanical Restriction Versus Human Overreaction Triggering Congested Traffic States", PH YSICA LR EV I EW L ET T ERS, vol. 92, pp. 238702-1-238702-4, 2004 -
[5]
L. Habel and M. Schreckenberg, "Asymmetric Lane Change Rules for a Microscopic Highway Traffic Model", in 11th International Conference on Cellular Automata for Research and Industry (ACRI), Krakow, Poland, 2014, pp. 620–629 L. Habel and M. Schreckenberg, "Asymmetric Lane Change Rules for a Microscopic Highway Traffic Model," in 11th International Conference on Cellular Automata for Research and Industry (ACRI), Krakow, Poland, 2014, pp. 620-629 -
[6]
A. El-Hajjaji and M. Ouladsine, "Modeling Human Vehicle Driving by Fuzzy Logic for Standardized ISO Double Lane Change Maneuver", in 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 499–503 A. El-Hajjaji and M. Ouladsine, "Modeling Human Vehicle Driving by Fuzzy Logic for Standardized ISO Double Lane Change Maneuver," in 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 499-503 -
[7]
J. Nilsson and J. Sjoberg, "Strategic Decision Making for Automated Driving on Two-lane, One Way Roads Using Model Predictive Control", in IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 1253–1258 J. Nilsson and J. Sjoberg, "Strategic Decision Making for Automated Driving on Two-lane, One Way Roads using Model Predictive Control", in IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 1253-1258 -
[8]
T. Toeldo and D. Zohar, "Modeling Duration of Lane Changes", Transportation Research Record: Journal of the Transportation Research Board, pp. 71–78, 2007 T. Toeldo and D. Zohar, "Modeling Duration of Lane Change", Transportation Research Record: Journal of the Transportation Research Board, pp. 71-78, 2007 -
[9]
W. Xiaorui and Y. Hongxu, "A Lane Change Model with the Consideration of Car Following Behavior", Procedia – Social and Behavioral Sciences, vol. 96, pp. 2354–2361, 11 June, 2013 W. Xiaorui and Y. Hongxu, "A Lane Change Model with the Consideration of Car Following Behavior", Procedia - Social and Behavioral Sciences, vol. 96, pp. 2354-2361, 11 June, 2013 -
[10]
T. Shamir, "How Should an Autonomous Vehicle Overtake a Slower Moving Vehicle: Design and Analysis of an Optimal Trajectory", IEEE Transactions on Automatic Control, vol. 49, pp. 607–610, 2004 T. Shamir, "How Should Autonomous Vehicle Overtake a Slower Moving Vehicle: Design and Analysis of Optimal Trajectory", IEEE Transactions on Automatic Control, vol. 49, pp. 607-610, 2004 -
[11]
H. Sun, W. Deng, S. Zhang, S. Wang and Y. Zhang, "Trajectory Planning for Vehicle Autonomous Driving with Uncertainties", in International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), 2014, pp. 34–38 H. Sun, W. Deng, S. Zhang, S. Wang, and Y. Zhang, "Trajectory Planning for Vehicle Autonomous Driving with Uncertainties," International Conference on Informative and Cybernetic for Computational Social Systems (ICCSS), 2014, pp. 34-38 -
[12]
J. Chen, P. Zhao, T. Mei and H. Liang, "Lane Change Path Planning Based on Piecewise Bezier Curve for Autonomous Vehicle", in IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2013, pp. 17–22 J. Chen, P. Zhao, T. Mei, and H. Liang, "Lane Change Path Planning Based on Piecewise Bezier Curves for Autonomous Vehicles," in the IEEE International Conference on Automotive Electronics and Safety (ICVES), 2013, p. 17-22 -
[13]
G. Xu, L. Liu, Y. Ou and Y. Song, "Dynamic Modeling of Driver Control Strategy of Lane-Change Behavior and Trajectory Planning for Collision Prediction", IEEE Transactions on Intelligent Transportation Systems, vol. 13, 2012, pp. 1138–1155 G. Xu, L. Liu, Y. Ou and Y. Song, "Dynamic Modeling of Driver Control Strategy of Lane-Change Behavior and Trajectory Planning for Collision Prediction", IEEE Transactions on Intelligent Transportation Systems, vol. 13, 2012, pp. 1138-1155 -
[14]
G. Xu, L. Liu, Z. Song and Y. Ou, "Generating Lane-change Trajectories Using the Dynamic Model of Driving Behavior", in IEEE International Conference on Information and Automation (ICIA), 2011, pp. 464–469 G. Xu, L. Liu, Z. Song and Y.Ou, "Generating Lane-Change Trajectories Using the Dynamic Model of Driving Behavior," in IEEE International Conference on Information and Automation (ICIA), 2011, pp. 464-469 -
[15]
J. Schroder, T. Gindele, D. Jagszent and R. Dillmann, "Path Planning for Cognitive Vehicles Using Risk Maps", in IEEE Intelligent Vehicles Symposium, 2008, pp. 1119–1124 J. Schroder, T. Gindele, D. Jagszent, and R. Dillmann, "Path Planning for Cognitive Vehicles Using Risk Maps," in IEEE Intelligent Vehicles Symposium, 2008, p. 1119-1124 -
[16]
N. A. Melchior and R. Simmons, "Particle RRT for Path Planning with Uncertainty", in IEEE International Conference on Robotics and Automation, 2007, pp. 1617–1624 NA Melchior and R. Simmons, "Particle RRT for Path Planning with Uncertainty," IEEE International Conference on Robotics and Automation, 2007, p. 1617-1624 -
[17]
A. El-Hajjaji and M. Ouladsine, "Modeling Human Vehicle Driving by Fuzzy Logic for Standardized ISO Double Lane Change Maneuver", in 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 499–503 A. El-Hajjaji and M. Ouladsine, "Modeling Human Vehicle Driving by Fuzzy Logic for Standardized ISO Double Lane Change Maneuver," in 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 499-503 -
[18]
I. Engedy and G. Horvath, "Artificial Neural Network Based Mobile Robot Navigation", in IEEE International Symposium on Intelligent Signal Processing (WISP), 2009, pp. 241–246 I. Engedy and G. Horvath, "Artificial Neural Network Based Mobile Robot Navigation", IEEE International Symposium on Intelligent Signal Processing (WISP), 2009, pp. 241-246 -
[19]
S. Doctor and G. K. Venayagamoorthy, "Unmanned Vehicle Navigation Using Swarm Intelligence", in Proceedings of International Conference on Intelligent Sensing and Information Processing, 2004, pp. 249–253 See Doctor and GK Venayagamoorthy, "Unmanned Vehicle Navigation Using Swarm Intelligence," in Proceedings of the International Conference on Intelligent Sensing and Information Processing, 2004, p. 249-253 -
[20]
J. Feng, J. Ruan and Y. Li, "Study on Intelligent Vehicle Lane Change Path Planning and Control Simulation", in IEEE International Conference on Information Acquisition, 2006, pp. 683–688 J. Feng, J. Ruan and Y. Li, "Study on Intelligent Vehicle Lane Change Path Planning and Control Simulation", IEEE International Conference on Information Acquisition, 2006, pp. 683-688
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- US 20140074356 [0008] US 20140074356 [0008]
- WO 2012/160591 [0008] WO 2012/160591 [0008]
- US 20050256630 [0008] US 20050256630 [0008]
- US 20030025597 [0008] US 20030025597 [0008]
- EP 0890470 [0008] EP 0890470 [0008]
Zitierte Nicht-PatentliteraturCited non-patent literature
- Report SAE J3016 [0005] Report SAE J3016 [0005]
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATGM73/2015 | 2015-03-25 | ||
ATGM73/2015U AT14433U3 (en) | 2015-03-25 | 2015-03-25 | Automated lane change in dynamic traffic, based on driving dynamics restrictions |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102016204957A1 true DE102016204957A1 (en) | 2016-09-29 |
Family
ID=54398653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102016204957.7A Withdrawn DE102016204957A1 (en) | 2015-03-25 | 2016-03-24 | Automated lane change in dynamic traffic based on driving dynamics restrictions |
Country Status (2)
Country | Link |
---|---|
AT (1) | AT14433U3 (en) |
DE (1) | DE102016204957A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108382395A (en) * | 2018-04-03 | 2018-08-10 | 浙江工业大学 | A kind of intelligent assistance system improving bus riding comfort |
US10145953B2 (en) | 2017-03-31 | 2018-12-04 | Ford Global Technologies, Llc | Virtual steerable path |
CN109501799A (en) * | 2018-10-29 | 2019-03-22 | 江苏大学 | A kind of dynamic path planning method under the conditions of car networking |
CN111332283A (en) * | 2018-12-17 | 2020-06-26 | Trw汽车股份有限公司 | Method and system for controlling a motor vehicle |
CN112236352A (en) * | 2018-06-27 | 2021-01-15 | 宝马汽车股份有限公司 | Method for determining an updated trajectory of a vehicle |
CN112455444A (en) * | 2020-11-26 | 2021-03-09 | 东风汽车集团有限公司 | Lane changing device and method for autonomously learning lane changing style of driver |
CN112739599A (en) * | 2020-04-29 | 2021-04-30 | 华为技术有限公司 | Method and device for recognizing vehicle lane changing behavior |
CN112991713A (en) * | 2019-12-13 | 2021-06-18 | 百度在线网络技术(北京)有限公司 | Data processing method, device, equipment and storage medium |
CN113158349A (en) * | 2021-05-24 | 2021-07-23 | 腾讯科技(深圳)有限公司 | Vehicle lane change simulation method and device, electronic equipment and storage medium |
CN113721544A (en) * | 2021-08-31 | 2021-11-30 | 浙江大学 | Laser cutting punching-free processing path generation method |
CN114331617A (en) * | 2021-12-29 | 2022-04-12 | 重庆大学 | A carpool matching method for commuter private cars based on artificial bee colony algorithm |
CN114802269A (en) * | 2022-03-31 | 2022-07-29 | 广州文远知行科技有限公司 | Main vehicle movement planning method and system and computer readable storage medium |
CN115116249A (en) * | 2022-06-06 | 2022-09-27 | 苏州科技大学 | A method for estimating different penetration rates and road capacity of autonomous vehicles |
CN115339516A (en) * | 2022-08-31 | 2022-11-15 | 中国第一汽车股份有限公司 | Method and device for determining rotation angle of steering wheel and electronic equipment |
CN116279485A (en) * | 2023-03-28 | 2023-06-23 | 深圳市康士达科技有限公司 | Automatic lane changing method based on unmanned vehicle, control chip and electronic equipment |
CN118238847A (en) * | 2024-03-25 | 2024-06-25 | 安徽大学 | Autonomous lane change decision planning method and system adaptive to different driving styles and road surface environments |
EP4316935A4 (en) * | 2021-03-31 | 2024-09-04 | Huawei Technologies Co., Ltd. | METHOD AND DEVICE FOR OBTAINING A LANE CHANGE AREA |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110597245B (en) * | 2019-08-12 | 2020-11-20 | 北京交通大学 | A lane changing trajectory planning method for autonomous driving based on quadratic programming and neural network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0890470A2 (en) | 1997-07-07 | 1999-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle control system for lane changing |
US20030025597A1 (en) | 2001-07-31 | 2003-02-06 | Kenneth Schofield | Automotive lane change aid |
US20050256630A1 (en) | 2004-05-17 | 2005-11-17 | Nissan Motor Co., Ltd. | Lane change assist system |
WO2012160591A1 (en) | 2011-05-20 | 2012-11-29 | 本田技研工業株式会社 | Lane change assistant system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002019485A (en) * | 2000-07-07 | 2002-01-23 | Hitachi Ltd | Driving support device |
JP3823924B2 (en) * | 2003-01-31 | 2006-09-20 | 日産自動車株式会社 | Vehicle behavior control device |
JP2005122274A (en) * | 2003-10-14 | 2005-05-12 | Toyota Motor Corp | Vehicle travel mode determination control device |
US8428843B2 (en) * | 2008-06-20 | 2013-04-23 | GM Global Technology Operations LLC | Method to adaptively control vehicle operation using an autonomic vehicle control system |
US9081387B2 (en) * | 2011-03-01 | 2015-07-14 | Continental Teves Ag & Co. Ohg | Method and device for the prediction and adaptation of movement trajectories of motor vehicles |
US8775006B2 (en) * | 2011-07-14 | 2014-07-08 | GM Global Technology Operations LLC | System and method for enhanced vehicle control |
DE102013009252A1 (en) * | 2013-06-03 | 2014-12-04 | Trw Automotive Gmbh | Control unit and method for an emergency steering assist function |
-
2015
- 2015-03-25 AT ATGM73/2015U patent/AT14433U3/en not_active IP Right Cessation
-
2016
- 2016-03-24 DE DE102016204957.7A patent/DE102016204957A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0890470A2 (en) | 1997-07-07 | 1999-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle control system for lane changing |
US20030025597A1 (en) | 2001-07-31 | 2003-02-06 | Kenneth Schofield | Automotive lane change aid |
US20050256630A1 (en) | 2004-05-17 | 2005-11-17 | Nissan Motor Co., Ltd. | Lane change assist system |
WO2012160591A1 (en) | 2011-05-20 | 2012-11-29 | 本田技研工業株式会社 | Lane change assistant system |
US20140074356A1 (en) | 2011-05-20 | 2014-03-13 | Honda Motor Co., Ltd. | Lane change assist system |
Non-Patent Citations (19)
Title |
---|
A. El-Hajjaji and M. Ouladsine, "Modeling Human Vehicle Driving by Fuzzy Logic for Standardized ISO Double Lane Change Maneuver", in 10th IEEE International Workshop on Robot and Human Interactive Communication, 2001, pp. 499–503 |
G. Xu, L. Liu, Y. Ou and Y. Song, "Dynamic Modeling of Driver Control Strategy of Lane-Change Behavior and Trajectory Planning for Collision Prediction", IEEE Transactions on Intelligent Transportation Systems, vol. 13, 2012, pp. 1138–1155 |
G. Xu, L. Liu, Z. Song and Y. Ou, "Generating Lane-change Trajectories Using the Dynamic Model of Driving Behavior", in IEEE International Conference on Information and Automation (ICIA), 2011, pp. 464–469 |
H. K. Lee, R. Barlovic, M. Schreckenberg and D. Kim, "Mechanical Restriction Versus Human Overreaction Triggering Congested Traffic States", PH YSICA L R EV I EW L ET T ERS, vol. 92, pp. 238702-1-238702-4, 2004 |
H. Sun, W. Deng, S. Zhang, S. Wang and Y. Zhang, "Trajectory Planning for Vehicle Autonomous Driving with Uncertainties", in International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), 2014, pp. 34–38 |
I. Engedy and G. Horvath, "Artificial Neural Network Based Mobile Robot Navigation", in IEEE International Symposium on Intelligent Signal Processing (WISP), 2009, pp. 241–246 |
J. Chen, P. Zhao, T. Mei and H. Liang, "Lane Change Path Planning Based on Piecewise Bezier Curve for Autonomous Vehicle", in IEEE International Conference on Vehicular Electronics and Safety (ICVES), 2013, pp. 17–22 |
J. Feng, J. Ruan and Y. Li, "Study on Intelligent Vehicle Lane Change Path Planning and Control Simulation", in IEEE International Conference on Information Acquisition, 2006, pp. 683–688 |
J. Nilsson and J. Sjoberg, "Strategic Decision Making for Automated Driving on Two-lane, One Way Roads Using Model Predictive Control", in IEEE Intelligent Vehicles Symposium (IV), 2013, pp. 1253–1258 |
J. Schroder, T. Gindele, D. Jagszent and R. Dillmann, "Path Planning for Cognitive Vehicles Using Risk Maps", in IEEE Intelligent Vehicles Symposium, 2008, pp. 1119–1124 |
L. Habel and M. Schreckenberg, "Asymmetric Lane Change Rules for a Microscopic Highway Traffic Model", in 11th International Conference on Cellular Automata for Research and Industry (ACRI), Krakow, Poland, 2014, pp. 620–629 |
L. Penghui, H. Mengxia, Z. Wenhui, X. Xiaoqing and L. Yibing, "Steering Behavior during Overtaking on Freeways", in 5th International Conference on Computing for Geospatial Research and Application, Washington DC, 2014, pp. 117-118 |
N. A. Melchior and R. Simmons, "Particle RRT for Path Planning with Uncertainty", in IEEE International Conference on Robotics and Automation, 2007, pp. 1617–1624 |
P. G. Gipps, "A Model for the Structure of Lane-changing Decisions", Transportation Research Part B: Methodological, vol. 20, pp. 403–414, 10, 1986 |
S. Doctor and G. K. Venayagamoorthy, "Unmanned Vehicle Navigation Using Swarm Intelligence", in Proceedings of International Conference on Intelligent Sensing and Information Processing, 2004, pp. 249–253 |
S. Hetrick, "Examination of Driver Lane Change Behavior and the Potential Effectivness of Warning Onset Rules for Lane Change or "Side" |
T. Shamir, "How Should an Autonomous Vehicle Overtake a Slower Moving Vehicle: Design and Analysis of an Optimal Trajectory", IEEE Transactions on Automatic Control, vol. 49, pp. 607–610, 2004 |
T. Toeldo and D. Zohar, "Modeling Duration of Lane Changes", Transportation Research Record: Journal of the Transportation Research Board, pp. 71–78, 2007 |
W. Xiaorui and Y. Hongxu, "A Lane Change Model with the Consideration of Car Following Behavior", Procedia – Social and Behavioral Sciences, vol. 96, pp. 2354–2361, 11 June, 2013 |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10145953B2 (en) | 2017-03-31 | 2018-12-04 | Ford Global Technologies, Llc | Virtual steerable path |
US10267911B2 (en) | 2017-03-31 | 2019-04-23 | Ford Global Technologies, Llc | Steering wheel actuation |
US10451730B2 (en) | 2017-03-31 | 2019-10-22 | Ford Global Technologies, Llc | Lane change assistant |
US10514457B2 (en) | 2017-03-31 | 2019-12-24 | Ford Global Technologies, Llc | Lane change advisor |
US10754029B2 (en) | 2017-03-31 | 2020-08-25 | Ford Global Technologies, Llc | Vehicle human machine interface control |
CN108382395B (en) * | 2018-04-03 | 2023-06-27 | 浙江工业大学 | Intelligent auxiliary system for improving riding comfort of bus |
CN108382395A (en) * | 2018-04-03 | 2018-08-10 | 浙江工业大学 | A kind of intelligent assistance system improving bus riding comfort |
CN112236352A (en) * | 2018-06-27 | 2021-01-15 | 宝马汽车股份有限公司 | Method for determining an updated trajectory of a vehicle |
CN109501799A (en) * | 2018-10-29 | 2019-03-22 | 江苏大学 | A kind of dynamic path planning method under the conditions of car networking |
CN111332283A (en) * | 2018-12-17 | 2020-06-26 | Trw汽车股份有限公司 | Method and system for controlling a motor vehicle |
CN111332283B (en) * | 2018-12-17 | 2024-03-12 | Trw汽车股份有限公司 | Method and system for controlling a motor vehicle |
CN112991713A (en) * | 2019-12-13 | 2021-06-18 | 百度在线网络技术(北京)有限公司 | Data processing method, device, equipment and storage medium |
CN112991713B (en) * | 2019-12-13 | 2022-11-22 | 百度在线网络技术(北京)有限公司 | Data processing method, device, equipment and storage medium |
CN112739599A (en) * | 2020-04-29 | 2021-04-30 | 华为技术有限公司 | Method and device for recognizing vehicle lane changing behavior |
CN112739599B (en) * | 2020-04-29 | 2022-05-17 | 华为技术有限公司 | Vehicle lane change behavior identification method and device |
CN112455444B (en) * | 2020-11-26 | 2021-12-07 | 东风汽车集团有限公司 | Lane changing device and method for autonomously learning lane changing style of driver |
CN112455444A (en) * | 2020-11-26 | 2021-03-09 | 东风汽车集团有限公司 | Lane changing device and method for autonomously learning lane changing style of driver |
EP4316935A4 (en) * | 2021-03-31 | 2024-09-04 | Huawei Technologies Co., Ltd. | METHOD AND DEVICE FOR OBTAINING A LANE CHANGE AREA |
CN113158349A (en) * | 2021-05-24 | 2021-07-23 | 腾讯科技(深圳)有限公司 | Vehicle lane change simulation method and device, electronic equipment and storage medium |
CN113721544A (en) * | 2021-08-31 | 2021-11-30 | 浙江大学 | Laser cutting punching-free processing path generation method |
CN114331617B (en) * | 2021-12-29 | 2024-05-31 | 重庆大学 | Commuting private car pooling matching method based on artificial bee colony algorithm |
CN114331617A (en) * | 2021-12-29 | 2022-04-12 | 重庆大学 | A carpool matching method for commuter private cars based on artificial bee colony algorithm |
CN114802269A (en) * | 2022-03-31 | 2022-07-29 | 广州文远知行科技有限公司 | Main vehicle movement planning method and system and computer readable storage medium |
CN115116249A (en) * | 2022-06-06 | 2022-09-27 | 苏州科技大学 | A method for estimating different penetration rates and road capacity of autonomous vehicles |
CN115116249B (en) * | 2022-06-06 | 2023-08-01 | 苏州科技大学 | Method for estimating different permeability and road traffic capacity of automatic driving vehicle |
CN115339516A (en) * | 2022-08-31 | 2022-11-15 | 中国第一汽车股份有限公司 | Method and device for determining rotation angle of steering wheel and electronic equipment |
CN115339516B (en) * | 2022-08-31 | 2024-03-19 | 中国第一汽车股份有限公司 | Steering wheel rotation angle determining method and device and electronic equipment |
CN116279485B (en) * | 2023-03-28 | 2024-04-19 | 深圳市康士达科技有限公司 | Automatic lane changing method based on unmanned vehicle, control chip and electronic equipment |
CN116279485A (en) * | 2023-03-28 | 2023-06-23 | 深圳市康士达科技有限公司 | Automatic lane changing method based on unmanned vehicle, control chip and electronic equipment |
CN118238847A (en) * | 2024-03-25 | 2024-06-25 | 安徽大学 | Autonomous lane change decision planning method and system adaptive to different driving styles and road surface environments |
Also Published As
Publication number | Publication date |
---|---|
AT14433U3 (en) | 2018-03-15 |
AT14433U2 (en) | 2015-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102016204957A1 (en) | Automated lane change in dynamic traffic based on driving dynamics restrictions | |
WO2020089311A1 (en) | Control system and control method for sampling-based planning of possible trajectories for motor vehicles | |
DE102014223000B4 (en) | Adjustable trajectory planning and collision avoidance | |
DE102019118366A1 (en) | Method and control device for a system for controlling a motor vehicle | |
DE102015208790A1 (en) | Determining a trajectory for a vehicle | |
DE102015114464A9 (en) | Uniform motion planner for an autonomous vehicle while avoiding a moving obstacle | |
DE102018117916A1 (en) | Path planning for autonomous driving | |
DE102015114465A1 (en) | Method for path planning for an evasive steering maneuver | |
EP2881829A2 (en) | Method for automatically controlling a vehicle, device for generating control signals for a vehicle and vehicle | |
DE102017205508A1 (en) | Method for automatic movement control of a vehicle | |
DE102019107411A1 (en) | Control system and control method for the path allocation of traffic objects | |
DE102015015302A1 (en) | Method for partially or fully autonomous operation of a vehicle and driver assistance device | |
DE102015221626A1 (en) | Method for determining a vehicle trajectory along a reference curve | |
WO2015010901A1 (en) | Efficiently providing occupancy information on the surroundings of a vehicle | |
DE112020007765T5 (en) | COMPUTER SYSTEM AND METHOD FOR TRAJECTORY PLANNING IN A SIMULATED ROAD DRIVING ENVIRONMENT | |
DE112022001981T5 (en) | Penalization of counter-steering when cornering | |
WO2018077641A1 (en) | Determining a trajectory with a multi-resolution grid | |
WO2020002100A1 (en) | Method for operating an at least partially automated vehicle | |
DE102023206691A1 (en) | Procedure for increasing safety at a crossing facility | |
AT519547B1 (en) | Device and method for the predictive control of the speed of a vehicle | |
DE102023200639A1 (en) | Trajectory planning method, control device and vehicle | |
DE102012011301A1 (en) | Method for controlling lane-tracking assistant for motor vehicle, involves determining vehicle distance to lane edge, generating steering torque, and considering curve radius of roadway as reference curve is tilted forming secondary minimum | |
DE102021211711A1 (en) | Driver assistance system and method for controlling a motor vehicle | |
DE102018008599A1 (en) | Control system and control method for determining a trajectory for a motor vehicle | |
WO2025031543A1 (en) | Method for optimising a trajectory for a vehicle, and assistance system and a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R081 | Change of applicant/patentee |
Owner name: MAGNA STEYR FAHRZEUGTECHNIK GMBH & CO KG, AT Free format text: FORMER OWNER: MAGNA STEYR FAHRZEUGTECHNIK AG & CO KG, GRAZ, AT |
|
R012 | Request for examination validly filed | ||
R120 | Application withdrawn or ip right abandoned |