Nothing Special   »   [go: up one dir, main page]

DE102015101511B3 - Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats - Google Patents

Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats Download PDF

Info

Publication number
DE102015101511B3
DE102015101511B3 DE102015101511.0A DE102015101511A DE102015101511B3 DE 102015101511 B3 DE102015101511 B3 DE 102015101511B3 DE 102015101511 A DE102015101511 A DE 102015101511A DE 102015101511 B3 DE102015101511 B3 DE 102015101511B3
Authority
DE
Germany
Prior art keywords
radiator
segments
contraption
main
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102015101511.0A
Other languages
English (en)
Inventor
Lotta Gaab
Christian Poppe
Sven Linow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Priority to DE102015101511.0A priority Critical patent/DE102015101511B3/de
Priority to CN201580075273.5A priority patent/CN107206641A/zh
Priority to PCT/EP2015/079380 priority patent/WO2016124279A1/de
Priority to JP2017541033A priority patent/JP2018504299A/ja
Priority to KR1020177024514A priority patent/KR20170110666A/ko
Priority to EP15816121.6A priority patent/EP3253546A1/de
Priority to US15/547,843 priority patent/US20180029254A1/en
Application granted granted Critical
Publication of DE102015101511B3 publication Critical patent/DE102015101511B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Radiation-Therapy Devices (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Bekannte Vorrichtungen (1) zur Bestrahlung eines zylinderförmigen Substrats (2) weisen einen zylinderförmigen Bestrahlungsraum (3) mit einer Mittelachse (4), und eine um den Bestrahlungsraum (3) verlaufende Strahler-Einheit (5) auf. Um hiervon ausgehend eine Vorrichtung (1) anzugeben, die einfach und schnell umgerüstet werden kann und die darüber hinaus eine gleichmäßige Bestrahlung des Substrats (2) ermöglicht, wird erfindungsgemäß vorgeschlagen, dass die Strahler-Einheit (5) aus mehreren miteinander verbundenen Segmenten (5a, 5b, 5c) gebildet ist, wobei die Segmente (5a, 5b, 5c) jeweils einen optischen Hauptstrahler (6a) mit einem beleuchteten Strahlerrohrabschnitt (a) aufweisen, der in Bezug auf die Mittelachse (4) nach außen gekrümmt ist, und wobei die Strahlerrohrabschnitte in einer gemeinsamen, senkrecht zur Mittelachse (4) verlaufenden Strahlerebene angeordnet sind.

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats, aufweisend einen zylinderförmigen Bestrahlungsraum mit einer Mittelachse, und eine um den Bestrahlungsraum verlaufende Strahler-Einheit.
  • Weiterhin betrifft die vorliegende Erfindung ein Segment zum Einsatz in einer Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats.
  • Derartige Vorrichtungen werden insbesondere zur Bestrahlung strangförmiger Substrate eingesetzt, beispielsweise bei der Verarbeitung von Fasern oder Garnen zu Faserverbundmaterialien. Sie sind insbesondere bei der Herstellung pultrudierter Faserverbundprofile einsetzbar.
  • Stand der Technik
  • Bekannte Vorrichtungen, die zur Bestrahlung langgestreckter, zylinderförmiger Substrate eingesetzt werden, weisen häufig eine an die Form des Substrats angepasste Bauform auf. Sie umfassen einen zylinderförmigen Bestrahlungsraum sowie eine Strahlungsquelle zur Bestrahlung eines im Bestrahlungsraum vorhandenen Substrats.
  • Das zu bestrahlende Substrat wird bei diesen Vorrichtungen häufig kontinuierlich dem Bestrahlungsraum zugeführt. Übliche Bestrahlungsvorrichtungen weisen daher Durchgangsöffnungen zum Hindurchführen des Substrats auf. Dem Bestrahlungsraum wird dabei das Substrat über eine Querseite des zylinderförmigen Bestrahlungsraums zugeführt, im Bestrahlungsraum bestrahlt und schließlich an der gegenüberliegenden Querseite aus dem Bestrahlungsraumes herausgeführt. Als Strahlungsquelle können Strahler mit unterschiedlichen Emissionsspektren eingesetzt werden, beispielsweise Infrarot-Strahler oder UV-Strahler. Eine möglichst gleichmäßige Erwärmung des Substrats wird ermöglicht, wenn die Strahlungsquelle ein ringförmiges Strahlerrohr aufweist, und das Substrat in einem Mittenbereich des Strahlerrohrs-Rings geführt wird.
  • Eine Bestrahlungsvorrichtung der eingangs genannten Gattung ist aus der DE 10 2011 017 328 A1 bekannt. Diese Bestrahlungsvorrichtung ist bei der Verarbeitung von Garnen zu einem Faserverbund einsetzbar. Zur Herstellung des Faserverbundes ist es notwendig, die Garne zuvor in einem Kontaktbereich zu erwärmen. Um eine gleichmäßige Erwärmung der Garne zu ermöglichen, werden diese durch eine Aufheizzone geführt, die von mehreren ringförmigen Infrarot-Strahlern gebildet ist. Derartige Strahler werden auch als Omegastrahler bezeichnet; sie reichen um das zu bestrahlende Substrat herum.
  • Ringförmige Strahler haben den Nachteil, dass sie nicht geöffnet werden können. Dies erschwert den Zugang zum Substrat, insbesondere bei Wartungs- und Reparaturarbeiten. Darüber hinaus kann bei einer Umstellung auf einen anderen Fertigungsprozess die Strahlungsleistung der Ringstrahler nur begrenzt variiert und an den neuen Fertigungsprozess angepasst werden; sie sind mithin schlecht skalierbar. Ein Austausch der Ringstrahler ist aus den oben genannten Gründen aufwendig. Darüber hinaus weist eine Aneinanderreihung von ringförmigen Strahlern konstruktive Nachteile auf. Dies ist insbesondere der Fall, wenn der für die Positionierung der ringförmigen Strahler zur Verfügung stehende Raum begrenzt, beengt oder schwer zugänglich ist.
  • Aus der Druckschrift DE 10 2009 047 536 A1 ist ein Ofen zum Konditionieren von Vorformlingen bekannt, in dessen Heizkammer mindestens ein ringförmiger oder ringsegmentförmiger Heizstrahler zur Abgabe von Infrarotstrahlung in Richtung der Außenwand des Vorformlings angeordnet ist.
  • Technische Aufgabe
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Bestrahlungsvorrichtung zur Bestrahlung zylinderförmiger Substrate anzugeben, die einfach und schnell umgerüstet werden kann und die darüber hinaus eine gleichmäßige Bestrahlung des Substrats ermöglicht.
  • Weiterhin liegt der Erfindung die Aufgabe zugrunde, zum Einsatz in einer Bestrahlungsvorrichtung ein Segment bereitzustellen, das eine homogene Erwärmung des Substrats erlaubt.
  • Allgemeine Beschreibung der Erfindung
  • Hinsichtlich der Bestrahlungsvorrichtung wird diese Aufgabe ausgehend von einer Vorrichtung der eingangs genannten Gattung erfindungsgemäß dadurch gelöst, dass die Strahler-Einheit aus mehreren miteinander verbundenen Segmenten gebildet ist, wobei die Segmente jeweils einen optischen Hauptstrahler mit einem beleuchteten Strahlerrohrabschnitt aufweisen, der in Bezug auf die Mittelachse nach außen gekrümmt ist, und wobei die Strahlerrohrabschnitte in einer gemeinsamen, senkrecht zur Mittelachse verlaufenden Strahlerebene angeordnet sind.
  • Die Bestrahlungsvorrichtung ist zur gleichmäßigen Bestrahlung zylinderförmiger Substrate ausgelegt. Zylinderförmige Substrate sind langgestreckte, beispielsweise strangförmige Substrate, die verglichen mit ihrer Länge einen vergleichsweise geringen Durchmesser aufweisen; sie weisen eine Substrat-Längsachse auf. Um derartige Substrate in einem kontinuierlichen Prozess bestrahlen und anschließend verarbeiten zu können, ist grundsätzlich eine gleichmäßige Bestrahlung in einer Bestrahlungs-Ebene senkrecht zur Substrat-Längsachse wünschenswert.
  • Die Anforderungen an die Homogenität der Bestrahlung sind beispielsweise dann besonders hoch, wenn das zu bestrahlende Substrat, das erwärmt werden soll, selbst eine geringe Wärmeleitfähigkeit aufweist, da bei solchen Substraten eine ungleichmäßige Bestrahlung nur begrenzt durch Wärmeleitung im Substrat kompensiert werden kann. Als Folge hiervon werden Temperaturunterschiede im Substrat beobachtet. Substrate mit geringer Wärmeleitfähigkeit sind beispielsweise Keramiken, Kunststoffe, faserverstärkte Kunststoffe mit Fasern aus Glas, Carbon oder Basalt und einer Matrix aus Duroplasten oder Thermoplasten, insbesondere aus Polyamid (PA), Polypropylen (PP) oder Polystyrol (PS).
  • Aber auch bei anderen Verfahren, wie beispielsweise dem Aushärten von Beschichtungen auf zylinderförmigen Substraten, stellt eine gleichmäßige Bestrahlungsstärke bezogen auf den Umfang des Substrats eine wichtige Voraussetzung für die Herstellung qualitativ hochwertiger Bestrahlungsprodukte dar.
  • Eine gleichmäßige Bestrahlung kann zwar durch den Einsatz ringförmiger Strahler erreicht werden, diese haben aber einerseits den Nachteil, dass sie nicht geöffnet werden können, und anderseits, dass ihre Strahlungsleistung und Emissionsspektrum nur sehr eingeschränkt an ein anderes Substrat angepasst werden können. Bei einer Substratumstellung ist es daher oft notwendig, den ringförmigen Strahler zu tauschen. Dies ist aber bedingt durch die geschlossene Konstruktion schwierig und zeitaufwendig.
  • Gemäß der Erfindung ist daher vorgesehen, dass die Strahler-Einheit modular aus mehreren Kreis-Segmenten aufgebaut ist. Jedes der Segmente weist mindestens einen Hauptstrahler auf. Sie können zu einem quasi-ringförmigen Strahlerkomplex zusammengebaut werden. Die Segmente können identisch ausgebildet oder unterschiedlich sein. Beispielsweise können sich die Segmente in ihren Hauptstrahlern, ihrer Strahlungsleistung oder dem emittierten Strahlungsspektrum unterscheiden. Durch ihren modularen Aufbau können die Segmente beliebig aus der Strahler-Einheit ausgebaut, durch andere Segmente ersetzt oder erneut eingebaut werden. Sie ermöglichen insbesondere einen variablen Aufbau der Strahler-Einheit, die Einstellung einer speziellen Strahlungsleistung oder eines speziellen Emissionsspektrums und sind daher zur schnellen Anpassung der Strahler-Einheit an einen geänderten Bestrahlungsprozess oder ein geändertes zu bestrahlendes Substrat geeignet. Gleichzeitig wird eine schnelle und einfache Wartung der Bestrahlungsvorrichtung ermöglicht.
  • Dadurch, dass die Segmente jeweils einen optischen Hauptstrahler mit einem beleuchteten Strahlerrohrabschnitt aufweisen, der von der Mittelachse aus gesehen nach außen gekrümmt ist, wird ein möglichst gleichmäßiger Abstand der Substratoberfläche vom Strahlerrohr des Hauptstrahlers ermöglicht. Ein möglichst gleichmäßiger Abstand geht mit einer gleichmäßigen Bestrahlung des Substrats einher. Ein um die Mittelachse nach außen gekrümmtes Strahlerrohr ist eine gute Näherung für verschiedene Querschnittsformen des zylinderförmigen Substrats. Der Begriff „zylinderförmig” ist sowohl in Bezug auf das Substrat als auch hinsichtlich des Bestrahlungsraums nicht auf Formen mit einem kreisrunden Querschnitt beschränkt. Er umfasst auch davon abweichende Querschnittsformen, beispielsweise ovale, rechteckige, quadratische oder polygonale Querschnittsformen. Besonders gute Ergebnisse hinsichtlich einer gleichmäßigen Bestrahlung des Substrats können erreicht werden, wenn die Krümmung des beleuchteten Strahlerrohrabschnitts an die Querschnittsform des zu bestrahlenden Substrats angepasst ist.
  • Im Gegensatz zu einer polygonalen Anordnung von mehreren länglichen Strahlern mit geradem Strahlerrohr um den Bestrahlungsraum hat das Vorsehen gekrümmter Strahler einerseits den Vorteil, dass die Abstände von Substrat zu den Strahlerrohren möglichst gleichmäßig sind und geringere Abweichungen aufweisen. Zwar könnte eine Annäherung an die Ringform durch das Vorsehen einer großen Anzahl von Strahlern erreicht werden, allerdings ist hierbei zu berücksichtigen, dass eine ringförmige Anordnung mehrerer Strahler mit einer geringeren Energieeffizienz einhergeht. Darüber hinaus ist bei diesen Strahlern der Bereich der Strahlerrohr-Enden regelmäßig unbeleuchtet. Dies führt dazu, dass das Substrat wechselweise von beleuchteten und unbeleuchteten Abschnitten umgeben ist, wodurch eine gleichmäßige Bestrahlung des Substrats beeinträchtigt wird.
  • Dadurch, dass gemäß der Erfindung die Strahlerrohrabschnitte der mehreren Segmente in einer gemeinsamen, senkrecht zur Mittelachse verlaufenden Strahlerebene angeordnet sind, wird bezogen auf das Substrat eine umlaufend gleichmäßige Bestrahlung des Substrats gewährleistet.
  • Bei einer vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass zwischen den beleuchteten Strahlerrohrabschnitten benachbarter Segmente ein optischer Zusatz-Strahler angeordnet ist. Der Hauptstrahler jedes Segmentes weist einen beleuchteten und mindestens einen unbeleuchteten Strahlerrohrabschnitt auf. Um eine gleichmäßige Bestrahlung zu ermöglichen, sind die beleuchteten Strahlerrohrabschnitte benachbarter Segmente so nah wie möglich aneinander herangeführt, beispielsweise indem die Strahlerrohre Übergangsbereich vom beleuchteten zum unbeleuchteten Strahlerrohrabschnitt abgewinkelt sind. Allerdings schließen auch dann die beleuchteten Strahlerrohrabschnitte benachbarter Hauptstrahler nicht unmittelbar aneinander an. Hierdurch werden in den Segment-Verbindungsstellen regelmäßig niedrigere Bestrahlungs-Intensitäten als in einem zentralen Abschnitt des beleuchteten Strahlerrohrabschnitts erzielt, wodurch die Gleichmäßigkeit der Bestrahlung beeinträchtigt werden kann.
  • Um dennoch eine möglichst homogene Bestrahlung des Substrats zu gewährleisten, ist in Bereichen niedriger Bestrahlungsstärke jeweils mindestens ein Zusatz-Strahler angeordnet, der den Intensitätsabfall der Hauptstrahler in diesen Bereichen kompensiert. Die Mindestanzahl der Zusatzstrahler entspricht somit der Anzahl der Segmente. Zusatz-Strahler können beispielsweise Punktstrahler oder Spot-Strahler sein. Sie können entweder zusammen mit oder unabhängig von den Hauptsstrahlern angesteuert werden.
  • Es hat sich besonders bewährt, wenn die Bestrahlungsvorrichtung eine Regel-/Steuereinrichtung aufweist, mit der die Leistung der Zusatz-Strahler in Abhängigkeit von der Leistung der Hauptstrahler einstellbar ist (Master-Slave-Konzept). Hierdurch wird eine einfache und schnelle Anpassung der Bestrahlungsstärke an unterschiedliche Substrate über eine Einstellung der Strahlungsleistung der Hauptstrahler ermöglicht, ohne dass eine separate Einstellung der Leistung der Zusatz-Strahler erforderlich ist. In diesem Zusammenhang hat es sich ferner bewährt, wenn die Bestrahlungsvorrichtung ein Mittel zur Erfassung einer Prozessvariablen aufweist, wobei die Strahlungsleistung der Haupt- und/oder Zusatzstrahler in Abhängigkeit von der erfassten Prozessvariable erfolgt. Eine geeignete Prozessvariable ist beispielsweise die Temperatur des Substrats.
  • Darüber hinaus hat es sich bewährt, dass, wenn das Substrat dem Bestrahlungsraum kontinuierlich zugeführt wird, Mittel zum Erfassen der Vorschubgeschwindigkeit des Substrats vorgesehen sind, und dass die Regelung/Steuerung der Leistung der Haupt- und/oder Zusatz-Strahler über die Regel-/Steuereinrichtung in Abhängigkeit von der Vorschubgeschwindigkeit erfolgt.
  • Es hat sich bewährt, wenn die Segmente jeweils ein erstes und ein zweites Ende zur lösbaren Verbindung mit einem benachbarten Segment aufweisen, und wenn der Zusatz-Strahler am ersten Ende angeordnet ist.
  • Segmente, die lösbar miteinander verbindbar sind, können schnell und einfach zusammengesetzt werden. Dies gilt insbesondere, wenn die zusammengesetzten Segmente eine ringförmige Strahler-Einheit bilden. Auf diese Weise können einzelne Segmente aus der Strahler-Einheit entnommen oder ersetzt werden. Vorzugsweise ist die lösbare Verbindung so ausgestaltet, dass eine Verwendung eines Werkzeugs zum Herstellen und/oder Lösen der Verbindung nicht notwendig ist. Jedes Segment ist dabei mit dem mindestens einen Zusatz-Strahler ausgestattet, der somit zusammen mit dem Segment montiert wird und dessen Stromversorgung und Ansteuerung über das betreffende Segment erfolgt.
  • Dadurch, dass die Segmente zwei Enden zur Verbindung mit einem benachbarten Element aufweisen, ist die Verknüpfung einer Vielzahl von Segmenten miteinander möglich. Im einfachsten Fall jedoch sind zwei Elemente unter Ausbildung einer im Wesentlichen ringförmigen Struktur miteinander verbunden.
  • Insbesondere an den Verbindungsstellen benachbarter Segmente können niedrigere Bestrahlungs-Intensitäten im Vergleich zu einem zentralen Bereich des beleuchteten Strahlerrohrabschnitts des Hauptstrahlers auftreten, die durch den Zusatz-Strahler im Bereich der Verbindung benachbarter Segmente ganz oder teilweise kompensiert werden. Dadurch, dass der Zusatzstrahler an einem Ende des Segments angeordnet ist, kann bei dem diesem Ende zugeordneten, benachbarten Segment auf einen Zusatz-Strahler verzichtet werden. Darüber hinaus wird hierdurch ein einfacher modularer Aufbau der Strahler-Einheit ermöglicht.
  • Weiterhin hat es sich als vorteilhaft erwiesen, wenn der Zusatz-Strahler einen parallel zur Mittelachse verlaufenden, beleuchteten Zusatzstrahler-Strahlerrohrabschnitt aufweist.
  • Der Zusatzstrahler-Strahlerrohrabschnitt ist länglich mit einer parallel zur Mittelachse verlaufenden Längsachse ausgebildet. Bezogen auf die Längsachse emittiert der Zusatz-Strahler vornehmlich optische Strahlung in radialer Richtung. Das vom Zusatzstrahler bestrahlte längliche Feld auf dem Substrat kann mit den Bestrahlungsfeldern der Hauptstrahler auf dem Substratüberlappen; es ist damit zur Kompensation einer durch die Anordnung der Hauptstrahler bedingten ungleichmäßigen Bestrahlung des Substrats geeignet.
  • Bei einer bevorzugten Ausführungsform weist der Zusatzstrahler-Strahlerrohrabschnitt eine Länge im Bereich von 20 mm bis 100 mm auf.
  • Die Länge des Zusatzstrahler-Strahlerrohrabschnitts beeinflusst die maximale Bestrahlungsstärke, die mit dem Zusatzstrahler erzielt werden kann. Ein Zusatzstrahler mit einer Länge von weniger als 20 mm kann Bestrahlungsinhomogenitäten auf dem Substrat nur begrenzt ausgleichen. Ein Zusatzstrahler-Strahlerrohrabschnitt mit einer Länge von mehr als 100 mm beeinträchtigt die kompakte Bauform der erfindungsgemäßen Vorrichtung.
  • Vorzugsweise sind Hauptstrahler und Spotstrahler Infrarotstrahler.
  • Infrarotstrahler werden für Erwärmungs- und Trocknungsprozesse eingesetzt; sie sind insbesondere der Umformung von Werkstoffen, wie Metallen, Glas oder thermoplastischen Kunststoffen geeignet.
  • Es hat sich als günstig erwiesen, wenn sich der beleuchtete Strahlerrohrabschnitt bezogen auf die Mittelachse über einen Bogenwinkel im Bereich von 1/2π rad bis 2/3π rad erstreckt.
  • Die Größe des beleuchteten Strahlerrohrabschnitts des Hauptstrahlers hat Einfluss auf die Homogenität der Bestrahlung und die Anzahl der Segmente. Da jedes Segment einen Hauptstrahler aufweist, können bei einem Bogenwinkel im oben genannten Bereich drei oder vier Segmente vorgesehen sein. Bei mehr als vier Segmenten kann die Energie-Effizienz der Vorrichtung und die mechanische Stabilität der Strahler-Einheit beeinträchtigt sein. Vorzugsweise sind drei Segmente vorgesehen. Dies hat den Vorteil, dass einerseits eine gute Energieeffizienz und andererseits eine Öffnung der Strahler-Einheit in einem großen Bereich ermöglicht wird.
  • Bei einer weiteren, vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die Segmente unabhängig voneinander ansteuerbar sind.
  • Eine unabhängige Ansteuerung der Segmente ermöglicht es, dass die Segmente vollständig voneinander entkoppelbar sind. Hierdurch wird ein Ersatz einzelner Segmente mit baugleichen Segmenten oder ein Austausch von Segmenten durch Segmente unterschiedlicher Bauart ermöglicht. Dies trägt zu einer hohen Flexibilität hinsichtlich des Einsatzes von Segmenten bei. Durch deren individuelle Ansteuerbarkeit kann die erfindungsgemäße Vorrichtung einfach und schnell an vorgegebene Prozessbedingungen angepasst werden.
  • Darüber hinaus kann durch Ersatz eines Segments mit einem anderen Hauptstrahler mit anderer geometrischer Form oder Strahlungsemission das Emissionsspektrum der Bestrahlungsvorrichtung insgesamt einfach variiert und eingestellt werden.
  • Es hat sich als vorteilhaft erwiesen, wenn die Segmente eine Kühl-Einheit zur Kühlung des Hauptstrahlers aufweisen, wobei die Kühl-Einheit eine von einem Kühlfluid durchströmbare Plenum-Kammer mit einer dem Hauptstrahler zugewandten und einer dem Hauptstrahler abgewandten Seite umfasst, und wenn in der Plenum-Kammer ein Mittel zur Führung des Kühlfluids auf die dem Hauptstrahler zugewandte Seite der Plenum-Kammer vorgesehen ist.
  • Besonders bei kompakter Bauform der Vorrichtung wird nicht nur das Substrat bestrahlt, sondern regelmäßig erwärmen sich auch die Haupt- und Zusatz-Strahler. Um eine übermäßige Erwärmung des Hauptstrahlers zu vermeiden, ist eine Kühlkammer zur indirekten Kühlung des Hauptstrahlers vorgesehen. Mit der Kühlkammer kann aber auch die Temperatur der Zusatzstrahler beeinflusst werden.
  • Die Segmente weisen jeweils einen Kühlbereich und einen Bestrahlungsbereich auf. Vorzugsweise ist der Bestrahlungsbereich vom Kühlbereich durch einen im Wesentlichen nicht unterbrochenen und nicht perforierten Reflektor getrennt.
  • Die Hauptstrahler erzeugen während ihres Betriebs ein Temperaturprofil, wobei ihre unbeleuchteten Strahlerrohrabschnitte regelmäßig eine niedrigere Temperatur als der beleuchtete Strahlerrohrabschnitt aufweisen. Aber auch der beleuchtete Strahlerrohrabschnitt kann Bereiche höherer Temperatur, insbesondere einen Hot Spot, aufweisen. Dieser erzeugt auch auf der dem Hauptstrahler zugewandten Wandung der Plenum-Kammer einen entsprechenden Hot Spot. Das Kühlfluid ist innerhalb der Plenum-Kammer auf diese Wandung gerichtet, was eine effektive Kühlung im Bereich der Hot Spots ermöglicht.
  • Es hat sich bewährt, wenn die Plenum-Kammer einen Kühlluft-Einlass, einen Kühlluft-Auslass und einen in der Plenum-Kammer angeordneten Ventilator umfasst, und wenn das Mittel zur Führung des Kühlfluids ein dem Ventilator nachgeordnetes Luftleitblech ist.
  • Ein in der Plenum-Kammer integrierter Ventilator trägt zu einer kompakten Bauform der Vorrichtung bei.
  • Die Kühlluft wird bevorzugt an den heißesten Bereich innerhalb der Plenum-Kammer geführt. Für die Kühlluft-Führung ist beispielsweise ein Luftleitblech geeignet. Bei einer weiteren, vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung ist vorgesehen, dass der Hauptstrahler über ein Befestigungselement mit der Plenum-Kammer verbunden ist, und dass das Befestigungselement in der Plenum-Kammer angeordnet ist.
  • Dadurch, dass das Befestigungselement in der Plenum-Kammer angeordnet ist, wird im Vergleich zu einem im Bestrahlungsbereich angeordneten Befestigungselement eine übermäßige Erwärmung verhindert und eine Wärmeleitung über das Befestigungselement zur Plenum-Kammer verringert.
  • Es hat sich als günstig erwiesen, wenn der Hauptstrahler und der Zusatzstrahler mit einem Reflektor versehen sind.
  • Der Reflektor reflektiert auf ihn auftreffendes Licht in Richtung des zu bestrahlenden Substrats und trägt zu einer hohen Energieeffizienz der Vorrichtung bei.
  • Hinsichtlich der Segments zum Einsatz in einer Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats wird die oben genannte Aufgabe erfindungsgemäß dadurch gelöst, dass es einen optischen Hauptstrahler mit einem beleuchteten Strahlerrohrabschnitt aufweist, der in Bezug auf die Mittelachse nach außen gekrümmt ist.
  • Das erfindungsgemäße Segment ist zum Einsatz in die erfindungsgemäße Vorrichtung geeignet. Hinsichtlich vorteilhafter Ausgestaltungen des Segments wird auf die Ausführungen zur erfindungsgemäßen Vorrichtung verwiesen.
  • Ausführungsbeispiel
  • Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und Zeichnungen näher beschrieben. Es zeigt in schematischer Darstellung:
  • 1 eine perspektivische Darstellung einer Ausführungsform der erfindungsgemäßen Vorrichtung zur Bestrahlung eines Substrats mit einer mehrere Segmente umfassenden Strahler-Einheit,
  • 2 die Ausführungsform gemäß 1 im Querschnitt,
  • 3 eine perspektivische Darstellung eines Segments zum Einsatz in der Vorrichtung gemäß 1, und
  • 4 das Segment gemäß 3 in einer Querschnittsdarstellung.
  • 1 zeigt schematisch eine Außenansicht einer erfindungsgemäßen Bestrahlungsvorrichtung zur Bestrahlung zylinderförmiger Substrate 2, wie sie bei der Herstellung pultrudierter Faserverbundprofile eingesetzt wird. Der Bestrahlungsvorrichtung ist insgesamt die Bezugsziffer 1 zugeordnet. Sie weist einen zylinderförmigen Bestrahlungsraum 3 mit einer Mittelachse 4 und eine um den Bestrahlungsraum 3 verlaufende Strahler-Einheit auf, der insgesamt die Bezugsziffer 5 zugeordnet ist. Die Strahler-Einheit 5 ist mit einer Halte- und Montagevorrichtung 18 versehen und sie besteht im Übrigen aus drei identischen Segmenten 5a, 5b, 5c. Jedes der Segmente 5a, 5b, 5c ist mit einem Anschlusskasten 17 versehen und weist eine Hauptstrahlungsquelle, einen Spotstrahler und eine Kühl-Einheit auf. Die zuletzt genannten Bauteile werden anhand der folgenden 2 bis 4 noch näher erläutert.
  • In 2 ist schematisch eine Querschnittsdarstellung der Vorrichtung 1 aus 1 dargestellt. Die Vorrichtung 1 umfasst einen zylinderförmigen Bestrahlungsraum 3 mit einer Mittelachse 4. Um den Bestrahlungsraum 3 ist eine Strahler-Einheit 5 angeordnet. Die Strahler-Einheit 5 umfasst drei baugleiche Segmente 5a, 5b, 5c, die unabhängig voneinander ansteuerbar sind. Jedes der Segmente 5a, 5b, 5c weist einen Haupt-Infrarotstrahler auf, wobei die Haupt-Infrarotstrahler so angeordnet sind, dass ihre beleuchteten Strahlerrohrabschnitte in einer Ebene verlaufen. Die Segmente 5a, 5b, 5c sind identisch. Die nachfolgenden Erläuterungen zu Segment 5a gelten daher entsprechend auch für die übrigen Segmente 5b, 5c.
  • Segment 5a weist einen Infrarotstrahler 6a mit einem beleuchteten Strahlerrohrabschnitt auf, der in 2 mit a gekennzeichnet und von der Mittelachse 4 des Bestrahlungsraums 3 aus gesehen nach außen gekrümmt ist. Die beheizte Länge des Strahlerrohrabschnitts beträgt 144 mm. Der Infrarotstrahler 6a zeichnet sich durch eine Nominal-Leistung von 500 W bei einer Nennspannung von 133 V aus. Die Außenabmessungen des Strahlerrohres betragen 23 × 264 mm.
  • Segment 5a weist darüber hinaus einen Spot-Strahler 7a auf, der in dieser Ansicht dem rechten Ende des Segments zugeordnet ist. Der Spot-Strahler 7a ist ein Infrarotstrahler. Er weist einen beleuchteten Spot-Strahler-Strahlerrohrabschnitt auf, der parallel zur Mittelachse 4 des Bestrahlungsraums 3 verläuft. Die beheizte Länge des Spot-Strahler-Strahlerrohrabschnitts beträgt 45 mm. Der Spot-Strahler 7a zeichnet sich durch eine Nominal-Leistung von 160 W bei einer Nennspannung von 60 V aus. Der Außenabmessungen des Strahlerrohres betragen 75 × 70 mm.
  • Die Gesamtleistung der Strahlereinheit beträgt somit 1980 W, zu der jedes der baugleichen Segmente mit 660 W beiträgt.
  • Darüber hinaus weist das Segmente 5a eine Luft-Kühl-Einheit 8a mit einer Plenum-Kammer 9a auf. Kühlluft wird über einen Einlass 10a von einem in der Plenumkammer 9a angeordneten Ventilators 11a angesaugt und mit einem Luftleitblech 12a auf die dem Haupt-Infrarotstrahler 6a zugewandte Seite der Plenum-Kammer 9a geführt. Hierdurch wird eine effektive Kühlung dieser Seite der Plenum-Kammer 9a gewährleistet. Die angesaugte Luft verlässt die Plenum-Kammer 9a über den Kühlluft-Auslass 13a. Der Infrarotstrahler 6a ist über zwei Befestigungselemente 14a, 14b mit der Plenum-Kammer 9a verbunden. Die Befestigungselemente sind in der Plenum-Kammer 9a angeordnet.
  • Auf der Außenseite der dem Haupt-Infrarotstrahler 6a zugewandten Seite der Plenum-Kammer ist ein Reflektor mit einer aluminierten Oberfläche angebracht.
  • Die 3 und 4 zeigen schematisch eine perspektivische Ansicht beziehungsweise eine Draufsicht auf ein erfindungsgemäßes Segment 5a zum Einsatz in der Bestrahlungsvorrichtung 1 gemäß 1. Das Segment 5a umfasst einen Haupt-Infrarotstrahler 6a, der über in der Plenum-Kammer 9a angeordnete Befestigungselemente 14a, 14b mit der Plenum-Kammer 9a verbunden ist. Darüber hinaus umfasst das Segment 5a einen Spot-Strahler 7a.
  • Das Segment 5a umfasst ferner eine Plenum-Kammer 9a mit einem Kühlluft-Einlass 10a, einem Ventilator 11a, einem Luftleitblech 12a und einem Kühlluft-Auslass 13a.

Claims (12)

  1. Vorrichtung (1) zur Bestrahlung eines zylinderförmigen Substrats (2), aufweisend einen zylinderförmigen Bestrahlungsraum (3) mit einer Mittelachse (4), und eine um den Bestrahlungsraum (3) verlaufende Strahler-Einheit (5), wobei die Strahler-Einheit (5) aus mehreren miteinander verbundenen Segmenten (5a, 5b, 5c) gebildet ist, wobei die Segmente (5a, 5b, 5c) jeweils einen optischen Hauptstrahler (6a) mit einem beleuchteten Strahlerrohrabschnitt (a) aufweisen, der in Bezug auf die Mittelachse (4) nach außen gekrümmt ist, und wobei die Strahlerrohrabschnitte in einer gemeinsamen, senkrecht zur Mittelachse (4) verlaufenden Strahlerebene angeordnet sind, dadurch gekennzeichnet, dass zwischen den beleuchteten Strahlerrohrabschnitten benachbarter Segmente (5a, 5b, 5c) ein optischer Zusatz-Strahler (7a) angeordnet ist.
  2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Segmente (5a, 5b, 5c) jeweils ein erstes und ein zweites Ende zur lösbaren Verbindung mit einem benachbarten Segment (5a, 5b, 5c) aufweisen, und dass der Zusatz-Strahler (7a) am ersten Ende angeordnet ist.
  3. Vorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Zusatz-Strahler (7a) einen parallel zur Mittelachse (4) verlaufenden, beleuchteten Zusatzstrahler-Strahlerrohrabschnitt aufweist.
  4. Vorrichtung (1) nach Anspruch 3, dadurch gekennzeichnet, dass der Zusatzstrahler-Strahlerrohrabschnitt eine Länge im Bereich von 20 mm bis 100 mm aufweist.
  5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Hauptstrahler (6a) und Zusatz-Strahler (7a) Infrarotstrahler sind.
  6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der beleuchtete Strahlerrohrabschnitt bezogen auf die Mittelachse (4) über einen Bogenwinkel im Bereich von 1/2π rad bis 2/3π rad erstreckt.
  7. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Segmente (5a, 5b, 5c) unabhängig voneinander ansteuerbar sind.
  8. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Segmente (5a, 5b, 5c) eine Kühl-Einheit (8a) zur Kühlung des Hauptstrahlers (6a) aufweisen, wobei die Kühl-Einheit (8a) eine von einem Kühlfluid durchströmbare Plenum-Kammer (9a) mit einer dem Hauptstrahler (6a) zugewandten und einer dem Hauptstrahler (6a) abgewandten Seite umfasst, und dass in der Plenum-Kammer (9a) ein Mittel (12a) zur Führung des Kühlfluids auf die dem Hauptstrahler (6a) zugewandte Seite der Plenum-Kammer (9a) vorgesehen ist.
  9. Vorrichtung (1) nach Anspruch 8, dadurch gekennzeichnet, dass die Plenum-Kammer (9a) einen Kühlluft-Einlass (10a), einen Kühlluft-Auslass (13a) und einen in der Plenum-Kammer (9a) angeordneten Ventilator (11a) umfasst, und dass das Mittel (12a) zur Führung des Kühlfluids ein dem Ventilator (11a) nachgeordnetes Luftleitblech ist.
  10. Vorrichtung (1) nach einem der vorhergehenden Ansprüche 8 bis 9, dadurch gekennzeichnet, dass der Hauptstrahler (6a) über ein Befestigungselement (14a, 14b) mit der Plenum-Kammer (9a) verbunden ist, und dass das Befestigungselement (14a, 14b) in der Plenum-Kammer (9a) angeordnet ist.
  11. Vorrichtung (1) nach einem der vorhergehendenden Ansprüche, dadurch gekennzeichnet, dass der Hauptstrahler (6a) und der Zusatzstrahler (7a) mit einem Reflektor versehen sind.
  12. Segment (5a, 5b, 5c) zum Einsatz in einer Vorrichtung (1) zur Bestrahlung eines zylinderförmigen Substrats (2) gemäß einem der vorhergehenden Ansprüche 1 bis 12, wobei es einen optischen Hauptstrahler (6a) mit einem beleuchteten Strahlerrohrabschnitt aufweist, der in Bezug auf die Mittelachse (4) nach außen gekrümmt ist, dadurch gekennzeichnet, dass das Segment (5a, 5b, 5c) jeweils ein erstes und ein zweites Ende zur lösbaren Verbindung mit einem benachbarten Segment (5a, 5b, 5c) aufweist, und dass ein optischer Zusatz-Strahler (7a) am ersten Ende angeordnet ist.
DE102015101511.0A 2015-02-03 2015-02-03 Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats Expired - Fee Related DE102015101511B3 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102015101511.0A DE102015101511B3 (de) 2015-02-03 2015-02-03 Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats
CN201580075273.5A CN107206641A (zh) 2015-02-03 2015-12-11 用于照射柱形衬底的装置
PCT/EP2015/079380 WO2016124279A1 (de) 2015-02-03 2015-12-11 Vorrichtung zur bestrahlung eines zylinderförmigen substrats
JP2017541033A JP2018504299A (ja) 2015-02-03 2015-12-11 円筒状基材に照射を行う装置
KR1020177024514A KR20170110666A (ko) 2015-02-03 2015-12-11 원통형 기재를 조사하기 위한 장치
EP15816121.6A EP3253546A1 (de) 2015-02-03 2015-12-11 Vorrichtung zur bestrahlung eines zylinderförmigen substrats
US15/547,843 US20180029254A1 (en) 2015-02-03 2015-12-11 Device for irradiating a cylindrical substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015101511.0A DE102015101511B3 (de) 2015-02-03 2015-02-03 Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats

Publications (1)

Publication Number Publication Date
DE102015101511B3 true DE102015101511B3 (de) 2016-04-07

Family

ID=55022442

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015101511.0A Expired - Fee Related DE102015101511B3 (de) 2015-02-03 2015-02-03 Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats

Country Status (7)

Country Link
US (1) US20180029254A1 (de)
EP (1) EP3253546A1 (de)
JP (1) JP2018504299A (de)
KR (1) KR20170110666A (de)
CN (1) CN107206641A (de)
DE (1) DE102015101511B3 (de)
WO (1) WO2016124279A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022113677A1 (de) 2022-05-31 2023-11-30 Tesa Se Strahlungsvorrichtung zur Aushärtung von aushärtbaren Klebemassen bei der Ummantelung von strangförmigen Elementen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109571817B (zh) * 2018-10-25 2021-02-19 上海复合材料科技有限公司 适用于卫星天线反射器复合材料放射形曲面背筋成型模具
KR20220050906A (ko) * 2019-07-26 2022-04-25 라드 소스 테크놀로지스, 인코포레이티드 X-선 조사를 위한, 축상, 각진, 회전자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047536A1 (de) * 2009-12-04 2011-06-09 Krones Ag Ofen zum Konditionieren von Vorformlingen
DE102011017328A1 (de) * 2011-04-17 2012-10-18 Heraeus Noblelight Gmbh Bestrahlungsvorrichtung für Faserverbundmaterial

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1167005B (de) * 1961-12-08 1964-04-02 Guenther Missbach Dipl Ing Verfahren und Vorrichtung zur Herstellung von zwei- oder mehrlagigen armierten bzw. aufeinanderkaschierten Kunststoffolien
US3240915A (en) * 1962-09-19 1966-03-15 Fostoria Corp Infra-red heater
DE1879140U (de) * 1963-04-27 1963-09-12 Heraeus Schott Quarzschmelze Elektrischer infrarotstrahler.
GB1509148A (en) * 1976-06-16 1978-04-26 Steinmetz M Electrically heated infrared ceramic radiator
GB2068162B (en) * 1980-01-15 1984-01-04 English Electric Valve Co Ltd Segmented discharge tube devices
JPS58150286A (ja) * 1982-03-03 1983-09-06 岸本産業株式会社 赤外線利用の加熱方法
JPS60193686U (ja) * 1984-06-01 1985-12-23 石 利治 遠赤外線加熱装置
US5302411A (en) * 1991-01-22 1994-04-12 Endre Toth Process for vulcanizing insulated wire
FR2729152A1 (fr) * 1995-01-06 1996-07-12 Alcatel Cable Dispositif de reticulation par rayonnement uv
JP3370215B2 (ja) * 1995-09-01 2003-01-27 藤倉ゴム工業株式会社 ゴルフクラブシャフト用フィラメントワインディング成形方法及びその装置
SE514491C2 (sv) * 1995-09-20 2001-03-05 Uponor Innovation Ab Förfarande för muffning av ett rör
AU704565B2 (en) * 1995-09-20 1999-04-29 Vinidex Pty Limited A method of socketing a pipe
JP4481424B2 (ja) * 2000-04-05 2010-06-16 積水化学工業株式会社 繊維強化樹脂管の製造方法
DE10041564C2 (de) * 2000-08-24 2002-06-27 Heraeus Noblelight Gmbh Kühlbares Infrarotstrahlerelement
EP2159037B1 (de) * 2008-08-28 2011-04-13 Leister Process Technologies Verbindungs- oder Abzweigelement zum Verbinden mit einem Rohrendabschnitt im Laserdurchstrahlverfahren sowie Laserkopf und Verfahren zum Verbinden
CN201657351U (zh) * 2010-03-31 2010-11-24 苏州国康能源科技有限公司 工业用红外加热装置
US9067367B2 (en) * 2012-03-02 2015-06-30 Pexcor Manufacturing Company, Inc. Method and system for performing an infrared treatment
EP2792422A1 (de) * 2013-04-19 2014-10-22 Farbwerke Herkula S.A. Vorrichtung zur Härtung einer auf ein Kabel aufgebrachten Beschichtung
CN104320869A (zh) * 2014-09-29 2015-01-28 绵阳力洋英伦科技有限公司 抛物面反射型加热装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047536A1 (de) * 2009-12-04 2011-06-09 Krones Ag Ofen zum Konditionieren von Vorformlingen
DE102011017328A1 (de) * 2011-04-17 2012-10-18 Heraeus Noblelight Gmbh Bestrahlungsvorrichtung für Faserverbundmaterial

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022113677A1 (de) 2022-05-31 2023-11-30 Tesa Se Strahlungsvorrichtung zur Aushärtung von aushärtbaren Klebemassen bei der Ummantelung von strangförmigen Elementen

Also Published As

Publication number Publication date
JP2018504299A (ja) 2018-02-15
US20180029254A1 (en) 2018-02-01
KR20170110666A (ko) 2017-10-11
WO2016124279A1 (de) 2016-08-11
CN107206641A (zh) 2017-09-26
EP3253546A1 (de) 2017-12-13

Similar Documents

Publication Publication Date Title
DE102015101511B3 (de) Vorrichtung zur Bestrahlung eines zylinderförmigen Substrats
EP3363610B1 (de) Heizmodul mit oberflächenkühlung für vorformlinge
EP3045285B1 (de) Vorrichtung zum aufheizen eines verbundwerkstoffs mit temperaturabhängigen verarbeitungseigenschaften und damit zusammenhängende verfahren
EP2775241A2 (de) Vorrichtung zum Trocknen eines Werkstücks und Verfahren zum Betrieb einer derartigen Vorrichtung
DE102010015018A1 (de) Strahlerkühlung
DE102005003802A1 (de) Strahlungsgerät sowie Pulverauftragsstation und Anordnung zur Beschichtung von temperatursensiblen Materialien und Verfahren hierzu
EP3201376B1 (de) Schmelzspinnvorrichtung
EP2754545B1 (de) Vorrichtung zum Erwärmen von Kunststoffvorformlingen mit demontierbarer Lüftungsabschirmung
EP3419808B1 (de) Vorrichtung und verfahren zur thermischen konditionierung von vorformlingen
DE102016121805A1 (de) Imprägnieranlage mit einer Blasvorrichtung
DE102006044959B4 (de) Verfahren und Vorrichtung zum Pulverbeschichten von Holzsubstraten
DE19538364C5 (de) Vorrichtung zur Schnellerwärmung von Metall-Preßbolzen
EP1954639B1 (de) Vorrichtung zum beheizen von ofenanlagen
EP1300233A1 (de) Verfahren und Vorrichtung zum Beheizen eines Plastifizierzylinders
DE102020125290B4 (de) Verfahren und Vorrichtung zum Schweißen von Kunststoffteilen
DE102006057781B4 (de) Vorrichtung zum Erzeugen von Kunststoffrohren
EP2589909A2 (de) Vorrichtung zur Erwärmung oder Trocknung von langgestreckten Materialien
EP1834147B1 (de) Thermische bestrahlungsanordnung zur erwärmung eines bestrahlungsgutes
EP3746697A1 (de) Lichterzeugungsanordnung und kraftfahrzeugleuchte
EP2872845B1 (de) Ofen mit flächenstrahler und verfahren zum beheizen eines werkstückes mit solch einem ofen
DE102007025760A1 (de) Trockner mit Infrarotheizung
DE10257432B4 (de) Luftgekühlte Bestrahlungsanordnung
EP2368854A2 (de) Verfahren zur Herstellung von Produkten aus Schaumglas und anderen Blähstoffen, sowie hergestelltes Produkt und Ofen zur Durchführung des Verfahrens
DE2234615B2 (de) Vorrichtung zum schmelzspinnen von linearen synthetischen polymeren
DE29521405U1 (de) Vorrichtung zur Schnellerwärmung von Metall-Preßbolzen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee