DE102008057500B4 - Method for operating an internal combustion engine - Google Patents
Method for operating an internal combustion engine Download PDFInfo
- Publication number
- DE102008057500B4 DE102008057500B4 DE102008057500.3A DE102008057500A DE102008057500B4 DE 102008057500 B4 DE102008057500 B4 DE 102008057500B4 DE 102008057500 A DE102008057500 A DE 102008057500A DE 102008057500 B4 DE102008057500 B4 DE 102008057500B4
- Authority
- DE
- Germany
- Prior art keywords
- temperature
- gas
- frischgas
- cylinder
- gas filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000446 fuel Substances 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/006—Controlling exhaust gas recirculation [EGR] using internal EGR
- F02D41/0062—Estimating, calculating or determining the internal EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0493—Controlling the air charge temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
- F02D35/026—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
- F02D41/1447—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/09—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
- F02M26/10—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Verfahren zum Betrieb einer Verbrennungskraftmaschine (1) mit mindestens einem Zylinder, wobei eine Bestimmung der Temperatur der Gasfüllung (T_Frischgas+Restgas) in dem Zylinder erfolgt, wobei die Temperatur der Gasfüllung (T_Frischgas+Restgas) um einen Temperaturanteil (T_Verlust) korrigiert wird, der durch die Hubbewegung des Kolbens in dem Zylinder bedingt ist, wobei der Temperaturanteil (T_Verlust) die thermodynamischen Verluste beschreibt, die durch die Hubbewegung des Kolbens in dem Zylinder bedingt sind, dadurch gekennzeichnet, dass die thermodynamischen Verluste, die durch die Hubbewegung des Kolbens bedingt sind, in Abhängigkeit des Saugrohrdruckes (P_Ansaugleitung) der Verbrennungskraftmaschine (1) beschrieben werden.Method for operating an internal combustion engine (1) with at least one cylinder, wherein a determination of the temperature of the gas filling (T_Frischgas + residual gas) is carried out in the cylinder, wherein the temperature of the gas filling (T_Frischgas + residual gas) is corrected by a temperature component (T_Verlust), the is caused by the stroke movement of the piston in the cylinder, wherein the temperature component (T_Verlust) describes the thermodynamic losses, which are due to the lifting movement of the piston in the cylinder, characterized in that the thermodynamic losses, which are caused by the stroke movement of the piston , in dependence of the intake manifold pressure (P_Ansaugleitung) of the internal combustion engine (1) are described.
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Verbrennungskraftmaschine mit den Merkmalen des Patentanspruches 1.The present invention relates to a method for operating an internal combustion engine having the features of
Aus der
Aus der
Aus der US 2007 / 0 044781 A1 ist darüber hinaus ein Gasgemischzustandsgrößen-Schätzverfahren für eine Brennkraftmaschine bekannt, welches das Schätzen einer Zustandsgröße eines Gasgemisches umfasst, das aus Kraftstoff, der in einen Zylinder der Maschine eingespritzt wird, und einem Teil eines Zylinderinnengases besteht, das innerhalb des Zylinders vorhanden ist, wobei die Zustandsgröße des Gasgemisches auf der Grundlage einer Zustandsgröße des eingespritzten Kraftstoffs, einer Zustandsgröße des Teils des Zylinderinnengases und von Wärme, welche von einem restlichen Teil des Zylinderinnengases aus auf das Gasgemisch übertragen wird, geschätzt wird, wobei der restliche Teil um das Gasgemisch herum vorhanden ist, ohne sich mit dem eingespritzten Kraftstoff zu vermischen.From US 2007/0 044781 A1, there is also known a gas mixture state quantity estimation method for an internal combustion engine, which comprises estimating a state quantity of a gas mixture consisting of fuel injected into a cylinder of the engine and a part of a cylinder inner gas is within the cylinder, wherein the state quantity of the gas mixture is estimated on the basis of a state quantity of the injected fuel, a state quantity of the portion of the cylinder inner gas and heat, which is transferred from a remaining portion of the cylinder inner gas to the gas mixture, wherein the remaining Part around the gas mixture is present without mixing with the injected fuel.
Aus der
Aufgabetask
Es ist Aufgabe der vorliegenden Erfindung, die Genauigkeit der Bestimmung der Temperatur einer Gasfüllung in dem Zylinder einer Verbrennungskraftmaschine weiter zu erhöhen.It is an object of the present invention to further increase the accuracy of determining the temperature of a gas filling in the cylinder of an internal combustion engine.
Lösungsolution
Diese Aufgabe wird durch die vorliegende Erfindung dadurch gelöst, dass die Temperatur der Gasfüllung im Zylinder einer Verbrennungskraftmaschine, die aus den Anteilen an Frisch- und Restgas sowie der Temperatur des Frisch- und Restgases bestimmt wird, um einen Temperaturanteil korrigiert wird, der durch die Hubbewegung des Kolbens in dem Zylinder bedingt ist. Insbesondere wird erfindungsgemäß der Temperaturanteil bei der Bestimmung der Gasfüllung im Zylinder einer Verbrennungskraftmaschine berücksichtigt, welcher thermodynamische Verluste beschreibt, die durch die Hubbewegung des Kolbens in dem Zylinder bedingt sind. Thermodynamische Verluste sind dabei insbesondere dadurch bedingt, dass bei der Hubbewegung des Kolbens eine Volumenänderung der Gasfüllung im Zylinder auftritt. Insbesondere erfolgt bei der Abwärtsbewegung des Kolbens in dem Zylinder eine Volumenvergrößerung, wobei das angesaugte Gas auf seinem Weg in den Zylinder verschiedene Drosselstellen passiert, beispielsweise das in seinem Durchflussquerschnitt variable Einlassventil, so dass der Effekt auftritt, dass schon in den Zylinder eingeströmtes Gas expandiert und somit abgekühlt wird und somit eine Beeinflussung der Temperatur der Gasfüllung im Zylinder einer Verbrennungskraftmaschine erfolgt. Beispielsweise schließt das Auslassventil und öffnet das Einlassventil im oberen Totpunkt, vor Beginn der Abwärtsbewegung des Kolbens. Zu Beginn der Abwärtsbewegung des Kolbens ist das Einlassventil noch geschlossen. Im weiteren Verlauf der Abwärtsbewegung des Kolbens vergrößert sich der Durchflussquerschnitt des Einlassventils. In einem ersten Abschnitt der Abwärtsbewegung des Kolbens ist jedoch der Durchflussquerschnitt des Einlassventils sehr klein, so dass neben dem Einströmen erster Anteile an Frischgas in den Zylinder eine Expansion des im Zylinder verbliebenen Anteils an Restgas erfolgt, wobei die Temperatur der Gasfüllung im Zylinder beeinflusst wird. In einem weiteren Abschnitt der Abwärtsbewegung des Kolbens steigt der Durchflussquerschnitt des Einlassventils weiter an, außerdem nimmt die Geschwindigkeit des Kolbens zu und erreicht ihr Maximum im Bereich des halben Hubes des Kolbens im Zylinder, wobei in Verbindung mit dem sich ändernden Durchflussquerschnitt des Einlassventils die Situation auftreten kann, dass die Volumenänderung des Zylinders schneller erfolgt, als Frischgas nachströmen kann beziehungsweise eine Drosselung des angesaugten Frischgases im Bereich des Einlassventils erfolgt und das noch im Zylinder befindliche Restgas und das schon eingeströmte Frischgas expandiert wird, wobei die Temperatur der Gasfüllung im Zylinder beeinflusst wird. In einem noch weiteren Abschnitt der Abwärtsbewegung des Kolbens nimmt der Durchflussquerschnitt des Einlassventils wieder ab und die Geschwindigkeit des Kolbens wird, bedingt durch den nahenden unteren Totpunkt, wieder geringer, wobei bedingt durch die Trägheit des infolge der Abwärtsbewegung des Kolbens beschleunigten und in den Zylinder einströmenden Frischgases weiteres Frischgas in den Zylinder gedrängt wird, wobei weiterhin eine Drosselung des angesaugten Frischgases im Bereich des Einlassventils erfolgt und das noch im Zylinder befindliche Restgas und das schon eingeströmte Frischgas expandiert wird, wobei die Temperatur der Gasfüllung im Zylinder beeinflusst wird. Da die Bestimmung der Temperatur der Gasfüllung im Zylinder insbesondere dem Zweck dient, genau bestimmen zu können, wieviel Frischgas sich in dem Zylinder befindet und wieviel Kraftstoff für eine folgende Verbrennung bereitgestellt werden muss, um ein gewünschtes Verbrennungsluftverhältnis einzustellen, ist es von Vorteil, dass erfindungsgemäß auch die vorgenannten Einflüsse berücksichtigt werden.This object is achieved by the present invention in that the temperature of the gas filling in the cylinder of an internal combustion engine, which is determined from the proportions of fresh and residual gas and the temperature of the fresh and residual gas, is corrected by a temperature component by the lifting movement of the piston in the cylinder is conditional. In particular, the temperature component in the determination of the gas filling in the cylinder of an internal combustion engine is considered according to the invention, which describes thermodynamic losses, which are caused by the stroke movement of the piston in the cylinder. Thermodynamic losses are due in particular to the fact that a volume change of the gas filling in the cylinder occurs during the stroke movement of the piston. In particular, during the downward movement of the piston in the cylinder an increase in volume takes place, wherein the sucked gas passes different throttle points on its way into the cylinder, for example, the variable in its flow area inlet valve, so that the effect occurs that already in the cylinder gas flows expanded and is thus cooled and thus takes place an influence on the temperature of the gas filling in the cylinder of an internal combustion engine. For example, the exhaust valve closes and opens the intake valve at top dead center, prior to the beginning of the downward movement of the piston. At the beginning of the downward movement of the piston, the inlet valve is still closed. In the further course of the downward movement of the piston, the flow cross-section of the intake valve increases. In a first section of the downward movement of the piston, however, the flow cross-section of the intake valve is very small, so that in addition to the flow of fresh gas into the cylinder, an expansion of the residual gas remaining in the cylinder takes place, the temperature of the gas filling in the cylinder being influenced. In a further portion of the downward movement of the piston, the flow area of the intake valve continues to increase, and the speed of the piston increases and reaches its maximum in the range of half the stroke of the piston in the cylinder, the situation occurring in conjunction with the changing flow area of the intake valve can make the volume change of the cylinder faster, can flow as fresh gas or a throttling of the fresh gas sucked in the region of the inlet valve takes place and the residual gas still present in the cylinder and the fresh gas already flowed in is expanded, wherein the temperature of the gas filling in the cylinder is influenced. In yet another portion of the downward movement of the piston, the flow area of the intake valve decreases again, and the speed of the piston decreases again due to the approaching bottom dead center, due to the inertia of the cylinder accelerating due to the downward movement of the piston and flowing into the cylinder Fresh gas further fresh gas is forced into the cylinder, wherein a further throttling of the fresh gas sucked in the region of the inlet valve and the residual gas still in the cylinder and already flowed fresh gas is expanded, wherein the temperature of the gas filling in the cylinder is influenced. Since the determination of the temperature of the gas filling in the cylinder serves in particular to be able to accurately determine how much fresh gas is in the cylinder and how much fuel must be provided for a subsequent combustion in order to set a desired combustion air ratio, it is advantageous that according to the invention also the aforementioned influences are taken into account.
In einer Ausführung der vorliegenden Erfindung ist es vorgesehen, die thermodynamischen Verluste, die durch die Hubbewegung des Kolbens bedingt sind, in Abhängigkeit der Drehzahl der Kurbel- oder Nockenwelle der Verbrennungskraftmaschine zu beschreiben. Dabei ist es erfindungsgemäß von Vorteil, dass der mit der Drehzahl steigende Einfluss der thermodynamischen Verluste, insbesondere von Drosselverlusten auf die Temperatur der Gasfüllung im Zylinder beschrieben wird.In one embodiment of the present invention, it is provided to describe the thermodynamic losses, which are caused by the stroke movement of the piston, as a function of the rotational speed of the crankshaft or camshaft of the internal combustion engine. In this case, it is advantageous according to the invention that the influence of the thermodynamic losses, in particular throttle losses, on the temperature of the gas charge in the cylinder, which increases with the rotational speed, is described.
In einer weiteren Ausführung der vorliegenden Erfindung ist es vorgesehen, die thermodynamischen Verluste, die durch die Hubbewegung des Kolbens bedingt sind, in Abhängigkeit des Saugrohrdruckes zu beschreiben. Auf diese Weise wird erfindungsgemäß vorteilhaft der steigende Einfluss der Drosselverluste bei steigendem Saugrohrdruck beziehungsweise dem damit steigenden Anteil an Frischgas, welcher das Einlassventil passiert, auf die Temperatur der Gasfüllung im Zylinder beschrieben.In a further embodiment of the present invention, it is provided to describe the thermodynamic losses, which are caused by the stroke movement of the piston, as a function of the intake manifold pressure. In this way, according to the invention, the increasing influence of the throttling losses with increasing intake manifold pressure or the proportion of fresh gas which passes through it, which exceeds the intake valve, is described in terms of the temperature of the gas charge in the cylinder.
In einer bevorzugten Ausführung der vorliegenden Erfindung ist es vorgesehen, die Korrektur der Temperatur der Gasfüllung im Zylinder einer Verbrennungskraftmaschine um einen Temperaturanteil, der durch die Hubbewegung des Kolbens im Zylinder bedingt ist, auf einen Zeit- oder Kurbelwinkelbereich zu beziehen, der sich zwischen dem Schließen des Auslass- und des Einlassventils erstreckt. Dieser Bereich ist zur Korrektur der Temperatur der Gasfüllung im Zylinder einer Verbrennungskraftmaschine deshalb besonders bedeutend, da in diesem Bereich der beschriebene Effekt des durch den voreilenden Kolben bedingten Drosselns des in den Zylinder einströmenden Frischgases stattfindet und noch keine Verbrennung erfolgt. Insbesondere ist es vorgesehen, einen Wert für das effektive Hubvolumen beim Schließen des Auslassventils von einem Wert für das effektive Hubvolumen beim Schließen des Einlassventils abzuziehen, so dass eine Information über das Hubvolumen vorliegt, bei dem im Wesentlichen eine Beeinflussung der Temperatur der Gasfüllung durch thermodynamische Verluste erfolgt.In a preferred embodiment of the present invention, it is provided to relate the correction of the temperature of the gas filling in the cylinder of an internal combustion engine by a temperature portion, which is caused by the stroke movement of the piston in the cylinder, to a time or crank angle range, which is between closing of the exhaust and intake valves. This region is therefore particularly important for correcting the temperature of the gas filling in the cylinder of an internal combustion engine, since in this region the described effect of the throttling of the fresh gas flowing into the cylinder takes place and no combustion takes place. In particular, it is provided to deduct a value for the effective displacement when closing the exhaust valve from a value for the effective displacement when closing the intake valve, so that there is information about the displacement, in which substantially influencing the temperature of the gas filling by thermodynamic losses he follows.
In einer weiteren Ausführung der vorliegenden Erfindung ist es vorgesehen, dass die Temperatur der Gasfüllung im Zylinder einer Verbrennungskraftmaschine, die aus den Anteilen an Frisch- und Restgas sowie der Temperatur des Frisch- und Restgases bestimmt wird, weiterhin um einen Temperaturanteil korrigiert wird, der dadurch bedingt ist, dass Wärme über die brennraumangrenzenden Bauteile transportiert wird und dadurch eine Beeinflussung der Temperatur der Gasfüllung in dem Zylinder erfolgt. Insbesondere ist es erfindungsgemäß vorgesehen, dass die Berücksichtigung des Einflusses derartiger Wandwärmeübergänge auf die Temperatur der Gasfüllung in dem Zylinder in Abhängigkeit der Temperatur der brennraumangrenzenden Bauteile erfolgt. Ferner ist es erfindungsgemäß vorgesehen, zur Berücksichtigung des Einflusses derartiger Wandwärmeübergänge auf die Temperatur der Gasfüllung in dem Zylinder eine Konstante vorzusehen. Darüber hinaus ist es erfindungsgemäß vorgesehen, dass die Berücksichtigung des Einflusses derartiger Wandwärmeübergänge auf die Temperatur der Gasfüllung in dem Zylinder in Abhängigkeit der Drehzahl der Kurbel- oder Nockenwelle der Verbrennungskraftmaschine erfolgt.In a further embodiment of the present invention, it is provided that the temperature of the gas filling in the cylinder of an internal combustion engine, which is determined from the proportions of fresh and residual gas and the temperature of the fresh and residual gas, is further corrected by a temperature proportion thereby is conditioned that heat is transported through the combustion chamber adjoining components and thereby affects the temperature of the gas filling in the cylinder. In particular, it is provided according to the invention that the consideration of the influence of such wall heat transitions on the temperature of the gas filling in the cylinder takes place as a function of the temperature of the combustion chamber adjoining components. Furthermore, it is provided according to the invention to provide a constant for the consideration of the influence of such wall heat transfer to the temperature of the gas filling in the cylinder. Moreover, it is inventively provided that the consideration of the influence of such Wandwärmeübergänge on the temperature of the gas filling in the cylinder in dependence on the speed of the crankshaft or camshaft of the internal combustion engine takes place.
Figurenlistelist of figures
Weitere vorteilhafte Ausgestaltungen der vorliegenden Erfindung sind dem nachfolgenden Ausführungsbeispiel sowie den abhängigen Patentansprüchen zu entnehmen.Further advantageous embodiments of the present invention will become apparent from the following embodiment and the dependent claims.
Hierbei zeigen:
-
1 : eine schematische Darstellung einer Verbrennungskraftmaschine, welche beispielhaft als Grundlage des erfindungsgemäßen Verfahrens dient, -
2 : Funktionsschaubild des erfindungsgemäßen Verfahrens.
-
1 : a schematic representation of an internal combustion engine, which serves as an example as a basis of the method according to the invention, -
2 : Functional diagram of the method according to the invention.
Gemäß
In
BezugszeichenlisteLIST OF REFERENCE NUMBERS
- 11
- VerbrennungskraftmaschineInternal combustion engine
- 22
- Ansaugleitungsuction
- 33
- Abgasleitungexhaust pipe
- 44
- Verdichtercompressor
- 55
- Turbineturbine
- 66
- Abgasturboladerturbocharger
- 77
- Kühlercooler
- 88th
- Drosselklappethrottle
- 99
- Steuergerätcontrol unit
- 1010
- Drucksensorpressure sensor
- 1111
- Temperatursensortemperature sensor
- 1212
- Filterelementfilter element
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008057500.3A DE102008057500B4 (en) | 2008-11-15 | 2008-11-15 | Method for operating an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008057500.3A DE102008057500B4 (en) | 2008-11-15 | 2008-11-15 | Method for operating an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102008057500A1 DE102008057500A1 (en) | 2010-05-20 |
DE102008057500B4 true DE102008057500B4 (en) | 2019-07-18 |
Family
ID=42105091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102008057500.3A Expired - Fee Related DE102008057500B4 (en) | 2008-11-15 | 2008-11-15 | Method for operating an internal combustion engine |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102008057500B4 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19740917A1 (en) | 1997-04-01 | 1998-10-15 | Bosch Gmbh Robert | Cylinder gas temperature determination in combustion engine |
EP1544443A1 (en) | 2003-12-16 | 2005-06-22 | Toyota Jidosha Kabushiki Kaisha | Method of estimating the in cylinder temperature after combustion |
US20070044781A1 (en) * | 2003-09-18 | 2007-03-01 | Toyota Jidosha Kabushiki Kaisha | Method of estimating state quantity or temperature of gas mixture for internal combustion engine |
DE102006033484A1 (en) | 2006-07-19 | 2008-01-24 | Robert Bosch Gmbh | Process to control operation of automotive piston engine by mathematical definition of combustion chamber volume |
-
2008
- 2008-11-15 DE DE102008057500.3A patent/DE102008057500B4/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19740917A1 (en) | 1997-04-01 | 1998-10-15 | Bosch Gmbh Robert | Cylinder gas temperature determination in combustion engine |
US20070044781A1 (en) * | 2003-09-18 | 2007-03-01 | Toyota Jidosha Kabushiki Kaisha | Method of estimating state quantity or temperature of gas mixture for internal combustion engine |
EP1544443A1 (en) | 2003-12-16 | 2005-06-22 | Toyota Jidosha Kabushiki Kaisha | Method of estimating the in cylinder temperature after combustion |
DE102006033484A1 (en) | 2006-07-19 | 2008-01-24 | Robert Bosch Gmbh | Process to control operation of automotive piston engine by mathematical definition of combustion chamber volume |
Also Published As
Publication number | Publication date |
---|---|
DE102008057500A1 (en) | 2010-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19857234C2 (en) | Exhaust gas recirculation device | |
EP3698032B1 (en) | Method for the model-based control and regulation of an internal combustion engine | |
DE10152803A1 (en) | Internal combustion engine with an exhaust gas turbocharger and an exhaust gas recirculation device | |
DE102005002518B3 (en) | Exhaust gas recirculation system for an internal combustion engine and exhaust gas recirculation method | |
DE4027503A1 (en) | CHARGE PRESSURE CONTROL DEVICE FOR A TURBOCHARGER ENGINE | |
DE102013113157A1 (en) | Method and device for regulating a charge in a cylinder of an internal combustion engine | |
DE102014217591A1 (en) | Method and device for controlling an exhaust gas recirculation valve of a supercharged internal combustion engine with exhaust gas recirculation | |
DE102014013675A1 (en) | An exhaust gas recirculation control apparatus, engine, method of controlling an EGR apparatus and computer program product | |
EP1880095B1 (en) | Two-stroke engine braking process for a supercharged internal combustion engine | |
WO2014079682A1 (en) | Method for operating a spark ignition internal combustion engine with an exhaust gas turbocharger | |
DE102013212993A1 (en) | Internal EGR quantity calculation device for internal combustion engine | |
EP3155247B1 (en) | Method and control unit for carrying out a gas exchange in a cylinder of an internal combustion engine and internal combustion engine having such a control unit | |
DE10356713B4 (en) | Method for controlling or controlling an internal combustion engine operating in a cyclic process | |
DE102008057500B4 (en) | Method for operating an internal combustion engine | |
EP1495220B1 (en) | Method for controlling a combustion engine | |
DE102014214438B3 (en) | Method for controlling the fuel supply for setting a desired air-fuel ratio in a cylinder of an internal combustion engine | |
EP3803086B1 (en) | Method for operating an internal combustion engine, and corresponding internal combustion engine | |
DE102013212014A1 (en) | Internal EGR quantity calculation device for internal combustion engine | |
DE10215361B4 (en) | Method for modeling a mass flow through a bypass to an exhaust gas turbocharger | |
DE102015218835B3 (en) | Method and apparatus for injecting gaseous fuel | |
DE102013021612B4 (en) | Method for operating an internal combustion engine and corresponding internal combustion engine | |
DE112018002483T5 (en) | CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE | |
DE102006032366A1 (en) | Method for operating an internal combustion engine | |
DE102017130719A1 (en) | Control device and control method for an internal combustion engine | |
DE102015219408B4 (en) | Method and apparatus for injecting gaseous fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R012 | Request for examination validly filed |
Effective date: 20150306 |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |