DE102006046739A1 - Magnetic field sensor for use in magneto resistive element, particularly four elements in bridge connection, has chip arranged on substrate or even formed on substrate - Google Patents
Magnetic field sensor for use in magneto resistive element, particularly four elements in bridge connection, has chip arranged on substrate or even formed on substrate Download PDFInfo
- Publication number
- DE102006046739A1 DE102006046739A1 DE200610046739 DE102006046739A DE102006046739A1 DE 102006046739 A1 DE102006046739 A1 DE 102006046739A1 DE 200610046739 DE200610046739 DE 200610046739 DE 102006046739 A DE102006046739 A DE 102006046739A DE 102006046739 A1 DE102006046739 A1 DE 102006046739A1
- Authority
- DE
- Germany
- Prior art keywords
- current
- sensor according
- hysteresis
- substrate
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/205—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
Die Erfindung bezieht sich auf einen Magnetfeldsensor aus wenigstens einem magnetoresistiven Element gemäß dem Oberbegriff des Patentanspruches 1. Für eine praxisgerechte Realisierung sind dabei vorzugsweise vier magnetoresistive Elemente in Brückenschaltung vorhanden.The The invention relates to a magnetic field sensor of at least a magnetoresistive element according to the preamble of claim 1. For a practical realization are preferably four magnetoresistive Elements in bridge circuit available.
Nach dem magnetoresistiven Effekt arbeitende Magnetfeldsensoren sind insbesondere als so genannte GMR (Giant Magneto Resistance) und TMR (Tunnel Magneto Resistance) bekannt. Solche Sensoren stellen in der Magnetfeld-basierten Positions-, Geschwindigkeits-, Drehzahl-, Feld- oder auch Stromsensorik eine Alternative zu den in der Praxis häufig verwendeten Hallsensoren dar.To the magnetoresistive effect working magnetic field sensors are in particular as so-called GMR (Giant Magneto Resistance) and TMR (Tunnel Magneto Resistance) known. Such sensors set in the magnetic field-based position, speed, speed, Field or current sensors an alternative to the commonly used in practice Hall sensors.
Vor allem im Bereich der Positions- und Stromsensorik sind während der letzten Jahre verstärkt MR-basierte Sensoren bekannt geworden. Die Hauptvorteile liegen im Vergleich zu Hall-Sensoren im einfacheren Systemaufbau, der größeren Störsicherheit – bedingt durch die Möglichkeit eines Designs mit stark reduzierter Fremdfeldempfindlichkeit – und dem geringeren Rauschen. Es bieten sich bei MR-basierten Sensoren vor allem voll integrierte Lösungen an, da die magnetoresistiven Elemente als Backend-Prozess beispielsweise in CMOS-Technologie aufgebracht werden können und damit keine zusätzliche Chipfläche beansprucht wird.In front Everything in the field of position and current sensors are during the reinforced in recent years MR-based sensors have become known. The main advantages lie Compared to Hall sensors in the simpler system design, the greater interference immunity - conditional by the possibility a design with greatly reduced external field sensitivity - and the less noise. They are available with MR-based sensors all fully integrated solutions on, since the magnetoresistive elements as a backend process, for example can be applied in CMOS technology and therefore no additional chip area is claimed.
Für praxisrelevante Anwendungen, vor allem in der Positions-, Drehzahl- und Stromsensorik, werden jeweils vier Elemente zu einer aus der Elektrotechnik bekannten Wheatstone-Brücke verschaltet, um eine genauere, von Temperaturschwankungen, Fremdfeldern oder anderer Störeinflüsse unabhängigere Messung zu erreichen.For practice-relevant Applications, especially in position, speed and current sensors, each four elements become one known from electrical engineering Wheatstone bridge interconnected to a more accurate, by temperature fluctuations, extraneous fields or other disturbances more independent To achieve measurement.
Allerdings kommt es vor allem bei gegenüber Raumtemperatur (T = 20°C) erhöhten Temperaturen (T > 70°C) – bedingt durch die Temperaturabhängigkeit der intrinsischen Materialeigenschaften der Hysterese – zu teilweise ganz erheblichen Ungenauigkeiten bei der magnetischen Feldmessung. Vor allem die in der Stromsensorik geforderte Toleranz gegenüber Überströmen, d.h. Strömen, die um den Faktor 5 bis 12 größer sind als der nominale Maximalwert des zu messenden Stromes, stellt ein großes Problem dar.Indeed it comes especially at room temperature (T = 20 ° C) increased Temperatures (T> 70 ° C) - conditional by the temperature dependence intrinsic material properties of hysteresis - too partial very significant inaccuracies in the magnetic field measurement. In particular, the required in the current sensor tolerance to overcurrents, i. Stream, which are larger by a factor of 5 to 12 as the nominal maximum value of the current to be measured, sets great Problem.
Überströme können, wenn sie gleichzeitig mit hohen Temperaturen auftreten, was durchsetzt Erwärmungseffekte infolge des Überstromes häufig der Fall ist, über die Eigenschaft der Hysterese zu in vielen Anwendungsfällen nicht mehr tolerierbaren Messfehlern führen.Overcurrents can, if they occur simultaneously with high temperatures, what interspersed warming effects as a result of the overcurrent often the Case is over the property of hysteresis too many applications lead to more tolerable measurement errors.
Bekanntermaßen hängt die Auswirkung auf das Ausgangssignal des sensitiven Elementes oder der sensitiven Elemente zur Magnetfeld-/Strommessung stark von der Historie des magnetischen Feldes und der Temperatur am Ort des Sensors ab, kann der Einfluss praktisch nicht numerisch herausgerechnet werden. Neben der reduzierten Genauigkeit über Temperatur- und Strombereich wird daher auch die mögliche Offset-Kalibrierung erschwert.As you know, that depends Effect on the output signal of the sensitive element or the sensitive elements for magnetic field / current measurement strongly from the history of the magnetic field and the temperature at the location of the sensor, the influence can practically not be numerically eliminated. In addition to the reduced accuracy over temperature and current range will therefore also the possible Offset calibration difficult.
In der Praxis erzielen MR-Sensoren hohe Genauigkeiten, d.h. ±1 % Fehler bei Raumtemperatur, nur im Temperaturbereich bis 85°C. Eine Erhöhung der spezifizierten Maximaltemperatur auf z. B. 150°C, die z.B. für Automobilanwendunge erwünscht wird, bei gleichzeitig hoher Bandbreite kann bei MR-Sensoren mit erhöhtem Aufwand und Kosten über eine kontinuierliche Regelung, so genannte „closed loop"-Schaltung, erreicht werden. Eine solche Schaltung hat aber den Nachteil einer sehr hohen Leistungsaufnahme (1 W bei einem Messstrom von 25 A). Darüber hinaus ist bei einem closed loop-Verfahren ohne Verwendung eines teuren Flusskonzentrators der Messbereich auf ca. 150 A begrenzt.In In practice, MR sensors achieve high accuracies, i. ± 1% error at room temperature, only in the temperature range up to 85 ° C. An increase in the specified maximum temperature on z. 150 ° C, e.g. for automotive applications is desired at the same time high bandwidth can with MR sensors with increased expenditure and costs over a continuous regulation, so-called "closed loop" circuit, achieved become. But such a circuit has the disadvantage of a very high Power consumption (1 W at a measuring current of 25 A). Furthermore is in a closed loop process without the use of an expensive flux concentrator the measuring range is limited to approx. 150 A
Eine andere Lösung besteht in der Verwendung von Hall-Effekt-Sensoren, die, um hohe Genauigkeit zu erzielen, immer einen teuren Flusskonzentrator benötigen und weitere Nachteile, insbesondere Piezoeffekt und starkes thermisches bzw. Halbleiterrauschen, aufweisen.A another solution consists in the use of Hall effect sensors, which, in order to high accuracy always need an expensive flux concentrator and further disadvantages, in particular piezoelectric effect and strong thermal or semiconductor noise, have.
Weiterhin
ist aus der
Von obigem Stand der Technik ausgehend ist es Aufgabe der Erfindung, einen verbesserten Magnetfeldsensor zu schaffen.From Based on the above prior art, it is an object of the invention to provide an improved magnetic field sensor.
Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.The Task is inventively by the features of claim 1 solved. Advantageous developments are in the subclaims specified.
Gegenstand der Erfindung ist die Reduzierung und insbesondere die Minimierung der Hysterese-Eigenschaften beim Magnetfeldsensor mit magnetoresistiven Elementen, die einer Hysterese unterliegen. Vorteilhafterweise kann durch Überlagerung eines hochfrequenten Magnetfeldpulses über den Messstrom – bevorzugt mit abklingender Amplitude –, das mit Hilfe eines insbesondere integrierten stromdurchflossenen Leiters, einer stromdurchflossenen Leiterschleife oder einer stromführenden Spulenanordnung erzeugt wird, die Hysterese eines einzelnen magnetoresistiven Elementes bzw. einer daraus aufgebauten Brücke erheblich reduziert werden. Das Endmagnetisierungsfeld ist dabei so gewählt, dass ein maximaler Effekt der Hysteresereduktion bei vertretbarem Energieaufwand erreicht wird.The invention relates to the reduction and in particular the minimization of the hysteresis properties in magnetic field sensor with magnetoresistive elements which are subject to hysteresis. Advantageously, by superimposing a high-frequency magnetic field pulse on the measuring current - preferably with decaying amplitude - which is generated by means of a particular integrated current-carrying conductor, a current-carrying conductor loop or a current-carrying coil assembly, the hysteresis of a individual magnetoresistive element or a bridge constructed therefrom can be considerably reduced. The final magnetization field is chosen so that a maximum effect of hysteresis reduction is achieved with reasonable energy expenditure.
Beim erfindungsgemäßen Magnetfeldsensor unterliegt die Hysterese nicht mehr so stark dem Einfluss der zufälligen Abfolge von Werten des Messfeldes. Damit wird das magnetische Gedächtnis des einzelnen magnetoresistiven Elementes durch die temporär überlagerten Entmagnetisierungsfelder reduziert bzw. überschrieben und damit minimiert.At the subject to the invention magnetic field sensor the hysteresis is not as strong the influence of the random sequence of values of the measuring field. This becomes the magnetic memory of the individual magnetoresistive element through the temporarily superimposed demagnetizing fields reduced or overwritten and thus minimized.
Mit der Erfindung kann insbesondere durch hochfrequente Überlagerung eines Wechselfeldes im magnetischen System eine Hysterese-reduzierte Kennlinie gewonnen werden. In MR-basierten Stromsensoren kann das dem Messfeld überlagerte Wechselfeld bzw. der Strompuls, insbesondere mit abnehmender Amplitude, durch eine interne Leiterschleife erzeugt werden.With The invention can in particular by high-frequency superposition an alternating field in the magnetic system a hysteresis-reduced characteristic be won. In MR-based current sensors, this can be superimposed on the measuring field Alternating field or the current pulse, in particular with decreasing amplitude, generated by an internal conductor loop.
Besonders vorteilhaft ist bei der Erfindung, dass durch Überlagerung eines hochfrequenten Pulses, der ungedämpft oder abklingend sein kann, in einer internen Leiterschleife zu einer signifikanten Reduktion der Hysterese erreicht wird.Especially advantageous in the invention that by superposition of a high-frequency Pulse, the undamped or abating, in an internal conductor loop to one significant reduction of hysteresis is achieved.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung.Further Details and advantages of the invention will become apparent from the following Description of the figures of exemplary embodiments based on the drawing.
Es zeigenIt demonstrate
In
Eine Verringerung der Hysterese kann durch Überlagerung eines Entmagnetisierungspulses erfolgen. Dabei wird die Verminderung der Hysterese bzw. der remanenten Magnetisierung von ferromagnetischen Materialien zweckmäßigerweise mit einem Wechselfeld abnehmender Amplitude durchgeführt.A Hysteresis can be reduced by superimposing a demagnetizing pulse respectively. In this case, the reduction of the hysteresis or the remanent Magnetization of ferromagnetic materials expediently performed with an alternating field of decreasing amplitude.
In
Durch die hochfrequente Überlagerung des Wechselfeldes kann im magnetischen System eine hysteresereduzierte Kennlinie gewonnen werden. Vorteilhaft ist dabei, dass bei magnetoresistiven Elementen das dem Messfeld überlagerte Wechselfeld bzw. der Stromimpuls mit abnehmender Amplitude durch eine interne Leiterschleife erzeugt werden kann.By the high-frequency overlay of the alternating field can reduce hysteresis in the magnetic system Characteristic can be obtained. It is advantageous that in magnetoresistive Elements that overlaid the measurement field Alternating field or the current pulse with decreasing amplitude by an internal conductor loop can be generated.
Experimentelle
Ergebnisse dazu sind in
Aus
der
In
In
Aus
Auf
oder im Substrat
Substrat und Chip-Topographie ist vorteilhafterweise in CMOS-Technologie realisiert, welche die Möglichkeit einer weitestgehenden Miniaturisierung bietet.substratum and chip topography is advantageously realized in CMOS technology, which the possibility a miniaturization as far as possible.
Da
die magnetoresistiven Elemente
Mit
einer Anordnung gemäß
Es
können
bei der Anordnung gemäß
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610046739 DE102006046739B4 (en) | 2006-09-29 | 2006-09-29 | Method for operating a magnetic field sensor and associated magnetic field sensor |
PCT/EP2007/060160 WO2008040659A2 (en) | 2006-09-29 | 2007-09-25 | Method for operating a magnetic field sensor and associated magnetic field sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610046739 DE102006046739B4 (en) | 2006-09-29 | 2006-09-29 | Method for operating a magnetic field sensor and associated magnetic field sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102006046739A1 true DE102006046739A1 (en) | 2008-04-03 |
DE102006046739B4 DE102006046739B4 (en) | 2008-08-14 |
Family
ID=39134441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200610046739 Expired - Fee Related DE102006046739B4 (en) | 2006-09-29 | 2006-09-29 | Method for operating a magnetic field sensor and associated magnetic field sensor |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102006046739B4 (en) |
WO (1) | WO2008040659A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007052408A1 (en) | 2007-10-31 | 2009-05-07 | Siemens Ag | Magnetic field sensor i.e. giant magnetic resistance sensor, operating method for measuring e.g. current, involves using front reversal point on characteristics curve as new starting point for forming changeable hysteresis loop |
US9322887B1 (en) | 2014-12-01 | 2016-04-26 | Allegro Microsystems, Llc | Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source |
US10935612B2 (en) | 2018-08-20 | 2021-03-02 | Allegro Microsystems, Llc | Current sensor having multiple sensitivity ranges |
US11567108B2 (en) | 2021-03-31 | 2023-01-31 | Allegro Microsystems, Llc | Multi-gain channels for multi-range sensor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7768083B2 (en) | 2006-01-20 | 2010-08-03 | Allegro Microsystems, Inc. | Arrangements for an integrated sensor |
US7816905B2 (en) | 2008-06-02 | 2010-10-19 | Allegro Microsystems, Inc. | Arrangements for a current sensing circuit and integrated current sensor |
US7973527B2 (en) | 2008-07-31 | 2011-07-05 | Allegro Microsystems, Inc. | Electronic circuit configured to reset a magnetoresistance element |
US8063634B2 (en) | 2008-07-31 | 2011-11-22 | Allegro Microsystems, Inc. | Electronic circuit and method for resetting a magnetoresistance element |
US9354284B2 (en) | 2014-05-07 | 2016-05-31 | Allegro Microsystems, Llc | Magnetic field sensor configured to measure a magnetic field in a closed loop manner |
US11994541B2 (en) | 2022-04-15 | 2024-05-28 | Allegro Microsystems, Llc | Current sensor assemblies for low currents |
US20240241157A1 (en) * | 2023-01-17 | 2024-07-18 | Littelfuse, Inc. | Current sensor with diagnostic feature |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2944490C2 (en) * | 1979-11-03 | 1985-02-21 | Siemens AG, 1000 Berlin und 8000 München | Process for eliminating the influence of remanence in receiving systems and device for carrying out the process |
DE4319146A1 (en) * | 1993-06-09 | 1994-12-15 | Inst Mikrostrukturtechnologie | Magnetic field sensor, made up of a magnetic reversal line and one or more magnetoresistive resistors |
DE19834153A1 (en) * | 1998-07-29 | 2000-02-10 | Lust Antriebstechnik Gmbh | Process for evaluating signals from magnetoresistive sensors |
US20050150295A1 (en) * | 2004-01-05 | 2005-07-14 | Wright Layne L. | One-chip compass implemented using magnetoresistive (MR) sensor temperature compensation and magnetic cross-term reduction techniques |
DE4343686B4 (en) * | 1992-12-31 | 2005-11-17 | Honeywell, Inc., Minneapolis | magnetometer |
DE102004056384A1 (en) * | 2004-07-01 | 2006-02-02 | Sensitec Gmbh | Offset elimination method for magnetoresistive sensor, involves separating signal components by high pass filter provided in direct path of signal, and sending signal of differential amplifier to filter |
-
2006
- 2006-09-29 DE DE200610046739 patent/DE102006046739B4/en not_active Expired - Fee Related
-
2007
- 2007-09-25 WO PCT/EP2007/060160 patent/WO2008040659A2/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2944490C2 (en) * | 1979-11-03 | 1985-02-21 | Siemens AG, 1000 Berlin und 8000 München | Process for eliminating the influence of remanence in receiving systems and device for carrying out the process |
DE4343686B4 (en) * | 1992-12-31 | 2005-11-17 | Honeywell, Inc., Minneapolis | magnetometer |
DE4319146A1 (en) * | 1993-06-09 | 1994-12-15 | Inst Mikrostrukturtechnologie | Magnetic field sensor, made up of a magnetic reversal line and one or more magnetoresistive resistors |
DE19834153A1 (en) * | 1998-07-29 | 2000-02-10 | Lust Antriebstechnik Gmbh | Process for evaluating signals from magnetoresistive sensors |
US20050150295A1 (en) * | 2004-01-05 | 2005-07-14 | Wright Layne L. | One-chip compass implemented using magnetoresistive (MR) sensor temperature compensation and magnetic cross-term reduction techniques |
DE102004056384A1 (en) * | 2004-07-01 | 2006-02-02 | Sensitec Gmbh | Offset elimination method for magnetoresistive sensor, involves separating signal components by high pass filter provided in direct path of signal, and sending signal of differential amplifier to filter |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007052408A1 (en) | 2007-10-31 | 2009-05-07 | Siemens Ag | Magnetic field sensor i.e. giant magnetic resistance sensor, operating method for measuring e.g. current, involves using front reversal point on characteristics curve as new starting point for forming changeable hysteresis loop |
US9322887B1 (en) | 2014-12-01 | 2016-04-26 | Allegro Microsystems, Llc | Magnetic field sensor with magnetoresistance elements and conductive-trace magnetic source |
US9605979B2 (en) | 2014-12-01 | 2017-03-28 | Allegro Microsystems, Llc | Magnetic field sensor with magnetoresistance elements and conductive trace magnetic source |
US10935612B2 (en) | 2018-08-20 | 2021-03-02 | Allegro Microsystems, Llc | Current sensor having multiple sensitivity ranges |
US11567108B2 (en) | 2021-03-31 | 2023-01-31 | Allegro Microsystems, Llc | Multi-gain channels for multi-range sensor |
Also Published As
Publication number | Publication date |
---|---|
DE102006046739B4 (en) | 2008-08-14 |
WO2008040659A2 (en) | 2008-04-10 |
WO2008040659A3 (en) | 2008-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006046739B4 (en) | Method for operating a magnetic field sensor and associated magnetic field sensor | |
DE102006046736B4 (en) | Method for operating a magnetic field sensor and associated magnetic field sensor | |
DE102006021774B4 (en) | Current sensor for galvanically isolated current measurement | |
DE69534013T2 (en) | Magnetic field sensor and method for its production | |
DE3878281T2 (en) | SENSOR WITH A MAGNETO-ELECTRICAL TRANSDUCER. | |
DE19539722C2 (en) | Device for detecting a change in an angle or the field strength of a magnetic field | |
DE102009007479B4 (en) | Thin-film magnetic sensor | |
DE102018115530A1 (en) | magnetic field sensor | |
CH651151A5 (en) | MEASURING CONVERTER FOR MEASURING A MAGNETIC FIELD, IN PARTICULAR GENERATED BY A MEASURING CURRENT. | |
DE112010000890T5 (en) | Magnetic field detecting apparatus | |
DE102011104009B4 (en) | Magnetic position detection device | |
DE10017374B4 (en) | Magnetic coupling device and its use | |
DE102006062750A1 (en) | Concept for detecting a change of a physical quantity by means of a current conductor structure | |
WO2007096318A1 (en) | Sensor device for detecting a magnetic field variable | |
DE102013207159A1 (en) | MAGNETIC SENSOR | |
EP1567878B1 (en) | Magnetoresistive sensor element and method for reducing the angular error of a magnetoresistive sensor element | |
DE102007040399B4 (en) | Device for the galvanically isolated measurement of the electrical power consumption of a bipole | |
DE19949714A1 (en) | Magnetically sensitive component used as a sensor element operating according to a spin-valve principle in vehicles comprises two magneto-resistive layer systems with a reference layer, an intermediate layer and a detection layer | |
WO2002082111A1 (en) | Method for adjusting magnetization in a layered arrangement and use thereof | |
DE102004047770B4 (en) | Sensor for generating an output signal due to a measuring magnetic field and method for matching and for operating such | |
DE19819470B4 (en) | Method for the potential-free measurement of currents by the recording of the magnetic field caused by them and devices for carrying out the method | |
DE102012208404A1 (en) | Differential magnetic field sensor arrangement | |
DE19954053A1 (en) | Magnetic field detector, e.g. for rotational speed detection for internal combustion engine and braking control, has a giant magneto resistive element operating in a magnetic field of below eight-tenths of the saturation magnetic field | |
EP2333567A2 (en) | Device for measuring current | |
DE102013205474A1 (en) | Current measuring sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8364 | No opposition during term of opposition | ||
R081 | Change of applicant/patentee |
Owner name: SENSITEC GMBH, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |