DE102006037071A1 - Network for the wireless transmission of data according to the standard IEEE 802.15.4 - Google Patents
Network for the wireless transmission of data according to the standard IEEE 802.15.4 Download PDFInfo
- Publication number
- DE102006037071A1 DE102006037071A1 DE200610037071 DE102006037071A DE102006037071A1 DE 102006037071 A1 DE102006037071 A1 DE 102006037071A1 DE 200610037071 DE200610037071 DE 200610037071 DE 102006037071 A DE102006037071 A DE 102006037071A DE 102006037071 A1 DE102006037071 A1 DE 102006037071A1
- Authority
- DE
- Germany
- Prior art keywords
- superframe
- network
- beacon
- cfp
- free period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 10
- 238000004904 shortening Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims 1
- 239000012073 inactive phase Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 2
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 101150101567 pat-2 gene Proteins 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
Abstract
Um bei einem Netzwerk zur drahtlosen Übertragung von Daten nach dem Standard IEEE 802.15.4 in einer durch Beacons begrenzten Superframe-Struktur das minimale Zyklusintervall zur Übertragung von Daten zu verringern, ist die Contention Free Period (CFP) gegenüber dem Standard verlängert, wobei in der verlängerten Contention Free Period (CFP) bis zu sieben Netzwerkteilnehmer in mindestens zwei Zyklen nacheinander in aufeinanderfolgenden Superframe-Zeitschlitzen (Superframe Slots) Daten senden. Dies wird beispielsweise dadurch erreicht, dass die Superframe Order (SO) gleich Null und die Beacon Order (BO) gleich Eins sind und die Contention Free period (CFP) durch zweifache Wiederholung bis zum Ende des Beacon-Intervalls (BI) verlängert ist.In order to reduce the minimum cycle interval for data transmission in a wireless data transmission network according to the IEEE 802.15.4 standard in a superframe structure limited by beacons, the contention free period (CFP) is extended compared to the standard, wherein in the extended Contention Free Period (CFP) up to seven network participants in at least two cycles in succession in successive superframe slots (Superframe slots) data send. This is achieved, for example, in that the superframe order (SO) is equal to zero and the beacon order (BO) is equal to one and the contention free period (CFP) is extended by two repetitions until the end of the beacon interval (BI).
Description
Die Erfindung betrifft ein Netzwerk zur drahtlosen Übertragung von Daten nach dem Standard IEEE 802.15.4 in einer durch Beacons begrenzten Superframe-Struktur.The The invention relates to a network for the wireless transmission of data after Standard IEEE 802.15.4 in a beacon-limited superframe structure.
Zur drahtlosen Übertragung von Daten in der industriellen Automatisierungstechnik, der Heim- und Gebäudeautomatisierung und in vielen anderen Anwendungen sind auf dem Standard IEEE 802.15.4 basierende Funknetzwerke wegen ihrer Einfachheit, Energieeffizienz und Kostengünstigkeit sehr attraktiv. Auf diesem Standard baut z. B. auch das ZigBee-Protokoll der ZigBee Alliance auf, einer weltweiten Vereinigung von Firmen, die zusammenarbeiten um zuverlässige, kostengünstige und kabellos vernetzte Überwachungs- und Steuerungsprodukte zu entwickeln, die auf einem internationalen und offenen Standard basieren.to wireless transmission data in industrial automation technology, the home and building automation and in many other applications are based on the IEEE 802.15.4 standard Wireless networks because of their simplicity, energy efficiency and cost-effectiveness very attractive. On this standard z. B. also the ZigBee protocol the ZigBee Alliance, a worldwide association of companies, who work together for reliable, inexpensive and wirelessly networked surveillance and to develop control products based on an international and open standard.
Der
IEEE 802.15.4-Standard ist spezifiziert in einer Vielzahl von Publikationen
ausführlich
beschrieben, weswegen die Details des Standards als bekannt vorausgesetzt
und im Einzelnen hier nicht weiter erläutert werden. Beispielhaft
sind folgende Publikationen genannt:
In
dem Standard IEEE 802.15.4 sind die Länge des Beacon Intervalls BI
und die Superframe-Dauer (Superframe Duration) SD wie folgt definiert:
aBaseSuperframeDuration
= aNumSuperframeSlots·aBaseSlotDuration,
aNumSuperframeSlots
= 16,
aBaseSlotDuration = 60 Symbols,
0 ≤ BO (Beacon
Order) ≤ 14,
SO
(Superframe Order) ≤ BO.In the IEEE 802.15.4 standard, the length of the beacon interval BI and the superframe duration SD are defined as follows:
aBaseSuperframeDuration = aNumSuperframeSlots · aBaseSlotDuration,
aNumSuperframeSlots = 16,
aBaseSlotDuration = 60 symbols,
0 ≤ BO (Beacon Order) ≤ 14,
SO (Superframe Order) ≤ BO.
Damit beträgt das minimale Zyklusintervall zur Datenübertragung 16·60 Symbols = 960 Symbols. Im 2,4 GHz-Band setzt der Standard IEEE 802.15.4 eine Symbol-Rate von 62,2 kSymbols/s und damit eine Symboldauer von 16 μs fest, so dass das minimale Zyklusintervall 15,36 ms beträgt, d. h. ein Netzwerkteilnehmer kann nur alle 15,36 ms senden.In order to is the minimum cycle interval for data transfer 16 x 60 symbols = 960 symbols. In the 2.4 GHz band, the standard is IEEE 802.15.4 a symbol rate of 62.2 kSymbols / s and thus a symbol duration of 16 μs fixed, so that the minimum cycle interval is 15.36 ms, d. H. a network participant can only send every 15.36 ms.
Der Erfindung liegt daher die Aufgabe zugrunde, das minimale Zyklusintervall zur Übertragung von Daten zu verringern.Of the The invention is therefore based on the object, the minimum cycle interval for transmission of data.
Gemäß der Erfindung wird die Aufgabe dadurch gelöst, dass bei dem Netzwerk der eingangs angegebenen Art
- – in der Superframe-Struktur die Contention Free Period (CFP) gegenüber dem Standard verlängert ist, dass
- – in der verlängerten Contention Free Period bis zu sieben Netzwerkteilnehmer in mindestens zwei Zyklen nacheinander in aufeinanderfolgenden Superframe-Zeitschlitzen (Superframe Slots) Daten senden und dass
- – die Verlängerung der Contention Free Period in der Superframe-Spezifikation (Superframe Specification) des Beacon-Frames indiziert ist.
- - In the superframe structure the contention free period (CFP) is extended compared to the standard that
- In the extended contention free period, up to seven network subscribers transmit data in successive superframe slots in at least two consecutive cycles and that
- - the extension of the contention free period is indicated in the superframe specification of the beacon frame.
Die Netzwerkteilnehmer können also innerhalb jeden Beacon-Intervalls, und zwar in der erfindungsgemäß verlängerten Contention Free Period, mindestens zweimal senden, so dass dadurch insgesamt das minimale Zyklusintervall zur Übertragung von Daten verringert bzw. die Datenwiederholrate erhöht wird.The Network participants can so within each beacon interval, namely in the invention extended Contention Free Period, send at least twice, so that overall reduces the minimum cycle interval for transmitting data or the data repetition rate increased becomes.
Die Verlängerung der Contention Free Period kann dadurch erfolgen, dass die Contention Free Period bei Superframe Order SO = 0 und Beacon Order BO > 0 unter Nutzung der inaktiven Phase (Idle Time) bis zum Ende des Beacon-Intervalls mehrfach wiederholt wird. Je größer das Verhältnis von Beacon Order zu Superframe Order ist, umso mehr Wiederholungen der Contention Free Period innerhalb ein und desselben Beacon-Intervalls sind möglich.The renewal The contention free period can be done by the contention Free Period at Superframe Order SO = 0 and Beacon Order BO> 0 using the inactive phase (idle time) until the end of the beacon interval several times becomes. The bigger that relationship from Beacon Order to Superframe Order is, the more iterations the contention free period within one and the same beacon interval are possible.
So kann die Contention Free Period bei Beacon Order BO = 1 sieben Superframe-Zeitschlitze umfassen und zweimal bis zum Ende des Beacon-Intervalls wiederholt werden. Innerhalb des Beacon-Intervalls können dann sieben Netzwerkteilnehmer jeweils dreimal Daten senden, wobei das minimale Zyklusintervall zweimal 8 Superframe-Zeitschlitze (480 Symbols) und einmal 16 Superframe-Zeitschlitze (960 Symbols) beträgt. Um dabei die im Standard IEEE 802.15.4 geforderte minimale vorgegebene Länge der der Contention Free Period vorangehenden Contention Access Period (aMinCAPLength) von 440 Symbols nicht zu unterschreiten, ist die Länge des Beacons auf maximal 50 Bytes, insbesondere auf 39 Bytes, beschränkt.So For example, the Contention Free Period at Beacon Order BO = 1 may include seven superframe time slots and repeated twice until the end of the beacon interval. Within the beacon interval then seven network participants send data three times, with the minimum cycle interval twice 8 superframe time slots (480 symbols) and once 16 superframe time slots (960 Symbol). In order to do so, the minimum specified length of the standard required in the IEEE 802.15.4 standard the Contention Free Period preceding Contention Access Period (aMinCAPLength) of 440 symbols is not to fall below Length of the Beacons to a maximum of 50 bytes, in particular limited to 39 bytes.
Alternativ zu der oben genannten Nutzung der inaktiven Phase für die Verlängerung der Contention Free Period kann diese erfindungsgemäß durch Verkürzen der Contention Access Period (CAP) unter die in dem Standard vorgegebene minimale Länge aMinCAPLength = 440 Symbols verlängert werden. Eine solche Verkürzung Contention Access Period wird nicht grundsätzlich von dem Standard IEEE 802.15.4 ausgeschlossen und ist beispielsweise erlaubt, wenn die Länge des Beacon Frame zur Aufnahme einer Beschreibung der Guaranteed Timeslots (GTS Descriptor) verlängert werden muss.alternative to the above use of the inactive phase for the extension The Contention Free Period can according to the invention by shortening the Contention Access Period (CAP) below that specified in the standard minimum length aMinCAPLength = 440 symbols extended become. Such a shortening Contention Access Period is not generally of the IEEE 802.15.4 standard excluded and is allowed, for example, if the length of the Beacon Frame for recording a description of the guaranteed timeslots (GTS descriptor) extended must become.
So kann die Contention Free Period bei Beacon Order und Superframe Order BO = SO = 0 zwölf Superframe-Zeitschlitze umfassen, in denen sechs Netzwerkteilnehmer in zwei Zyklen nacheinander ihre Daten senden. Das minimale Zyklusintervall beträgt dann innerhalb jeden Beacon-Intervalls einmal 6 Superframe-Zeitschlitze (360 Symbols) und einmal 10 Superframe-Zeitschlitze (600 Symbols).So Can the Contention Free Period at Beacon Order and Superframe Order BO = SO = 0 twelve superframe time slots include six network participants in two cycles one after the other Send data. The minimum cycle interval is then within each beacon interval once 6 superframe time slots (360 symbols) and once 10 superframe time slots (600 Symbol).
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren der Zeichnung Bezug genommen; im Einzelnen zeigen:to further explanation The invention will be referred to below with reference to the figures of the drawing; in detail show:
Bei
einem beacon-enabled Netzwerk erfolgt der Medienzugriff unter Verwendung
einer Superframe-Struktur, wie sie in
Die
Länge des
Beacon Intervalls BI und die Superframe-Dauer (Superframe Duration)
SD sind definiert mit:
aBaseSuperframeDuration
= aNumSuperframeSlots·aBaseSlotDuration,
aNumSuperframeSlots
= 16,
aBaseSlotDuration = 60 Symbols,
0 ≤ BO (Beacon
Order) ≤ 14,
SO
(Superframe Order) ≤ BO.The length of the beacon interval BI and the superframe duration SD are defined as:
aBaseSuperframeDuration = aNumSuperframeSlots · aBaseSlotDuration,
aNumSuperframeSlots = 16,
aBaseSlotDuration = 60 symbols,
0 ≤ BO (Beacon Order) ≤ 14,
SO (Superframe Order) ≤ BO.
Die
Superframe-Slot-Dauer ergibt sich zu:
Für 2,4 GHz
setzt der Standard IEEE 802.15.4 eine Symbol-Rate von 62,2 kSymbols/s
und damit eine Symboldauer von 16 μs fest, so dass sich folgende
Werte bzw. Wertebereiche ergeben:
15 ms ≤ BI ≤ 246 s,
15 ms ≤ SD ≤ 246 s,
aBaseSuperframeDuration
= 15 ms,
aBaseSlotDuration = 0,96 ms.
0,96 ms ≤ Superframe
Slot Duration ≤ 15
s.For 2.4 GHz, the IEEE 802.15.4 standard sets a symbol rate of 62.2 kSymbols / s and thus a symbol duration of 16 μs, resulting in the following values or value ranges:
15 ms ≤ BI ≤ 246 s,
15 ms ≤ SD ≤ 246 s,
aBaseSuperframeDuration = 15 ms,
aBaseSlotDuration = 0.96 ms.
0.96 ms ≤ superframe slot Duration ≤ 15 s.
Bei
dem in
Wie
Bei
dem in
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610037071 DE102006037071A1 (en) | 2006-08-08 | 2006-08-08 | Network for the wireless transmission of data according to the standard IEEE 802.15.4 |
PCT/EP2007/057791 WO2008017595A1 (en) | 2006-08-08 | 2007-07-27 | Network for the wireless transmission of data according to the ieee 802.15.4 standard |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610037071 DE102006037071A1 (en) | 2006-08-08 | 2006-08-08 | Network for the wireless transmission of data according to the standard IEEE 802.15.4 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102006037071A1 true DE102006037071A1 (en) | 2008-02-14 |
Family
ID=38657602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200610037071 Ceased DE102006037071A1 (en) | 2006-08-08 | 2006-08-08 | Network for the wireless transmission of data according to the standard IEEE 802.15.4 |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102006037071A1 (en) |
WO (1) | WO2008017595A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020105970A1 (en) * | 2001-02-07 | 2002-08-08 | Xtremespectrum, Inc | System, method, and computer program product for sharing bandwidth in a wireless personal area network or a wireless local area network |
US20040152416A1 (en) * | 2002-12-02 | 2004-08-05 | Dahl Peter Anthony | Reducing interference between different communication systems sharing a common wireless transmission medium |
US20050174964A1 (en) * | 2004-02-06 | 2005-08-11 | Philip Orlik | Coordinating communications in a heterogeneous communications network using different signal formats |
US20060009229A1 (en) * | 2004-07-10 | 2006-01-12 | Yuan Yuan | Sequential coordinated channel access in wireless networks |
US20060034219A1 (en) * | 2004-08-11 | 2006-02-16 | Daqing Gu | Signaling in a wireless network with sequential coordinated channel access |
US20060171662A1 (en) * | 2005-01-04 | 2006-08-03 | Hitachi, Ltd. | Control apparatus and method of operating same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1728407A4 (en) * | 2004-03-25 | 2007-05-30 | Research In Motion Ltd | WIRELESS ACCESS POINT METHOD AND DEVICE FOR REDUCING COSTS AND ENERGY CONSUMPTION |
-
2006
- 2006-08-08 DE DE200610037071 patent/DE102006037071A1/en not_active Ceased
-
2007
- 2007-07-27 WO PCT/EP2007/057791 patent/WO2008017595A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020105970A1 (en) * | 2001-02-07 | 2002-08-08 | Xtremespectrum, Inc | System, method, and computer program product for sharing bandwidth in a wireless personal area network or a wireless local area network |
US20040152416A1 (en) * | 2002-12-02 | 2004-08-05 | Dahl Peter Anthony | Reducing interference between different communication systems sharing a common wireless transmission medium |
US20050174964A1 (en) * | 2004-02-06 | 2005-08-11 | Philip Orlik | Coordinating communications in a heterogeneous communications network using different signal formats |
US20060009229A1 (en) * | 2004-07-10 | 2006-01-12 | Yuan Yuan | Sequential coordinated channel access in wireless networks |
US20060034219A1 (en) * | 2004-08-11 | 2006-02-16 | Daqing Gu | Signaling in a wireless network with sequential coordinated channel access |
US20060171662A1 (en) * | 2005-01-04 | 2006-08-03 | Hitachi, Ltd. | Control apparatus and method of operating same |
Non-Patent Citations (2)
Title |
---|
802.15.4 IEEE Standard for Information technology, Part 15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low- Rate Wireless Personal Area Networks (LR-WPANs), IEEE, 1.Oct.2003, ISBN 0-7381-3677-5 |
802.15.4 IEEE Standard for Information technology, Part 15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for LowRate Wireless Personal Area Networks (LR-WPANs), IEEE, 1.Oct.2003, ISBN 0-7381-3677-5 * |
Also Published As
Publication number | Publication date |
---|---|
WO2008017595A1 (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69433872T2 (en) | Medium access control scheme for wireless local area networks with interleaved variable length time division frames | |
EP1302034B1 (en) | Method for increasing the data throughput in a communication system | |
EP2274935B1 (en) | Method and device for creating at least one expansion of an association message for wireless mesh networks | |
DE19700303A1 (en) | Radio transmission method for digital multimedia signals between subscriber stations in a local area network | |
EP2428085B1 (en) | Beacon for a star network, sensor nodes in a star network and method for operating a star network | |
DE112005003317T5 (en) | Sending and protecting long blocks of data in a wireless local area network | |
EP2050247B1 (en) | Network for wireless data transmission | |
DE112005002084T5 (en) | Non-802.11 waveforms in the presence of 802.11 | |
DE102006037071A1 (en) | Network for the wireless transmission of data according to the standard IEEE 802.15.4 | |
EP1415439B1 (en) | Method for transferring data between a master station and a slave station, and corresponding communication system | |
DE102006036604A1 (en) | Wireless data transmission for use in e.g. home automation, involves switching preset time frame between given transmission channels in frequency jump process, and synchronizing process by using beacon-sequence-number contained in frames | |
DE60016400T2 (en) | COMMUNICATION SYSTEM AND METHOD IN AN IP NETWORK | |
EP2798897B1 (en) | Communications system with control of access to a shared communications medium | |
DE102006036603A1 (en) | Network for the wireless transmission of data | |
WO2010105921A1 (en) | Method and device for the energy-efficient transfer of data in a wireless sensor network | |
DE112004000797T5 (en) | Non-interfering group based protocols of wireless networks | |
EP2269416B1 (en) | Network node and method for data transmission in a wireless multi-hop network | |
EP2478740B1 (en) | Timeslot sharing | |
DE102014204651B4 (en) | Method for transmitting data | |
DE102009040844A1 (en) | Method for configuring a master / slave wireless communication system with one master and multiple slaves | |
DE10161735A1 (en) | Coupling element for coupling radio segment to cable PROFIBUS segment uses centrally controlled non-token passing protocol on wireless segment, unaltered protocol on cable section | |
DE102016208453A1 (en) | A method of creating a secret or key in a network | |
DE10344348B4 (en) | Method for operating a wireless connection, mobile communication terminal and network access node | |
EP2168326B1 (en) | Apparatus and method for increasing the data throughput in radio networks | |
DE10054931A1 (en) | Wireless communication method in packet switching radio systems, involves providing wireless router to provide bidirectional communication between a base station and several non-standard radio terminals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |