DE102006018978A1 - Motor vehicle roll angle determining method, involves determining yaw rate or correlated size, and vehicle speed, and determining roll angle of motor vehicle using yaw rate or correlated size and specific vehicle roll spring rigidity - Google Patents
Motor vehicle roll angle determining method, involves determining yaw rate or correlated size, and vehicle speed, and determining roll angle of motor vehicle using yaw rate or correlated size and specific vehicle roll spring rigidity Download PDFInfo
- Publication number
- DE102006018978A1 DE102006018978A1 DE200610018978 DE102006018978A DE102006018978A1 DE 102006018978 A1 DE102006018978 A1 DE 102006018978A1 DE 200610018978 DE200610018978 DE 200610018978 DE 102006018978 A DE102006018978 A DE 102006018978A DE 102006018978 A1 DE102006018978 A1 DE 102006018978A1
- Authority
- DE
- Germany
- Prior art keywords
- vehicle
- yaw rate
- roll angle
- determining
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000002596 correlated effect Effects 0.000 title claims abstract description 13
- 238000005259 measurement Methods 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000012937 correction Methods 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims description 2
- 238000001454 recorded image Methods 0.000 claims 1
- 230000037396 body weight Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
- B60G17/01908—Acceleration or inclination sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/051—Angle
- B60G2400/0511—Roll angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/052—Angular rate
- B60G2400/0523—Yaw rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/204—Vehicle speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/60—Load
- B60G2400/63—Location of the center of gravity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/01—Attitude or posture control
- B60G2800/012—Rolling condition
- B60G2800/0124—Roll-over conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/91—Suspension Control
- B60G2800/912—Attitude Control; levelling control
- B60G2800/9124—Roll-over protection systems, e.g. for warning or control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/18—Roll
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/14—Yaw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/18—Roll
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Bestimmung des Wankwinkels in einem Kraftfahrzeug sowie ein Kamerasystem mit einem solchen Verfahren.The The invention relates to a method for determining the roll angle in a motor vehicle and a camera system with such Method.
Eine Bestimmung des Wankwinkels ist insbesondere für die Beurteilung und Steuerung der dynamischen Eigenschaften von Kraftfahrzeugen von Bedeutung. Zudem finden Fahrerassistenzsysteme, die z.B. die Fahrspur eines Fahrzeugs prädizieren und Objekte auf oder neben der Fahrspur identifizieren immer größere Verbreitung. Solche Kraftfahrzeuge sind mit zumindest einem Sensor zur Umfeldüberwachung ausgestattet. I. d. R. handelt es sich dabei um Kamera- und/oder Lidar- bzw. Radarsysteme. Die Sensoren werden vor der Auslieferung des Fahrzeugs justiert und nehmen eine bestimmte, vorgegebene Blickrichtung ein. Ist nun der Wankwinkel des Fahrzeugs z.B. während einer Kurvenfahrt ungleich Null, so entspricht auch die Blickrichtung des Sensorsystems auf die Fahrzeugumgebung nicht mehr der ursprünglich eingestellten Blickrichtung. Die Fahrspur wird in diesem Fall fehlerhaft prädiziert und einem erfassten Umgebungsobjekt wird insbesondere im Fernfeld (Abstand zum Fahrzeug >70 m) eine fehlerbehaftete Position zugeordnet. Bei Fahrzeugen mit einer Luftfeder ist eine Abschätzung des Wankwinkel anhand der Luftfedersensoren unter Einbeziehung der Fahrzeugbreite möglich. Bei Fahrzeugen mit Stahlfeder ist dies jedoch nicht ohne weiteres möglich.A Determination of the roll angle is especially for the assessment and control the dynamic characteristics of motor vehicles. In addition, driver assistance systems, e.g. the lane of a Predict vehicle and Objects on or next to the lane identify ever greater spread. Such motor vehicles are equipped with at least one sensor for environmental monitoring fitted. I. d. R. is this camera and / or Lidar or radar systems. The sensors are shipped before delivery of the vehicle adjusted and take a certain, predetermined line of sight one. Now, if the roll angle of the vehicle is e.g. during non-zero cornering, so also corresponds the line of sight of the sensor system to the vehicle environment not the original anymore set viewing direction. The lane will be faulty in this case predicted and a detected environment object is particularly in the far field (Distance to the vehicle> 70 m) assigned a faulty position. For vehicles with an air spring is an estimate of the roll angle based on the air spring sensors, including the Vehicle width possible. For vehicles with steel spring, however, this is not readily possible.
Es ist daher die Aufgabe der hier vorliegenden Erfindung den Wankwinkel in einem Kraftfahrzeug zu bestimmen.It is therefore the object of the present invention, the roll angle in a motor vehicle.
Diese Aufgabe ist erfindungsgemäß gelöst durch Verfahren mit den in Anspruch 1 beschriebenen Merkmalen. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.These The object is achieved by Method with the features described in claim 1. advantageous Further developments can be found in the dependent claims.
Es wird ein Verfahren zur Bestimmung des Wankwinkels für ein Kraftfahrzeug angegeben. Das Kraftfahrzeug umfasst zumindest eine Vorrichtung zur Bestimmung der Gierrate oder einer damit korrelierten Größe, eine Vorrichtung zur Bestimmung der Fahrzeuggeschwindigkeit und ggf. ein vorwärts gerichtetes Kamerasystem. Der Wankwinkel wird mit Hilfe der Gierrate oder einer damit korrelierten Größe und der spezifische Wankfedersteifigkeit des Fahrzeugs bestimmt. Die spezifische Wankfedersteifigkeit ist eine Eigenschaft des Fahrzeugs, die für jeden Fahrzeugtyp ermittelt wird, der mit Stahlfedern ausgestattet ist. Alternativ kann natürlich auch ein Mittelwert für mehrere Fahrzeugtypen angegeben werden.It is a method for determining the roll angle for a motor vehicle specified. The motor vehicle comprises at least one device for Determination of the yaw rate or a correlated quantity, a Device for determining the vehicle speed and possibly a forward directed camera system. The roll angle is using the yaw rate or a correlated size and the specific roll stiffness of the vehicle determined. The specific one Stiff spring stiffness is a characteristic of the vehicle that is suitable for every vehicle type determined, which is equipped with steel springs. alternative can of course also an average for several vehicle types are specified.
In einer besonderen Ausgestaltung der Erfindung ist eine der Gierrate korrelierten Größe die Querbeschleunigung oder der Lenkwinkel. Diese Daten werden z.B. von einem ESP-Steuergerät zur Verfügung gestellt.In a particular embodiment of the invention is one of the yaw rate correlated magnitude of the lateral acceleration or the steering angle. These data are e.g. provided by an ESP control unit.
In einer besonderen Ausgestaltung der Erfindung wird das Fahrzeug modellhaft als ein Massepunkt (m) mit einer Höhe (h) angenommen, wobei der angenommene Massepunkt um einen Winkel (ϕ) direkt proportional zur angreifenden Kraft ausgelenkt wird.In In a particular embodiment of the invention, the vehicle is modeled is assumed to be a mass point (m) having a height (h), the assumed Earth point by an angle (φ) directly proportional to is deflected attacking force.
In einer vorteilhaften Ausgestaltung der Erfindung wird als angreifende Kraft die Zentripetalkraft angenommen, die bei einer Kurvenfahrt wirkt. Dabei wird die Zentripetalkraft aus der Gierrate oder einer korrelierten Größe berechnet.In An advantageous embodiment of the invention is called attacking Force assumed the centripetal force when cornering acts. The centripetal force is the yaw rate or a correlated one Size calculated.
In einer vorteilhaften Ausgestaltung der Erfindung giltwobei ϕ der Wankwinkel, m die Aufbaumasse des Fahrzeugs, h der Abstand zwischen Aufbauschwerpunkt und Drehpunkt, νx die Geschwindigkeit in Längsrichtung, ωz die Gierrate des Fahrzeugs und C proportional oder gleich der Wankfedersteifigkeit des Fahrzeugs ist. Eine weitere Relation zur Bestimmung des Wankwinkels wird mitangegeben. Dabei ist ϕ der Wankwinkel, m die Aufbaumasse des Fahrzeugs, h der Abstand zwischen Aufbauschwerpunkt und Drehpunkt, αy die Querbeschleunigung des Fahrzeugs und C proportional oder gleich der Wankfedersteifigkeit des Fahrzeugs ist.In an advantageous embodiment of the invention applies where φ is the roll angle, m is the body weight of the vehicle, h is the distance between the center of articulation and the center of rotation, ν x is the speed in the longitudinal direction, ω z is the yaw rate of the vehicle, and C is proportional to or equal to the roll stiffness of the vehicle. Another relation for determining the roll angle is with specified. Where φ is the roll angle, m is the body weight of the vehicle, h is the distance between the center of articulation and the fulcrum, α y is the lateral acceleration of the vehicle, and C is proportional to or equal to the roll stiffness of the vehicle.
Alternativ kann der Wankwinkel durchausgedrückt werden, wobei ϕ der Wankwinkel, m die Aufbaumasse des Fahrzeugs, h der Abstand zwischen Aufbauschwerpunkt und Drehpunkt, νx die Geschwindigkeit in x-Richtung, αLW der Lenkwinkel des Fahrzeugs und C proportional oder gleich der Wankfedersteifigkeit des Fahrzeugs ist. In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der Wankwinkel nach zwei verschiedenen Ansätzen bestimmt wird, und die Resultate miteinander verglichen werden. Erweist sich eine der Methoden als besonders geeignet für eine Fahrsituation, so werden die Resultate dieser Methode verwendet, wenn eben diese Fahrsituation auftritt.Alternatively, the roll angle through where φ is the roll angle, m is the body weight of the vehicle, h is the distance between the center of articulation and the fulcrum, ν x is the speed in the x direction, α LW is the steering angle of the vehicle, and C is proportional to or equal to the roll spring rigidity of the vehicle. In a further advantageous embodiment of the invention, it is provided that the roll angle is determined according to two different approaches, and the results are compared with each other. If one of the methods proves to be particularly suitable for a driving situation, then the results of this method are used, if precisely this driving situation occurs.
Da die Genauigkeit des ermittelten Wankwinkels von der Genauigkeit der zur Bestimmung herangezogenen Gierrate des Fahrzeugs abhängig ist, wird auch ein Verfahren zur Kalibrierung einer Gierratenmessung in einem Kraftfahrzeug vorgestellt. Das Verfahren wird während des Fahrzeugbetriebs ausgeführt. Das Kraftfahrzeug weist zumindest eine Vorrichtung zur Bestimmung der Gierrate, einen Lenkwinkelsensor und eine vorwärts gerichtetes Kamerasystem auf, das die Fahrzeugumgebung in Fahrtrichtung erfasst. Zur Erfassung der Gierrate mit einer hohen Genauigkeit, wird zumindest eine erste Kalibrierung der gemessenen Gierrate im Stillstand und zumindest eine zweite Kalibrierung während der Fahrt durchgeführt.Since the accuracy of the determined roll angle of the accuracy of approaching for the purpose drawn yaw rate of the vehicle is dependent, a method for calibrating a yaw rate measurement in a motor vehicle is also presented. The method is executed during vehicle operation. The motor vehicle has at least one device for determining the yaw rate, a steering angle sensor and a forward-looking camera system which detects the vehicle surroundings in the direction of travel. For detecting the yaw rate with a high accuracy, at least a first calibration of the measured yaw rate at standstill and at least a second calibration while driving is performed.
Die Stillstandserkennung des Fahrzeugs kann z.B. anhand einer Geschwindigkeitsmessung erfolgen. Alternativ können auch die Stellung der Handbremse (aktiviert oder nicht), die Stellung des Schalthebels (Gang eingelegt oder nicht), die Raddrehzahl u.s.w. als Indikator dienen. Die Indikatoren können auch beliebig miteinander verknüpft werden. Z.B. wird ein Stillstand des Fahrzeugs angenommen, wenn kein Gang eingelegt und die Handbremse aktiviert ist. Verändert sich die Gierrate stark innerhalb eines vorgegebenen Zeitintervalls, so wird angenommen, dass sich das Fahrzeug bewegt. In einer bevorzugten Ausgestaltung der Erfindung werden bei einer Kalibrierung während der Fahrt die Bilddaten zumindest eines Bildaufnehmers verwendet, wobei der Bildaufnehmer die Umgebung vor dem Kraftfahrzeug erfasst und eine Fahrspur prädiziert. Aus dem Verlauf der Fahrspur wird eine Geradeausfahrt oder Kurvenfahrt des Fahrzeugs abgeschätzt und daraus die Gierrate des Fahrzeuges abgeleitet.The Standstill detection of the vehicle may e.g. done using a speed measurement. Alternatively you can also the position of the handbrake (activated or not), the position the shift lever (gear engaged or not), the wheel speed u.s.w. serve as an indicator. The indicators can also be arbitrary with each other connected become. For example, a standstill of the vehicle is assumed if no gear is engaged and the handbrake is activated. Changes the yaw rate is strong within a given time interval, it is assumed that the vehicle is moving. In a preferred Embodiment of the invention are at a calibration during the Ride the image data used at least one image recorder, wherein the image sensor detects the environment in front of the motor vehicle and predicted a lane. From the course of the lane is a straight-ahead or cornering of the vehicle estimated and derived from it the yaw rate of the vehicle.
In einer besonderen Ausgestaltung der Erfindung wird für eine Kalibrierung während der Fahrt der Lenkwinkel herangezogen. Dies ist insbesondere der Fall, wenn eine Abschätzung der Gierrate aus einem Kamerabild nicht erfolgreich ist.In A particular embodiment of the invention is for a calibration while the travel of the steering angle used. This is especially the case if an estimate the yaw rate from a camera image is unsuccessful.
In einer bevorzugten Ausgestaltung der Erfindung wird bei Stillstand des Fahrzeugs eine Mittelung der Gierratenwerte über einen bestimmten Zeitraum vorgenommen wird, und der gemittelte Wert als Korrekturwert in die zukünftigen Messungen einfließt. Bei der Mittelung werden der erste und der letzte Wert und Werte die eine große Abweichung zu den benachbarten Messwerten aufweisen nicht berücksichtigt.In A preferred embodiment of the invention is at standstill the vehicle an average of yaw rate over a period of time is made, and the averaged value as a correction value in the future Measurements are included. at the averaging will be the first and last values and the values a big Deviation from the adjacent measured values have not been considered.
In einer bevorzugten Ausgestaltung der Erfindung der Ausgabewert der Gierrate in mehreren Schritten kompensiert wird. Eine Zuschaltung des Korrekturwerts in kleinen Schritten innerhalb eines bestimmten Zeitintervalls ist insbesondere dann sinnvoll, wenn der Korrekturwert einen vorgegebenen Wert überschreitet.In a preferred embodiment of the invention, the output value of Yaw rate is compensated in several steps. A connection the correction value in small increments within a given Time interval is particularly useful if the correction value exceeds a predetermined value.
Ebenso ist stattdessen eine kontinuierliche Korrektur der Ausgabewerte in einem vorgegebenen Zeitintervall möglich um eine temperaturabhängige Drift des Gierratensignals zu kompensieren.As well instead is a continuous correction of the output values possible in a given time interval to a temperature-dependent drift to compensate for the yaw rate signal.
Erfindungsgemäß wird ein Sensor zur Umgebungserfassung in einem Kraftfahrzeug mit einem in einer Auswerteeinheit hinterlegten Verfahren zur Bestimmung des Wankwinkels wie zuvor beschrieben angegeben. Bei der Auswertung der Sensordaten wird der ermittelte Wankwinkel berücksichtigt. Ist der Wankwinkel des Fahrzeugs z.B. während einer Kurvenfahrt ungleich Null, so entspricht auch die Blickrichtung des Sensorsystems auf die Fahrzeugumgebung nicht mehr der ursprünglich eingestellten Blickrichtung. Die Fahrspur würde in diesem Fall fehlerhaft prädiziert und einem erfassten Umgebungsobjekt würde insbesondere im Fernfeld (Abstand zum Fahrzeug >70 m) eine fehlerbehaftete Position zugeordnet. Mit der Kenntnis des Wankwinkels können die Sensordaten korrigiert werden. In einer bevorzugten Ausgestaltung der Erfindung ist der Sensor ein Kamerasystem.According to the invention is a Sensor for environmental detection in a motor vehicle with an in an evaluation unit deposited method for determining the Wank angles as described previously. In the evaluation the sensor data, the determined roll angle is taken into account. If the roll angle of the vehicle is e.g. uneven during a turn Zero, the direction of the sensor system also corresponds to the vehicle environment is no longer the originally set viewing direction. The lane would incorrectly predicated in this case and a detected environment object would be particularly in the far field (Distance to the vehicle> 70 m) assigned a faulty position. With the knowledge of Wankwinkels can the sensor data will be corrected. In a preferred embodiment According to the invention, the sensor is a camera system.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und Abbildungen näher erläutert.The Invention will be described below with reference to embodiments and figures explained in more detail.
In
Im
Fall einer Kurvenfahrt lässt
sich die angreifende Kraft mit der Relation FZ =
mv2/r beschreiben, wobei v die Geschwindigkeit
des Fahrzeugs und r den Kurvenradius angibt. Damit ergibt sich für den Wankwinkel ϕ die
Relation Der Kurvenradius r kann durch
die Gierrate ωz und die Fahrzeuggeschwindigkeit vx ersetzt werden r = v/ω, so dass der Wankwinkel nunmehr
mit der Kenntnis der Fahrzeugeigenschaften der Geschwindigkeit in
Längsrichtung
vx und der Gierrate ωz berechnet werden
kannEine Berechnung des Wankwinkelsin Abhängig von der Querbeschleunigung
ay des Fahrzeugs ist mit der Relation ay=vωz gegeben Die Genauigkeit der Bestimmung
des Wankwinkels hängt
in einem hohen Maß von
der Genauigkeit der Gierrate bzw. der Querbeschleunigung ab. Es
wird ein weiteres Ausführungsbeispiel
gegeben, das ein Verfahren zur Kalibrierung des Gierratensensors während der
Fahrt vorstellt. In
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610018978 DE102006018978A1 (en) | 2006-04-25 | 2006-04-25 | Motor vehicle roll angle determining method, involves determining yaw rate or correlated size, and vehicle speed, and determining roll angle of motor vehicle using yaw rate or correlated size and specific vehicle roll spring rigidity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610018978 DE102006018978A1 (en) | 2006-04-25 | 2006-04-25 | Motor vehicle roll angle determining method, involves determining yaw rate or correlated size, and vehicle speed, and determining roll angle of motor vehicle using yaw rate or correlated size and specific vehicle roll spring rigidity |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102006018978A1 true DE102006018978A1 (en) | 2007-11-08 |
Family
ID=38564662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200610018978 Withdrawn DE102006018978A1 (en) | 2006-04-25 | 2006-04-25 | Motor vehicle roll angle determining method, involves determining yaw rate or correlated size, and vehicle speed, and determining roll angle of motor vehicle using yaw rate or correlated size and specific vehicle roll spring rigidity |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102006018978A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009055776A1 (en) | 2009-11-25 | 2011-05-26 | Conti Temic Microelectronic Gmbh | Method for estimating the roll angle in a moving vehicle |
WO2012113691A1 (en) * | 2011-02-23 | 2012-08-30 | Robert Bosch Gmbh | Method and device for determining the inclined position of a vehicle |
DE102012024984A1 (en) | 2012-12-20 | 2013-07-04 | Daimler Ag | Method for determining target inclination curve of motor vehicle during driving on curved track section, involves determining target inclination curve of motor vehicle in response to determined current road curvature |
DE102012024971A1 (en) | 2012-12-20 | 2013-07-04 | Daimler Ag | Method for combined determination of vehicle current roll angle and current road transverse slope of curved road section driven by motor vehicle, involves calculating vehicle current roll angle from current lateral acceleration of vehicle |
DE102012024989A1 (en) | 2012-12-20 | 2013-07-04 | Daimler Ag | Method for determining target-curve inclination of motor vehicle i.e. motor car, while driving motor vehicle on curvilinear lane section, involves calculating modified instantaneous target curve slope by weighting calculated curve slope |
DE102012024986A1 (en) | 2012-12-20 | 2013-07-11 | Daimler Ag | Method for determining target curve slant of motor car when driving on curvilinear track portion, involves computing modified momentary target curve slant by weight of target curve slant with target curve slant weighting factor |
DE102012024983A1 (en) | 2012-12-20 | 2013-07-11 | Daimler Ag | Method for evaluating apron image of motor car, involves determining instantaneous roll angle, instantaneous pitch angle and current vertical stroke of optical detection system with respect to road surface of curved track section |
DE102012024980A1 (en) | 2012-12-20 | 2013-07-11 | Daimler Ag | Method for determining reference curve slope and steering angle correction value of motor vehicle, involves calculating actual reference curve slope and modified actual reference curve slope, and determining steering angle correction value |
DE102012024988A1 (en) | 2012-12-20 | 2013-08-01 | Daimler Ag | Method for determining target curve slope of motor vehicle when driving on curved track section, involves computing modified target curve slope by weighting instantaneous target curve slope with target curve slope weighting factor |
DE102013013165A1 (en) | 2013-08-08 | 2014-02-27 | Daimler Ag | Method for determining reference-roll angle of motor car during driving on curvilinear track portion, involves calculating reference-roll angle from acceleration by functional correlation provided with shape of acceleration curve |
CN103808959A (en) * | 2012-11-14 | 2014-05-21 | 威润科技股份有限公司 | Sensing system and method |
DE102012024985A1 (en) | 2012-12-20 | 2014-06-26 | Daimler Ag | Method for determining target curve inclination of motor car when driving on curvilinear track portion, involves calculating modified momentary target curve inclination, and determining momentary track curvature by using radar detector |
CN105300338A (en) * | 2015-09-16 | 2016-02-03 | 浙江吉利汽车研究院有限公司 | Vehicle yaw angle sensor calibration method |
US9694812B2 (en) | 2012-12-20 | 2017-07-04 | Daimler Ag | Method for determining a target curve incline of a motor vehicle during traveling of a curved roadway section |
DE102016206101A1 (en) * | 2016-04-12 | 2017-10-12 | Zf Friedrichshafen Ag | Method for determining the lateral acceleration of a motor vehicle |
US9884623B2 (en) * | 2015-07-13 | 2018-02-06 | GM Global Technology Operations LLC | Method for image-based vehicle localization |
CN117962536A (en) * | 2024-03-28 | 2024-05-03 | 比亚迪股份有限公司 | Vehicle control method, medium, program product, controller, and vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19856303A1 (en) * | 1998-07-16 | 2000-01-27 | Continental Teves Ag & Co Ohg | Determining angle of tilt when cornering as measure of incipient rollover hazard employs single sensor measuring transverse rather than horizontal radial acceleration, from which tilt is computed |
DE10218228A1 (en) * | 2002-04-24 | 2003-11-06 | Volkswagen Ag | Motor vehicle video camera operational checking method in which video data are subjected to plausibility testing in conjunction with other sensor data, such as yaw rate, transverse acceleration, vehicle speed, etc. |
DE102004035578A1 (en) * | 2004-07-22 | 2006-02-16 | Daimlerchrysler Ag | Stabilization device and method for driving stabilization of a vehicle |
DE102004049086A1 (en) * | 2004-10-08 | 2006-04-13 | Robert Bosch Gmbh | Guidance system for road vehicle using video cameras aimed at road in front to recognize lines on road and curbs, has array of sensors and control circuit connected to several actuators |
-
2006
- 2006-04-25 DE DE200610018978 patent/DE102006018978A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19856303A1 (en) * | 1998-07-16 | 2000-01-27 | Continental Teves Ag & Co Ohg | Determining angle of tilt when cornering as measure of incipient rollover hazard employs single sensor measuring transverse rather than horizontal radial acceleration, from which tilt is computed |
DE10218228A1 (en) * | 2002-04-24 | 2003-11-06 | Volkswagen Ag | Motor vehicle video camera operational checking method in which video data are subjected to plausibility testing in conjunction with other sensor data, such as yaw rate, transverse acceleration, vehicle speed, etc. |
DE102004035578A1 (en) * | 2004-07-22 | 2006-02-16 | Daimlerchrysler Ag | Stabilization device and method for driving stabilization of a vehicle |
DE102004049086A1 (en) * | 2004-10-08 | 2006-04-13 | Robert Bosch Gmbh | Guidance system for road vehicle using video cameras aimed at road in front to recognize lines on road and curbs, has array of sensors and control circuit connected to several actuators |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011063785A1 (en) | 2009-11-25 | 2011-06-03 | Conti Temic Microelectronic Gmbh Patente & Lizenzen | Method for estimating the roll angle in a travelling vehicle |
US8824741B2 (en) | 2009-11-25 | 2014-09-02 | Conti Temic Microelectronic Gmbh | Method for estimating the roll angle in a travelling vehicle |
DE102009055776A1 (en) | 2009-11-25 | 2011-05-26 | Conti Temic Microelectronic Gmbh | Method for estimating the roll angle in a moving vehicle |
WO2012113691A1 (en) * | 2011-02-23 | 2012-08-30 | Robert Bosch Gmbh | Method and device for determining the inclined position of a vehicle |
US9605958B2 (en) | 2011-02-23 | 2017-03-28 | Robert Bosch Gmbh | Method and device for determining the inclined position of a vehicle |
CN103808959A (en) * | 2012-11-14 | 2014-05-21 | 威润科技股份有限公司 | Sensing system and method |
WO2014094933A1 (en) | 2012-12-20 | 2014-06-26 | Daimler Ag | Method for combined determining of a momentary roll angle of a motor vehicle and a momentary roadway cross slope of a curved roadway section traveled by the motor vehicle |
DE102012024985B4 (en) * | 2012-12-20 | 2014-10-23 | Daimler Ag | Method for determining a desired curve inclination of a motor vehicle when driving on a curved road section |
DE102012024980A1 (en) | 2012-12-20 | 2013-07-11 | Daimler Ag | Method for determining reference curve slope and steering angle correction value of motor vehicle, involves calculating actual reference curve slope and modified actual reference curve slope, and determining steering angle correction value |
DE102012024988A1 (en) | 2012-12-20 | 2013-08-01 | Daimler Ag | Method for determining target curve slope of motor vehicle when driving on curved track section, involves computing modified target curve slope by weighting instantaneous target curve slope with target curve slope weighting factor |
US9849886B2 (en) | 2012-12-20 | 2017-12-26 | Daimler Ag | Method for combined determining of a momentary roll angle of a motor vehicle and a momentary roadway cross slope of a curved roadway section traveled by the motor vehicle |
DE102012024986A1 (en) | 2012-12-20 | 2013-07-11 | Daimler Ag | Method for determining target curve slant of motor car when driving on curvilinear track portion, involves computing modified momentary target curve slant by weight of target curve slant with target curve slant weighting factor |
DE102012024989A1 (en) | 2012-12-20 | 2013-07-04 | Daimler Ag | Method for determining target-curve inclination of motor vehicle i.e. motor car, while driving motor vehicle on curvilinear lane section, involves calculating modified instantaneous target curve slope by weighting calculated curve slope |
DE102012024985A1 (en) | 2012-12-20 | 2014-06-26 | Daimler Ag | Method for determining target curve inclination of motor car when driving on curvilinear track portion, involves calculating modified momentary target curve inclination, and determining momentary track curvature by using radar detector |
DE102012024971A1 (en) | 2012-12-20 | 2013-07-04 | Daimler Ag | Method for combined determination of vehicle current roll angle and current road transverse slope of curved road section driven by motor vehicle, involves calculating vehicle current roll angle from current lateral acceleration of vehicle |
DE102012024983A1 (en) | 2012-12-20 | 2013-07-11 | Daimler Ag | Method for evaluating apron image of motor car, involves determining instantaneous roll angle, instantaneous pitch angle and current vertical stroke of optical detection system with respect to road surface of curved track section |
US9694812B2 (en) | 2012-12-20 | 2017-07-04 | Daimler Ag | Method for determining a target curve incline of a motor vehicle during traveling of a curved roadway section |
DE102012024984A1 (en) | 2012-12-20 | 2013-07-04 | Daimler Ag | Method for determining target inclination curve of motor vehicle during driving on curved track section, involves determining target inclination curve of motor vehicle in response to determined current road curvature |
DE102013013165A1 (en) | 2013-08-08 | 2014-02-27 | Daimler Ag | Method for determining reference-roll angle of motor car during driving on curvilinear track portion, involves calculating reference-roll angle from acceleration by functional correlation provided with shape of acceleration curve |
US9884623B2 (en) * | 2015-07-13 | 2018-02-06 | GM Global Technology Operations LLC | Method for image-based vehicle localization |
CN105300338A (en) * | 2015-09-16 | 2016-02-03 | 浙江吉利汽车研究院有限公司 | Vehicle yaw angle sensor calibration method |
DE102016206101A1 (en) * | 2016-04-12 | 2017-10-12 | Zf Friedrichshafen Ag | Method for determining the lateral acceleration of a motor vehicle |
WO2017178151A1 (en) * | 2016-04-12 | 2017-10-19 | Zf Friedrichshafen Ag | Method for determining the lateral acceleration of a motor vehicle |
CN117962536A (en) * | 2024-03-28 | 2024-05-03 | 比亚迪股份有限公司 | Vehicle control method, medium, program product, controller, and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006018978A1 (en) | Motor vehicle roll angle determining method, involves determining yaw rate or correlated size, and vehicle speed, and determining roll angle of motor vehicle using yaw rate or correlated size and specific vehicle roll spring rigidity | |
EP2010419B1 (en) | Method for calibration of yaw rate measurement | |
EP3717283B1 (en) | Method, device and system for evaluating the tread depth of a tire | |
DE102011013022B3 (en) | Method for determining the running resistance of a vehicle | |
EP3134301B1 (en) | Ascertaining an offset of an inertial sensor | |
DE102008019270B4 (en) | Road surface friction coefficient estimation device | |
EP3554900B1 (en) | Method for estimating a friction coefficient of a roadway by means of a motor vehicle and control device | |
EP1885586B1 (en) | Determination of the actual yaw angle and the actual slip angle of a land vehicle | |
DE102014114751B4 (en) | Method for operating a motor vehicle | |
DE102014103843A1 (en) | Method and device for friction coefficient determination in a vehicle | |
DE102013108285A1 (en) | Method and system for determining a pressure deviation between a set tire pressure and a current tire pressure for a tire of a vehicle and for determining a wheel load | |
DE102013219662B3 (en) | Method, control unit and system for determining a tread depth of a profile of at least one tire | |
EP1949112B1 (en) | Method for the determination of long-term offset drifts of acceleration sensors in motor vehicles | |
DE102011086490A1 (en) | Method for determining the dynamic rolling radius of tires | |
DE102019125655A1 (en) | Method for determining the circumference of a vehicle wheel and motor vehicle | |
DE102008040240A1 (en) | Vehicle i.e. land vehicle, has electronic control system for active correction of driving-dynamic characteristics, and detecting unit comprising position determining devices that are arranged at certain distance from each other | |
DE102017001709A1 (en) | Method for controlling a vehicle during cornering and roll stability control system | |
DE102019206738A1 (en) | Method, control unit and system for stabilizing a vehicle | |
DE112016005072B4 (en) | Method and system for facilitating the steering of a vehicle when driving along a road | |
DE102015224389A1 (en) | Assistance system with load condition compensation | |
DE102014208625A1 (en) | Method for regulating the driving dynamics of a motor vehicle | |
DE102020202439A1 (en) | Method for determining a trajectory of a motorcycle | |
DE102007019697A1 (en) | Method for the electrically controlled assistance of the movement of a motor vehicle comprises using an estimated total friction value which is a measure for the contact of the vehicle with the ground | |
DE10242123A1 (en) | Motor vehicle dynamic stability system operation method in which mathematical models are used to check the measurement signals of the stability system sensors in two groups with two models | |
DE102007034143B4 (en) | A method for determining a model yaw rate and / or a model lateral acceleration and a model steering angle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
R012 | Request for examination validly filed |
Effective date: 20130201 |
|
R016 | Response to examination communication | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |