Nothing Special   »   [go: up one dir, main page]

DE102004058258A1 - Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung - Google Patents

Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung Download PDF

Info

Publication number
DE102004058258A1
DE102004058258A1 DE102004058258A DE102004058258A DE102004058258A1 DE 102004058258 A1 DE102004058258 A1 DE 102004058258A1 DE 102004058258 A DE102004058258 A DE 102004058258A DE 102004058258 A DE102004058258 A DE 102004058258A DE 102004058258 A1 DE102004058258 A1 DE 102004058258A1
Authority
DE
Germany
Prior art keywords
power
water turbine
speed
power generation
generation plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004058258A
Other languages
English (en)
Inventor
Andreas Dr. Basteck
Martin Dr. Tilscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Turbo GmbH and Co KG
Original Assignee
Voith Turbo GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo GmbH and Co KG filed Critical Voith Turbo GmbH and Co KG
Priority to DE102004058258A priority Critical patent/DE102004058258A1/de
Priority to KR1020077012957A priority patent/KR20070085927A/ko
Priority to US11/720,564 priority patent/US20080101865A1/en
Priority to CNA2005800398713A priority patent/CN101061313A/zh
Priority to EP05811336A priority patent/EP1817497A1/de
Priority to PCT/EP2005/012777 priority patent/WO2006058725A1/de
Publication of DE102004058258A1 publication Critical patent/DE102004058258A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/48Control of exclusively fluid gearing hydrodynamic
    • F16H61/50Control of exclusively fluid gearing hydrodynamic controlled by changing the flow, force, or reaction of the liquid in the working circuit, while maintaining a completely filled working circuit
    • F16H61/52Control of exclusively fluid gearing hydrodynamic controlled by changing the flow, force, or reaction of the liquid in the working circuit, while maintaining a completely filled working circuit by altering the position of blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/505Kinematic linkage, i.e. transmission of position using chains and sprockets; using toothed belts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Energieerzeugungsanlage zur Gewinnung von elektrischer Energie aus einer Meeresströmung, umfassend einen Antriebsstrang mit einer Eingangswelle und einer Ausgangswelle, wobei die Eingangswelle wenigstens mittelbar von einer Wasserturbine angetrieben wird und die Ausgangswelle wenigstens mittelbar einen elektrischen Generator antreibt, der mit einem elektrischen Netz verbunden ist, wobei das elektrische Netz eine im Wesentlichen konstante Netzfrequenz aufweist und wobei der Antriebsstrang ein Leistungsverzweigungsgetriebe mit einem ersten Leistungszweig und wenigstens einem zweiten Leistungszweig umfasst und der erste Leistungszweig und der zweite Leistungszweig miteinander über ein Leistungsverzweigungsgetriebe und eine hydrodynamische Komponente in Verbindung stehen.

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung, wobei die erzeugte elektrische Energie insbesondere in ein elektrisches Netz mit einer im Wesentlichen konstanten Netzfrequenz eingespeist wird.
  • Meeresströmungen bieten ein großes Potential zur Gewinnung elektrischer Energie, ohne dass bei der Energieerzeugung Emissionen freigesetzt werden. Solche Meeresströmungen liegen entweder dauerhaft vor, ein Beispiel hierfür ist der Golfstrom, oder sie werden durch Gezeiten verursacht. Für Letzteres sind insbesondere Gebiete interessant, bei denen der Tidenhub besonders stark ist und bei welchen geographische Besonderheiten, wie beispielsweise enge Durchströmungsbereiche oder besonders ausgeformte Buchtbereiche, zu einer ausgeprägten Meeresströmung führen. Liegen besondere Bedingungen vor, so kann der Wellengang zum Antrieb von getauchten Strömungskraftmaschinen ausgenutzt werden. Solche Bedingungen können durch künstliche Maßnahmen, wie Einströmungsbecken, geschaffen werden, durch welche die den Wellen innewohnende kinetische Energie ausgenutzt werden kann.
  • Eine der Besonderheiten beim Antrieb einer Wasserturbine durch eine Meeresströmung ist in einem zeitlich variablen Leistungseintrag zu sehen. Solche zeitlichen Fluktuationen treten auch in Dauerströmungsgebieten auf. Dieser Umstand ist zunächst erstaunlich, dennoch zeigen Messungen bei Strömungskraftmaschinen mit einer üblichen Tauchtiefe von einigen zehn Metern beispielsweise im Golfstrom, dass für derartige Energieerzeugungsanlagen mit einem zeitlich variablen Leistungseintrag zu rechnen ist. Dies liegt zum einen an Wettereinflüssen und den hieraus resultierenden Wellenbewegungen. Zum anderen haben Messungen das Auftreten von Turbulenzen in Meeresströmungen nachgewiesen. Diese liegen sowohl bei Gezeitenströmungen wie auch bei dauerhaften Strömungsmustern im Meer vor und sind insbesondere in einem Wassertiefenbereich bis zu 50 Metern ausgeprägt, der bevorzugt zur Energieerzeugung vorgesehen ist.
  • Neben der zeitlichen Schwankung der in einer Meeresströmung zur Verfügung stehenden kinetischen Energie sind Besonderheiten bezüglich der Charakteristik und Dynamik bei der mechanischen Energiewandlung der kinetischen Energie des Strömungsmediums in die kinetische Energie einer Wasserkraftturbine zu beachten. Somit liegt auf der Eingangswelle eine System inhärente Charakteristik für die Leistungskonvertierung vor, die einer bestimmten Strömungsgeschwindigkeit der Meeresströmung ein optimales Drehzahl-/Drehmomentenverhältnis entsprechend der Schnelllaufzahl für die Leistungsaufnahme zuordnet, welches wiederum von der Geometrie und der Gestaltung des Leistungsaufnehmers abhängt.
  • Diese Charakteristik der Leistungskonvertierung liegt auch bei anderen Strömungsmaschinen, etwa Windkraftmaschinen, vor. Strömungskraftmaschinen zur Entnahme von Energie aus einer Meeresströmung unterscheiden sich aber von Windkraftanlagen, da aufgrund der höheren Dichte des Strömungsmediums ein hohes Drehmoment auf den Leistungsaufnehmer bewirkt wird und dieser daher im Verhältnis zu den weiteren Komponenten der Energieerzeugungsanlage, etwa einem Antriebsstrang und dem elektrischen Generator sowie den mechanischen Haltestrukturen, kleinbauend ist. Hieraus folgt die Notwendigkeit, den Antriebsstrang und die elektrische Maschine der Energieerzeugungsanlage ebenfalls möglichst kleinbauend auszubilden, um die Gesamtanlage in strömungstechnischer Hinsicht zu verbessern. Bezüglich der in der Energieerzeugungsanlage verwendeten elektrischen Generatoren besteht jedoch ein Hindernis bei einer angestrebten Verringerung der Baugröße darin, dass der von der Meeresströmung angetriebene Leistungsaufnehmer mit relativ geringer Drehzahl von typischerweise unter 20 U/min umläuft. Ohne Zwischenschaltung von Getrieben zwischen Wasserturbine und elektrischem Generator führt eine geringe Umlaufgeschwindigkeit der elektrischen Maschine zwingend zu einer Vergrößerung der Baugröße.
  • Speist eine von einer Meeresströmung angetriebene Energieerzeugungsanlage elektrische Energie in ein elektrisches Verbundnetz ein, welches eine starre Netzfrequenz aufweist, so ergeben sich weitere Anforderungen. Wird von einer variablen Drehzahl des Leistungsaufnehmers, d. h. der Wasserturbine, der Energieerzeugungsanlage ausgegangen, so führt ein ebenfalls drehzahlvariabel betriebener elektrischer Generator zur Notwendigkeit, Frequenzumrichter zur Einspeisung in das elektrische Verbundnetz zu verwenden. Diese regen den elektrischen Generator mit der erforderlichen Frequenz an bzw. sorgen für die Kompensation einer Differenz zur bestehenden Netzfrequenz. Dieser Ansatz ist aber insofern mit Schwierigkeiten behaftet, da die Besonderheiten der Leistungskonvertierungscharakteristik bei Strömungskraftmaschinen nur unzureichend von Frequenzumrichtern abgebildet werden können. Hierbei ist es nur mit entsprechend hohem Aufwand möglich, zu einer adäquaten Netzeinspeisequalität insbesondere in Bezug auf die Oberschwingungsbelastung und die Erzeugung von Blindleistungen zu gelangen.
  • Wird stattdessen ein alternativer Weg beschritten und die Wasserturbine so ausgebildet, dass beispielsweise durch die Einstellung von Schaufelradwinkeln, eine Drehzahlkonstanz des Leistungsaufnehmers sichergestellt wird, so kann auch ein wenigstens mittelbar vom Leistungsaufnehmer angetriebener elektrischer Generator drehzahlstarr ausgebildet werden. Solche drehzahlstarren Energieerzeugungsanlagen können bei der Verwendung von asynchronen Generatoren aufgrund des prinzipienbedingten Schlupfes auf einfache Art und Weise auf ein elektrisches Verbundnetz aufgeschaltet werden. Nachteilig ist jedoch, dass durch die Einstellung der Schaufelradstellung zur Konstanthaltung der Drehzahl des Leistungsaufnehmers eine verminderte Energieeffizienz resultiert, d. h. der Leistungsaufnehmer kann der Meeresströmung nicht die maximale Energie entnehmen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Erzeugung elektrischer Energie aus einer Meeresströmung sowie ein Verfahren zum Betrieb derselben anzugeben, welche die voranstehend beschriebenen Nachteile überwindet. Insbesondere soll eine solche Energieerzeugungsanlage im Teillastbereich mit einer variablen Drehzahl des Leistungsaufnehmers bei gleichzeitig konstanter Drehzahl des elektrischen Generators betrieben werden können. Ferner soll die Energieerzeugungsanlage die Realisierung weiterer Betriebszustände erlauben. Insbesondere soll oberhalb einer Drehzahlschwelle eine Drehzahlabregelung des Leistungsaufnehmers möglich sein, um das Auftreten von Kavitation zu verhindern und die Fischpopulation vor schädigenden Umlaufdrehzahlen zu schützen. Im Leistungsbereich der Drehzahlkonstanz sollte eine Stoßreduktion und eine Kurzzeitenergiespeicherung zum Auffangen und Verwerten von Laststößen und Leistungsspitzen möglich sein. Ferner soll die Energieerzeugungsanlage im Volllastbereich eine Momentenabregelung sowie besondere Betriebszustände, wie das Stilllegen und die Reaktion auf einen Lastabwurf, realisieren können.
  • Zur Lösung der Aufgabe hat der Erfinder zunächst erkannt, dass eine von einer Meeresströmung angetriebene Wasserturbine über ein Getriebe mit einem schnell laufenden elektrischen Generator verbunden werden muss, um den elektrischen Generator im Verhältnis zur Wasserturbine hinreichend kleinbauend ausbilden zu können. Zusätzlich erfindungsgemäß wird die Verbindung zwischen der Wasserturbine und dem elektrischen Generator mittels eines Antriebsstrangs hergestellt, welcher ein hydrodynamisches Getriebe umfasst. Das hydrodynamische Getriebe dient zum einen der Drehzahlübersetzung, zum anderen zur Realisierung der Drehzahlvariabilität der Wasserturbine bei gleichzeitiger Drehzahlkonstanz des elektrischen Generators. Dies wird durch die Regelung und Steuerung wenigstens einer hydrodynamischen Komponente im hydrodynamischen Getriebe bewirkt, wobei insbesondere eine Ausbildung des hydrodynamischen Getriebes als Leistungsverzweigungsgetriebe bevorzugt wird.
  • Entsprechend einer vorteilhaften Ausgestaltung umfasst der erfindungsgemäße Antriebsstrang ein Überlagerungsgetriebe, beispielsweise ein Planetengetriebe, zur Leistungsverzweigung in einen ersten Leistungszweig und wenigstens einen zweiten Leistungszweig. Im ersten Leistungszweig ist eine schnell umlaufende Welle zum Antrieb eines elektrischen Generators angeordnet. Der zweite Leistungszweig steht mit dem ersten Leistungszweig über eine hydrodynamische Komponente, beispielsweise einen hydrodynamischen Wandler, eine hydrodynamische Kupplung oder einen Trilockwandler, in wenigstens mittelbarer Wirkverbindung. Durch die Regelung und Steuerung des Leistungsflusses über die hydrodynamische Komponente und des Grades der Kopplung zwischen dem ersten Leistungszweig und dem zweiten Leistungszweig kann die Drehzahlvariabilität des Leistungsaufnehmers und damit eine maximale Energieentnahme aus der Meeresströmung bei gleichzeitig konstanter Drehzahl des elektrischen Generators sichergestellt werden.
  • Beim Anlaufen der Wasserturbine aus dem Stand wird der elektrische Generator zunächst beschleunigt bis er seine Solldrehzahl erreicht und eine Synchronisation mit dem elektrischen Netz durchgeführt werden kann. Im dann erreichten Normalbetrieb prägt die Netzfrequenz dem elektrischen Generator und damit dem ersten Leistungszweig eine von der Polzahl abhängige Solldrehzahl auf. Eine typische Drehzahl des elektrischen Generators ist beispielsweise 1500 U/min, so dass kleinbauende elektrische Generatoren verwendet werden können. Außerdem ist bei derart hohen Drehzahlen auf der Welle des ersten Leistungszweigs auch ein effektiver Betrieb einer wenigstens mittelbar mit dem ersten Leistungszweig verbundenen hydrodynamischen Komponente, die dem zweiten Leistungszweig zugeordnet ist, möglich. Aufgrund des durch die hydrodynamische Komponente geregelten bzw. gesteuerten Leistungsflusses zwischen dem ersten und dem zweiten Leistungszweig ist es nun möglich, die Wasserturbine mit einer für die Leistungskonvertierung optimalen Drehzahl zu führen.
  • Wird als hydrodynamische Komponente zur Schaffung einer Verbindung zwischen dem ersten und dem zweiten Leistungszweig ein hydrodynamischer Stellwandler verwendet, so zeigt sich, dass bezüglich des Drehzahl-/Leistungs- und des Drehzahl-/Momentverhältnisses die Charakteristik des Stellwandlers der Charakteristik des Leistungsaufnehmers entspricht. Dies kann zur Realisierung eines Selbstregelungseffekts ausgenutzt werden. Ein Antriebsstrang mit einem Stellwandler kann so ausgelegt werden, dass mit einer bestimmten, im Wesentlichen konstanten Stellung des Leitrades des Stellwandlers die Wasserturbine bezüglich ihrer Drehzahl leistungsoptimal bei gleichzeitig konstanter Umlaufdrehzahl des elektrischen Generators geführt werden kann. Demnach ist bei Verwendung eines Stellwandlers im leistungsverzweigten Antriebsstrang einer erfindungsgemäßen Energieerzeugungsanlage keine Regelung im eigentlichen Sinne zur Einstellung einer leistungsoptimalen Drehzahl der Wasserturbine notwendig.
  • Zur Vermeidung der Bildung von Kavitationsblasen darf eine maximale Drehzahl der Wasserturbine nicht überschritten werden. Außerdem steigt mit zunehmender Drehzahl der Wasserturbine die Verletzungsgefahr für Meerestiere. Ab einer bestimmten Drehzahlschwelle, welche im einzelnen von der Gestaltung und der Größe der Wasserturbine sowie der vorliegenden Strömungsrichtung und Strömungsgeschwindigkeit abhängt, wird daher entsprechend einer bevorzugten Gestaltung der Energieerzeugungsanlage bzw. entsprechend eines bevorzugten Betriebsverfahrens eine Begrenzung der Umlaufgeschwindigkeit der Wasserturbine vorgenommen. Je nach Art der Auslegung wird einer dieser beiden Faktoren entscheidend bei der Festlegung einer oberen Drehzahlschwelle für die Wasserturbine der Energieerzeugungsanlage sein.
  • Für die erfindungsgemäße Energieerzeugungsanlage wird die Drehzahlführung zur Drehzahlbegrenzung der Wasserturbine mittels der gewählten Einstellung für die hydrodynamische Komponente im hydrodynamischen Getriebe bewirkt. Wird beispielsweise ein Stellwandler verwendet und ist der Antriebsstrang der erfindungsgemäßen Energieerzeugungsanlage vorteilhaft leistungsverzweigt ausgebildet, so kann der Leistungsübertragung vom ersten Leistungszweig zum zweiten Leistungszweig über eine Veränderung der Einstellung des Leitrads des Stellwandlers bewirkt werden. Im Allgemeinen wird hierzu jene Leitradstellung verlassen, bei der die Wasserturbine leistungsoptimal geführt wird.
  • Der Schwelldrehzahl ist bei einer optimalen Leistungsaufnahme, d. h. einer Leistungsaufnahme entlang der Parabolik, auch eine Schwelle in der Leistungsaufnahme zugeordnet. Bei Variationen in der Eingangsleistung, welche oberhalb dieser Leistungsschwelle liegt, ist es zur Einhaltung der Drehzahlkonstanz der Wasserturbine notwendig, die hydrodynamische Komponente im hydrodynamischen Getriebe zu regeln. Die hierfür notwendigen Sensoren zur Erfassung der Drehzahl der Wasserturbine sowie die Ausbildung eines auf die hydrodynamische Komponente wirkenden Reglers können im Rahmen des fachmännischen Könnens realisiert werden.
  • Ein besonderer Vorteil der erfindungsgemäßen Energieerzeugungsanlage mit hydrodynamischem Getriebe ist darin zu sehen, dass für den Betriebszustand einer drehzahlabgeregelten Wasserturbine Fluktuationen im Leistungseintrag und insbesondere zeitlich schnell wechselnde Lastschwankungen gedämpft werden und deren Energieeintrag zur kurzfristigen Beschleunigung der Wasserturbine und damit als Kurzzeitenergiespeicher genutzt werden können. Diese Eigenschaft begründet sich darin, dass durch die geregelte oder gesteuerte Einstellung der hydrodynamischen Komponente ein bestimmter Arbeitspunkt festlegt ist. Um diesen Arbeitspunkt sind dann in einem bestimmten Drehzahlintervall Schwankungen in der Drehzahl der Wasserturbine möglich. Hierfür wird eine Schwankungsbreite von ± 10 % und bevorzugt ± 5 % und insbesondere bevorzugt ± 3 % noch toleriert.
  • Trifft nun aufgrund eines Turbulenzeffekts ein Laststoß auf die Wasserturbine auf, so wird die Drehzahl in einem gewissen Umfang ansteigen und damit die kurzzeitig zur Verfügung gestellte zusätzliche Leistung in das System einfließen. Dies hat zum einen den Zweck, dass diese zusätzliche Leistung nutzbar wird, und zum anderen, dass Laststöße abgefedert und nicht durch die mechanischen Haltestrukturen aufgenommen werden müssen. Dies wirkt sich vorteilhaft auf die Reduzierung der Drehmomentenstöße im Triebstrang und somit auf die Standzeit der Energieerzeugungsanlage aus.
  • Im Teillastbereich, in dem die erfindungsgemäße Energieerzeugungsanlage leistungsoptimal entlang der Parabolik und vorteilhafterweise ab einer bestimmten Drehzahlschwelle drehzahlbegrenzt bzw. drehzahlgeführt betrieben wird, schließt sich der Volllastbereich an. Dieser ist dadurch charakterisiert, dass ein Maximaldrehmoment auf dem Leistungsaufnehmer erreicht wird. Oberhalb dieser Drehmomentschwelle findet eine Drehmomentabregelung für die Wasserturbine statt, wobei für die erfindungsgemäße Energieerzeugungsanlage neben der Einstellung der hydrodynamischen Komponente im Antriebsstrang zusätzliche Stellelemente verwendet werden, die die von der Wasserturbine aufgenommene Leistung begrenzen. In einer vorteilhaften Ausführungsform wird durch eine Veränderung der Winkelstellung der Schaufelräder der Wasserturbine eine Leistungsbegrenzung erzielt, welche aber langsame Reaktionszeiten aufweist, während durch die Einstellung der hydrodynamischen Komponente, im Fall eines Stellwandlers durch die Einstellung des Stellrades, eine kurzzeitige Leistungsbegrenzung für den elektrischen Generator vorgenommen wird. Somit kann das träge System der Winkelverstellung der Schaufelräder der Wasserturbine kurzzeitig mit dem schneller einstellbaren Stellwandler überbrückt werden.
  • Wird als hydrodynamische Komponente anstatt eines Stellwandlers eine hydrodynamische Kupplung verwendet, so kann keine Selbstregelung zur leistungsoptimalen Führung der Wasserturbine realisiert werden. Für diesen Fall muss die Einstellung der hydrodynamischen Kupplung aktiv geregelt werden, um im Teillastbereich die Drehzahl der Wasserturbine leistungsoptimal entlang der Parabolik zu führen. Vorteilhaft bei der Verwendung einer hydrodynamischen Kupplung anstatt eines Stellwandlers ist jedoch eine Steigerung der Leistungseffizienz des Antriebsstrangs insbesondere unter Volllastbedingungen. Wird als alternative hydrodynamische Komponente ein Trilockwandler verwendet, so ergeben sich ebenfalls bezüglich der Effizienz in bestimmten Leistungsbereichen bzw. Betriebsphasen Vorteile gegenüber einem hydrodynamischen Stellwandler.
  • Nachfolgend wird die Erfindung anhand von Figuren genauer beschrieben. Im Einzelnen ist Folgendes dargestellt:
  • 1 zeigt eine erfindungsgemäße Energieerzeugungsanlage in schematisch vereinfachter Art und Weise.
  • 2 zeigt eine bevorzugte Ausgestaltung des Antriebsstrangs der Energieerzeugungsanlage mit einem ersten und einem zweiten Leistungszweig.
  • 3 zeigt drei Betriebsbereiche einer erfindungsgemäßen Energieerzeugungsanlage im Drehzahl-/Drehmomentdiagramm.
  • 4 zeigt den Selbstregelungseffekt bei Verwendung eines hydrodynamischen Stellwandlers im Antriebsstrang zur Realisierung einer leistungsoptimalen Drehzahlführung im Teillastbereich.
  • 5 stellt die Einstellung des Leitrades eines hydrodynamischen Stellwandlers beim Übergang zwischen den einzelnen Betriebsbereichen aus 3.
  • 6 illustriert die Kurzzeitenergiespeicherung und die Laststoßreduktion einer erfindungsgemäßen Energieerzeugungsanlage im drehzahlabgeriegelten Bereich.
  • 7 zeigt in schematisch vereinfachter Weise drei Regelungsebenen für den Betrieb einer erfindungsgemäßen Energieerzeugungsanlage.
  • 1 zeigt die erfindungsgemäße Energieerzeugungsanlage in schematisch vereinfachter Art und Weise. Hierbei wird ein elektrischer Generator 11, der an ein elektrisches Netz 60 angekoppelt ist, mittels einer Wasserturbine 3 wenigstens mittelbar angetrieben. Die Wasserturbine 3 kann im Rahmen des fachmännischen Ermessens ausgestaltet sein. Beispielsweise kann eine zwei- oder mehrflügelige Propellerstruktur gewählt werden. Ferner können um die Wasserturbine zusätzliche Strukturen vorgesehen werden, welche zum Schutz oder zur Leitung der Strömung dienen. Erfindungsgemäß wird zwischen der Wasserturbine 3 und dem elektrischen Generator 11 ein hydrodynamischer Antriebsstrang 1 verwendet. Unter einem hydrodynamischen Antriebsstrang 1 wird in der vorliegenden Erfindung ein leistungsverzweigter Antriebsstrang verstanden, der einen ersten Leistungszweig 7 und wenigstens einen zweiten Leistungszweig 18 umfasst. Zur Leistungsverzweigung der antriebsseitig dem hydrodynamischen Antriebsstrang zugeführten Leistung wird ein Leistungsverzweigungsgetriebe verwendet, beispielsweise kann dies ein Planetenradsatz sein. Abtriebsseitig des Leistungsverzweigungsgetriebes 5 wird mittels einer hydrodynamischen Komponente, die dem zweiten Leistungszweig zugeordnet ist, eine Verbindung zwischen dem ersten und dem zweiten Leistungszweig 7, 18 hergestellt, so dass es möglich ist, ausgehend von einer konstanten Umlaufgeschwindigkeit des elektrischen Generators 11 der Wasserturbine 3 unterschiedliche Umlaufgeschwindigkeiten aufzuprägen.
  • Die Energieerzeugungsanlage kann ferner optionale Komponenten aufweisen. Dies sind zusätzliche Getriebe, die dem hydrodynamischen Antriebsstrang vor- oder nachgeschaltet sind. In 1 dient eine als Planetenradgetriebe ausgebildete Übersetzungsstufe 4 zu einer ersten Übersetzung der Drehzahl der Wasserturbine. Ferner kann zwischen dem hydrodynamischen Antriebsstrang 1 und dem elektrischen Generator 11 ein Übertragungselement 50 vorgesehen sein, welches eine Kupplung und/oder einer Bremse umfasst. Diese können sich auch zwischen dem zusätzlichen Getriebe 4 und dem hydrodynamischen Antriebsstrang 1 befinden.
  • In 1 werden im Einzelnen die mechanischen Halterungsstrukturen für die Energieerzeugungsanlage nicht dargestellt. Bevorzugt wird eine Ausführungsform, bei der die in 1 gezeigten Komponenten als Baueinheit zusammengefasst und mit einem wasserdichten Gehäuse umhüllt sind, so dass diese Baueinheit als ganzes tauchbar ist. Diese Baueinheit kann dann entlang einer Stützstruktur bis auf eine für die Energiegewinnung bevorzugte Tiefe gebracht werden.
  • 2 zeigt eine vorteilhafte Ausgestaltung des hydrodynamischen Antriebsstrangs 1 einer erfindungsgemäßen Energieerzeugungsanlage. Hierbei ist im Einzelnen dessen Eingangswelle 2 mit der Wasserturbine 3 einer erfindungsgemäßen Windkraftanlage wenigstens mittelbar verbunden. Im vorliegenden Fall ist ein Getriebe 4 mit einem konstanten Übersetzungsverhältnis zwischen dem Rotor 3 der Windkraftmaschine und der Eingangswelle 2 platziert. Im hier dargestellten Ausführungsbeispiel wird als Leistungsverzweigungsgetriebe 5 des Antriebsstranges 1 ein Planetenradgetriebe verwendet, wobei die Eingangswelle 2 mit dem Planetenradträger 6 in Verbindung steht. Im Leistungsverzweigungsgetriebe 5 liegen nun zwei Leistungszweige vor, der erste Leistungszweig 7 führt Leistung über das Sonnenrad 9 des Planetenradgetriebes zur Ausgangswelle 10 des Antriebsstrangs. Diese Ausgangswelle 10 treibt wenigstens mittelbar den elektrischen Generator 11 an und steht in Wirkverbindung mit dem hydrodynamischen Stellwandler 12. Hierzu ist die Ausgangswelle 10 wenigstens mittelbar mit dem Pumpenrad 13 des hydrodynamischen Stellwandlers 12 verbunden. Als Reaktionsglied 15 wird im hydrodynamischen Wandler 12 ein Leitrad mit Stellschaufeln verwendet, mit dem der Leistungsfluss auf das Turbinenrad 14 eingestellt werden kann. Über das Turbinenrad 14 erfolgt wiederum ein Leistungsrückfluss, der über einen zweiten, starren Planetenradsatz 16 geführt wird, und seinerseits auf das Außenrad 17 des Leistungsverzweigungsgetriebes 5 wirkt und das Übersetzungsverhältnis beeinflusst. Dies stellt den zweiten Leistungszweig 18 des Leistungsverzweigungsgetriebes dar, der dem Leistungsrückfluss dient.
  • Für den Betrieb der erfindungsgemäßen Energieerzeugungsanlage werden drei wesentliche Betriebsbereiche unterschieden. Diese sind in 3 skizziert. Hierbei ist die von der Wasserturbine aufgenommene Leistung in beliebigen Einheiten in Abhängigkeit der Drehzahl der Wasserturbine ebenfalls in beliebigen Einheiten dargestellt.
  • In einem mit I bezeichneten Bereich wird die Energieerzeugungsanlage in Teillast betrieben. Dieser beginnt ab einer bestimmten Drehzahl und endet bei einer bestimmten Drehzahlschwelle Dmax. Die in 3 dargestellte Kurve im Betriebsbereich I stellt eine Sollkurve dar, welche eine leistungsoptimale Drehzahlführung der Wasserturbine 3 skizziert. Einem bestimmten Leistungseintrag wird demnach eine optimale Drehzahl der Wasserturbine 3 zugeordnet. Dreht die Wasserturbine 3 mit einer geringeren oder einer höheren Drehzahl als die optimale Drehzahl, so kann von der Energieerzeugungsanlage keine optimale Leistung der Meeresströmung entzogen werden. In der vorliegenden Anmeldung wird für eine leistungsoptimale Drehzahlführung im Betriebsbereich I auch der Begriff einer Drehzahlführung entlang der Parabolik verwendet.
  • Für die erfindungsgemäße Energieerzeugungsanlage wird ein elektrischer Generator 11 mit einer konstanten, vorzugsweise schnellen Umlaufdrehzahl verwendet. Einmal an die Netzfrequenz gekoppelte Synchrongeneratoren werden in ihrer Umlaufdrehzahl durch das elektrische Verbundsnetz 60 gestützt. Dies gilt in einem hinreichenden Umfang auch für Asynchrongeneratoren, wenn diese in einem steil verlaufenden Linearbereich betrieben werden. Ausgehend von dieser konstanten Drehzahl des elektrischen Generators 11 wird durch die Steuerung und/oder Regelung der Wirkverbindung zwischen dem ersten Leistungszweig 7 und dem zweiten Leistungszweig 18 des Antriebsstrangs 1, d. h. des Leistungsflusses über die hydrodynamische Komponente, die eingangsseitige Drehzahl des Antriebsstrangs und damit die Drehzahl der Wasserturbine 3 so geführt, dass diese immer mit einer leistungsoptimalen Drehzahl umläuft.
  • Wird als hydrodynamische Komponente ein hydrodynamischer Stellwandler 12 verwendet, so ergibt sich der Vorteil, dass zur leistungsoptimalen Drehzahlführung der Wasserturbine 3 keine Regelung im eigentlichen Sinne, sondern ein systeminhärenter Selbstregelungseffekt verwendet werden kann. Dies ist als Illustration in 4 dargestellt. Hierbei stellt die Kurve E die vom Windrotor aufgenommene Leistung dar, Kurve F ist die Leistung auf dem Sonnenrad 9, Kurve G die vom Antriebsstrang übertragene Leistung und Kurve H gibt die über den zweiten Leistungszweig 18 vom hydrodynamischen Wandler 12 auf das Leistungsverzweigungsgetriebe 5 zurückfließende Leistung an. Zusätzlich ist die Einstellung des Leitrades 15 des hydrodynamischen Stellwandlers dargestellt. Sichtbar ist, dass bei einer optimalen Leistungsaufnahme entlang der Parabolik, die durch die Charakteristik des Antriebsstrangs 1 nachgebildet werden kann, mit einer über den gesamten dargestellten Teillastbereich mit einer im Wesentlichen gleich bleibenden Leitradstellung des hydrodynamischen Wandlers 12 gearbeitet werden kann. Diese Einstellung wird nachfolgend als die justierte Einstellung des hydrodynamischen Wandlers 12 bezeichnet. Es ist also keine Regelung des Leitrads nötig, um die Konstanz der Ausgangsdrehzahl des Antriebsstrangs zur Beschickung des elektrischen Generators 11 bei gleichzeitiger variabler optimaler Wasserturbinendrehzahl zu erreichen. Hierbei wird darauf verwiesen, dass die Steilheit der die Leistungsaufnahme charakterisierenden Parabel durch die Übersetzungsdimensionierung der Komponenten des Leistungsverzweigungsgetriebes in Verbindung mit der Dimensionierung des hydrodynamischen Wandlers eingestellt werden kann. Diese Charakteristik des erfindungsgemäßen Antriebsstranges 1 wird nachfolgend als Selbstregelung bezeichnet.
  • Der Betriebsbereich I, bei dem leistungsoptimal unter Teillastbedingungen einer Meeresströmung kinetische Energie durch den Leistungsaufnehmer der erfindungsgemäßen Energieerzeugungsanlage entnommen wird, könnte nun entlang der Leistungsparabolik bis zum Volllastbereich mit konstanter Drehzahl geführt werden. Üblicherweise würde bei einer solchen Betriebsführung aber ab einem bestimmten Leistungeintrag eine Drehzahlschwelle Dmax überschritten, welche zur Kavitationsvermeidung oder zum Schutz des Fischbestands zu beachten ist. Ab dieser Schwelldrehzahl Dmax wird daher vorzugsweise der Betriebsbereich I verlassen und zu einem Betriebsbereich II übergewechselt, der durch eine Konstanthaltung der Drehzahl der Wasserturbine gekennzeichnet ist.
  • Für die Ausgestaltung des Antriebsstrangs 1 mit einem hydrodynamischen Stellwandler 12 als hydrodynamische Komponente ist in 5 der Übergang zwischen den einzelnen Betriebsbereichen gezeigt. Im Betriebsbereich I mit leistungsoptimaler Drehzahlführung wird im Sinne des Selbstregelungseffekts mit einer im Wesentlichen gleich bleibenden Leitradstellung, im vorliegenden Fall bei 25 % des Stellweges gearbeitet. Beim Übergang vom Betriebsbereich I auf den drehzahlbegrenzten Betriebsbereich II wird diese optimale Leitradstellung verlassen und das Leitrad des hydrodynamischen Stellwandler 12 in Abhängigkeit des Leistungseintrags an der Wasserturbine 3 so nachgestellt, dass die Wasserturbinendrehzahl im Wesentlichen konstant bleibt und lediglich das von der Wasserturbine 3 aufgenommene Drehmoment und damit die aufgenommene Leistung variiert. Im Betriebsbereich II kann in einer Ausgestaltung anstatt einer tatsächlichen Drehzahlschwelle ein bestimmter Drehzahlverlauf, bevorzugt ein besonders steiler Drehzahlverlauf, gewählt werden. Charakterisierend für den Betriebsbereich II ist, dass die leistungsoptimale Drehzahlführung verlassen wird.
  • Ferner ist in 5 der Übergang des drehzahlbegrenzten Betriebsbereichs II auf dem drehmomentbegrenzten Betriebsbereich III dargestellt. Hierbei wird die Steuerung und/oder Regelung zum Bewirken einer Drehzahlkonstanz oberhalb eines Schwellmoments an der Windturbine 3 verlassen. Um nun eine unerwünschte Zunahme der Leistungserzeugung der Wasserturbine 3 im Betriebsbereich III zu verhindern, wird mit zusätzlichen Maßnahmen, beispielsweise eine Veränderung der Schaufelradstellung der Wasserturbine 3 oder einer Verstellung eines zugeordneten Leitapparats, der Leistungseintrag durch die Wasserturbine 3 begrenzt und damit ein weiterer Drehzahlanstieg zur Drehmomentenbegrenzung verhindert. Zur Überbrückung der trägen Regelung der Schaufelradstellung der Wasserturbine 3 bei Leistungszunahme im Betriebsbereich III wird zunächst die Leitradstellung des hydrodynamischen Stellwandlers 12 geändert, um kurzzeitige Momentenstöße bzw. -erhöhungen durch den Antriebsstrang abzuwenden, was aber eine kurzfristige Drehzahlerhöhung der Wasserturbine bewirkt, diese wird aber durch die im zweiten Schritt erfolgende Schaufelradverstellung der Wasserturbine 3 eingegrenzt. Dies ist im Einzelnen in 5 nicht dargestellt.
  • 6 stellt nun den Fall des Betriebsbereichs II dar, bei dem durch die Dejustage des hydrodynamischen Stellwandlers 12 oberhalb einer bestimmten Drehzahlschwellbereichs eine bestimmte Solldrehzahl der Wasserturbine 3 aufgeprägt wird. Die dargestellte Kurvenschar stellt unterschiedliche Leitradstellungen (H = 25 %–100 % Stellweg) dar. Im vorliegenden Fall ist der hydrodynamische Stellwandler bei mit einer Leitradstellung von H = 25 % Stellwert justiert. Aus 6 ist ersichtlich, dass durch die Dejustage des hydrodynamischen Stellwandlers 12 unterschiedliche Arbeitspunkte gewählt werden können. Dies eröffnet die Möglichkeit, die Drehzahl der Wasserturbine 3 einzustellen. Im einfachsten Fall wird so die Drehzahl begrenzt, zusätzlich ist es möglich, die Arbeitspunkte für die gewünschte Drehzahl der Wasserturbine 3 entlang einer Kurve einzustellen, die von dem durch die Wasserturbine 3 aufgenommenen Drehmoment abhängt. Hierdurch ist es möglich, insbesondere die Weichheit des Antriebsstrangs an der Grenze zum Volllastbetrieb anzupassen.
  • Um jeden durch Dejustage des hydrodynamischen Stellwandlers eingestellten Arbeitspunkt im Betriebsbereich II ergibt sich wiederum die parabolische Leistungsaufnahmecharakteristik, welche bei variierenden Strömungsgeschwindigkeiten durchlaufen wird. Diese Situation ist in 6 dargestellt. Hierbei ist zu beachten, dass die Einstellung eines bestimmten Arbeitspunkts langsam, d. h. im Sekunden- bis Minutenbereich, vorgenommen werden kann und in Abhängigkeit zur mittleren Strömungsgeschwindigkeit steht. Die möglichen Schwankungen um diesen Arbeitspunkt, die durch die Systemcharakteristik des Antriebsstrangs bei Verwendung eines hydrodynamischen Wandlers 12 jeweils durch eine Selbstregelung ausgeglichen werden, sind kurzzeitige Effekte, die durch Fluktuationen entstehen. Diese Schwankungsbreite sollte ± 30 % der gewünschten Drehzahl im Arbeitspunkt, bevorzugt ± 10 % und insbesondere bevorzugt ± 5 % nicht überschreiten.
  • Neben den voranstehend beschriebenen Betriebsbereichen I–III können auch zusätzliche Betriebszustände auftreten, etwa das Anfahren oder Abschalten der Energieerzeugungsanlage, die Synchronisation des elektrischen Generators mit der Netzfrequenz, ein Lastabwurf, ein Notstopp oder spezielle Betriebszustände, etwa ein Test- oder Schonbetrieb. Zur Realisierung der unterschiedlichen Betriebsbereiche und Betriebszustände wird eine Ausgestaltung der Regelung und Steuerung für die erfindungsgemäße Energieerzeugungsanlage in Form einer hierarchischen Struktur mit einer Unterteilung in drei Regelungsebenen bevorzugt. Dies ist in 7 skizziert. Die erste Regelungsebene ist die Energieerzeugungsanlage selbst. Bevorzugt wird hierbei die Ausbildung des Antriebsstrangs der Energieerzeugungsanlage mit einem hydrodynamischen Stellwandler als hydrodynamische Komponente, was zu einer Selbstregelung führt. Gleichwohl sind alternative hydrodynamische Komponenten, wie eine hydrodynamische Kupplung oder ein Trilockwandler aus Effizienzgründen ebenso denkbar. Für diesen Fall muss diese systeminhärente Selbstregelung durch eine aktive Regelung zur Drehzahlführung der Wasserturbine ersetzt werden. Diese erste Regelungsebene wird von der zweiten Regelungsebene überlagert, welche die Regler für die Schaufelradstellung, die Einstellung der hydrodynamischen Komponente und einen Regler für die Leistungselektronik des Generators umfasst. In dieser Ebene findet für jeden der genannten Regler ein Soll-Ist-Wertvergleich statt, woraufhin entsprechende Stellsignale ausgegeben werden.
  • Erfindungsgemäß ist nicht jeder Regler der zweiten Regelungsebene für alle Betriebsbereiche bzw. Betriebszustände aktiviert. Eine Steuerung der Regleraktivierung sowie einer Reglergewichtung bzw. einem graduierten Umschalten zwischen einzelnen Reglern wird durch die dritte Regelungsebene bewirkt. Diese wählt nicht nur in Abhängigkeit des Betriebszustandes bzw. des Betriebsbereiches die zu regelnden Größen aus, sondern es ist auch möglich, für ein und dieselbe Größe, z. B. der Schaufelradstellung, unterschiedliche Regler oder unterschiedliche Reglereinstellungen zu verwenden. Hierdurch kann die Regelungscharakteristik und die Regelungsgeschwindigkeit auf die jeweils spezielle Situation angepasst werden. Ferner ergibt sich über die dritte Regelungsebene als übergeordnete Steuerungsebene eine Einstellung der Reglersollwerte sowie der gewählten Arbeitspunkte.

Claims (15)

  1. Energieerzeugungsanlage zur Gewinnung von elektrischer Energie aus einer Meeresströmung, umfassend 1.1 einen Antriebsstrang (1) mit einer Eingangswelle (2) und einer Ausgangswelle (10); 1.2 die Eingangswelle (2) wird wenigstens mittelbar von einer Wasserturbine (3) angetrieben; 1.3 die Ausgangswelle (10) treibt wenigstens mittelbar einen elektrischen Generator (11) an, der mit einem elektrischen Netz (60) verbunden ist, wobei das elektrische Netz (60) eine im Wesentlichen konstante Netzfrequenz aufweist; 1.4 der Antriebsstrang (1) umfasst ein Leistungsverzweigungsgetriebe (5) mit einem ersten Leistungszweig (7) und wenigstens einem zweiten Leistungszweig (18); 1.5 der erste Leistungszweig (7) und der zweite Leistungszweig (18) stehen miteinander über ein Leistungsverzweigungsgetriebe (5) und eine hydrodynamische Komponente (12) in Verbindung.
  2. Energieerzeugungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass die hydrodynamische Komponente (12) ein hydrodynamischer Stellwandler oder eine hydrodynamische Kupplung oder ein Trilockwandler ist.
  3. Energieerzeugungsanlage nach wenigstens einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die hydrodynamische Komponente (12) abtriebsseitig zum Leistungsverzweigungsgetriebe (5) angeordnet ist.
  4. Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die hydrodynamische Komponente (12) wenigstens mittelbar mit der Antriebswelle des elektrischen Generators (11) verbunden ist.
  5. Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der elektrische Generator (11) als schnell laufender Generator ausgebildet ist.
  6. Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen der Wasserturbine (3) und der Eingangswelle (2) des Antriebsstrangs ein Übersetzungsgetriebe (4) angeordnet ist.
  7. Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im ersten Leistungszweig (7) und/oder dem zweiten Leistungszweig (18) zusätzliche Standgetriebe (16) zur Drehzahlanpassung vorgesehen sind.
  8. Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wasserturbine (3), der Antriebsstrang (1) und der elektrische Generator (11) als Baueinheit ausgebildet sind, welche tauchbar ist.
  9. Verfahren zum Betrieb einer Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Energieerzeugungsanlage im Teillastbereich der Wasserturbine (3) eine leistungsoptimale Drehzahl aufprägt.
  10. Verfahren zum Betrieb einer Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Drehzahl der Wasserturbine oberhalb einer Drehzahlschwelle (Dmax) entlang einer Sollkurve geführt wird.
  11. Verfahren zum Betrieb einer Energieerzeugungsanlage nach Anspruch 9, dadurch gekennzeichnet, dass die Drehzahl im Wesentlichen konstant gehalten wird.
  12. Verfahren zum Betrieb einer Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 oder 10, dadurch gekennzeichnet, dass die Energieerzeugungsanlage bei Laststößen die Drehzahl in einem bestimmten Drehzahlintervall variabel ist.
  13. Verfahren zum Betrieb einer Energieerzeugungsanlage nach wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass oberhalb eines maximalen Drehmoments an der Wasserturbine (3) durch die Einstellung der hydrodynamischen Komponente (12) das auf den elektrischen Generator (11) übertragene Moment begrenzt wird.
  14. Verfahren zum Betrieb einer Energieerzeugungsanlage nach Anspruch 13, dadurch gekennzeichnet, dass oberhalb des maximalen Drehmoments an der Wasserturbine (3), die von der Wasserturbine (3) aus der Meeresströmung entnommene Leistung begrenzt wird.
  15. Verfahren zum Betrieb einer Energieerzeugungsanlage nach Anspruch 14, dadurch gekennzeichnet, dass die Leistungsbegrenzung durch die Verstellung der Schaufelräder der Wasserturbine (3) und/oder eines der Wasserturbine (3) zugeordneten Leitapparats (15) bewirkt wird.
DE102004058258A 2004-12-03 2004-12-03 Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung Withdrawn DE102004058258A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102004058258A DE102004058258A1 (de) 2004-12-03 2004-12-03 Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung
KR1020077012957A KR20070085927A (ko) 2004-12-03 2005-11-30 해류를 사용하는 에너지 변환기용의 유체 역학적 구동 체인
US11/720,564 US20080101865A1 (en) 2004-12-03 2005-11-30 Hydrodynamic Drive Train for Energy Converters that use Ocean Currents
CNA2005800398713A CN101061313A (zh) 2004-12-03 2005-11-30 使用洋流产生能量的流体动力学传动线路
EP05811336A EP1817497A1 (de) 2004-12-03 2005-11-30 Hydrodynamischem anstriebstrang für meereströmungen energieumwandler
PCT/EP2005/012777 WO2006058725A1 (de) 2004-12-03 2005-11-30 Hydrodynamischem anstriebstrang für meeresströmung energieumwandler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004058258A DE102004058258A1 (de) 2004-12-03 2004-12-03 Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung

Publications (1)

Publication Number Publication Date
DE102004058258A1 true DE102004058258A1 (de) 2006-06-08

Family

ID=35929817

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004058258A Withdrawn DE102004058258A1 (de) 2004-12-03 2004-12-03 Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung

Country Status (6)

Country Link
US (1) US20080101865A1 (de)
EP (1) EP1817497A1 (de)
KR (1) KR20070085927A (de)
CN (1) CN101061313A (de)
DE (1) DE102004058258A1 (de)
WO (1) WO2006058725A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020615A1 (de) 2007-04-30 2008-11-06 Voith Patent Gmbh Antriebsstrang für eine tauchende Energieerzeugungsanlage
RU2500901C2 (ru) * 2008-02-27 2013-12-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Сотовый элемент с гибкими местами соединения
CN103939263A (zh) * 2014-04-24 2014-07-23 南通大学 螺旋型永磁轴承容错结构洋流发电机组

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8007231B2 (en) * 2008-07-17 2011-08-30 Dennis Gray Flowing water energy device
US7948108B2 (en) * 2009-02-06 2011-05-24 Ignacio Peralta Systems and methods for converting marine currents into electrical energy
ES2395067B1 (es) * 2011-07-08 2013-10-31 Demetrio FERNÁNDEZ LÓPEZ Dispositivo multiplicador de par motor para la generación de energía eléctrica.
CN103307248B (zh) * 2013-06-26 2015-11-25 重庆大学 回流式液力机械自动变速传动装置
DE102014213295A1 (de) * 2013-11-14 2015-05-21 Voith Patent Gmbh Hydrodynamischer Wandler und Verstelleinrichtung für einen solchen Wandler
CN103644279B (zh) * 2013-12-23 2015-12-09 重庆望江工业有限公司 一种用于风力发电机组的恒速输出齿轮箱
DE102018009534B4 (de) 2018-12-07 2024-04-04 Pepperl+Fuchs Se Spannvorrichtung mit induktiver Abfrageeinheit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088132A1 (de) * 2003-03-31 2004-10-14 Voith Turbo Gmbh & Co. Kg Antriebsstrang zum übertragen einer variablen leistung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4321755B4 (de) * 1993-06-30 2006-07-27 Harald Von Hacht Vegetative Antriebskonzeption mit Hilfe eines stufenlosen servomechanischen Getriebes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088132A1 (de) * 2003-03-31 2004-10-14 Voith Turbo Gmbh & Co. Kg Antriebsstrang zum übertragen einer variablen leistung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020615A1 (de) 2007-04-30 2008-11-06 Voith Patent Gmbh Antriebsstrang für eine tauchende Energieerzeugungsanlage
EP1998040A2 (de) 2007-04-30 2008-12-03 Voith Patent GmbH Antriebsstrang für eine tauchende Energieerzeugungsanlage
US8039977B2 (en) 2007-04-30 2011-10-18 Voith Patent Gmbh Drive train for an immersion energy production system
RU2500901C2 (ru) * 2008-02-27 2013-12-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Сотовый элемент с гибкими местами соединения
CN103939263A (zh) * 2014-04-24 2014-07-23 南通大学 螺旋型永磁轴承容错结构洋流发电机组
CN103939263B (zh) * 2014-04-24 2016-04-13 南通大学 螺旋型永磁轴承容错结构洋流发电机组

Also Published As

Publication number Publication date
WO2006058725A1 (de) 2006-06-08
KR20070085927A (ko) 2007-08-27
EP1817497A1 (de) 2007-08-15
US20080101865A1 (en) 2008-05-01
CN101061313A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
EP1608872B1 (de) Antriebsstrang zum übertragen einer variablen leistung
DE10357292B4 (de) Verfahren für die Steuerung eines Antriebsstrangs für eine Strömungskraftmaschine mit Drehzahlführung, Kraftstoßreduktion und Kurzzeitenergiespeicherung
EP1756423B1 (de) Energieerzeugungsanlage mit einem drehzahlgeregeltes Getriebe
DE10361443A1 (de) Regelung für eine Windkraftanlage mit hydrodynamischem Getriebe
DE60105298T2 (de) Meereswellen-energieumwandler
DE102007028582B4 (de) Verfahren und Vorrichtung für die Einspeisung und/oder die Aufnahme von Blindleistung
WO2008113699A2 (de) Energieumwandlungsvorrichtung mit hydraulischem antrieb
DE102011087109B3 (de) Vorrichtung und Verfahren zur Gewinnung von Energie aus einer Fluidströmung
DE102009028612A1 (de) Windkraftanlage und Verfahren zur Betriebssteuerung einer Windkraftanlage
EP2182200A2 (de) Verfahren und Vorrichtung für die Leistungsregelung eines Unterwasserkraftwerks
EP1283359A1 (de) Windkraftanlage zur Erzeugung elektrischer Energie
DE102004058258A1 (de) Vorrichtung und Verfahren zur Erzeugung elektrischer Energie aus einer Meeresströmung
EP2729695B1 (de) Strömungskraftwerk und verfahren für dessen betrieb
EP2589794A2 (de) Ausrichtung eines Wellenenergiekonverters zur Umwandlung von Energie aus einer Wellenbewegung eines Fluids in eine andere Energieform
DE4112730C2 (de) Vorrichtung zur Erzeugung von elektrischem Strom durch Wasserkraft
DE102011084573A1 (de) Strömungskraftmaschine und getriebe zum betreiben derselbigen
DE102007020615A1 (de) Antriebsstrang für eine tauchende Energieerzeugungsanlage
DE102011101368A1 (de) Strömungskraftwerk und Verfahren für dessen Betrieb
DE102005054539B3 (de) Betriebsverfahren für eine Windkraftanlage mit einem hydrodynamischen Regelgetriebe
DE2930073A1 (de) Windenergiekonverter
DE10318696A1 (de) Antriebsstrang mit variabler Eingangs- und konstanter Ausgangsdrehzahl
EP3171019B1 (de) Verfahren zum betrieb eines laufwasserkraftwerks
DE102011121544A1 (de) Windenergieanlage
DE3855104T2 (de) Grosstechnischer prozess zur wind- und wellenenergiegewinnung auf see bei jedem wetter
DE8706387U1 (de) Getriebe für Wind- und Wasser-Kleinkraftwerksanlagen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal