Nothing Special   »   [go: up one dir, main page]

DE102004054603A1 - D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung - Google Patents

D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
DE102004054603A1
DE102004054603A1 DE102004054603A DE102004054603A DE102004054603A1 DE 102004054603 A1 DE102004054603 A1 DE 102004054603A1 DE 102004054603 A DE102004054603 A DE 102004054603A DE 102004054603 A DE102004054603 A DE 102004054603A DE 102004054603 A1 DE102004054603 A1 DE 102004054603A1
Authority
DE
Germany
Prior art keywords
alkyl
radicals
cycloalkyl
groups
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004054603A
Other languages
English (en)
Inventor
Matthias Dr. Eckhardt
Frank Dr. Himmelsbach
Peter Dr. Eickelmann
Leo Dr. Thomas
Edward Leon Dr. Toyonaka Barsoumian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Pharma GmbH and Co KG
Original Assignee
Boehringer Ingelheim Pharma GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Pharma GmbH and Co KG filed Critical Boehringer Ingelheim Pharma GmbH and Co KG
Priority to DE102004054603A priority Critical patent/DE102004054603A1/de
Priority to US11/168,905 priority patent/US7393836B2/en
Priority to DE502005002516T priority patent/DE502005002516D1/de
Priority to PCT/EP2005/007042 priority patent/WO2006002912A1/de
Priority to CA002569915A priority patent/CA2569915A1/en
Priority to EP05755962A priority patent/EP1765842B1/de
Priority to JP2007519682A priority patent/JP5164568B2/ja
Priority to ES05755962T priority patent/ES2299047T3/es
Priority to AT05755962T priority patent/ATE383366T1/de
Publication of DE102004054603A1 publication Critical patent/DE102004054603A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/04Carbocyclic radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/06Heterocyclic radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

D-Xylopyranosyl-substituierte Phenyle der allgemeinen Formel I, DOLLAR F1 wobei die Reste R·1· bis R·5·, X, Z sowie R·7a·, R·7b·, R·7c· wie in Anspruch 1 definiert sind, besitzen eine inhibierende Wirkung auf den natriumabhängigen Glucose-Cotranporter SGLT. Die vorliegende Erfindung betrifft auch Arzneimittel zur Behandlung von Stoffwechselerkrankungen.

Description

  • Gegenstand der vorliegenden Erfindung sind D-Xylopyranosyl-substituierte Phenyle der allgemeinen Formel I
    Figure 00010001
    wobei die Reste R1 bis R5, X, Z sowie R7a, R7b, R7c nachfolgend definiert sind, einschließlich deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze. Ein weiterer Gegenstand dieser Erfindung betrifft Arzneimittel enthaltend eine erfindungsgemäße Verbindung der Formel I sowie die Verwendung einer erfindungsgemäßen Verbindung zur Herstellung eines Arzneimittels zur Behandlung von Stoffwechselerkrankungen. Darüber hinaus sind Verfahren zur Herstellung eines Arzneimittels sowie einer erfindungsgemäßen Verbindung Gegenstand dieser Erfindung.
  • In der Literatur werden Verbindungen, die eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT besitzen, zur Behandlung von Krankheiten, insbesondere von Diabetes vorgeschlagen.
  • Aus den internationalen Offenlegungsschriften WO 98/31697, WO 01/27128, WO 02/083066 und WO 03/099836 sind Glucopyranosyl-substituierte Aromaten sowie deren Herstellung und deren mögliche Aktivität als SGLT2-Inhibitoren bekannt.
  • Aufgabe der Erfindung
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Pyranosyl-substituierte Phenyle aufzuzeigen, insbesondere solche, die eine Aktivität bezüglich des natriumabhängigen Glucose-Cotransporters SGLT, insbesondere SGLT2 besitzen. Eine weitere Aufgabe der vorliegenden Erfindung besteht im Aufzeigen von Pyranosyl-substituierten Phenylen, die in vitro und/oder in vivo im Vergleich mit bekannten, strukturähnlichen Verbindungen eine erhöhte Hemmwirkung bezüglich des natriumabhängigen Glucose-Cotransporters SGLT2 besitzen und/oder verbesserte pharmakologische oder pharmakokinetische Eigenschaften aufweisen.
  • Ferner ist es eine Aufgabe der vorliegenden Erfindung, neue Arzneimittel bereit zu stellen, welche zur Prophylaxe und/oder Behandlung von Stoffwechselerkrankungen, insbesondere von Diabetes geeignet sind.
  • Ebenfalls eine Aufgabe dieser Erfindung ist es, ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen bereit zu stellen.
  • Weitere Aufgaben der vorliegenden Erfindung ergeben sich für den Fachmann unmittelbar aus den vorhergehenden und nachfolgenden Ausführungen.
  • Gegenstand der Erfindung
  • Ein erster Gegenstand der vorliegenden Erfindung sind D-Xylopyranosyl-substituierte Phenyle der allgemeinen Formel I
    Figure 00020001
    in der
    R1 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2–6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl, C5-7-Cycloalkenyl-C1-3-alkyl, C1-4-Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, Piperazin-1-ylcarbonyl, 4-(C1-4-Alkyl)piperazin-1-ylcarbonyl, C1-4-Alkoxycarbonyl, Amino, C1-4-Alkylamino, Di-(C1-3-alkyl)amino, Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-4-yl, Piperazin-1-yl, 4-(C1-4-Alkyl)piperazin-1-yl, C1-4-Alkylcarbonylamino, C1-6-Alkyloxy, C3-7-qCycloalkyloxy, C5-7-Cycloalkenyloxy, Aryloxy, C1-4-Alkylsulfanyl, C1-4-Alkylsulfinyl, C1-4-Alkylsulfonyl, C3-7-Cycloalkylsulfanyl, C3-7-Cycloalkylsulfinyl, C3_7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl, C5-7-Cycloalkenylsulfinyl, C5-7-Cycloalkenylsulfonyl, Arylsulfanyl, Arylsulfinyl, Arylsulfonyl, Hydroxy, Cyan und Nitro,
    wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und
    R2 Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C1-4-Alkyl, C1-4-Alkoxy, Cyan oder Nitro, wobei Alkyl-Reste ein- oder mehrfach mit Fluor substituiert sein können, oder
    für den Fall, dass R1 und R2 an zwei miteinander benachbarte C-Atome des Phenylrings gebunden sind, können R1 und R2 derart miteinander verbunden sein, dass R1 und R2 zusammen eine C3-5-Alkylen- oder C3-5-Alkenylen-Brücke bilden, die teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert kann und in der ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO, SO2 oder NRN substituiert sein können,
    R3 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl, C5-7-Cycloalkenyl-C1-3-alkyl, Aryl, Heteroaryl, C1-4-Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, Piperazin-1-ylcarbonyl, 4-(C1-4-Alkyl)piperazin-1-ylcarbonyl, Hydroxycarbonyl, C1-4-Alkoxycarbonyl, C1-4-Alkylamino, Di-(C1-3-alkyl)amino, Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-4-yl, Piperazin-1-yl, 4-(C1-4-Alkyl)piperazin-1-yl, C1-4-Alkylcarbonylamino, Arylcarbonylamino, Heteroarylcarbonylamino, C1-4-Alkylsulfonylamino, Arylsulfonylamino, C1-6-Alkoxy, C3-7-Cycloalkyloxy, C5-7-Cycloalkenyloxy, Aryloxy, Heteroaryloxy, C1-4-Alkylsulfanyl, C1-4-Alkylsulfinyl, C1-4-Alkylsulfonyl, C3-7-Cycloalkylsulfanyl, C3-7-Cycloalkylsulfinyl, C3-7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl, C5-7-Cycloalkenylsulfinyl, C5-7-Cycloalkenylsulfonyl, Arylsulfanyl, Arylsulfinyl, Arylsulfonyl, Amino, Hydroxy, Cyan und Nitro,
    wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und
    R4 unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Iod, Cyan, Nitro, C1-3-Alkyl, C1-3-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methyl- oder Methoxy, oder
    für den Fall, dass R3 und R4 an zwei miteinander benachbarte C-Atome des Phenylrings gebunden sind, können R3 und R4 derart miteinander verbunden sein, dass R3 und R4 zusammen eine C3-5-Alkylen- oder C3-5-Alkenylen-Brücke bilden, die teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert kann und in der ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO, SO2 oder NRN substituiert sein können,
    R5 unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Iod, Cyan, Nitro, C1-3-Alkyl, C1-3-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methyl- oder Methoxy, und
    RN H oder C1-4-Alkyl,
    L unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Iod, C1-3-Alkyl, Difluormethyl, Trifluormethyl, C1-3-Alkoxy, Difluormethoxy, Trifluormethoxy und Cyan,
    R7a, R7b
    R7c unabhängig voneinander eine Bedeutung ausgewählt aus der Gruppe Wasserstoff, (C1-18-Alkyl)carbonyl, (C1-18-Alkyl)oxycarbonyl, Arylcarbonyl und Aryl-(C1-3-alkyl)-carbonyl besitzen,
    X Wasserstoff, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl, C5-7-Cycloalkenyl-C1-3-alkyl, Aryl, Aryl-C1-3-alkyl, Heteroaryl, Heteroaryl-C1-3-alkyl, C1-4-Alkylcarbonyl, Arylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, (Aryl-C1-3-alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, Hydroxycarbonyl, C1-4- Alkoxycarbonyl, C1-4-Alkylcarbonylamino-C1-3-alkyl, N-(C1-4-Alkylcarbonyl)-N-(C1-3-alkyl)-amino-C1-3-alkyl, Arylcarbonylamino-C1-3-alkyl, C1-4-Alkylsulfonylamino-C1-3-alkyl, Arylsulfonylamino-C1-3-alkyl, C1-6-Alkoxy-C1-3-alkyl, C3-7-Cycloalkyloxy-C1-3-alkyl, C5-7-Cycloalkenyloxy-C1-3-alkyl, Aryloxy-C1-3-alkyl, Heteroaryloxy-C1-3-alkyl, C1-4-Alkylsulfanyl-C1-3-alkyl, C1-4-Alkylsulfinyl-C1-3-alkyl, C1-4-Alkylsulfinyl, C1-4-Alkylsulfonyl, C1-4-Alkylsulfonyl-C1-3-alkyl, C1-4-Arylsulfanyl-C1-3-alkyl, Arylsulfonyl-C1-3-alkyl, Aryl-C1-3-alkyl-sulfonyl-C1-3-alkyl, C1-4-Alkylsulfonyloxy-C1-3-alkyl, Arylsulfonyloxy-C1-3-alkyl, Aryl-C1-3-alkylsulfonyloxy-C1-3-alkyl, C3-7-Cycloalkylsulfanyl-C1-3-alkyl, C3-7-Cycloalkylsulfinyl, C3-7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl-C1-3-alkyl, C5-7-Cycloalkenylsulfinyl, C5-7-Cycloalkenylsulfonyl, C1-4-Alkylcarbonylsulfanyl-C1-3-alkyl und Cyan,
    wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Cyan, Hydroxy, Mercapto, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und
    wobei X in der Bedeutung Hydroxymethyl ausgeschlossen ist,
    Z Sauerstoff, Methylen, Dimethylmethylen, Difluormethylen oder Carbonyl;
    wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen zu verstehen sind, welche unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können; und
    unter den bei der Definition der vorstehend erwähnten Reste erwähnten Heteroarylgruppen eine Pyrrolyl-, Furanyl-, Thienyl-, Pyridyl-, Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist,
    oder eine Pyrrolyl-, Furanyl-, Thienyl- oder Pyridylgruppe zu verstehen ist, in der eine oder zwei Methingruppen durch Stickstoffatome ersetzt sind,
    oder eine Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, in der eine bis drei Methingruppen durch Stickstoffatome ersetzt sind,
    wobei die vorstehend erwähnten Heteroarylgruppen unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können;
    wobei unter den bei der Definition der vorstehend erwähnten Reste erwähnten N-Heterocycloalkyl-Rest ein gesättigter carbocyclischer Ring, der eine Imino-Gruppe im Ring aufweist, zu verstehen ist, der eine weitere Imino-Gruppe oder ein O- oder S-Atom im Ring aufweisen kann, und
    wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können,
    deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträglichen Salze.
  • Die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT, insbesondere SGLT2. Ferner können erfindunsgemäße Verbindungen eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT1 aufweisen. Verglichen mit einer möglichen Hemmwirkung auf SGLT1 hemmen die erfindungsgemäßen Verbindungen vorzugsweise selektiv SGLT2.
  • Gegenstand der vorliegenden Erfindung sind auch die physiologisch verträglichen Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren.
  • Daher ist die Verwendung der erfindungsgemäßen Verbindungen, einschließlich der physiologisch verträglichen Salze, als Arzneimittel ebenfalls ein Gegenstand dieser Erfindung.
  • Ein weiterer Gegenstand dieser Erfindung sind Arzneimittel, enthaltend mindestens eine erfindungsgemäße Verbindung oder ein erfindungsgemäßes physiologisch verträgliches Salz neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
  • Ebenfalls ein Gegenstand dieser Erfindung ist die Verwendung mindestens einer erfindungsgemäßen Verbindung oder eines physiologisch verträglichen Salzes solch einer Verbindung zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Erkrankungen oder Zuständen geeignet ist, die durch Inhibierung des natriumabhängigen Glucose-Cotransporters SGLT, insbesondere SGLT2 beeinflussbar sind.
  • Ein weiterer Gegenstand dieser Erfindung ist die Verwendung mindestens einer erfindungsgemäßen Verbindung zur Herstellung eines Arzneimittels, das zur Behandlung von Stoffwechselerkrankungen geeignet ist.
  • Ein weiterer Gegenstand dieser Erfindung ist die Verwendung mindestens einer erfindungsgemäßen Verbindung zur Herstellung eines Arzneimittels zur Inhibition des natriumabhängigen Glucose-Cotransporters SGLT, insbesondere SGLT2.
  • Ferner ist ein Verfahren zur Herstellung eines erfindungsgemäßen Arzneimittels Gegenstand dieser Erfindung, dadurch gekennzeichnet, dass auf nicht-chemischem Wege eine erfindungsgemäße Verbindung in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
  • Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I, dadurch gekennzeichnet, dass
    • a) zur Herstellung von Verbindungen der allgemeinen Formel I, die wie vor- und nachstehend definiert ist, eine Verbindung der allgemeinen Formel II
      Figure 00090001
      in der R' H, C1-4-Alkyl, (C1-18-Alkyl)carbonyl, (C1-18-Alkyl)oxycarbonyl, Arylcarbonyl oder Aryl-(C1-3-alkyl)-carbonyl bedeutet, worin die Alkyl- oder Arylgruppen ein- oder mehrfach mit Halogen substituiert sein können; R8a, R8b, R8c unabhängig voneinander eine zuvor und nachstehend für die Reste R7a, R7b, R7c angegebenen Bedeutungen aufweisen oder eine RaRbRcSi-Gruppe oder eine Ketal- oder Acetalgruppe bedeuten, wobei jeweils zwei benachbarte Reste R8a, R8b, R8c eine cyclische Ketal- oder Acetylgruppe bilden können, und wobei Alkyl- und/oder Arylgruppen ein- oder mehrfach halogeniert sein können; und Ra, Rb, Rc unabhängig voneinander C1-4-Alkyl, Aryl oder Aryl-C1-3-alkyl bedeuten, worin die Aryl- oder Alkylgruppen ein- oder mehrfach mit Halogen substituiert sein können; wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen, vorzugsweise Phenylgruppen zu verstehen sind; und in der die Reste X und R1 bis R5 und die Brücke Z wie vor- und nachstehend definiert sind; mit einem Reduktionsmittel in Gegenwart einer Säure umgesetzt wird, wobei die eventuell vorhandenen Schutzgruppen gleichzeitig oder nachträglich abgespalten werden; oder
    • b) zur Herstellung von Verbindungen der allgemeinen Formel I, in der R7a, R7b und R7c Wasserstoff bedeuten, in einer Verbindung der allgemeinen Formel III
      Figure 00100001
      in der X, Z, R8a, R8b, R8c sowie R1 bis R5 wie zuvor und nachstehend definiert sind, wobei mindestens einer der Reste R8a, R8b und R8c nicht Wasserstoff bedeutet, die nicht Wasserstoff bedeutenden Reste R8a, R8b bzw. R8c entfernt werden, insbesondere hydrolysiert werden; und erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen gemäß Verfahren a) oder b) verwendeter Schutzrest wieder abgespalten wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I selektiv an einer Hydroxygruppe derivatisiert oder diese substituiert wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführt wird.
  • Detailierte Beschreibung der Erfindung
  • Sofern nicht anders angegeben besitzen die Gruppen, Reste und Substituenten, insbesondere R1 bis R5, X, Z, L, RN, R7a, R7b, R7c die zuvor und nachfolgend angegebenen Bedeutungen.
  • Kommen Reste, Substituenten oder Gruppen in einer Verbindung mehrfach vor, so können diese eine gleiche oder verschiedene Bedeutungen aufweisen.
  • Der Rest R3 steht vorzugsweise in meta- oder para Position zur -Z-Brücke, so dass Verbindungen gemäß der folgenden Formeln I.1 und I.2, insbesondere der Formel I.2, bevorzugt sind:
    Figure 00110001
  • Figure 00120001
  • Die vorstehend und nachfolgend verwendete, beispielsweise in den Gruppen X, R1 und R3 vorkommende Bezeichnung Aryl bedeutet vorzugsweise Phenyl. Gemäß der allgemeinen Definition und sofern nichts anderes angegeben ist, kann die Aryl-Gruppe, insbesondere die Phenylgruppe, ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein.
  • Die vorstehend und nachfolgend verwendete, beispielsweise in den Gruppen X, R1 und R3 vorkommende Bezeichnung Heteroaryl bedeutet vorzugsweise Pyridinyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Triazinyl, Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, Oxazolyl, Oxadiazolyl, Thiazolyl oder Thiadiazolyl. Gemäß der allgemeinen Definition und sofern nichts anderes angegeben ist, kann die Heteroaryl-Gruppe ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein.
  • Bevorzugt bedeutet R1 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C5-7-Cycloalkenyl, C1-4-Alkylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, C1-4-Alkoxycarbonyl, C1-4-Alkylamino, Di-(C1-3-alkyl)amino, Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-4-yl, C1-4-Alkylcarbonylamino, C1-6-Alkyloxy, C3-7-Cycloalkyloxy, C5-7-Cycloalkenyloxy, C1-4-Alkylsulfanyl, C1-4-Alkylsulfonyl, C3-7-Cycloalkylsulfanyl, C3-7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl, C5-7-Cycloalkenylsulfonyl, Hydroxy und Cyan,
    wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann.
  • Bedeutet die Gruppe R1 einen Cycloalkyl- oder Cycloalkenyl-Rest, in dem ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sind, so sind bevorzugte Bedeutungen des Rests R1 ausgewählt aus der Gruppe bestehend aus Tetrahydrofuranyl, Tetrahydrofuranonyl, Tetrahydrothienyl, Tetrahydropyranyl, Tetrahydropyranonyl, Dioxanyl und Trioxanyl.
  • Bedeutet die Gruppe R1 einen N-Heterocycloalkyl-Rest, in dem eine Methylengruppe durch CO oder SO2 substituiert ist, so sind bevorzugte Bedeutungen des Rests R1 ausgewählt aus der Gruppe bestehend aus Pyrrolidinon, Piperidinon, Piperazinon und Morpholinon.
  • Besonders bevorzugt bedeutet R1 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C5_7-Cycloalkenyl, C1-6-Alkyloxy, C3-7-Cycloalkyloxy oder Cyan, wobei in Cycloalkyl- und Cycloalkenylgruppen ein oder zwei Methyleneinheiten unabhängig voneinander durch O oder CO ersetzt und Alkyl-, Alkenyl- und Alkinyl-Reste teilweise oder vollständig fluoriert sein können.
  • Beispiele der ganz besonders bevorzugten R1 sind Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, Trifluormethyl, Ethinyl, Methoxy, Cyclopentyloxy und Cyan, insbesondere Chlor, Methyl und Ethinyl.
  • Der Rest R3 bedeutet vorzugsweise Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-methyl, C5-7-Cycloalkenyl, C3-7-Cycloalkenyl-methyl, Aryl, Heteroaryl, C1-4-Alkylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, C1-4-Alkoxycarbonyl, Di-(C1-3-alkyl)amino, Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-4-yl, C1-4-Alkylcarbonylamino, C1-6-Alkoxy, C3-7-Cycloalkyloxy, C5-7-Cycloalkenyloxy, Aryloxy, Heteroaryloxy, C1-4-Alkylsulfanyl, C1-4-Alkylsulfonyl, C3-7-Cycloalkylsulfanyl, C3-7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl, C5-7- Cycloalkenylsulfonyl, Hydroxy und Cyan,
    wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann,
    wobei die Begriffe Aryl und Heteroaryl wie zuvor definiert sind und Aryl- und Heteroaryl-Gruppen unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können.
  • Bedeutet die Gruppe R3 einen Cycloalkyl- oder Cycloalkenyl-Rest, in dem ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sind, so sind bevorzugte Bedeutungen der Gruppe R3 ausgewählt aus der Gruppe bestehend aus Tetrahydrofuranyl, Tetrahydrofuranonyl, Tetrahydrothienyl, Tetrahydropyranyl, Tetrahydropyranonyl, Dioxanyl und Trioxanyl.
  • Bedeutet die Gruppe R3 einen N-Heterocycloalkyl-Rest, in dem eine Methylengruppe durch CO oder SO2 substituiert ist, so sind bevorzugte Bedeutungen des Rests R3 ausgewählt aus der Gruppe bestehend aus Pyrrolidinon, Piperidinon, Piperazinon und Morpholinon.
  • Besonders bevorzugte R3 sind C1-6-Alkyl, C2-6-Alkinyl, C3-7-Alkyloxy, C3-7-Cycloalkyl, C3-7-Cycloalkyloxy und Hydroxy, wobei in den Cycloalkylgruppen ein oder zwei Methyleneinheiten unabhängig voneinander durch O oder CO ersetzt und Alkylreste teilweise oder vollständig fluoriert sein können.
  • Ganz besonders bevorzugte Reste R1 sind Methyl, Ethyl, Ethinyl, Isopropyl, Methoxy, Ethoxy, Isopropyloxy, Difluormethoxy, Cyclopentyloxy, Tetrahydro-furan-3-yloxy und Hydroxy.
  • Eine Auswahl der ganz besonders bevorzugten Vertreter von R3 ist Methyl, Ethyl, Isopropyl, Ethinyl, Methoxy, Ethoxy, Difluormethoxy, Cyclopentyloxy und Hydroxy.
  • Gemäß einer bevorzugte Ausführungsvariante der vorliegenden Erfindung bedeutet R3 C2-6-Alkinyl, insbesondere Ethinyl.
  • Die Gruppe X bedeutet vorzugsweise Wasserstoff, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl-C1-3-alkyl, Aryl, Aryl-C1-3-alkyl, Heteroaryl, Heteroaryl-C1-3-alkyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, C1-4-Alkoxycarbonyl, C1-4-Alkylcarbonylamino-C1-3-alkyl, N-(C1-4-Alkylcarbonyl)-N-(C1_3-alkyl)-amino-C1-3-alkyl, Arylcarbonylamino-C1-3-alkyl, C1-6-Alkoxy-C1-3-alkyl, C3-7-Cycloalkyloxy-C1-3-alkyl, C5-7-Cycloalkenyloxy-C1-3-alkyl, Aryloxy-C1-3-alkyl, Heteroaryloxy-C1-3-alkyl, C1-4-Alkylcarbonylsulfanyl-C1-3-alkyl oder C1-4-Alkylsulfanyl-C1-3-alkyl,
    wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Cyan, Hydroxy, Mercapto, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in den vorstehend genannten Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und
    wobei die Begriffe Aryl und Heteroaryl wie zuvor definiert sind und Aryl- und Heteroaryl-Gruppen unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können, und
    wobei X in der Bedeutung Hydroxymethyl ausgeschlossen ist.
  • Gemäß einer ersten Ausführungsform bedeutet X vorzugsweise Wasserstoff, Cyan, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl-C1-3-alkyl, Aryl-C1-3-alkyl, Heteroaryl-C1-3-alkyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, C1-4-Alkylcarbonyl, C1-4-Alkoxycarbonyl, C1-4-Alkylcarbonylamino-C1-3-alkyl, N-(C1-4-Alkylcarbonyl)-N-(C1-3-alkyl)-amino-C1-3-alkyl, Arylcarbonylamino-C1-3-alkyl, C1-6-Alkoxy-2-3-alkyl, C3-7-Cycloalkyloxy-C2-3-alkyl, C5-7-Cycloalkenyloxy-C2-3-alkyl, Aryloxy-C2-3-alkyl, Heteroaryloxy-C2-3-alkyl und C1-4-Alkylsulfanyl-2-3-alkyl,
    wobei Alkoxy-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Cyan, Hydroxy, Mercapto, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und wobei Methyl-Reste teilweise oder vollständig fluoriert oder einfach mit Chlor substituiert sein können, und wobei Alkylreste mit 2 oder mehr C-Atomen teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Cyan, Hydroxy, Mercapto und C1-3-Alkoxy substituiert sein können,
    wobei in den vorstehend genannten Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und
    wobei die Begriffe Aryl und Heteroaryl wie zuvor definiert sind und Aryl- und Heteroaryl-Gruppen unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können.
  • Bedeutet die Gruppe X einen Cycloalkyl- oder Cycloalkenyl-Rest, in dem ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sind, so sind bevorzugte Bedeutungen der Gruppe X ausgewählt aus der Gruppe bestehend aus Tetrahydrofuranyl, Tetrahydrofuranonyl, Tetrahydrothienyl, Tetrahydropyranyl, Tetrahydropyranonyl, Dioxanyl und Trioxanyl.
  • Bedeutet die Gruppe X einen N-Heterocycloalkyl-Rest, in dem eine Methylengruppe durch CO oder SO2 substituiert ist, so sind bevorzugte Bedeutungen des Rests X ausgewählt aus der Gruppe bestehend aus Pyrrolidinon, Piperidinon, Piperazinon und Morpholinon.
  • Besonders bevorzugte Reste der Gruppe X sind Wasserstoff, Cyan, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C1-4-Alkylcarbonyl, C1-4-Alkoxycarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-4-alkyl)aminocarbonyl, C1-4-Alkylcarbonylamino-C1-3-alkyl,
    wobei Alkyl-Reste ein- oder mehrfach fluoriert oder einfach mit Chlor oder Cyan substituiert sein können und X in der Bedeutung Alkyl mit 2 oder mehr C-Atomen einen Hydroxy-Substituenten aufweisen kann.
  • Ganz besonders bevorzugten Reste X sind Wasserstoff, Cyan, Methyl, Ethyl, Propyl, Fluormethyl, Trifluormethyl, Chlormethyl, Cyanmethyl, 1-Hydroxyethyl, 1-Hydroxy-1-methylethyl, 2-Hydroxyethyl, Prop-2-enyl, Prop-2-inyl, Methylcarbonyl, Aminocarbonyl, Methylaminocarbonyl, Methylaminocarbonylmethyl, Methoxycarbonyl und Acetylaminomethyl.
  • Eine Auswahl der ganz besonders bevorzugten Gruppen X ist Methyl, Ethyl, Fluormethyl, Chlormethyl, Cyanmethyl und Acetylaminomethyl, insbesondere Methyl, Fluormethyl und Cyanmethyl.
  • Gemäß einer zweiten Ausführungsform bedeutet X vorzugsweise C1-6-Alkoxy-methyl, C3-7-Cycloalkyloxy-methyl, C5-7-Cycloalkenyloxy-methyl, Aryloxy-methyl oder Heteroaryloxy-methyl,
    wobei die vorstehend genannten Alkoxy-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und
    wobei in den vorstehend genannten Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und
    wobei die Begriffe Aryl und Heteroaryl wie zuvor definiert sind und Aryl- und Heteroaryl-Gruppen unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können.
  • Gemäß dieser Ausführungsform bevorzugte Bedeutungen des Rests X sind C1-4-Alkyloxymethyl, C3-7-Cycloalkyloxymethyl und Aryloxymethyl, wobei unter Aryl eine Phenyl- oder Naphthylgruppe, insbesondere Phenyl zu verstehen ist, welche ein- oder zweifach mit gleichen oder verschiedenen Substituenten L substituiert sein kann.
  • Besonders bevorzugte Bedeutungen des Rests X sind hierbei Phenoxymethyl und Methoxymethyl, wobei der Phenylring unsubstituiert oder mit gleichen oder verschiedenen Substituenten L mono- oder disubstituiert ist, insbesondere Methoxymethyl.
  • Gemäß einer dritten Ausführungsform bedeutet X vorzugsweise Mercaptomethyl, C1-6-Alkylsulfanylmethyl oder C1-6-Alkylcarbonylsulfanylmethyl,
    wobei die vorstehend genannten Alkyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können.
  • In der Bedeutung C1-6-Alkylcarbonylsulfanylmethyl ist Acetylsulfanylmethyl bevorzugt.
  • Gemäß dieser Ausführungsform bevorzugte Bedeutungen des Rests X sind Mercaptomethyl und C1-4-Alkylsulfanylmethyl.
  • Besonders bevorzugte Bedeutungen des Rests X sind hierbei Mercaptomethyl und Methylsulfanylmethyl.
  • Gemäß einer vierten Ausführungsform bedeutet X vorzugsweise Chlormethyl, Brommethyl, Iodmethyl, C1-6-Alkylsulfonyloxymethyl, Arylsulfonyloxymethyl oder Aryl-C1-3-alkyl-sulfonyloxymethyl,
    wobei die vorstehend genannten Alkyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach chloriert sein können und wobei die vorstehend genannten Aryl-Gruppen ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können, wobei L vorzugsweise ausgewählt ist aus der Gruppe Fluor, Chlor, Brom, Iod, C1-3-Alkyl, Difluormethyl, Trifluormethyl und Cyan.
  • Die Verbindungen gemäß dieser vierten Ausführungsform eignen sich über ihre beschriebene pharmazeutische Wirkung hinaus insbesondere als Zwischenprodukte in der Synthese von Verbindungen mit SGLT, vorzugsweise SGLT2 inhibierender Wirkung, insbesondere in der Synthese weiterer erfindungsgemäßer Verbindungen.
  • Besonders bevorzugte Reste X gemäß dieser Ausführungsform sind Brommethyl, Iodmethyl, C1-4-Alkylsulfonyloxymethyl, Phenylsulfonyloxymethyl oder Phenylmethylsulfonyloxymethyl, wobei die vorstehend genannten Alkyl-Reste teilweise oder vollständig fluoriert sein können und wobei die vorstehend genannten Phenyl-Gruppen ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können, wobei L vorzugsweise ausgewählt ist aus der Gruppe Fluor, Chlor, Brom und Methyl.
  • Ganz besonders bevorzugt ist hierbei X in der Bedeutung Brommethyl oder Iodmethyl.
  • Sind in den Resten oder Gruppen X, R1 oder R3 Cycloalkyl- oder Cycloalkenyl-Ringe vorhanden, in denen zwei Methylengruppen durch O oder S ersetzt sind oder durch CO, SO oder SO2 ersetzt sind, so sind diese Methylengruppen vorzugsweise nicht unmittelbar miteinander verbunden. Sind jedoch zwei Methylengruppen durch O und CO ersetzt, so können diese unmittelbar miteinander verbunden sein, so dass eine Carboxy-Gruppe gebildet wird. Für den Fall, dass X, R1 oder R3 eine Cycloalkyl- oder Cycloalkenyl-Gruppe mit ein oder zwei erfindungsgemäß ersetzten Methylengruppen ist, so bedeutet die betreffende Gruppe X, R1 bzw. R3 vorzugsweise eine Cycloalkyl- oder Cycloalkenyl-Gruppe, in der eine Methylengruppe durch O, S, CO, SO oder SO2 substituiert oder eine Ethylengruppe durch -O-CO- oder -CO-O- substituiert ist.
  • Nachfolgend werden Bedeutungen weiterer Reste und Substituenten angegeben, die gemäß der allgemeinen Formel I, der Formeln I.1 und I.2 als auch gemäß der zuvor beschriebenen Ausführungsformen als bevorzugt anzusehen sind:
    Bevorzugte Bedeutungen des Rests R2 sind Wasserstoff, Fluor, Chlor, Brom, Methyl, Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyan, Nitro und durch 1 bis 3 Fluoratome substituiertes Methyl.
  • Besonders bevorzugte Bedeutungen des Rests R2 sind Wasserstoff, Fluor, Hydroxy, Methoxy, Ethoxy und Methyl, insbesondere Wasserstoff und Methyl.
  • Für den Fall, dass R1 und R2 an zwei miteinander benachbarte C-Atome des Phenylrings gebunden sind, können R1 und R2 derart miteinander verbunden sein, dass R1 und R2 zusammen vorzugsweise eine C3-4-Brücke bilden, in der ein oder zwei Methyleneinheiten unabhängig voneinander durch O, NRN oder CO substituiert sein können. Bevorzugt bilden hierbei die miteinander verbundenen Reste R1 und R2 zusammen mit dem Phenylring, mit dem diese verbunden sind, ein bicyclisches Ringsystem ausgewählt aus Dihydroindan, Dihydroindol, Dihydrobenzofuran, Tetrahydrochinolin, Tetrahydrochinolinon, Tetrahydroisochinolin, Tetrahydroisochinolinon und Tetrahydronaphthalin.
  • Bevorzugte Bedeutungen des Rests R4 sind Wasserstoff und Fluor, insbesondere Wasserstoff.
  • Für den Fall, dass R3 und R4 an zwei unmittelbar miteinander benachbarte C-Atome des Phenylrings gebunden sind, können R3 und R4 derart miteinander verbunden sein, dass R1 und R2 zusammen vorzugsweise eine C3-4-Brücke bilden, in der ein oder zwei Methyleneinheiten unabhängig voneinander durch O, NRN oder CO substituiert sein können. Bevorzugt bilden hierbei die miteinander verbundenen Reste R3 und R4 zusammen mit dem Phenylring, mit dem diese verbunden sind, ein bicyclisches Ringsystem ausgewählt aus Dihydroindan, Dihydroindol, Dihydrobenzofuran, Tetrahydrochinolin, Tetrahydrochinolinon, Tetrahydroisochinolin, Tetrahydroisochinolinon und Tetrahydronaphthalin.
  • Bevorzugte Bedeutungen des Rests R5 sind Wasserstoff und Fluor, insbesondere Wasserstoff.
  • Bevorzugte Bedeutungen des Rests Z sind Sauerstoff und Methylen, insbesondere Methylen.
  • Die Substituenten R7a, R7b, R7c bedeuten unabhängig voneinander vorzugsweise Wasserstoff, (C1-8-Alkyl)oxycarbonyl-, (C1-18-Alkyl)carbonyl, Benzoyl, insbesondere Wasserstoff oder (C1-6-Alkyl)oxycarbonyl-, (C1-8-Alkyl)carbonyl, besonders bevorzugt Wasserstoff, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyl oder Ethylcarbonyl. Ganz besonders bevorzugt bedeuten R7a, R7b und R7c Wasserstoff.
  • Die Verbindungen der Formel I, in denen R7a, R7b und R7c eine erfindungsgemäße, von Wasserstoff verschiedene Bedeutung aufweisen, beispielsweise C1-8-Alkylcarbonyl, eignen sich bevorzugt als Zwischenprodukte bei der Synthese von Verbindungen der Formel I in denen R7a, R7b und R7c Wasserstoff bedeuten.
  • Die Substituenten L sind unabhängig voneinander vorzugsweise ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, C1-3-Alkyl, Difluormethyl, Trifluormethyl, C1-3-Alkoxy, Difluormethoxy, Trifluormethoxy und Cyan, besonders bevorzugt aus der Gruppe bestehend aus Fluor, Chlor, Methyl, Trifluormethyl, Methoxy und Difluormethoxy.
  • Besonders bevorzugte Verbindungen der allgemeinen Formel I sind ausgewählt aus der Gruppe der Formeln I.2a bis I.2d, insbesondere der Formel I.2c:
    Figure 00220001
    in denen R1 bis R5, X, Z, R7a, R7b, R7c wie zuvor definiert sind.
  • Ganz besonders bevorzugt sind diejenigen Verbindungen der Formeln I.2a, I2b, I.2c und I.2d, insbesondere der Formel I.2c, in denen die Reste R1 bis R5, X, Z, R7a, R7b, R7c die zuvor als bevorzugt angegebenen Bedeutungen aufweisen, insbesondere in denen
    R1 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, X2-6-Alkenyl, C3-7-Cycloalkyl, C5-7-Cycloalkenyl, C1-6-Alkyloxy, C3-7-Cycloalkyloxy oder Cyan bedeutet, wobei in Cycloalkyl- und Cycloalkenylgruppen ein oder zwei Methyleneinheiten unabhängig voneinander durch O oder CO ersetzt und Alkyl-, Alkenyl- und Alkinyl-Reste teilweise oder vollständig fluoriert sein können, besonders bevorzugt Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, Trifluormethyl, Ethinyl, Methoxy, Cyclopentyloxy oder Cyan bedeutet, insbesondere Chlor, Methyl und Ethinyl, und
    R3 C1-6-Alkyl, C2-6-Alkinyl, C1-4-Alkyloxy, C3-7-Cycloalkyl, C3-7-Cycloalkyloxy oder Hydroxy, insbesondere C2-6-Alkinyl, bedeutet, wobei in den Cycloalkylgruppen ein oder zwei Methyleneinheiten unabhängig voneinander durch O oder CO ersetzt und Alkylreste teilweise oder vollständig fluoriert sein können, besonders bevorzugt Methyl, Ethyl, Ethinyl, Isopropyl, Methoxy, Ethoxy, Isopropyloxy, Difluormethoxy, Cyclopentyloxy, Tetrahydro-furan-3-yloxy oder Hydroxy, insbesondere Ethinyl, bedeutet, und
    X gemäß einer ersten Ausführungsform Wasserstoff, Cyan, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C1-4-Alkylcarbonyl, C1-4-Alkoxycarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-4-alkyl)aminocarbonyl, C1-4-Alkylcarbonylamino-C1-3-alkyl bedeutet, wobei Alkyl-Reste ein- oder mehrfach fluoriert oder einfach mit Chlor oder Cyan substituiert sein können und X in der Bedeutung Alkyl mit 2 oder mehr C-Atomen einen Hydroxy-Substituenten aufweisen kann; besonders bevorzugt Wasserstoff, Cyan, Methyl, Ethyl, Propyl, Fluormethyl, Trifluormethyl, Chlormethyl, Cyanmethyl, 1-Hydroxyethyl, 1-Hydroxy-1-methylethyl, 2-Hydroxyethyl, Prop-2-enyl, Prop-2-inyl, Methylcarbonyl, Aminocarbonyl, Methylaminocarbonyl, Methylaminocarbonylmethyl, Methoxycarbonyl oder Acetylaminomethyl, insbesondere Methyl, Fluormethyl und Cyanmethyl, bedeutet; oder
    gemäß einer zweiten Ausführungsform C1-4-Alkyloxymethyl, C3-7-Cycloalkyloxymethyl oder Aryloxymethyl bedeutet, wobei unter Aryl eine Phenyl- oder Naphthylgruppe, insbesondere Phenyl zu verstehen ist, welche ein- oder zweifach mit gleichen oder verschiedenen Substituenten L substituiert sein kann, besonders bevorzugt Phenoxymethyl oder Methoxymethyl bedeutet, oder
    gemäß einer dritten Ausführungsform Mercaptomethyl oder C1-4-Alkylsulfanylmethyl bedeutet, besonders bevorzugt Mercaptomethyl oder Methylsulfanylmethyl bedeutet, oder
    gemäß einer vierten Ausführungsform Chlormethyl, Brommethyl, Iodmethyl, C1-6-Alkylsulfonyloxymethyl, Arylsulfonyloxymethyl oder Aryl-C1-3-alkylsulfonyloxymethyl bedeutet, wobei Alkyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach chloriert sein können und wobei Aryl-Gruppen ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können, wobei L vorzugsweise ausgewählt ist aus der Gruppe Fluor, Chlor, Brom, Iod, C1-3-Alkyl, Difluormethyl, Trifluormethyl und Cyan, besonders bevorzugt bedeutet X Brommethyl, Iodmethyl, C1-4-Alkylsulfonyloxy-methyl, Phenylsulfonyloxymethyl oder Phenylmethylsulfonyloxymethyl, wobei Alkyl-Reste teilweise oder vollständig fluoriert sein können und wobei Phenyl-Gruppen ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können, wobei L vorzugsweise ausgewählt ist aus der Gruppe Fluor, Chlor, Brom und Methyl; und
    R2 Wasserstoff, Fluor, Chlor, Brom, Methyl, Hydroxy, Methoxy, Ethoxy, Trifluormethoxy, Cyan, Nitro oder durch 1 bis 3 Fluoratome substituiertes Methyl bedeutet, besonders bevorzugt Wasserstoff, Fluor, Hydroxy, Methoxy, Ethoxy oder Methyl, insbesondere Wasserstoff oder Methyl bedeutet, und
    R4 Wasserstoff oder Fluor, insbesondere Wasserstoff bedeutet, und
    R5 Wasserstoff oder Fluor, insbesondere Wasserstoff bedeutet, und
    Z Sauerstoff oder Methylen, insbesondere Methylen bedeutet, und
    R7a, R7b,
    R7c unabhängig voneinander Wasserstoff, (C1-8-Alkyl)oxycarbonyl-, (C1-18-Alkyl)carbonyl oder Benzoyl, insbesondere Wasserstoff oder (C1-6-Alkyl)oxycarbonyl-, (C1-8-Alkyl)carbonyl bedeuten, besonders bevorzugt Wasserstoff, Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyl oder Ethylcarbonyl, ganz besonders bevorzugt Wasserstoff bedeuten, und
    L unabhängig voneinander Fluor, Chlor, Brom, C1-3-Alkyl, Difluormethyl, Trifluormethyl, C1-3-Alkoxy, Difluormethoxy, Trifluormethoxy und Cyan bedeuten,
    einschließlich deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträglichen Salze.
  • Gemäß einer Variante der zuvor angeführten Ausführungsformen sind diejenigen Verbindungen auch bevorzugt, in denen die Phenylgruppe, die den Substituenten R3 trägt, mindestens einen weiteren, von Wasserstoff verschiedenen Substituenten R4 und/oder R5 aufweist. Nach dieser Variante sind diejenigen Verbindungen auch bevorzugt, die einen Substituenten R4 in der Bedeutung Fluor aufweisen.
  • Der Phenylrest, der den Substituenten R3 trägt, ist vorzugsweise maximal zweifach fluoriert.
  • Besonders bevorzugte Verbindungen der allgemeinen Formel I sind ausgewählt aus der Gruppe
    • (a) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-fluor-β-D-glucopyranos-1-yl)-benzol,
    • (b) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-chlor-β-D-glucopyranos-1-yl)-benzol,
    • (c) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-acetylamino-β-D-glucopyranos-1-yl)-benzol,
    • (d) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-O-phenyl-β-D-glucopyranos-1-yl)-benzol,
    • (e) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-β-D-glucopyranos-1-yl)-benzol,
    • (f) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol,
    • (g) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-mercapto-β-D-glucopyranos-1-yl)-benzol,
    • (h) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-methylsulfanyl-β-D-glucopyranos-1-yl)-benzol,
    • (i) 1-Chlor-2-(4-ethinyl-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol,
    • (j) 1-Brom-2-(4-ethinyl-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol,
    • (k) 1-Methyl-2-(4-ethinyl-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol,
    • (l) 1-Methoxy-2-(4-ethinyl-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol,
    • (m) 1-Chlor-2-(4-ethinyl-benzyl)-4-(6-O-methyl-β-D-glucopyranos-1-yl)-benzol,
    • (n) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-O-methyl-β-D-glucopyranos-1-yl)-benzol,
    einschließlich deren Tautomere, deren Stereoisomere und deren Gemische.
  • Im folgenden werden Begriffe, die zuvor und nachfolgend zur Beschreibung der erfindungsgemäßen Verbindungen verwendet werden, näher definiert.
  • Die Bezeichnung Halogen bezeichnet ein Atom ausgewählt aus der Gruppe bestehend aus F, Cl, Br und I, insbesondere F, Cl und Br.
  • Die Bezeichnung C1-n-Alkyl, wobei n einen Wert von 1 bis 18 besitzen kann, bedeutet eine gesättigte, verzweigte oder unverzweigte Kohlenwasserstoffgruppe mit 1 bis n C-Atomen. Beispiele solcher Gruppen umfassen Methyl, Ethyl, n-Propyl, iso-Propyl, Butyl, iso-Butyl, sec-Butyl, tert-Butyl, n-Pentyl, iso-Pentyl, neo-Pentyl, tert-Pentyl, n-Hexyl, iso-Hexyl, etc..
  • Der Begriff C2-n-Alkinyl, wobei n einen Wert von 3 bis 6 besitzt, bezeichnet eine verzweigte oder unverzweigte Kohlenwasserstoffgruppe mit 2 bis n C-Atomen und einer C≡C-Dreifachbindung. Beispiele solcher Gruppen umfassen Ethinyl, 1-Propinyl, 2-Propinyl, iso-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 2-Methyl-1-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl-2-butinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl-, 5-Hexinyl etc..
  • Der Begriff C1-n-Alkoxy oder C1-n-Alkyloxy bezeichnet eine C1-n-Alkyl-O-Gruppe, worin C1-n-Alkyl wie oben definiert ist. Beispiele solcher Gruppen umfassen Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy, iso-Butoxy, sec-Butoxy, tert-Butoxy, n-Pentoxy, iso-Pentoxy, neo-Pentoxy, tert-Pentoxy, n-Hexoxy, iso-Hexoxy etc..
  • Der Begriff C1-n-Alkylcarbonyl bezeichnet eine C1-n-Alkyl-C(=O)-Gruppe, worin C1-n-Alkyl wie oben definiert ist. Beispiele solcher Gruppen umfassen Methylcarbonyl, Ethylcarbonyl, n-Propylcarbonyl, iso-Propylcarbonyl, n-Butylcarbonyl, iso-Butylcarbonyl, sec-Butylcarbonyl, tert-Butylcarbonyl, n-Pentylcarbonyl, iso-Pentylcarbonyl, neo-Pentylcarbonyl, tert-Pentylcarbonyl, n-Hexylcarbonyl, iso-Hexylcarbonyl, etc..
  • Der Begriff C3-n-Cycloalkyl bezeichnet eine gesättigte mono-, bi-, tri- oder spirocarbocyclische Gruppe mit 3 bis n C-Atomen. Beispiele solcher Gruppen umfassen Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclododecyl, Bicyclo[3.2.1.]octyl, Spiro[4.5]decyl, Norpinyl, Norbonyl, Norcaryl, Adamantyl, etc.. Vorzugsweise umfasst der Begriff C3-7-Cycloalkyl gesättigte monocyclische Gruppen.
  • Der Begriff C3-n-Cycloalkyloxy bezeichnet eine C3-7-Cycloalkyl-O-Gruppe, worin C3-7-Cycloalkyl wie oben definiert ist. Beispiele solcher Gruppen umfassen Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy, Cycloheptyloxy, etc..
  • Der Begriff C5-n-Cycloalkenyl bezeichnet eine C5-n-Cycloalkyl-Gruppe, die wie oben definiert ist und zusätzlich mindestens eine ungesättigte C=C-Doppelbindung hat.
  • Der Begriff C3-n-Cycloalkylcarbonyl bezeichnet eine C3-n-Cycloalkyl-C(=O)-Gruppe, worin C3-n-Cycloalkyl wie oben definiert ist.
  • Der Begriff Tri-(C1-4-alkyl)silyl umfasst Silyl-Gruppen, die gleiche oder zwei oder drei verschiedene Alkylgruppen aufweisen.
  • Der Begriff Di-(C1-3-alkyl)amino umfasst Amino-Gruppen, die gleiche oder zwei verschiedene Alkylgruppen aufweisen.
  • Der Begriff N-Heterocycloalkyl bezeichnet einen gesättigten carbocyclischen Ring, der eine Imino-Gruppe im Ring aufweist, und der zusätzlich eine weitere Imino-Gruppe oder ein O- oder S-Atom im Ring aufweisen kann. Beispiele solcher N-Heterocycloalkyl-Gruppen sind Pyrrolidin, Piperidin, Piperazin und Morpholin.
  • Falls in Gruppen, beispielsweise in X, R1 oder R3, vorkommende Alkyl-Reste substituiert, beispielsweise fluoriert, sein können, so umfasst dies nicht nur Alkyl-Reste in den Gruppen die unmittelbar Alkyl bedeuten, sondern auch in anderen, Alkyl-Reste aufweisenden Bedeutungen, wie beispielsweise Alkoxy, Alkylcarbonyl, Alkoxyalkyl, etc.. So umfasst beispielsweise X, R1 und R3 in der Bedeutung Alkoxy, wobei Alkylreste teilweise oder vollständig fluoriert sein können, auch Difluormethoxy und Trifluormethoxy.
  • Die vorstehend und nachfolgend verwendete Schreibweise, bei der in einer Phenylgruppe eine Bindung eines Substituenten zur Mitte des Phenylrings hin dargestellt ist, bedeutet, sofern nicht anders angegeben, dass dieser Substituent an jede freie, ein H-Atom tragende Position des Phenylrings gebunden sein kann.
  • Die erfindungsgemäßen Verbindungen sind unter Anwendung im Prinzip bekannter Syntheseverfahren erhältlich. Bevorzugt werden die Verbindungen nach den nachfolgend näher erläuterten erfindungsgemäßen Herstellungsverfahren erhalten.
  • Die nachfolgend beschriebenen D-Xylose-Derivate können aus D-Glucose durch Ersatz der 6-Hydroxygruppe oder geeignete Derivatisierung der 6-Hydroxygruppe und anschließender Substitution mit dem gewünschten Rest zugänglich gemacht werden. Solche Transformationen gehören zum allgemeinen Fachwissen oder sind zumindest aus der Fachliteratur als Methoden in der organischen Synthese bekannt und für den Fachmann im Hinblick auf die erfindungsgemäßen Verbindungen ohne weiteren anwendbar.
  • Zur Herstellung von Verbindungen der allgemeinen Formel I wird gemäß dem erfindungsgemäßen Verfahren a) eine Verbindung der allgemeinen Formel II
    Figure 00290001
    in der X, Z und R', R1 bis R5 wie zuvor definiert sind und
    R8a, R8b und R8c wie zuvor definiert sind und beispielsweise unabhängig voneinander Acetyl, Pivaloyl, Benzoyl, tert-Butoxycarbonyl, Benzyloxycarbonyl, Trialkylsilyl, Benzyl oder substituiertes Benzyl bedeuten,
    mit einem Reduktionsmittel in Gegenwart einer Säure umgesetzt.
  • Für die Umsetzung eignen sich als Reduktionsmittel beispielsweise Silane, wie Triethyl-, Tripropyl-, Triisopropyl- oder Diphenylsilan, Natriumborhydrid, Natriumcyanoborhydrid, Zinkborhydrid, Boran, Lithiumaluminiumhydrid, Diisobutylaluminiumhydrid oder Samariumiodid. Die Reduktionen finden vorzugsweise in Gegenwart einer geeigneten Säure, wie z.B. Salzsäure, Toluolsulfonsäure, Trifluoressigsäure, Essigsäure, Bortrifluoridetherat, Trimethylsilyltriflat, Titantetrachlorid, Zinntetrachlorid, Scandiumtriflat oder Zinkiodid statt. In Abhängigkeit vom Reduktionsmittel und der Säure kann die Reaktion in einem Lösungsmittel, wie beispielsweise Methylenchlorid, Chloroform, Acetonitril, Toluol, Hexan, Diethylether, Tetrahydrofuran, Dioxan, Ethanol, Wasser oder Gemischen daraus bei Temperaturen zwischen -60°C und 120°C durchgeführt werden. Ein besonders geeignete Reagenzienkombination besteht beispielsweise aus Triethylsilan und Bortrifluorid-Etherat, die zweckmäßigerweise in Acetonitril oder Dichlormethan bei Temperaturen von –60°C und 60°C zum Einsatz kommt. Des Weiteren kann Wasserstoff in Gegenwart eines Übergangsmetallkatalysators, wie z.B. Palldium auf Kohle oder Raney-Nickel, in Lösungsmitteln wie Tetrahydrofuran, Ethylacetat, Methanol, Ethanol, Wasser oder Essigsäure, für die dargestellte Transformation angewendet werden.
  • Alternativ werden zur Herstellung von Verbindungen der allgemeinen Formel I gemäß dem erfindungsgemäßen Verfahren b) in einer Verbindung der allgemeinen Formel III
    Figure 00300001
    in der X, Z und R1 bis R5 wie zuvor definiert sind und
    R8a bis R8c eine der zuvor definierten Schutzgruppen, wie z.B. eine Acyl-, Arylmethyl-, Acetal-, Ketal- oder Silylgruppe bedeuten, die Schutzgruppen abgespalten.
  • Die Abspaltung eines verwendeten Acyl-, Acetal- oder Ketal-Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Essigsäure/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid oder aprotisch, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 10 und 100°C. Die Abspaltung eines Trifluoracetylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Salzsäure gegebenenfalls in Gegenwart eines Lösungsmittels wie Essigsäure bei Temperaturen zwischen 50 und 120°C oder durch Behandlung mit Natronlauge gegebenenfalls in Gegenwart eines Lösungsmittels wie Tetrahydrofuran oder Methanol bei Temperaturen zwischen 0 und 50°C.
  • Die Abspaltung eines Trimethylsilylrestes erfolgt beispielsweise in Wasser, einem wässrigen Lösemittelgemisch oder einem niederen Alkohol wie Methanol oder Ethanol in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid, Kaliumcarbonat oder Natriummethylat. In wässrigen oder alkoholischen Lösungsmitteln eignen sich ebenfalls Säuren, wie z.B. Salzsäure, Trifluoressigsäure oder Essigsäure. Zur Abspaltung in organischen Lösungsmitteln, wie beispielsweise Diethylether, Tetrahydrofuran oder Dichlormethan, eignen sich auch Fluoridreagenzien, wie z.B. Tetrabutylammoniumfluorid.
  • Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt vorteilhaft hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig, gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Raumtemperaturen zwischen 20 und 60°C, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar. Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.
  • Die Abspaltung eines tert.-Butyl- oder tert.-Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure oder durch Behandlung mit Jodtrimethylsilan gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Methanol oder Diethylether.
  • Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Ethinyl-, Hydroxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder wie u.a. oben beschrieben abgespalten werden.
  • Beispielsweise kommt als Schutzrest für eine Ethinylgruppe die Trimethylsilyl-gruppe in Betracht.
  • Beispielsweise kommen als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe in Betracht.
  • Als Schutzreste für eine Amino-, Alkylamino- oder Iminogruppe kommen beispielsweise die Formyl-, Acetyl-, Trifluoracetyl-, Ethoxycarbonyl-, tert.-Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe in Betracht.
  • Des Weiteren können die so erhaltenen Verbindungen der allgemeinen Formel I selektiv an einer Hydroxygruppe derivatisiert oder die Hydroxygruppe selbst substituiert werden (siehe Beispiele VII, VIII, 1, 2, 4, 5, 6).
  • Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, wie bereits eingangs erwähnt wurde, in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden. So können beispielsweise cis-/trans-Gemische in ihre cis- und trans-Isomere, und Verbindungen mit mindestens einem optisch aktiven Kohlenstoffatom in ihre Enantiomeren aufgetrennt werden.
  • So lassen sich beispielsweise die erhaltenen cis-/trans-Gemische durch Chromatographie in ihre cis- und trans-Isomeren, die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestens 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalischchemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.
  • Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-O-Tolylweinsäure, Äpfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (–)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise (+)- oder (–)-Menthyloxycarbonyl in Betracht.
  • Des Weiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.
  • Weiterhin können die erhaltenen Verbindungen in Gemische, beispielsweise in 1:1 oder 1:2 Gemische mit Aminosäuren, insbesondere mit alpha-Aminosäuren wie Prolin oder Phenylalanin, übergeführt werden, die besonders günstige Eigenschaften wie hohe Kristallinität aufweisen können.
  • Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II und III sind teilweise literaturbekannt oder können nach an sich literaturbekannten Verfahren sowie in Analogie zu den in den Beispielen beschriebenen Verfahren, gegebenenfalls unter zusätzlicher Einführung von Schutzresten, erhalten werden.
  • Die erfindungsgemäßen Verbindungen sind vorteilhaft auch nach den in den nachfolgenden Beispielen beschriebenen Verfahren zugänglich, wobei diese hierzu auch mit dem Fachmann beispielsweise aus der Literatur bekannten Verfahren, insbesondere den in den WO 98/31697, WO 01/27128, WO 02/083066 und WO 03/099836 beschriebenen Verfahren, kombiniert werden können.
  • Wie bereits eingangs erwähnt, weisen die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre physiologisch verträglichen Salze wertvolle pharmakologische Eigenschaften auf, insbesondere eine Hemmwirkung auf den natriumabhängigen Glucose-Cotransporter SGLT, vorzugsweise SGLT2.
  • Die biologischen Eigenschaften der neuen Verbindungen können wie folgt geprüft werden:
    Die Fähigkeit der Substanzen die SGLT-2 Aktivität zu hemmen, kann in einem Versuchsaufbau gezeigt werden, in dem eine CHO-K1 Zelllinie (ATCC No. CCL 61) oder alternativ eine HEK293 Zelllinie (ATCC No. CRL-1573), die stabil mit einem Expressionsvektor pZeoSV (Invitrogen, EMBL accession number L36849) transfiziert ist, der die cDNA für die kodierende Sequenz des humanen Natrium Glucose Cotransporters 2 (Genbank Acc. No. NM_003041) enthält (CHO-hSGLT2 bzw. HEK-hSGLT2). Diese Zelllinien transportieren Natrium-abhängigq 14C-markiertes alpha-Methyl-Glucopyranosid (14C-AMG, Amersham) in das Zellinnere.
  • Der SGLT-2 Assay wird wie folgt durchgeführt:
    CHO-hSGLT2 Zellen werden in Ham's F12 Medium (BioWhittaker) mit 10% fötalem Kälberserum und 250 μg/ml Zeocin (Invitrogen), HEK293-hSGLT2 Zellen in DMEM Medium mit 10% fötalem Kälberserum und 250 μg/ml Zeocin (Invitrogen) kultiviert. Die Zellen werden von den Kulturflaschen durch zweimaliges Waschen mit PBS und anschließende Behandlung mit Trypsin/EDTA abgelöst. Nachzugabe von Zellkulturmedium werden die Zellen abzentrifugiert, in Kulturmedium resuspendiert und in einem Casy-cell-counter gezählt. Anschließend werden 40.000 Zellen pro Loch in eine weiße, Poly-D-Lysin beschichtete 96-Loch Platte ausgesät und über Nacht bei 37°C, 5% CO2 inkubiert. Die Zellen werden zweimal mit 250μl Assaypuffer (Hanks Balanced Salt Solution, 137 mM NaCl, 5,4 mM KCl, 2,8 mM CaCl2, 1,2 mM MgSO4 und 10 mM HEPES (pH7,4), 50μg/ml Gentamycin) gewaschen. In jedes Loch werden dann 250 μl Assaypuffer und 5 μl Testverbindung hinzugegeben und für weitere 15 Minuten im Brutschrank inkubiert. Als Negativkontrolle werden 5 μl 10% DMSO eingesetzt. Durch Zugabe von 5 μl 14C-AMG (0.05 μCi) in jedes Loch wird die Reaktion gestartet. Nach einer 2 stündigen Inkubation bei 37°C, 5% CO2 werden die Zellen wiederum mit 250 μl PBS (20°C) gewaschen und anschließend durch Zugabe von 25 μl 0.1 N NaOH lysiert (5 min. bei 37°C). Pro Loch werden 200 μl MicroScint20 (Packard) hinzugefügt und für weitere 20 min bei 37°C inkubiert. Nach dieser Inkubation wird die Radioaktivität des aufgenommenen 14C-AMG in einem Topcount (Packard) mittels eines 14C-Szintillationsprogramms gemessen.
  • Zur Bestimmung der Selektivität gegenüber dem humanen SGLT1 wird ein analoger Test aufgebaut, in dem die cDNA für hSGLT1 (Genbank Acc. No. NM000343) statt der hSGLT2 cDNA in CHO-K1 bzw. HEK293 Zellen exprimiert wird.
  • Alternativ kann für hSGLT1 und hSGLT2 auch die Messung des zellulären Membranpotentials zur biologischen Testung von Substanzen herangezogen werden. Hierzu können die weiter oben beschriebenen Zellmodelle angewendet werden. Für den Test werden 10.000 Zellen pro Loch einer poly-D-Lysin beschichteten schwarzen 384-Loch-Platte mit durchsichtigem Boden in Kulturmedium ausgesät und 16 Stunden bei 37°C, 5% CO2 inkubiert. Anschließend werden die Zellen zweimal mit glucosefreiem HBSS Puffer (12,67 mol/l CaCl2, 4,93 mmol/l MgCl2, 4,07 mmol/l MgSO4, 4,41 mmol/l KH2PO4; pH 7,4) gewaschen und mit 20μl HBSS überschichtet. Nach Zugabe von 20 μl Ladepuffer (Membrane Potential Assay Kit Explorer R8126, Molecular Devices GmbH, Ismaning) und 20 μl der zu testenden Substanz in geeigneter Konzentration wird für weitere 30 min. bei 37°C, 5% CO2 inkubiert. Die Messung erfolgt im Fluorescent Imaging Plate Reader (Molecular Devices GmbH, Ismaning) bei 485 nm Anregungswellenlänge und wird durch Zugabe von 20μl Stimulationspuffer (140 mM NaCl und 120 mM Glucose) gestartet. Die durch den Glucose-induzierten Na+-Einstrom verursachte Depolarisation der Zelle kann als Fluoreszenzänderung gemessen und quantifiziert werden.
  • Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können beispielsweise EC50-Werte unter 1000 nM, insbesondere unter 200 nM, besonders bevorzugt unter 50 nM aufweisen.
  • Im Hinblick auf die Fähigkeit, die SGLT Aktivität zu hemmen, sind die erfindungsgemäßen Verbindungen der allgemeinen Formel I und ihre entsprechenden pharmazeutisch akzeptablen Salze prinzipiell geeignet, alle diejenigen Zustände oder Krankheiten zu behandeln und/oder vorbeugend zu behandeln, die durch eine Hemmung der SGLT Aktivität, insbesondere der SGLT-2 Aktivität beeinflusst werden können. Daher sind erfindungsgemäße Verbindungen insbesondere zur Prophylaxe oder Behandlung von Krankheiten, insbesondere Stoffwechselerkrankungen, oder Zuständen wie Diabetes mellitus Typ 1 und Typ 2, diabetische Komplikationen (wie z.B. Retinopathie, Nephropathie oder Neuropathien, diabetischer Fuß, Ulcus, Makroangiopathien), metabolische Azidose oder Ketose, reaktiver Hypoglykämie, Hyperinsulinämie, Glukosestoffwechselstörung, Insulinresistenz, Metabolischem Syndrom, Dyslipidämien unterschiedlichster Genese, Atherosklerose und verwandte Erkrankungen, Adipositas, Bluthochdruck, chronisches Herzversagen, Ödeme, Hyperurikämie geeignet. Darüber hinaus sind diese Substanzen geeignet, die beta-Zelldegeneration wie z.B. Apoptose oder Nekrose von pankreatischen beta-Zellen zu verhindern. Die Substanzen sind weiter geeignet, die Funktionalität von pankreatischen Zellen zu verbessern oder wiederherzustellen, daneben die Anzahl und Größe von pankreatischen beta-Zellen zu erhöhen. Die erfindungsgemäßen Verbindungen sind ebenfalls als Diuretika oder Antihypertensiva einsetzbar und zur Prophylaxe und Behandlung des akuten Nierenversagens geeignet.
  • Ganz besonders sind die erfindungsgemäßen Verbindungen, einschließlich deren physiologisch verträglichen Salze, zur Prophylaxe oder Behandlung von Diabetes, insbesondere Diabetes mellitus Typ 1 und Typ 2, und/oder diabetischen Komplikationen geeignet.
  • Die zur Erzielung einer entsprechenden Wirkung bei der Behandlung oder Prophylaxe erforderliche Dosierung hängt üblicherweise von der zu verabreichenden Verbindung, vom Patienten, von der Art und Schwere der Krankheit oder des Zustandes und der Art und Häufigkeit der Verabreichung ab und liegt im Ermessen des zu behandelnden Arztes. Zweckmäßigerweise kann die Dosierung bei intravenöser Gabe im Bereich von 1 bis 100 mg, vorzugsweise 1 bis 30 mg, und bei oraler Gabe im Bereich von 1 bis 1000 mg, vorzugsweise 1 bis 100 mg, jeweils 1 bis 4 × täglich, liegen. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragees, Kapseln, Pulver, Lösungen, Suspensionen oder Zäpfchen einarbeiten.
  • Die erfindungsgemäßen Verbindungen können auch in Kombination mit anderen Wirkstoffen, insbesondere zur Behandlung und/oder Prophylaxe der zuvor angegebenen Krankheiten und Zustände verwendet werden. Für solche Kombinationen kommen als weitere Wirksubstanzen insbesondere solche in Betracht, die beispielsweise die therapeutische Wirksamkeit eines erfindungsgemäßen SGLT-Antagonisten im Hinblick auf eine der genannten Indikationen verstärken und/oder die eine Reduzierung der Dosierung eines erfindungsgemäßen SGLT-Antagonisten erlauben. Zu den zu einer solchen Kombination geeigneten Therapeutika gehören z.B. Antidiabetika, wie etwa Metformin, Sulfonylharnstoffe (z.B. Glibenclamid, Tolbutamid, Glimepiride), Nateglinide, Repaglinide, Thiazolidindione (z.B. Rosiglitazone, Pioglitazone), PPAR-gamma-Agonisten (z.B. GI 262570) und -Antagonisten, PPAR-gamma/alpha Modulatoren (z.B. KRP 297), alpha-Glucosidasehemmer (z.B. Acarbose, Voglibose), DPPIV Inhibitoren (z.B. LAF237, MK-431), alpha2-Antagonisten, Insulin und Insulinanaloga, GLP-1 und GLP-1 Analoga (z.B. Exendin-4) oder Amylin.
  • Daneben sind weitere als Kombinationspartner geeignete Wirkstoffe Inhibitoren der Proteintyrosinphosphatase 1, Substanzen, die eine deregulierte Glucoseproduktion in der Leber beeinflussen, wie z.B. Inhibitoren der Glucose-6-phosphatase, oder der Fructose-1,6-bisphosphatase, der Glycogenphosphorylase, Glucagonrezeptor Antagonisten und Inhibitoren der Phosphoenolpyruvatcarboxykinase, der Glykogensynthasekinase oder der Pyruvatdehydrokinase, Lipidsenker, wie etwa HMG-CoA-Reduktasehemmer (z.B. Simvastatin, Atorvastatin), Fibrate (z.B. Bezafibrat, Fenofibrat), Nikotinsäure und deren Derivate, PPAR-alpha Agonisten, PPAR-delta Agonisten, ACHT Inhibitoren (z.B. Avasimibe) oder Cholesterolresorptionsinhibitoren wie zum Beispiel Ezetimibe, gallensäurebindende Substanzen wie zum Beispiel Colestyramin, Hemmstoffe des ilealen Gallensäuretransportes, HDL-erhöhende Verbindungen wie zum Beispiel Inhibitoren von CETP oder Regulatoren von ABC1 oder Wirkstoffe zur Behandlung von Obesitas, wie etwa Sibutramin oder Tetrahydrolipstatin, Dexfenfluramin, Axokine, Antagonisten des Cannabinoid 1 Rezeptors, MCH-1 Rezeptorantagonisten, MC4 Rezeptor Agonisten, NPY5 oder NPY2 Antagonisten oder β3-Agonisten wie SB-418790 oder AD-9677 ebenso wie Agonisten des 5HT2c Rezeptors.
  • Daneben ist eine Kombination mit Medikamenten zur Beeinflussung des Bluthochdrucks, des chronischen Herzversagens oder der Atherosklerose wie z.B. A-II Antagonisten oder ACE Inhibitoren, ECE-Inhibitorert, Diuretika, β-Blocker, Ca-Antagonisten, zentral wirksamen Antihypertensiva, Antagonisten des alpha-2-adrenergen Rezeptors, Inhibitoren der neutralen Endopeptidase, Thrombozytenaggregationshemmer und anderen oder Kombinationen daraus geeignet. Beispiele von Angiotensin II Rezeptor Antagonisten sind Candesartan Cilexetil, Kalium Losartan, Eprosartan Mesylat, Valsartan, Telmisartan, Irbesartan, EXP-3174, L-158809, EXP-3312, Olmesartan, Medoxomil, Tasosartan, KT-3-671, GA-0113, RU-64276, EMD-90423, BR-9701, etc.. Angiotensin II Rezeptor Antagonisten werden vorzugsweise zur Behandlung oder Prophylaxe von Bluthochdruck und diabetischen Komplikationen verwendet, oft in Kombination mit einem Diuretikum wie Hydrochlorothiazide.
  • Zur Behandlung oder Prophylaxe der Gicht ist eine Kombination mit Harnsäuresynthese Inhibitoren oder Urikosurika geeignet.
  • Zur Behandlung oder Prophylaxe diabetischer Komplikationen kann eine Kombination mit GABA-Rezeptor-Antagonisten, Na-Kanal-Blockern, Topiramat, Protein-Kinase C Inhibitoren, advanced glycation endproduct Inhibitoren oder Aldose Reduktase Inhibitoren erfolgen.
  • Die Dosis für die zuvor angeführten Kombinationspartner beträgt hierbei zweckmäßigerweise 1/5 der üblicherweise empfohlenen niedrigsten Dosierung bis zu 1/1 der normalerweise empfohlenen Dosierung.
  • Daher betrifft ein weiterer Gegenstand dieser Erfindung die Verwendung einer erfindungsgemäßen Verbindung oder eines physiologisch verträglichen Salzes solch einer Verbindung in Kombination mit mindestens einem der zuvor als Kombinationspartner beschriebenen Wirkstoffe zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Erkrankungen oder Zuständen geeignet ist, die durch Inhibierung des natriumabhängigen Glucose-Cotransporters SGLT beeinflussbar sind. Hierbei handelt es sich vorzugsweise um eine Stoffwechselerkrankung, insbesondere eine der zuvor angeführten Erkrankungen oder Zustände, ganz besonders Diabetes oder diabetischer Komplikationen.
  • Die Verwendung der erfindungsgemäßen Verbindung, oder eines physiologisch verträglichen Salzes hiervon, in Kombination mit einem weiteren Wirkstoff kann zeitgleich oder zeitlich versetzt, insbesondere aber zeitnah erfolgen. Bei einer zeitgleichen Verwendung werden beide Wirkstoffe dem Patienten zusammen verabreicht; bei einer zeitlich versetzten Verwendung werden beide Wirkstoffe dem Patienten in einem Zeitraum von kleiner gleich 12, insbesondere kleiner gleich 6 Stunden nacheinander verabreicht.
  • Folglich betrifft ein weiterer Gegenstand dieser Erfindung ein Arzneimittel, das eine erfindungsgemäße Verbindung oder ein physiologisch verträgliches Salz solch einer Verbindung sowie mindestens einen der zuvor als Kombinationspartner beschriebenen Wirkstoffe neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln aufweist.
  • So weist beispielsweise ein erfindungsgemäßes Arzneimittel eine Kombination aus einer erfindungsgemäßen Verbindung der Formel I oder eines physiologisch verträglichen Salzes solch einer Verbindung sowie mindestens einem Angiotensin II Rezeptor Antagonisten neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln auf.
  • Die erfindungsgemäße Verbindung, oder eines physiologisch verträglichen Salzes, und der damit zu kombinierende weitere Wirkstoff können zusammen in einer Darreichungsform, beispielsweise einer Tablette oder Kapsel, oder getrennt in zwei gleichen oder verschiedenen Darreichungsformen, beispielsweise als sogenanntes kit-of-parts, vorliegen.
  • Vorstehend und nachfolgend werden in Strukturformeln H-Atome von Hydroxylgruppen nicht in jedem Fall explizit dargestellt. Die nachfolgenden Beispiele sollen die vorliegende Erfindung näher erläutern ohne diese zu beschränken:
  • Herstellung der Ausgangsverbindungen:
  • Beispiel I
  • Figure 00400001
    (5-Brom-2-chlor-phenyl)-(4-methoxy-phenyl)-methanon
  • Zu einer Mischung von 100 g 5-Brom-2-chlor-benzoesäure in 500 ml Dichlormethan werden 38,3 ml Oxalylchlorid und 0,8 ml Dimethylformamid gegeben. Das Reaktionsgemisch wird 14 h gerührt, danach filtriert und von allen flüchtigen Bestandteilen im Rotationsverdampfer getrennt. Der Rückstand wird in 150 ml Dichlormethan gelöst, die Lösung auf –5°C abgekühlt, und es werden 46,5 g Anisol zugegeben. Danach werden 51,5 g Aluminiumtrichlorid portionsweise so zugegeben, dass die Temperatur nicht über 5°C steigt. Die Lösung wird noch 1 h bei 1–5°C gerührt und anschließend auf Eis gegossen. Die organische Phase wird abgetrennt und die wässrige noch drei Mal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit wässriger 1 M Salzsäure, zwei Mal mit 1 M Natronlauge und mit gesättigter Natriumchlorid-Lösung gewaschen. Danach wird die organische Phase getrocknet, das Lösungsmittel entfernt und der Rückstand in Ethanol umkristallisiert.
    Ausbeute: 86,3 g (64% der Theorie)
    Massenspektrum (ESI+): m/z = 325/327/329 (Brom + Chlor) [M + H]+
  • Beispiel II
  • Figure 00400002
    4-Brom-2-chlor-2-(4-methoxy-benzyl)-benzol
  • Eine Lösung von 86,2 g (5-Brom-2-chlor-phenyl)-(4-methoxy-phenyl)-methanon und 101,5 ml Triethylsilan in 75 ml Dichlormethan und 150 ml Acetonitril wird auf 10°C abgekühlt. Dann werden unter Rühren 50,8 ml Bortrifluoridetherat so zugegeben, dass die Temperatur nicht über 20°C steigt. Die Lösung wird 14 h bei Raumtemperatur gerührt, bevor noch einmal 9 ml Triethylsilan und 4,4 ml Bortrifluoridetherat zugegeben werden. Die Lösung wird weitere 3 h bei 45–50°C gerührt und dann auf Raumtemperatur abgekühlt. Es wird eine Lösung von 28 g Kaliumhydroxid in 70 ml Wasser zugesetzt und 2 h gerührt. Danach wird die organische Phase abgetrennt und die wässrige noch drei Mal mit Diisopropylether extrahiert. Die vereinten organischen Phasen werden zwei Mal mit 2 M Kalilauge und einmal mit wässriger Natriumchlorid-Lösung gewaschen und anschließend über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wird der Rückstand in Ethanol verrührt, wieder abgetrennt und bei 60°C getrocknet.
    Ausbeute: 50,0 g (61 % der Theorie)
    Massenspektrum (ESI+): m/z = 310/312/314 (Brom + Chlor) [M + H]+
  • Beispiel III
  • Figure 00410001
    4-(5-Brom-2-chlor-benzyl)-phenol
  • Eine Lösung von 14,8 g 4-Brom-1-chlor-2-(4-methoxy-benzyl)-benzol in 150 ml Dichlormethan wird im Eisbad abgekühlt. Dann werden 50 ml einer 1 M Lösung von Bortribromid in Dichlormethan zugegeben und die Lösung 2 h bei Raumtemperatur gerührt. Die Lösung wird danach wieder im Eisbad gekühlt, und es wird gesättigte Kaliumcarbonat-Lösung zugetropft. Bei Raumtemperatur wird mit wässriger 1 M Salzsäure auf einen pH-Wert von 1 eingestellt, die organische Phase abgetrennt und die wässrige noch drei Mal mit Ethylacetat extrahiert. Die vereinten organischen Phasen werden über Natriumsulfat getrocknet, und das Lösungsmittel wird vollständig entfernt.
    Ausbeute: 13,9 g (98% der Theorie)
    Massenspektrum (ESI): m/z = 295/297/299 (Br + Cl)[M – H]
  • Beispiel IV
  • Figure 00420001
    [4-(5-Brom-2-chlor-benzyl)-phenoxy]-tert-butyl-dimethyl-silan
  • Eine Lösung von 13,9 g 4-(5-Brom-2-chlor-benzyl)-phenol in 140 ml Dichlormethan wird im Eisbad abgekühlt. Dann werden 7,54 g tert-Butyldimethylsilylchlorid in 20 ml Dichlormethan gefolgt von 9,8 ml Triethylamin und 0,5 g Dimethylaminopyridin zugegeben. Die Lösung wird 16 h bei Raumtemperatur gerührt und dann mit 100 ml Dichlormethan verdünnt. Die organische Phase wird zwei Mal mit wässriger 1 M Salzsäure und einmal mit wässriger Natriumhydrogencarbonatlösung gewaschen und anschließend über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wird der Rückstand über Kieselgel filtriert (Cyclohexan/Ethylacetat 100:1).
    Ausbeute: 16,8 g (87% der Theorie)
    Massenspektrum (EI): m/z = 410/412/414 (Br + Cl) [M]+
  • Beispiel V
  • Figure 00420002
    2,3,4,6-Tetrakis-O-(trimethylsilyl)-D-glucopyranon
  • Eine Lösung von 20 g D-Glucono-1,5-lacton und 98,5 ml N-Methylmorpholin in 200 ml Tetrahydrofuran wird auf –5°C abgekühlt. Dann werden 85 ml Trimethylsilylchlorid so zugetropft, dass die Temperatur nicht über 5°C steigt. Die Lösung wird danach 1 h bei Raumtemperatur, 5 h bei 35°C und noch einmal 14 h bei Raumtemperatur gerührt.
  • Nach Zugabe von 300 ml Toluol wird die Lösung im Eisbad abgekühlt, und es werden 500 ml Wasser so zugegeben, dass die Temperatur nicht über 10°C steigt. Die organische Phase wird anschließend abgetrennt und jeweils einmal mit wässriger Natriumdihydrogenphosphatlösung, Wasser und gesättigter wässriger Natriumchloridlösung gewaschen. Das Lösungsmittel wird entfernt, der Rückstand in 250 ml Toluol aufgenommen und das Lösungsmittel erneut vollständig entfernt.
    Ausbeute: 52,5 g (ca. 90% rein)
    Massenspektrum (ESI+): m/z = 467 [M + H]+
  • Beispiel VI
  • Figure 00430001
    1-Chlor-4-(2,3,4,6-tetra-O-acetyl-1-methoxy-D-glucopyranos-1-yl)-2-(4-methoxybenzyl)-benzol
  • Eine Lösung von 1,0 g 4-Brom-1-chlor-2-(4-methoxy-benzyl)-benzol in 14 ml trockenem Diethylether wird unter Argon auf –80°C abgekühlt. Zu der gekühlten Lösung werden 4,0 ml einer 1,7 M Lösung von tert-Butyllithium in Pentan langsam getropft, und dann wird die Lösung 30 min bei –80°C gerührt. Diese Lösung wird nun über eine Umdrücknadel, die mit Trockeneis gekühlt wird, zu einer –80°C-kalten Lösung von 1,61 g 2,3,4,6-Tetrakis-O-(trimethylsilyl)-D-glucopyranon in 10 ml Diethylether getropft. Die resultierende Lösung wird 4 h bei –78°C gerührt. Danach wird eine Lösung von 0,4 ml Methansulfonsäure in 12 ml Methanol zugegeben und die Lösung 16 h bei Raumtemperatur gerührt. Die Lösung wird anschließend mit Ethyldiisopropylamin neutralisiert und eingeengt. Der Rückstand wird in Toluol aufgenommen und erneut eingeengt. Dann wird der Rückstand in 8 ml Toluol gelöst und 3,4 ml Ethyldiisopropylamin zur Lösung gegeben. Die Lösung wird im Eisbad abgekühlt und danach werden 1,4 ml Acetanhydrid und 0,04 g Dimethylaminopyridin zugegeben. Die Lösung wird 6 h bei Raumtemperatur gerührt und dann mit wässriger Natriumhydrogencarbonatlösung versetzt. Die organische Phase wird abgetrennt und die wässrige mit Ethylacetat extrahiert. Nach Trocknen der vereinten organischen Extrakte über Natriumsulfat und Entfernen des Lösungsmittels wird der Rückstand über Kieselgel chromatografiert (Cyclohexan/Ethylacetat 6:1 → 1:1).
    Ausbeute: 1,55 g (85% der Theorie)
    Massenspektrum (ESI+): m/z = 610/612 (Chlor) [M + NH4]+
  • Beispiel VII
  • Figure 00440001
    1-Chlor-4-(2,3,4,6-tetra-O-acetyl-β-D-glucogyranos-1-yl)-2-(4-methoxy-benzyl)-benzol
  • Eine Lösung von 1,44 g 1-Chlor-4-(2,3,4,6-tetra-O-acetyl-1-methoxy-D-glucopyranos-1-yl)-2-(4-methoxybenzyl)-benzol in 20 ml Acetonitril und 44 μl Wasser wird im Eisbad abgekühlt. Dann werden 1,2 ml Triethylsilan und 0,26 ml Bortrifluoridetherat zugegeben. Die Lösung wird 1 h im Eisbad und danach bei Raumtemperatur gerührt. Nach 3 und 5 h werden noch einmal jeweils 0,72 ml Triethylsilan und 0,15 ml Bortrifluoridetherat zugegeben. Nach weiteren 12 h Rühren bei Raumtemperatur wird wässrige Natriumhydrogencarbonatlösung zugesetzt, 0,5 h gerührt und dann mit Ethylacetat extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, konzentriert und über Kieselgel chromatografiert (Cyclohexan/Ethylacetat 8:1 → 1:1).
    Ausbeute: 1,12 g (82% der Theorie)
    Massenspektrum (ESI+): m/z = 580/582 (Chlor) [M + NH4]+
  • Beispiel VIII
  • Figure 00450001
    1-Chlor-2-(4-methoxy-benzol)-4-(β-D-glucopyranos-1-yl)-benzol
  • Zu einer Lösung von 1,00 g 1-Chlor-4-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranos-1-yl)-2-(4-methoxy-benzyl)-benzol in 20 ml Methanol werden 2 ml 4 M Kaliumhydroxidlösung gegeben. Die Lösung wird 8 h bei Raumtemperatur gerührt und dann mit 1 M Salzsäure neutralisiert. Die Lösung wird vom Methanol befreit, mit wässriger Natriumchloridlösung versetzt und mit Ethylacetat extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 3:1).
    Ausbeute: 0,64 g (91 % der Theorie)
    Massenspektrum (ESI+): m/z = 412/414 (Chlor) [M + NH4]+
  • Beispiel IX
  • Figure 00450002
    1-Chlor-4-(β-D-glucopyranos-1-yl)-2-(4-hydroxybenzyl)-benzol
  • Eine Lösung von 4,0 g [4-(5-Brom-2-chlor-benzyl)-phenoxy]-tert-butyl-dimethyl-silan in 42 ml trockenem Diethylether wird unter Argon auf –80°C abgekühlt. Zu der gekühlten Lösung werden 11,6 ml einer 1,7 M Lösung von tert-Butyllithium in Pentan langsam getropft, und dann wird die Lösung 30 min bei –80°C gerührt. Diese Lösung wird nun über eine Umdrücknadel, die mit Trockeneis gekühlt wird, zu einer –80°C-kalten Lösung von 4,78 g 2,3,4,6-Tetrakis-O-(trimethylsilyl)-D-glucopyranon in 38 ml Diethylether getropft. Die resultierende Lösung wird 3 h bei –78°C gerührt. Danach wird eine Lösung von 1,1 ml Methansulfonsäure in 35 ml Methanol zugegeben und die Lösung 16 h bei Raumtemperatur gerührt. Die Lösung wird anschließend mit festem Natriumhydrogencarbonat neutralisiert, es wird Ethylacetat zugegeben und das Methanol zusammen mit dem Ether entfernt. Zur verbleibenden Lösung wird wässrige Natriumhydrogencarbonatlösung gegeben und vier Mal mit Ethylacetat extrahiert. Die organischen Phasen werden über Natriumsulfat getrocknet und eingeengt. Der Rückstand wird in 30 ml Acetonitril und 30 ml Dichlormethan gelöst und die Lösung auf –10°C abgekühlt. Nach Zugabe von 4,4 ml Triethylsilan werden 2,6 ml Bortrifluoridetherat so zugetropft, dass die Temperatur nicht über –5°C steigt. Nach vollständiger Zugabe wird die Lösung noch 5 h bei –5––10°C gerührt und anschließend durch Zugabe von wässriger Natriumhydrogencarbonatlösung gequencht. Die organische Phase wird abgetrennt und die wässrige vier Mal mit Ethylacetat extrahiert. Die vereinigten organischen Phase werden über Natriumsulfat getrocknet, das Lösungsmittel wird entfernt und der Rückstand über Kieselgel gereinigt. Das danach erhaltene Produkt ist ein ca. 6:1-β/a-Gemisch, welches durch vollständige Acetylierung der Hydroxygruppen mit Acetanhydrid und Pyridin in Dichlormethan und Umkristallisieren des Produkts in Ethanol in das reine β-Anomer überführt werden kann. Das so erhaltene Produkt wird durch Umsetzung in Methanol mit 4 M Kalilauge in die Titelverbindung überführt.
    Ausbeute: 1,6 g (46% der Theorie)
    Massenspektrum (ESI+): m/z = 398/400 (Cl) [M + H]+
  • Beispiel X
  • Figure 00460001
    1-Chlor-4-(β-D-glucopyranos-1-yl)-2-[4-(trifluormethylsulfonyloxy)-benzyl]-benzol
  • Zu einer Lösung von 0,38 g 1-Chlor-4-(β-D-glucopyranos-1-yl)-2-(4-hydroxybenzyl)-benzol, 0,21 ml Triethylamin und 0,39 g N,N-Bis-(trifluormethansulfonyl)-anilin in 10 ml trockenem Dichlormethan werden 10 mg 4-Dimethylamindpyridin gegeben. Die Lösung wird 4 h bei Raumtemperatur gerührt und dann mit wässriger Natriumchloridlösung versetzt. Es wird mit Ethylacetat extrahiert, die organischen Extrakte werden über Natriumsulfat getrocknet, und das Lösungsmittel wird entfernt. Der Rückstand wird über Kieselgel chromatografiert (Dichlormethan/Methanol 1:0 → 4:1).
    Ausbeute: 0,33 g (64% der Theorie)
    Massenspektrum (ESI+): m/z = 530/532 (Cl) [M + NH4]+
  • Beispiel XI
  • Figure 00470001
    1-Chlor-4-(β-D-glucopyranos-1-yl)-2-(4-ethinyl-benzyl)-benzol
  • Unter Argon werden zu einer Lösung von 0,32 g 1-Chlor-4-(β-D-glucopyranos-1-yl)-2-[4-(trifluormethylsulfonyloxy)-benzyl]-benzol in 3 ml Dimethylformamid 25 mg Kupferiodid, 44 mg Bis-(triphenylphosphin)-palladiumdichlorid, 0,30 ml Triethylamin und zuletzt 0,14 ml Trimethylsilylacetylen gegeben. Der Kolben wird dicht verschlossen und 8 h bei 90°C gerührt. Danach werden noch einmal 25 mg Bis-(triphenylphosphin)-palladiumdichlorid und 0,1 ml Trimethylsilylacetylen zugegeben, und die Lösung wird weitere 10 h bei 90°C gerührt. Anschließend wird wässrige Natriumhydrogencarbonatlösung zugesetzt, drei Mal mit Ethylacetat extrahiert, und die gesammelten organischen Phasen werden über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wird der Rückstand in 5 ml Methanol gelöst und mit 0,12 g Kaliumcarbonat versetzt. Das Gemisch wird 1 h bei Raumtemperatur gerührt und dann mit 1 M Salzsäure neutralisiert. Danach wird das Methanol abgedampft, der Rückstand mit wässriger Natriumchloridlösung versetzt und mit Ethylacetat extrahiert. Die gesammelten organischen Extrakte werden über Natriumsulfat getrocknet, und das Lösungsmittel wird entfernt. Der Rückstand wird über Kieselgel chromatografiert (Dichlormethan/Methanol 1:0 → 5:1).
    Ausbeute: 0,095 g (40% der Theorie)
    Massenspektrum (ESI+): m/z = 406/408 (Cl) [M + NH4]+
  • Beispiel XII
  • Figure 00480001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-iod-β-D-glucopyranos-1-yl)-benzol
  • Zu einer Lösung von 0,60 g 1-Chlor-2-(4-methoxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzol in 5 ml Dichlormethan werden 0,53 g Triphenylphoshin, 0,13 g Imidazol und 0,48 g Iod gegeben. Die Lösung wird 18 h bei 40–45°C gerührt und danach mit 30 ml Dichlormethan verdünnt. Die Lösung wird mit 1 M Salzsäure gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 20:1).
    Ausbeute: 0,66 g (87% der Theorie)
    Massenspektrum (ESI+): m/z = 522/524 (Chlor) [M + NH4]+
  • Beispiel XIII
  • Figure 00480002
    1-Chlor-2-(4-methoxy-benzyl)-4-[2,3-O-(2,3-dimethoxy-but-2,3-diyl)-β-D-glucopyranos-1-yl]-benzol und 1-Chlor-2-(4-methoxy-benzyl)-4-[3,4-O-(2,3-dimethoxy-but-2,3-diyl)-β-D-glucopyranos-1-yl]-benzol
  • Zu einer 60°C-warmen Lösung von 1,0 g 1-Chlor-2-(4-methoxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzol in 14 ml Methanol werden nacheinander 0,49 ml Diacetyl, 1,2 ml Orthoameisensäuremethylester und 0,64 ml Bortrifluoridetherat gegeben. Die Lösung wird 4 h bei 60°C gerührt und danach auf Raumtemperatur abgekühlt. Bei Raumtemperatur werden 3 ml Triethylamin zugegeben und die Lösung 0,5 h gerührt. Danach wird die Lösung eingeengt und der Rückstand über Kieselgel gereinigt (Cyclohexan/Ethylacetat 4:1 → 1:1).
    Ausbeute:
    1-Chlor-2-(4-methoxy-benzyl)-4-[2,3-O-(2,3-dimethoxy-but-2,3-diyl)-β-D-glucopyranos-1-yl]-benzol: 0,70 g (54% der Theorie)
    Massenspektrum (ESI+): m/z = 526/528 (Chlor) [M + NH4]+
    1-Chlor-2-(4-methoxy-benzyl)-4-[3,4-O-(2,3-dimethoxy-but-2,3-diyl)-β-D-glucopyranos-1-yl]-benzol: 0,54 g (42% der Theorie)
    Massenspektrum (ESI+): m/z = 526/528 (Chlor) [M + NH4]+
  • Beispiel XIV
  • Figure 00490001
    5-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-8-hydroxy-2,3-dimethoxy-2 3-dimethylhexahydro-pyran[3,4-b][1,4]dioxin-7-carbonsäure
  • Zu einer eiskalten Lösung von 1,40 g 1-Chlor-2-(4-methoxy-benzyl)-4-[2,3-O-(2,3-dimethoxy-but-2,3-diyl)-ß-D-glucopyranos-1-yl]-benzol in 28 ml Dichlormethan werden 8 mg 2,2,6,6-Tetramethylpiperidin-1-yloxy gefolgt von einer Lösung aus 0,32 g Kaliumbromid und 0,42 g Tetrabutylammoniumbromid in 57 ml gesättigter Natriumhydrogencarbonatlösung gegeben. Unter heftigem Rühren wird eine Lösung von 5,7 ml gesättigter wässriger Natriumchloridlösung, 2,8 ml gesättigter wässriger Natriumhydrogencarbonatlösung und 7,7 ml Natriumhypchloritlösung (12% aktives Chlor) zugetropft. Nach 1 und 2 h Rühren werden jeweils noch einmal eine Lösung von 1,2 ml gesättigter wässriger Natriumchloridlösung, 0,6 ml gesättigter wässriger Natriumhydrogencarbonatlösung und 1,6 ml Natriumhypchloritlösung (12% aktives Chlor) zugetropft. Nach einer weiteren Stunde im Eisbad wird die Lösung mit 4 M Salzsäure auf pH = 1 eingestellt und mit Dichlormethan (1x) und Ethylacetat (3x) ausgeschüttelt. Nach Trocknen über Natriumsulfat wird das Lösungsmittel entfernt und der Rückstand über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,92 g (64% der Theorie)
    Massenspektrum (ESI+): m/z = 540/542 (Chlor) [M + NH4]+
  • Analog Beispiel XIV wird folgende Verbindung erhalten: (1) 7-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-8-hydroxy-2,3-dimethoxy-2,3-dimethylhexahydro-pyran[3,4-b](1,4]dioxin-5-carbonsäure
    Figure 00500001
    Massenspektrum (ESI+): m/z = 540/542 (Chlor) [M + NH4]+
  • Herstellung der Endverbindungen:
  • Beispiel 1
  • Figure 00510001
    1-Chlor-2-(4-methoxyl)-4-(6-desoxy-6-fluor-β-D-glucopyranos-1-yl)-benzol
  • Zu einer auf –40°C gekühlten Lösung von 0,10 g 1-Chlor-2-(4-methoxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzol in 2,5 ml Dichlormethan werden 0,20 ml Diethylaminoschwefeltrifluorid in 0,5 ml Dichlormethan getropft. Die Lösung wird im Kühlbad auf Raumtemperatur erwärmen gelassen und dann 2 h bei Raumtemperatur gerührt. Danach wird die Lösung auf –40°C abgekühlt und mit 2 ml Methanol versetzt. Nach Erwärmen auf Raumtemperatur wird die Lösung eingeengt und der Rückstand über Kieselgel chromatografiert (Dichlormethan/Methanol 1:0 → 8:1).
    Ausbeute: 0,038 g (38% der Theorie)
    Massenspektrum (ESI+): m/z = 414/416 (Chlor) [M + NH4]+
  • Analog Beispiel 1 wird folgende Verbindung erhalten: (1) 1-Chlor-2-(4-ethinyl-benzyl)-4-(6-desoxy-6-fluor-β-D-glucopyranos-1-yl)-benzol
    Figure 00510002
  • Beispiel 2
  • Figure 00520001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-chlor-β-D-glucopyranos-1-yl)-benzol
  • Zu einer Lösung von 0,15 g 1-Chlor-2-(4-methoxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzol und 0,11 g Triphenylphoshin in 2 ml Dichlormethan werden 50 μl Tetrachlorkohlenstoff gegeben. Die Lösung wird 24 h bei 45°C gerührt, bevor noch einmal 0,11 g Triphenylphosphin und 100 μl Tetrachlorkohlenstoff zugegeben werden. Nach weiteren 12 h Rühren bei 45°C wird das Lösungsmittel entfernt und der Rückstand über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 15:1).
    Ausbeute: 0,11 g (70% der Theorie)
    Massenspektrum (ESI+): m/z = 430/432/434 (2 Chlor) [M + NH4]+
  • Beispiel 3
  • Figure 00520002
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-amino-β-D-glucopyranos-1-yl)-benzol
  • Zu einer Lösung von 0,20 g 1-Chlor-2-(4-methoxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzol in 3,5 ml Tetrahydrofuran werden 0,19 g Triphenylphoshin, 0,09 g Phthalimid und zuletzt 0,14 ml Diisopropylazodicarboxylat gegeben. Die Lösung wird 2 h bei Raumtemperatur gerührt und danach mit Methanol verdünnt und eingeengt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 8:1). Das gereinigte Phthalsäure geschützte Zwischenprodukt wird in 2 ml Ethanol und 2 ml Toluol gelöst und mit 0,25 g Ethanolamin versetzt. Die Lösung wird 5 h bei 80°C gerührt und dann mit wässriger Kaliumcarbonatlösung versetzt. Die Lösung wird mit Ethylacetat extrahiert, die organischen Extrakte werden über Natriumsulfat getrocknet, und danach wird das Lösungsmittel abdestilliert. Der Rückstand wird über Kieselgel chromatografiert (Dichlormethan/Methanol 1:0 → 1:1).
    Ausbeute: 0,086 g (43% der Theorie)
    Massenspektrum (ESI+): m/z = 394/396 (Chlor) [M + H]+
  • Beispiel 4
  • Figure 00530001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-acetylamino-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eisgekühlten Lösung von 0,078 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-amino-β-D-glucopyranos-1-yl)-benzol und 0,1 ml Pyridin in 2 ml Dichlormethan werden 0,1 ml Acetanhydrid und 10 mg 4-Dimethylaminopyridin gegeben. Die Lösung wird 1 h bei Raumtemperatur gerührt und dann mit 20 ml Dichlormethan verdünnt. Die verdünnte Lösung wird mit 1 M Salzsäure gewaschen, und das Lösungsmittel wird entfernt. Der Rückstand wird in 4 ml Methanol gelöst und die Lösung im Eisbad abgekühlt. Nach Zugabe von 1 ml 4 M Kaliumhydroxidlösung wird 1 h bei Raumtemperatur gerührt. Die Lösung wird dann mit 1 M Salzsäure neutralisiert und das Methanol abdestilliert. Wässrige Natriumhydrogencarbonatlösung wird zugegeben, die Lösung mit Ethylacetat extrahiert, und die organischen Extrakte werden über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels wird der Rückstand über Kieselgel chromatografiert (Dichlormethan/Methanol 1:0 → 8:1).
    Ausbeute: 0,078 g (90% der Theorie)
    Massenspektrum (ESI+): m/z = 436/438 (Chlor) [M + H]+
  • Beispiel 5
  • Figure 00540001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-0-phenyl-β-D-glucopyranos-1-yl)-benzol
  • Zu einer Lösung von 0,20 g 1-Chlor-2-(4-methoxy-benzyl)-4-(β-D-glucopyranos-1-yl)-benzol in 3,5 ml Tetrahydrofuran werden 0,19 g Triphenylphoshin, 56 mg Phenol und zuletzt 0,14 ml Diisopropylazodicarboxylat gegeben. Die Lösung wird bei Raumtemperatur gerührt. Nach 1 h werden noch einmal 0,18 g Triphenylphosphin und 0,14 ml Diisopropylazodicarboxylat, und nach 2 und 4 h werden noch einmal jeweils 50 mg Phenol zugegeben. Nach insgesamt 18 h Rühren bei Raumtemperatur wird Methanol zugegeben und die Lösung vollständig eingeengt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 20:1).
    Ausbeute: 0,13 g (55% der Theorie)
    Massenspektrum (ESI+): m/z = 488/490 (Chlor) [M + NH4]+
  • Analog Beispiel 5 werden folgende Verbindung erhalten: (1) 1-Chlor-2-(4-methoxy-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol
    Figure 00540002
  • Die Reaktion wird mit 2-Cyan-2-hydroxy-propan statt mit Phenol und bei 45–50°C durchgeführt.
    Massenspektrum (ESI+): m/z = 421/423 (Chlor) [M + NH4]+ (2) 1-Chlor-2-(4-ethinyl-benzyl)-4-(6-cyan-6-desoxy-β-D-glucopyranos-1-yl)-benzol
    Figure 00550001
  • Die Reaktion wird mit 2-Cyan-2-hydroxy-propan statt mit Phenol und bei 45–50°C durchgeführt.
  • Beispiel 6
  • Figure 00550002
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-β-D-glucopyranos-1-yl)-benzol
  • Zu einer Lösung von 0,10 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-iod-β-D-glucopyranos-1-yl)-benzol in 1,5 ml Toluol werden 0,95 ml Tris-(trimethylsilyl)silan und 12 mg Azobisisobutyronitril gegeben. Die Lösung wird 22 h bei 120°C im dicht verschlossenen Kolben gerührt und dann mit Methanol verdünnt. Die Lösung wird eingeengt, der Rückstand mit 1 M Salzsäure versetzt und mit Ethylacetat extrahiert. Die organischen Extrakte werden über Natriumsulfat getrocknet, und das Lösungsmittel wird anschließend entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,062 g (83% der Theorie)
    Massenspektrum (ESI+): m/z = 396/398 (Chlor) [M + NH4]+
  • Beispiel 7
  • Figure 00560001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-acetylsulfanyl-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eisgekühlten Lösung von 0,23 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-iod-β-D-glucopyranos-1-yl)-benzol und 0,15 ml Thioessigsäure in 3 ml Dimethylformamid werden 0,58 g Cesiumcarbonat gegeben. Das Gemisch wird 14 h bei Raumtemperatur gerührt und dann mit wässriger Natriumhydrogencarbonatlösung versetzt. Danach wird mit Ethylacetat extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Der Rückstand wird über Kieselgel chromatografiert (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,185 g (90% der Theorie)
    Massenspektrum (ESI+): m/z = 470/472 (Chlor) [M + NH4]+
  • Beispiel 8
  • Figure 00560002
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-mercapto-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eisgekühlten Lösung von 0,145 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-acetylsulfanyl-β-D-glucopyranos-1-yl)-benzol in 2,5 ml Methanol werden 0,12 ml einer 4 M Kaliumhydroxidlösung gegeben. Die Lösung wird 1 h bei Raumtemperatur gerührt und dann mit 1 M Salzsäure neutralisiert. Nach Entfernen des Methanols wird wässrige Natriumchloridlösung zugegeben, mit Ethylacetat extrahiert und die organische Phase über Natriumsulfat getrocknet. Die organische Phase wird eingeengt und der Rückstand über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,105 g (80% der Theorie)
    Massenspektrum (ESI+): m/z = 428/430 (Chlor) [M + NH4]+
  • Beispiel 9
  • Figure 00570001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-methylsulfanyl-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eisgekühlten Lösung von 0,082 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-mercapto-β-D-glucopyranos-1-yl)-benzol in 2 ml Dimethylformamid werden 0,095g Cesiumcarbonat gegeben. Die Lösung wird 5 min im Eisbad gerührt und dann mit 16 μl Methyliodid versetzt. Die Lösung wird 1 h bei Raumtemperatur gerührt und dann mit Wasser verdünnt. Die wässrige Phase wird mit Ethylacetat extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,014 g (17% der Theorie)
    Massenspektrum (ESI+): m/z = 442/444 (Chlor) (M + NH4]+
  • Beispiel 10
  • Figure 00570002
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-methylsulfanyl-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eisgekühlten Lösung von 0,16 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-methylsulfanyl-β-D-glucopyranos-1-yl)-benzol in 7 ml 1,1,1,3,3,3-Hexafluorisopropanol werden 0,1 ml Wasserstoffperoxidlösung (35% in Wasser) gegeben. Die Lösung wird 1 h im Eisbad und dann 2 h bei Raumtemperatur gerührt. Danach wird wässrige Natriumthiosulfatlösung und Natriumhydrogencarbonatlösung zugegeben und mit Ethylacetat extrahiert. Die organischen Extrakte werden über Natriumsulfat getrocknet, und das Lösungsmittel wird entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 5:1).
    Ausbeute: 0,12 g (72% der Theorie)
    Massenspektrum (ESI+): m/z = 441/443 (Chlor) [M + H]+
  • Beispiel 11
  • Figure 00580001
    1-Chlor-2-(4-methoxy-benzol)-4-(6-desoxy-6-methylsulfonyl-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eisgekühlten Lösung von 0,26 g 1-Chlor-2-(4-methoxy-benzyl)-4-(6-desoxy-6-methylsulfanyl-β-D-glucopyranos-1-yl)-benzol in 8 ml Dichlormethan werden 0,31 g meta-Chlorperbenzoesäure (77% in Wasser) gegeben. Die Lösung wird 1 h im Eisbad und dann 2 h bei Raumtemperatur gerührt. Danach wird wässrige Natriumthiosulfatlösung und Natriumhydrogencarbonatlösung zugegeben und mit Ethylacetat extrahiert. Die organischen Extrakte werden über Natriumsulfat getrocknet, und das Lösungsmittel wird entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,19 g (68% der Theorie)
    Massenspektrum (ESI+): m/z = 474/476 (Chlor) [M + NH4]+
  • Beispiel 12
  • Figure 00590001
    6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonsäuredimethylamid
  • Zu einer eisgekühlten Lösung von 0,15 g 5-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-8-hydroxy-2,3-dimethoxy-2,3-dimethyl-hexahydro-pyran[3,4-b][1,4]dioxin-7-carbonsäure in 2 ml Dimethylformamid werden 0,13 g O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat gegeben. Nach 15 min Rühren im Eisbad werden 0,2 ml einer Lösung von Dimethylamin in Tetrahydrofuran (2 M) und 0,09 ml Diisopropylethylamin zugegeben. Nach 2 h Rühren im Eisbad wird wässrige Kaliumcarbonatlösung zugegeben und mit Ethylacetat ausgeschüttelt. Nach Trocknen über Natriumsulfat wird das Lösungsmittel entfernt und der Rückstand in 2,5 ml Trifluoressigsäure (80% in Wasser) aufgenommen. Die Lösung wird 2 h bei Raumtemperatur gerührt und dann mit 4 M Kalilauge neutralisiert. Die Lösung wird mit Ethylacetat extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 15:1).
    Ausbeute: 0,11 g (86% der Theorie)
    Massenspektrum (ESI+): m/z = 436/438 (Chlor) [M + H]+
  • Analog Beispiel 12 werden folgende Verbindungen erhalten: (1) 6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonsäureamid
    Figure 00600001
    Massenspektrum (ESI+): m/z = 408/410 (Chlor) [M + H]+ (2) 6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonsäuremethylamid
    Figure 00600002
    Massenspektrum (ESI+): m/z = 422/424 (Chlor) [M + H]+ (3) 6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonsäurebenzylamid
    Figure 00600003
    Massenspektrum (ESI+): m/z = 408/410 (Chlor) [M + H]+
  • Beispiel 13
  • Figure 00600004
    6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydo-pyran-2-carbonsäure
  • Zu einer eiskalten Lösung von 0,33 g 1-Chlor-2-(4-methoxy-benzyl)-4-[2,3-O-(2,3-dimethoxy-but-2,3-diyl)-β-D-glucopyranos-1-yl]-benzol in 6,6 ml Dichlormethan werden 2 mg 2,2,6,6-Tetramethylpiperidin-1-yloxy gefolgt von einer Lösung aus 76 mg Kaliumbromid und 0,10 g Tetrabutylammoniumbromid in 13,5 ml gesättigter Natriumhydrogencarbonatlösung gegeben. Unter heftigem Rühren wird eine Lösung von 1,35 ml gesättigter wässriger Natriumchloridlösung, 0,65 ml gesättigter wässriger Natriumhydrogencarbonatlösung und 1,8 ml Natriumhypchloritlösung (12% aktives Chlor) zugetropft. Nach 1 und 2 h Rühren werden jeweils noch einmal eine Lösung von 0,25 ml gesättigter wässriger Natriumchloridlösung, 0,13 ml gesättigter wässriger Natriumhydrogencarbonatlösung und 0,32 ml Natriumhypchloritlösung (12% aktives Chlor) zugetropft. Nach einer weiteren Stunde im Eisbad wird die Lösung mit 4 M Salzsäure auf pH = 1 eingestellt und mit Dichlormethan (1x) und Ethylacetat (3x) ausgeschüttelt. Nach Trocknen über Natriumsulfat wird das Lösungsmittel entfernt und der Rückstand in 4 ml Trifluoressigsäure (80% in Wasser) aufgenommen. Die Lösung wird 2 h bei Raumtemperatur gerührt und dann mit Wasser verdünnt. Die Lösung wird bis zur Trockene eingeengt, der Rückstand mit 1 M Salzsäure versetzt und mit Ethylacetat extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und das Lösungsmittel vollständig entfernt.
    Ausbeute: 0,16 g (60% der Theorie)
    Massenspektrum (ESI+): m/z = 426/428 (Chlor) [M + NH4]+
  • Beispiel 14
  • Figure 00610001
    6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonsäuremethylester
  • Zu einer Lösung von 0,15 g 6-[4-Chlor-3-(4-methoxy-benzyl)-phenyl]-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonsäure in 2 ml Dimethylformamid werden 90 mg Kaliumcarbonat gegeben, und das Gemisch wird 15 min bei Raumtemperatur gerührt. Danach werden 15 μl Methyliodid zugegeben, und das Gemisch wird über Nacht gerührt. Dann wird Wasser zugesetzt und mit Ethylacetat ausgeschüttelt. Nach Trocknen über Natriumsulfat wird das Lösungsmittel entfernt und der Rückstand chromatografiert (Dichlormethan/Methanol 1:0 → 10:1).
    Ausbeute: 0,07 g (47% der Theorie)
    Massenspektrum (ESI+): m/z = 440/442 (Chlor) [M + NH4]+
  • Beispiel 15
  • Figure 00620001
    1-Chlor-2-(4-methoxy-benzyl)-4-(6-O-methyl-β-D-glucopyranos-1-yl)-benzol
  • Zu einer eiskalten Lösung von 0,25 g 1-Chlor-2-(4-methoxy-benzyl)-4-[3,4-O-(2,3-dimethoxy-but-2,3-diyl)-β-D-glucopyranos-1-yl]-benzol in 2 ml Dichlormethan werden 73 μl Tetrafluorborsäure (42% in Wasser) gegeben. Danach werden 0,25 ml Trimethylsilyldiazomethan in Hexan (2 M) langsam zugetropft. Nach 20 min Rühren im Eisbad werden noch einmal 0,13 ml, nach weiteren 20 min noch einmal 0,06 ml und nach weiteren 20 min noch einmal 0,06 ml Trimethylsilyldiazomethan (2 M in Hexan) zugetropft. Nach weiteren 30 min im Eisbad wird mit Wasser verdünnt und die Lösung mit Dichlormethan extrahiert. Nach Trocknen über Natriumsulfat wird das Lösungsmittel entfernt und der Rückstand in 2,5 ml Trifluoressigsäure (80% in Wasser) aufgenommen. Die Lösung wird 2 h bei Raumtemperatur gerührt und dann mit 4 M Kalilauge neutralisiert. Die Lösung wird mit Ethylacetat extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Der Rückstand wird über Kieselgel gereinigt (Dichlormethan/Methanol 1:0 → 20:1).
    Ausbeute: 0,10 g (50% der Theorie)
    Massenspektrum (ESI+): m/z = 426/428 (Chlor) [M + NH4]+
  • Analog den vorstehend genannten Beispielen und andern literaturbekannten Verfahren werden auch folgende Verbindungen hergestellt:
    Figure 00630001
    Figure 00640001
    Figure 00650001
    Figure 00660001
  • Nachfolgend werden Beispiele zu Darreichungsformen beschrieben, worin die Angabe "Wirkstoff" eine oder mehrere erfindungsgemäße Verbindungen, einschließlich deren Salze bedeutet. Im Falle einer der beschriebenen Kombinationen mit einem oder mehreren weiteren Wirksubstanzen umfasst der Begriff "Wirkstoff" auch die weiteren Wirksubstanzen.
  • Beispiel A
    • Tabletten mit 100 mg Wirksubstanz Zusammensetzung:
      1 Tablette enthält:
      Wirksubstanz 100.0 mg
      Milchzucker 80.0 mg
      Maisstärke 34.0 mg
      Polyvinylpyrrolidon 4.0 mg
      Magnesiumstearat 2.0 mg
      220.0 mg
  • Herstellungverfahren:
  • Wirkstoff, Milchzucker und Stärke werden gemischt und mit einer wäßrigen Lösung des Polyvinylpyrrolidons gleichmäßig befeuchtet. Nach Siebung der feuchten Masse (2.0 mm-Maschenweite) und Trocknen im Hordentrockenschrank bei 50°C wird erneut gesiebt (1.5 mm-Maschenweite) und das Schmiermittel zugemischt. Die pressfertige Mischung wird zu Tabletten verarbeitet.
    Tablettengewicht: 220 mg
    Durchmesser: 10 mm, biplan mit beidseitiger Facetteund und einseitiger Teilkerbe.
  • Beispiel B
    • Tabletten mit 150 mg Wirksubstanz Zusammensetzung:
      1 Tablette enthält:
      Wirksubstanz 150.0 mg
      Milchzucker pulv. 89.0 mg
      Maisstärke 40.0 mg
      Kolloide Kieselgelsäure 10.0 mg
      Polyvinylpyrrolidon 10.0 mg
      Magnesiumstearat 1.0 mg
      300.0 mg
  • Herstellung:
  • Die mit Milchzucker, Maisstärke und Kieselsäure gemischte Wirksubstanz wird mit einer 20%igen wäßrigen Polyvinylpyrrolidonlösung befeuchtet und durch ein Sieb mit 1.5 mm-Maschenweite geschlagen.
  • Das bei 45°C getrocknete Granulat wird nochmals durch dasselbe Sieb gerieben und mit der angegebenen Menge Magnesiumstearat gemischt. Aus der Mischung werden Tabletten gepreßt.
    Tablettengewicht: 300 mg
    Stempel: 10 mm, flach
  • Beispiel C
    • Hartgelatine-Kapseln mit 150 mg Wirksubstanz Zusammensetzung:
      1 Kapsel enthält:
      Wirkstoff 150.0 mg
      Maisstärke getr. ca. 180.0 mg
      Milchzucker pulv. ca. 87.0
      Magnesiumstearat 3.0 mg
      ca. 420.0 mg
  • Herstellung:
  • Der Wirkstoff wird mit den Hilfsstoffen vermengt, durch ein Sieb von 0.75 mm-Maschenweite gegeben und in einem geeigneten Gerät homogen gemischt.
  • Die Endmischung wird in Hartgelatine-Kapseln der Größe 1 abgefüllt.
    Kapselfüllung: ca. 320 mg
    Kapselhülle: Hartgelatine-Kapsel Größe 1.
  • Beispiel D
    • Suppositorien mit 150 mg Wirksubstanz Zusammensetzung:
      1 Zäpfchen enthält:
      Wirkstoff 150.0 mg
      Polyäthylenglykol 1500 550.0 mg
      Polyäthylenglykol 6000 460.0 mg
      Polyoxyäthylensorbitanmonostearat 840.0 mg
      2000.0 mg
  • Herstellung:
  • Nach des Aufschmelzen der Suppositorienmasse wird der Wirkstoff darin homogen verteilt und die Schmelze in vorgekühlte Formen gegossen.
  • Beispiel E
    • Ampullen mit 10 mg Wirksubstanz Zusammensetzung:
      Wirkstoff 10.0 mg
      0.01 n Salzsäure s.q.
      Aqua bidest ad 2.0 ml
  • Herstellung:
  • Die Wirksubstanz wird in der erforderlichen Menge 0.01 n HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 2 ml Ampullen abgefüllt.
  • Beispiel F
    • Ampullen mit 50 mg Wirksubstanz Zusammensetzung:
      Wirkstoff 50.0 mg
      0.01 n Salzsäure s.q.
      Aqua bidest ad 10.0 ml
  • Herstellung:
  • Die Wirksubstanz wird in der erforderlichen Menge 0.01 n HCl gelöst, mit Kochsalz isotonisch gestellt, sterilfiltriert und in 10 ml Ampullen abgefüllt.

Claims (25)

  1. D-Xylopyranosyl-substituierte Phenyle der allgemeinen Formel I
    Figure 00710001
    in der R1 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl, C5-7-Cycloalkenyl-C1-3-alkyl, C1-4-Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, Piperazin-1-ylcarbonyl, 4-(C1-4-Alkyl)piperazin-1-ylcarbonyl, C1-4-Alkoxycarbonyl, Amino, C1-4-Alkylamino, Di-(C1-3-alkyl)amino, Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-4-yl, Piperazin-1-yl, 4-(C1-4-Alkyl)piperazin-1-yl, C1-4-Alkylcarbonylamino, C1-6-Alkyloxy, C3-7-Cycloalkyloxy, C5-7-Cycloalkenyloxy, Aryloxy, C1-4-Alkylsulfanyl, C1-4-Alkylsulfinyl, C1-4-Alkylsulfonyl, C3-7-Cycloalkylsulfanyl, C3-7-Cycloalkylsulfinyl, C3-7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl, C5-7-Cycloalkenylsulfinyl, C5-7-Cycloalkenylsulfonyl, Arylsulfanyl, Arylsulfinyl, Arylsulfonyl, Hydroxy, Cyan und Nitro, wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und R2 Wasserstoff, Fluor, Chlor, Brom, Hydroxy, C1-4-Alkyl, C1-4-Alkoxy, Cyan oder Nitro, wobei Alkyl-Reste ein- oder mehrfach mit Fluor substituiert sein können, oder für den Fall, dass R1 und R2 an zwei miteinander benachbarte C-Atome des Phenylrings gebunden sind, können R1 und R2 derart miteinander verbunden sein, dass R1 und R2 zusammen eine C3-5-Alkylen- oder C3-5-Alkenylen-Brücke bilden, die teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert kann und in der ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO, SO2 oder NRN substituiert sein können, R3 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl, C5-7-Cycloalkenyl-C1-3-alkyl, Aryl, Heteroaryl, C1-4-Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, Piperazin-1-ylcarbonyl, 4-(C1-4-Alkyl)piperazin-1-ylcarbonyl, Hydroxycarbonyl, C1-4-Alkoxycarbonyl, C1-4-Alkylamino, Di-(C1-3-alkyl)amino, Pyrrolidin-1-yl, Piperidin-1-yl, Morpholin-4-yl, Piperazin-1-yl, 4-(C1-4-Alkyl)piperazin-1-yl, C1-4-Alkylcarbonylamino, Arylcarbonylamino, Heteroarylcarbonylamino, C1-4-Alkylsulfonylamino, Arylsulfonylamino, C1-6-Alkoxy, C3-7-Cycloalkyloxy, C5-7-Cycloalkenyloxy, Aryloxy, Heteroaryloxy, C1-4-Alkylsulfanyl, C1-4-Alkylsulfinyl, C1-4-Alkylsulfonyl, C3-7-Cycloalkylsulfanyl, C3-7-Cycloalkylsulfinyl, C3-7-Cycloalkylsulfonyl, C5-7- Cycloalkenylsulfanyl, C5-7-Cycloalkenylsulfinyl, C5-7-Cycloalkenylsulfonyl, Arylsulfanyl, Arylsulfinyl, Arylsulfonyl, Amino, Hydroxy, Cyan und Nitro, wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und R4 unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Iod, Cyan, Nitro, C1-3-Alkyl, C1-3-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methyl- oder Methoxy, oder für den Fall, dass R3 und R4 an zwei miteinander benachbarte C-Atome des Phenylrings gebunden sind, können R3 und R4 derart miteinander verbunden sein, dass R3 und R4 zusammen eine C3-5-Alkylen- oder C3-5-Alkenylen-Brücke bilden, die teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Hydroxy, C1-3-Alkoxy und C1-3-Alkyl substituiert kann und in der ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO, SO2 oder NRN substituiert sein können, R5 unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Iod, Cyan, Nitro, C1-3-Alkyl, C1-3-Alkoxy, durch 1 bis 3 Fluoratome substituiertes Methyl- oder Methoxy, und RN H oder C1-4-Alkyl, L unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Iod, C1-3-Alkyl, Difluormethyl, Trifluormethyl, C1-3-Alkoxy, Difluormethoxy, Trifluormethoxy und Cyan, R7a, R7b R7c unabhängig voneinander eine Bedeutung ausgewählt aus der Gruppe Wasserstoff, (C1-18-Alkyl)carbonyl, (C1-18-Alkyl)oxycarbonyl, Arylcarbonyl und Aryl-(C1-3-alkyl)-carbonyl besitzen, X Wasserstoff, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C3-7-Cycloalkyl-C1-3-alkyl, C5-7-Cycloalkenyl, C5-7-Cycloalkenyl-C1-3-alkyl, Aryl, Aryl-C1-3-alkyl, Heteroaryl, Heteroaryl-C1-3-alkyl, C1-4-Alkylcarbonyl, Arylcarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-3-Alkyl)aminocarbonyl, (Aryl-C1-3-alkyl)aminocarbonyl, Pyrrolidin-1-ylcarbonyl, Piperidin-1-ylcarbonyl, Morpholin-4-ylcarbonyl, Hydroxycarbonyl, C1-4-Alkoxycarbonyl, C1-4-Alkylcarbonylamino-C1-3-alkyl, N-(C1-4-Alkylcarbonyl)-N-(C1-3-alkyl)-amino-C1-3-alkyl, Arylcarbonylamino-C1-3-alkyl, C1-4-Alkylsulfonylamino-C1-3-alkyl, Arylsulfonylamino-C1-3-alkyl, C1-3-6-Alkoxy-C1-3-alkyl, C3-7-Cycloalkyloxy-C1-3-alkyl, C5-7-Cycloalkenyloxy-C1-3-alkyl, Aryloxy-C1-3-alkyl, Heteroaryloxy-C1-3-alkyl, C1-4-Alkylsulfanyl-C1-3-alkyl, C1-4-Alkylsulfinyl-C1-3-alkyl, C1-4-Alkylsulfinyl, C1-4-Alkylsulfonyl, C1-4-Alkylsulfonyl-C1-3-alkyl, C1-4-Arylsulfanyl-C1-3-alkyl, Arylsulfonyl-C1-3-alkyl, Aryl-C1-3-alkyl-sulfonyl-C1-3-alkyl, C1-4-Alkylsulfonyloxy-C1-3-alkyl, Arylsulfonyloxy-C1-3-alkyl, Aryl-C1-3-alkyl-sulfonyloxy-C1_3-alkyl, C3-7-Cycloalkylsulfanyl-C1-3-alkyl, C3-7-Cycloalkylsulfinyl, C3-7-Cycloalkylsulfonyl, C5-7-Cycloalkenylsulfanyl-C1-3-alkyl, C5-7-Cycloalkenylsulfinyl, C5-7-Cycloalkenylsulfonyl, C1-4-Alkylcarbonylsulfanyl-C1-3-alkyl und Cyan, wobei Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl- und Cycloalkenyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach mit gleichen oder verschiedenen Substituenten ausgewählt aus Chlor, Cyan, Hydroxy, Mercapto, C1-3-Alkoxy und C1-3-Alkyl substituiert sein können, und wobei in Cycloalkyl- und Cycloalkenyl-Resten ein oder zwei Methylengruppen unabhängig voneinander durch O, S, CO, SO oder SO2 substituiert sein können, und wobei in N-Heterocycloalkyl-Resten eine Methylengruppe durch CO oder SO2 substituiert sein kann, und wobei X in der Bedeutung Hydroxymethyl ausgeschlossen ist, Z Sauerstoff, Methylen, Dimethylmethylen, Difluormethylen oder Carbonyl; wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen zu verstehen sind, welche unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können; und unter den bei der Definition der vorstehend erwähnten Reste erwähnten Heteroarylgruppen eine Pyrrolyl-, Furanyl-, Thienyl-, Pyridyl-, Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, oder eine Pyrrolyl-, Furanyl-, Thienyl- oder Pyridylgruppe zu verstehen ist, in der eine oder zwei Methingruppen durch Stickstoffatome ersetzt sind, oder eine Indolyl-, Benzofuranyl-, Benzothiophenyl-, Chinolinyl- oder Isochinolinylgruppe zu verstehen ist, in der eine bis drei Methingruppen durch Stickstoffatome ersetzt sind, wobei die vorstehend erwähnten Heteroarylgruppen unabhängig voneinander ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können; wobei unter dem bei der Definition der vorstehend erwähnten Reste erwähnten N-Heterocycloalkyl-Rest ein gesättigter carbocyclischer Ring, der eine Imino-Gruppe im Ring aufweist, zu verstehen ist, der eine weitere Imino-Gruppe oder ein O- oder S-Atom im Ring aufweisen kann, und wobei, soweit nichts anderes erwähnt wurde, die vorstehend erwähnten Alkylgruppen geradkettig oder verzweigt sein können, deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträglichen Salze.
  2. D-Xylopyranosyl-substituierte Phenyle gemäß Anspruch 1, gekennzeichnet durch die Formel I.2
    Figure 00760001
    worin R1 bis R5, X, Z, R7a, R7b, R7c die Bedeutungen gemäß Anspruch 1 aufweisen.
  3. D-Xylopyranosyl-substituierte Phenyle gemäß Anspruch 1, gekennzeichnet durch die Formel I.2c
    Figure 00770001
    worin R1 bis R5, X, Z, R7a, R7b, R7c die Bedeutungen gemäß Anspruch 1 aufweisen.
  4. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass R1 Wasserstoff, Fluor, Chlor, Brom, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C3-7-Cycloalkyl, C5-7-Cycloalkenyl, C1-6-Alkyloxy, C3-7-Cycloalkyloxy oder Cyan bedeutet, wobei in Cycloalkyl- und Cycloalkenylgruppen ein oder zwei Methyleneinheiten unabhängig voneinander durch O oder CO ersetzt und Alkyl-, Alkenyl- und Alkinyl-Reste teilweise oder vollständig fluoriert sein können.
  5. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass R3 C1-6-Alkyl, C2-6-Alkinyl, C1-4-Alkyloxy, C3-7-Cycloalkyl, C3-7-Cycloalkyloxy oder Hydroxy bedeutet, wobei in den Cycloalkylgruppen ein oder zwei Methyleneinheiten unabhängig voneinander durch O oder CO ersetzt und Alkylreste teilweise oder vollständig fluoriert sein können.
  6. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X Wasserstoff, Cyan, C1-6-Alkyl, C2-6-Alkinyl, C2-6-Alkenyl, C1-4-Alkylcarbonyl, C1-4-Alkoxycarbonyl, Aminocarbonyl, C1-4-Alkylaminocarbonyl, Di-(C1-4-alkyl)aminocarbonyl oder C1-4-Alkylcarbonylamino-C1-3-alkyl bedeutet, wobei Alkyl-Reste ein- oder mehrfach fluoriert oder einfach mit Chlor oder Cyan substituiert sein können und X in der Bedeutung Alkyl mit 2 oder mehr C-Atomen einen Hydroxy-Substituenten aufweisen kann.
  7. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X C1-4-Alkyloxymethyl, C3-7-Cycloalkyloxymethyl oder Aryloxymethyl bedeutet, wobei unter der Arylgruppe eine Phenyl- oder Naphthylgruppe, vorzugsweise eine Phenylgruppe zu verstehen ist, welche ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können und L gemäß Anspruch 1 definiert ist.
  8. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X Mercaptomethyl, C1-4-Alkylsulfanylmethyl oder C1-4-Alkylcarbonylsulfanylmethyl bedeutet.
  9. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X Chlormethyl, Brommethyl, Iodmethyl, C1-6-Alkylsulfonyloxymethyl, Arylsulfonyloxymethyl oder Aryl-C1-3-alkyl-sulfonyloxymethyl bedeutet, wobei die vorstehend genannten Alkyl-Reste teilweise oder vollständig fluoriert oder ein- oder zweifach chloriert sein können und wobei die vorstehend genannten Aryl-Gruppen ein- oder zweifach mit gleichen oder verschiedenen Resten L substituiert sein können, wobei L vorzugsweise ausgewählt ist aus der Gruppe Fluor, Chlor, Brom, Iod, C1-3-Alkyl, Difluormethyl, Trifluormethyl und Cyan.
  10. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass R2 Wasserstoff, Fluor, Hydroxy, Methoxy, Ethoxy oder Methyl bedeutet.
  11. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass R4 und R5 unabhängig voneinander Wasserstoff oder Fluor bedeuten.
  12. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass Z Sauerstoff oder Methylen bedeutet.
  13. D-Xylopyranosyl-substituierte Phenyle gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass R7a, R7b, R7c unabhängig voneinander Wasserstoff, (C1-6-Alkyl)oxycarbonyl-, (C1-8-Alkyl)carbonyl oder Benzoyl, vorzugsweise Wasserstoff bedeuten.
  14. Physiologisch verträgliche Salze der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 13 mit anorganischen oder organischen Säuren.
  15. Verwendung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 13 oder eines physiologisch verträglichen Salzes gemäß Anspruch 14 als Arzneimittel.
  16. Arzneimittel, enthaltend eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 13 oder ein physiologisch verträgliches Salz gemäß Anspruch 14 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
  17. Verwendung mindestens einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 13 oder eines physiologisch verträglichen Salzes gemäß Anspruch 14 zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Erkrankungen oder Zuständen geeignet ist, die durch Inhibierung des natriumabhängigen Glucose-Cotransporters SGLT beeinflussbar sind.
  18. Verwendung mindestens einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 13 oder eines physiologisch verträglichen Salzes gemäß Anspruch 14 zur Herstellung eines Arzneimittels, das zur Behandlung oder Prophylaxe von Stoffwechselerkrankungen geeignet ist.
  19. Verwendung nach Anspruch 18, dadurch gekennzeichnet, dass die Stoffwechserkrankung ausgewählt ist aus der Gruppe bestehend aus Diabetes mellitus Typ 1 und Typ 2, diabetische Komplikationen, metabolische Azidose oder Ketose, reaktiver Hypoglykämie, Hyperinsulinämie, Glukosestoffwechselstörung, Insulinresistenz, Metabolischem Syndrom, Dyslipidämien unterschiedlichster Genese, Atherosklerose und verwandte Erkrankungen, Adipositas, Bluthochdruck, chronisches Herzversagen, Ödeme, Hyperurikämie.
  20. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 13 oder eines physiologisch verträglichen Salzes gemäß Anspruch 14 zur Herstellung eines Arzneimittels zur Inhibition des natriumabhängigen Glucose-Cotransporters SGLT.
  21. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 13 oder eines physiologisch verträglichen Salzes gemäß Anspruch 14 zur Herstellung eines Arzneimittels zum Verhindern der Degeneration von pankreatischen beta-Zellen und/oder zum Verbessern und/oder Wiederherstellen der Funktionalität von pankreatischen beta-Zellen.
  22. Verwendung mindestens einer Verbindung nach mindestens einem der Ansprüche 1 bis 13 oder eines physiologisch verträglichen Salzes gemäß Anspruch 14 zur Herstellung von Diuretika und/oder Antihypertensiva.
  23. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 16, dadurch gekennzeichnet, dass auf nicht-chemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 13 oder ein physiologisch verträgliches Salz gemäß Anspruch 14 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
  24. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass eine Verbindung der allgemeinen Formel II
    Figure 00820001
    in der R' H, C1-4-Alkyl, (C1-18-Alkyl)carbonyl, (C1-18-Alkyl)oxycarbonyl, Arylcarbonyl oder Aryl-(C1-3-alkyl)-carbonyl bedeutet, worin die Alkyl- oder Arylgruppen ein- oder mehrfach mit Halogen substituiert sein können; R8a, R8b R8c unabhängig voneinander eine in Anspruch 1 oder 13 für die Reste R7a, R7b, R7c angegebenen Bedeutungen besitzt oder eine RaRbRcSi-Gruppe oder eine Ketal- oder Acetalgruppe bedeutet, wobei jeweils zwei benachbarte Reste R8a, R8b, R8c eine cyclische Ketal- oder Acetylgruppe bilden können, und wobei Alkyl- und/oder Arylgruppen ein- oder mehrfach halogeniert sein können; und Ra, Rb, Rc unabhängig voneinander C1-4-Alkyl, Aryl oder Aryl-C1-3-alkyl bedeuten, wobei die Alkyl- oder Arylgruppen ein- oder mehrfach mit Halogen substituiert sein können; wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen, vorzugsweise Phenylgruppen zu verstehen sind; und X, Z, R1 bis R5 die in den Ansprüchen 1 bis 13 angegebenen Bedeutungen besitzen, mit einem Reduktionsmittel in Gegenwart einer Säure umgesetzt wird, wobei die eventuell vorhandenen Schutzgruppen gleichzeitig oder nachträglich abgespalten werden; erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I selektiv an einer Hydroxygruppe derivatisiert oder diese substituiert wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre physiologisch verträglichen Salze überführt wird.
  25. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel I gemäß den Ansprüchen 1 bis 13, in der R7a, R7b und R7c Wasserstoff bedeuten, dadurch gekennzeichnet, dass in einer Verbindung der allgemeinen Formel III
    Figure 00830001
    in der R8a, R8b R8c unabhängig voneinander eine in Anspruch 1 oder 13 für die Reste R7a, R7b, R7c angegebenen Bedeutungen, jedoch nicht Wasserstoff, besitzen oder eine RaRbRcSi-Gruppe oder eine Ketal- oder Acetalgruppe bedeutet, wobei jeweils zwei benachbarte Reste R8a, R8b, R8c eine cyclische Ketal- oder Acetylgruppe bilden können, und wobei Alkyl- und/oder Arylgruppen ein- oder mehrfach halogeniert sein können; und Ra, Rb, Rc unabhängig voneinander C1-4-Alkyl, Aryl oder Aryl-C1-3-alkyl bedeuten, wobei die Alkyl- oder Arylgruppen ein- oder mehrfach mit Halogen substituiert sein können; wobei unter den bei der Definition der vorstehend genannten Reste erwähnten Arylgruppen Phenyl- oder Naphthylgruppen, vorzugsweise Phenylgruppen zu verstehen sind; und X, Z, R1 bis R5 die in den Ansprüchen 1 bis 13 angegebenen Bedeutungen besitzen, die nicht Wasserstoff bedeutenden Reste R8a, R8b bzw. R8c entfernt werden, und erforderlichenfalls ein bei den vorstehend beschriebenen Umsetzungen verwendeter Schutzrest wieder abgespalten wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I selektiv an einer Hydroxygruppe derivatisiert oder diese substituiert wird und/oder gewünschtenfalls eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführt wird.
DE102004054603A 2004-07-06 2004-11-11 D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung Withdrawn DE102004054603A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE102004054603A DE102004054603A1 (de) 2004-11-11 2004-11-11 D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
US11/168,905 US7393836B2 (en) 2004-07-06 2005-06-28 D-xylopyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture
DE502005002516T DE502005002516D1 (de) 2004-07-06 2005-06-30 D-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
PCT/EP2005/007042 WO2006002912A1 (de) 2004-07-06 2005-06-30 D-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
CA002569915A CA2569915A1 (en) 2004-07-06 2005-06-30 D-xylopyranosyl-substituted phenyls, medicaments containing said compounds, the use thereof, and methods for producing the same
EP05755962A EP1765842B1 (de) 2004-07-06 2005-06-30 D-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
JP2007519682A JP5164568B2 (ja) 2004-07-06 2005-06-30 D−キシロピラノシル置換フェニル、前記化合物を含む薬物、その使用、及びその製造方法
ES05755962T ES2299047T3 (es) 2004-07-06 2005-06-30 Fenilos substituidos con d-xilopiranosilo, medicamentos que contienen estos compuestos, su empleo y procedimientos para su obtencion.
AT05755962T ATE383366T1 (de) 2004-07-06 2005-06-30 D-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004054603A DE102004054603A1 (de) 2004-11-11 2004-11-11 D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

Publications (1)

Publication Number Publication Date
DE102004054603A1 true DE102004054603A1 (de) 2006-05-18

Family

ID=36273788

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004054603A Withdrawn DE102004054603A1 (de) 2004-07-06 2004-11-11 D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

Country Status (1)

Country Link
DE (1) DE102004054603A1 (de)

Similar Documents

Publication Publication Date Title
EP1765842B1 (de) D-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1797107B1 (de) D-pyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1660509B1 (de) Glucopyranosyloxy-pyrazole, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1730131B1 (de) Glucopyranosyl-substituierte benzol-derivate, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
WO2006018150A1 (de) D-xylopyranosyl-phenyl-substituierte cyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
WO2006008038A1 (de) Methyliden-d-xylopyranosyl- und oxo-d-xylopyranosyl-substituierte phenyle, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
DE102004012676A1 (de) Glucopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
EP1773800A1 (de) D-glucopyranosyl-phenyl-substituierte cyclen, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
EP1699807A2 (de) Glucopyranosyloxy-substituierte aromaten, diese verbindungen enthaltende arzneimittel, deren verwendung und verfahren zu ihrer herstellung
JP2008524162A (ja) グルコピラノシル置換ベンゼン誘導体、該化合物を含む薬物、その使用及びその製造方法
DE102004039096A1 (de) D-Xylopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004054603A1 (de) D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004046583A1 (de) D-Xylopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004032823A1 (de) D-Xylopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004040168A1 (de) Glucopyranosyl-substituierte Phenyle, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004061145A1 (de) Glucopyranosyl-substituierte Benzol-Derivate, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004036314A1 (de) D-Glucopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE102004046012A1 (de) D-Glucopyranosyl-phenyl-substituierte Cyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE10359960A1 (de) Glucopyranosyloxy-pyrazole, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
DE10339549A1 (de) Glucopyranosyloxy-Pyrazole, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination

Effective date: 20111112